Advanced Superscalar Architectures

Size: px
Start display at page:

Download "Advanced Superscalar Architectures"

Transcription

1 Advanced Suerscalar Architectures Krste Asanovic Laboratory for Comuter Science Massachusetts Institute of Technology

2 Physical Register Renaming (single hysical register file: MIPS R10K, Alha 21264, Pentium-4) During decode, instructions allocated new hysical destination register Source oerands renamed to hysical register with newest value Execution unit only sees hysical register numbers ld r1, (r3) add r3, r1, #4 sub r6, r7, r9 add r3, r3, r6 ld r6, (r1) add r6, r6, r3 st r6, (r1) ld r6, (r11) Rename ld, (Px) add,, #4 sub, Py, Pz add,, ld P5, () add P6, P5, st P6, () ld P7, (Pw)

3 Physical Register File r 1 r 2 t i t j Snashots for misredict recovery t 1 t 2. t n Reg File Rename Table Load Unit FU FU FU Store Unit (ROB not shown) < t, result > One regfile for both committed and seculative values (no data in ROB) During decode, instruction result allocated new hysical register, source regs translated to hysical regs through rename table Instruction reads data from regfile at start of execute (not in decode) Write-back udates reg. busy bits on instructions in ROB (assoc. search) Snashots of rename table taken at every branch to recover misredicts On excetion, renaming undone in reverse order of issue (MIPS R10000)

4 Seculative and Out-of-Order Execution Branch Prediction kill kill Branch Resolution kill kill Out-of-Order Udate redictors In-Order PC Fetch Decode & Rename Reorder Buffer Commit In-Order Physical Reg. File Branch Unit Execute ALU MEM Store Buffer D$

5 Lifetime of Physical Registers Physical regfile holds committed and seculative values Physical registers decouled from ROB entries (no data in ROB) ld r1, (r3) add r3, r1, #4 sub r6, r7, r9 add r3, r3, r6 ld r6, (r1) add r6, r6, r3 st r6, (r1) ld r6, (r11) Rename ld, (Px) add,, #4 sub, Py, Pz add,, ld P5, () add P6, P5, st P6, () ld P7, (Pw) When can we reuse a hysical register? When next write of same architectural register commits

6 Physical Register Management R0 R1 R2 R3 R4 R5 R6 R7 Rename Table P7 P5 P6 P5 P6 P7 Physical Regs <R6> <R7> <R3> <R1> Free List ld r1, 0(r3) add r3, r1, #4 sub r6, r7, r6 add r3, r3, r6 ld r6, 0(r1) Pn ROB use ex o 1 PR1 2 PR2 Rd LPRd PRd (LPRd requires third read ort on Rename Table for each instruction)

7 Physical Register Management R0 R1 R2 R3 R4 R5 R6 R7 Rename Table P7 P5 P6 P5 P6 P7 Physical Regs <R6> <R7> <R3> <R1> Free List ld r1, 0(r3) add r3, r1, #4 sub r6, r7, r6 add r3, r3, r6 ld r6, 0(r1) Pn ROB use ex o 1 PR1 2 PR2 Rd LPRd PRd x ld P7 r1 (LPRd requires third read ort on Rename Table for each instruction)

8 Physical Register Management R0 R1 R2 R3 R4 R5 R6 R7 Rename Table P7 P5 P6 P5 P6 P7 Physical Regs <R6> <R7> <R3> <R1> Free List ld r1, 0(r3) add r3, r1, #4 sub r6, r7, r6 add r3, r3, r6 ld r6, 0(r1) ROB Pn use ex o 1 PR1 2 PR2 Rd LPRd PRd x ld P7 r1 x add r3 P7 (LPRd requires third read ort on Rename Table for each instruction)

9 Physical Register Management R0 R1 R2 R3 R4 R5 R6 R7 Rename Table P7 P5 P6 P5 P6 P7 Physical Regs <R6> <R7> <R3> <R1> Free List ld r1, 0(r3) add r3, r1, #4 sub r6, r7, r6 add r3, r3, r6 ld r6, 0(r1) Pn ROB use ex o 1 PR1 2 PR2 Rd LPRd PRd x ld P7 r1 x add r3 P7 x sub P6 P5 r6 P5 (LPRd requires third read ort on Rename Table for each instruction)

10 Physical Register Management R0 R1 R2 R3 R4 R5 R6 R7 Rename Table P7 P5 P6 P5 P6 P7 Physical Regs <R6> <R7> <R3> <R1> Free List ld r1, 0(r3) add r3, r1, #4 sub r6, r7, r6 add r3, r3, r6 ld r6, 0(r1) Pn ROB use ex o 1 PR1 2 PR2 Rd LPRd PRd x ld P7 r1 x add r3 P7 x sub P6 P5 r6 P5 x add r3 (LPRd requires third read ort on Rename Table for each instruction)

11 Physical Register Management R0 R1 R2 R3 R4 R5 R6 R7 Rename Table P7 P5 P6 P5 P6 P7 Physical Regs <R6> <R7> <R3> <R1> Free List ld r1, 0(r3) add r3, r1, #4 sub r6, r7, r6 add r3, r3, r6 ld r6, 0(r1) Pn ROB use ex o 1 PR1 2 PR2 Rd LPRd PRd x ld P7 r1 x add r3 P7 x sub P6 P5 r6 P5 x add r3 x ld r6 (LPRd requires third read ort on Rename Table for each instruction)

12 Physical Register Management R0 R1 R2 R3 R4 R5 R6 R7 Rename Table P7 P5 P6 Physical Regs <R1> P5 <R6> P6 <R7> P7 <R3> <R1> Free List ld r1, 0(r3) add r3, r1, #4 sub r6, r7, r6 add r3, r3, r6 ld r6, 0(r1) Pn ROB use ex o 1 PR1 2 PR2 Rd LPRd PRd x x ld P7 r1 x add r3 P7 x sub P6 P5 r6 P5 x add r3 x ld r6 Execute & Commit (LPRd requires third read ort on Rename Table for each instruction)

13 Physical Register Management R0 R1 R2 R3 R4 R5 R6 R7 Rename Table P7 P5 P6 Physical Regs <R1> <R3> P5 <R6> P6 <R7> P7 <R3> Free List P7 ld r1, 0(r3) add r3, r1, #4 sub r6, r7, r6 add r3, r3, r6 ld r6, 0(r1) Pn ROB use ex o 1 PR1 2 PR2 Rd LPRd PRd x x ld P7 r1 x x add r3 P7 x sub P6 P5 r6 P5 x add r3 x ld r6 Execute & Commit (LPRd requires third read ort on Rename Table for each instruction)

14 Reorder Buffer Holds Active Instruction Window ld r1, (r3) add r3, r1, r2 sub r6, r7, r9 add r3, r3, r6 ld r6, (r1) add r6, r6, r3 st r6, (r1) ld r6, (r1) (Older instructions) (Newer instructions) Commit Execute Fetch ld r1, (r3) add r3, r1, r2 sub r6, r7, r9 add r3, r3, r6 ld r6, (r1) add r6, r6, r3 st r6, (r1) ld r6, (r1) Cycle t Cycle t + 1

15 Suerscalar Register Renaming During decode, instructions allocated new hysical destination register Source oerands renamed to hysical register with newest value Execution unit only sees hysical register numbers Inst 1 O Dest Src1 Src2 O Dest Src1 Src2 Inst 2 Udate Maing Write Ports Read Addresses Rename Table Read Data Register Free List O PDest PSrc1 PSrc2 O PDest PSrc1 PSrc2 Does this work?

16 Suerscalar Register Renaming Inst 1 O Dest Src1 Src2 O Dest Src1 Src2 Inst 2 Udate Maing Write Ports Read Addresses Rename Table Read Data =? =? Register Free List O PDest PSrc1 PSrc2 O PDest PSrc1 PSrc2 Must check for RAW hazards between instructions issuing in same cycle. Can be done in arallel with rename looku. (MIPS R10K renames 4 serially-raw-deendent insts/cycle)

17 Memory Deendencies st r1, (r2) ld r3, (r4) When can we execute the load?

18 Seculative Loads / Stores Just like register udates, stores should not modify the memory until after the instruction is committed store buffer entry must carry a seculation bit and the tag of the corresonding store instruction If the instruction is committed, the seculation bit of the corresonding store buffer entry is cleared, and store is written to cache If the instruction is killed, the corresonding store buffer entry is freed Loads work normally -- older store buffer entries needs to be searched before accessing the memory or the cache

19 Load Path Load Address Seculative Store Buffer V S Tag V S Tag V S Tag V S Tag V S Tag V S Tag Data Data Data Data Data Data Tags Store Commit Path L1 Data Cache Data Load Data Hit in seculative store buffer has riority over hit in data cache Hit to newer store has riority over hits to older stores in seculative store buffer

20 Dataath: Branch Prediction and Seculative Execution PC Branch Prediction Fetch kill kill Decode & Rename Branch Resolution kill kill Reorder Buffer Udate redictors Commit Reg. File Branch Unit Execute ALU MEM Store Buffer D$

21 In-Order Memory Queue Execute all loads and stores in rogram order => Load and store cannot leave ROB for execution until all revious loads and stores have comleted execution Can still execute loads and stores seculatively, and out-of-order with resect to other instructions Stores held in store buffer until commit

22 Conservative Out-of-Order Load Execution st r1, (r2) ld r3, (r4) Slit execution of store instruction into two hases: address calculation and data write Can execute load before store, if addresses known and r4!= r2 Each load address comared with addresses of all revious uncommitted stores (can use artial conservative check i.e., bottom 12 bits of address) Don t execute load if any revious store address not known (MIPS R10K, 16 entry address queue)

23 Address Seculation st r1, (r2) ld r3, (r4) Guess that r4!= r2 Execute load before store address known Need to hold all comleted but uncommitted load/store addresses in rogram order If subsequently find r4==r2, squash load and all following instructions => Large enalty for inaccurate address seculation

24 Memory Deendence Prediction (Alha 21264) st r1, (r2) ld r3, (r4) Guess that r4!= r2 and execute load before store If later find r4==r2, squash load and all following instructions, but mark load instruction as store-wait Subsequent executions of the same load instruction will wait for all revious stores to comlete Periodically clear store-wait bits

25 Imroving Instruction Fetch Performance of seculative out-of-order machines often limited by instruction fetch bandwidth seculative execution can fetch 2-3x more instructions than are committed misredict enalties dominated by time to refill instruction window taken branches are articularly troublesome

26 Increasing Taken Branch Bandwidth (Alha I-Cache) PC Generation Branch Prediction Instruction Decode Validity Checks PC Line Predict Way Predict Cached Instructions Tag Way 0 Tag Way 1 fast fetch ath 4 insts =? =? Fold 2-way tags and BTB into redicted next block Hit/Miss/Way Take tag checks, inst. decode, branch redict out of loo Raw RAM seed on critical loo (1 cycle at ~1 GHz) 2-bit hysteresis counter er block revents overtraining

27 Tournament Branch Predictor (Alha 21264) Local history table (1,024x10b) PC Local rediction (1,024x3b) Prediction Global Prediction (4,096x2b) Choice Prediction (4,096x2b) Global History (12b) Choice redictor learns whether best to use local or global branch history in redicting next branch Global history is seculatively udated but restored on misredict Claim % success on range of alications

28 Taken Branch Limit Integer codes have a taken branch every 6-9 instructions To avoid fetch bottleneck, must execute multile taken branches er cycle when increasing erformance This imlies: redicting multile branches er cycle fetching multile non-contiguous blocks er cycle

29 Branch Address Cache (Yeh, Marr, Patt) Entry PC Valid redicted target #1 len redicted target #2 PC k = match valid target#1 len#1 target#2 Extend BTB to return multile branch redictions er cycle

30 Fetching Multile Basic Blocks Requires either multiorted cache: exensive interleaving: bank conflicts will occur Merging multile blocks to feed to decoders adds latency increasing misredict enalty and reducing branch throughut

31 Trace Cache Key Idea: Pack multile non-contiguous basic blocks into one contiguous trace cache line BR BR BR BR BR BR Single fetch brings in multile basic blocks Trace cache indexed by start address and next n branch redictions Used in Intel Pentium-4 rocessor to hold decoded uos

32 MIPS R10000 (1995) 0.35µm CMOS, 4 metal layers Four instructions er cycle Out-of-order execution Register renaming Seculative execution ast 4 branches On-chi 32KB/32KB slit I/D cache, 2-way set-associative Off-chi L2 cache Non-blocking caches Comare with simle 5-stage ieline (R5K series) ~1.6x erformance SPECint95 ~5x CPU logic area ~10x design effort

Advanced Superscalar Architectures. Speculative and Out-of-Order Execution

Advanced Superscalar Architectures. Speculative and Out-of-Order Execution 6.823, L16--1 Advanced Superscalar Architectures Asanovic Laboratory for Computer Science M.I.T. http://www.csg.lcs.mit.edu/6.823 Speculative and Out-of-Order Execution Branch Prediction kill kill Branch

More information

CS 152 Computer Architecture and Engineering. Lecture 15 - Advanced Superscalars

CS 152 Computer Architecture and Engineering. Lecture 15 - Advanced Superscalars CS 152 Comuter Architecture and Engineering Lecture 15 - Advanced Suerscalars Krste Asanovic Electrical Engineering and Comuter Sciences University of California at Berkeley htt://www.eecs.berkeley.edu/~krste

More information

CS 152 Computer Architecture and Engineering. Lecture 14 - Advanced Superscalars

CS 152 Computer Architecture and Engineering. Lecture 14 - Advanced Superscalars CS 152 Comuter Architecture and Engineering Lecture 14 - Advanced Suerscalars Krste Asanovic Electrical Engineering and Comuter Sciences University of California at Berkeley htt://www.eecs.berkeley.edu/~krste

More information

ECE 552 / CPS 550 Advanced Computer Architecture I. Lecture 10 Instruction-Level Parallelism Part 3

ECE 552 / CPS 550 Advanced Computer Architecture I. Lecture 10 Instruction-Level Parallelism Part 3 ECE 552 / CPS 550 Advanced Comuter Architecture I Lecture 10 Instruction-Level Parallelism Part 3 Benjamin Lee Electrical and Comuter Engineering Duke University www.duke.edu/~bcl15 www.duke.edu/~bcl15/class/class_ece252fall12.html

More information

Computer Architecture and Parallel Computing 并行结构与计算. Lecture 5 SuperScalar and Multithreading. Peng Liu

Computer Architecture and Parallel Computing 并行结构与计算. Lecture 5 SuperScalar and Multithreading. Peng Liu Comuter Architecture and Parallel Comuting 并行结构与计算 Lecture 5 SuerScalar and Multithreading Peng Liu College of Info. Sci. & Elec. Eng. Zhejiang University liueng@zju.edu.cn Last time in Lecture 04 Register

More information

Chapter 2 ( ) -Revisit ReOrder Buffer -Exception handling and. (parallelism in HW)

Chapter 2 ( ) -Revisit ReOrder Buffer -Exception handling and. (parallelism in HW) Comuter Architecture A Quantitative Aroach, Fifth Edition Chater 2 (2.6-2.11) -Revisit ReOrder Buffer -Excetion handling and (seculation in hardware) -VLIW and EPIC (seculation in SW, arallelism in SW)

More information

Out-of-order Pipeline. Register Read. OOO execution (2-wide) OOO execution (2-wide) OOO execution (2-wide) OOO execution (2-wide)

Out-of-order Pipeline. Register Read. OOO execution (2-wide) OOO execution (2-wide) OOO execution (2-wide) OOO execution (2-wide) Out-of-order Pipeline Register Read When do instructions read the register file? Fetch Decode Rename Dispatch Buffer of instructions Issue Reg-read Execute Writeback Commit Option #: after select, right

More information

Lecture 14: Instruction Level Parallelism

Lecture 14: Instruction Level Parallelism Lecture 14: Instruction Level Parallelism Last time Pipelining in the real world Today Control hazards Other pipelines Take QUIZ 10 over P&H 4.10-15, before 11:59pm today Homework 5 due Thursday March

More information

Computer Architecture ELE 475 / COS 475 Slide Deck 6: Superscalar 3. David Wentzlaff Department of Electrical Engineering Princeton University

Computer Architecture ELE 475 / COS 475 Slide Deck 6: Superscalar 3. David Wentzlaff Department of Electrical Engineering Princeton University Computer Architecture ELE 475 / COS 475 Slide Deck 6: Superscalar 3 David Wentzlaff Department of Electrical Engineering Princeton University 1 Agenda SpeculaJon and Branches Register Renaming Memory DisambiguaJon

More information

CIS 371 Computer Organization and Design

CIS 371 Computer Organization and Design CIS 371 Computer Organization and Design Unit 10: Static & Dynamic Scheduling Slides developed by Milo Martin & Amir Roth at the University of Pennsylvania with sources that included University of Wisconsin

More information

CIS 371 Computer Organization and Design

CIS 371 Computer Organization and Design CIS 371 Computer Organization and Design Unit 10: Static & Dynamic Scheduling Slides developed by M. Martin, A.Roth, C.J. Taylor and Benedict Brown at the University of Pennsylvania with sources that included

More information

Unit 9: Static & Dynamic Scheduling

Unit 9: Static & Dynamic Scheduling CIS 501: Computer Architecture Unit 9: Static & Dynamic Scheduling Slides originally developed by Drew Hilton, Amir Roth and Milo Mar;n at University of Pennsylvania CIS 501: Comp. Arch. Prof. Milo Martin

More information

Computer Architecture: Out-of-Order Execution. Prof. Onur Mutlu (editted by Seth) Carnegie Mellon University

Computer Architecture: Out-of-Order Execution. Prof. Onur Mutlu (editted by Seth) Carnegie Mellon University Computer Architecture: Out-of-Order Execution Prof. Onur Mutlu (editted by Seth) Carnegie Mellon University Reading for Today Smith and Sohi, The Microarchitecture of Superscalar Processors, Proceedings

More information

Lecture 20: Parallelism ILP to Multicores. James C. Hoe Department of ECE Carnegie Mellon University

Lecture 20: Parallelism ILP to Multicores. James C. Hoe Department of ECE Carnegie Mellon University 18 447 Lecture 20: Parallelism ILP to Multicores James C. Hoe Department of ECE Carnegie Mellon University 18 447 S18 L20 S1, James C. Hoe, CMU/ECE/CALCM, 2018 18 447 S18 L20 S2, James C. Hoe, CMU/ECE/CALCM,

More information

Parallelism I: Inside the Core

Parallelism I: Inside the Core Parallelism I: Inside the Core 1 The final Comprehensive Same general format as the Midterm. Review the homeworks, the slides, and the quizzes. 2 Key Points What is wide issue mean? How does does it affect

More information

Computer Architecture 计算机体系结构. Lecture 3. Instruction-Level Parallelism I 第三讲 指令级并行 I. Chao Li, PhD. 李超博士

Computer Architecture 计算机体系结构. Lecture 3. Instruction-Level Parallelism I 第三讲 指令级并行 I. Chao Li, PhD. 李超博士 Computer Architecture 计算机体系结构 Lecture 3. Instruction-Level Parallelism I 第三讲 指令级并行 I Chao Li, PhD. 李超博士 SJTU-SE346, Spring 2018 Review ISA, micro-architecture, physical design Evolution of ISA CISC vs

More information

Anne Bracy CS 3410 Computer Science Cornell University. [K. Bala, A. Bracy, S. McKee, E. Sirer, H. Weatherspoon]

Anne Bracy CS 3410 Computer Science Cornell University. [K. Bala, A. Bracy, S. McKee, E. Sirer, H. Weatherspoon] Anne Bracy CS 3410 Computer Science Cornell University [K. Bala, A. Bracy, S. McKee, E. Sirer, H. Weatherspoon] Prog. Mem PC +4 inst Reg. File 5 5 5 control ALU Data Mem Fetch Decode Execute Memory WB

More information

COSC 6385 Computer Architecture. - Tomasulos Algorithm

COSC 6385 Computer Architecture. - Tomasulos Algorithm COSC 6385 Computer Architecture - Tomasulos Algorithm Fall 2008 Analyzing a short code-sequence DIV.D F0, F2, F4 ADD.D F6, F0, F8 S.D F6, 0(R1) SUB.D F8, F10, F14 MUL.D F6, F10, F8 1 Analyzing a short

More information

Pipelining A B C D. Readings: Example: Doing the laundry. Ann, Brian, Cathy, & Dave. each have one load of clothes to wash, dry, and fold

Pipelining A B C D. Readings: Example: Doing the laundry. Ann, Brian, Cathy, & Dave. each have one load of clothes to wash, dry, and fold Pipelining Readings: 4.5-4.8 Example: Doing the laundry Ann, Brian, Cathy, & Dave A B C D each have one load of clothes to wash, dry, and fold Washer takes 30 minutes Dryer takes 40 minutes Folder takes

More information

Improving Performance: Pipelining!

Improving Performance: Pipelining! Iproving Perforance: Pipelining! Meory General registers Meory ID EXE MEM WB Instruction Fetch (includes PC increent) ID Instruction Decode + fetching values fro general purpose registers EXE EXEcute arithetic/logic

More information

PIPELINING: BRANCH AND MULTICYCLE INSTRUCTIONS

PIPELINING: BRANCH AND MULTICYCLE INSTRUCTIONS PIPELINING: BRANCH AND MULTICYCLE INSTRUCTIONS Mahdi Nazm Bojnordi Assistant Professor School of Computing University of Utah CS/ECE 6810: Computer Architecture Overview Announcement Homework 1 submission

More information

Hakim Weatherspoon CS 3410 Computer Science Cornell University

Hakim Weatherspoon CS 3410 Computer Science Cornell University Hakim Weatherspoon CS 3410 Computer Science Cornell University The slides are the product of many rounds of teaching CS 3410 by Professors Weatherspoon, Bala, Bracy, McKee, and Sirer. memory inst register

More information

Code Scheduling & Limitations

Code Scheduling & Limitations This Unit: Static & Dynamic Scheduling CIS 371 Computer Organization and Design Unit 11: Static and Dynamic Scheduling App App App System software Mem CPU I/O Code scheduling To reduce pipeline stalls

More information

ENGN1640: Design of Computing Systems Topic 05: Pipeline Processor Design

ENGN1640: Design of Computing Systems Topic 05: Pipeline Processor Design ENGN64: Design of Computing Systems Topic 5: Pipeline Processor Design Professor Sherief Reda http://scale.engin.brown.edu Electrical Sciences and Computer Engineering School of Engineering Brown University

More information

CS 6354: Tomasulo. 21 September 2016

CS 6354: Tomasulo. 21 September 2016 1 CS 6354: Tomasulo 21 September 2016 To read more 1 This day s paper: Tomasulo, An Efficient Algorithm for Exploiting Multiple Arithmetic Units Supplementary readings: Hennessy and Patterson, Computer

More information

Announcements. Programming assignment #2 due Monday 9/24. Talk: Architectural Acceleration of Real Time Physics Glenn Reinman, UCLA CS

Announcements. Programming assignment #2 due Monday 9/24. Talk: Architectural Acceleration of Real Time Physics Glenn Reinman, UCLA CS Lipasti, artin, Roth, Shen, Smith, Sohi, Tyson, Vijaykumar GAS STATION Pipelining II Fall 2007 Prof. Thomas Wenisch http://www.eecs.umich.edu/courses/eecs470 Slides developed in part by Profs. Austin,

More information

To read more. CS 6354: Tomasulo. Intel Skylake. Scheduling. How can we reorder instructions? Without changing the answer.

To read more. CS 6354: Tomasulo. Intel Skylake. Scheduling. How can we reorder instructions? Without changing the answer. To read more CS 6354: Tomasulo 21 September 2016 This day s paper: Tomasulo, An Efficient Algorithm for Exploiting Multiple Arithmetic Units Supplementary readings: Hennessy and Patterson, Computer Architecture:

More information

Pipelined MIPS Datapath with Control Signals

Pipelined MIPS Datapath with Control Signals uction ess uction Rs [:26] (Opcode[5:]) [5:] ranch luor. Decoder Pipelined MIPS path with Signals luor Raddr at Five instruction sequence to be processed by pipeline: op [:26] rs [25:2] rt [2:6] rd [5:]

More information

6.823 Computer System Architecture Prerequisite Self-Assessment Test Assigned Feb. 6, 2019 Due Feb 11, 2019

6.823 Computer System Architecture Prerequisite Self-Assessment Test Assigned Feb. 6, 2019 Due Feb 11, 2019 6.823 Computer System Architecture Prerequisite Self-Assessment Test Assigned Feb. 6, 2019 Due Feb 11, 2019 http://csg.csail.mit.edu/6.823/ This self-assessment test is intended to help you determine your

More information

CIS 662: Sample midterm w solutions

CIS 662: Sample midterm w solutions CIS 662: Sample midterm w solutions 1. (40 points) A processor has the following stages in its pipeline: IF ID ALU1 MEM1 MEM2 ALU2 WB. ALU1 stage is used for effective address calculation for loads, stores

More information

CS152: Computer Architecture and Engineering Introduction to Pipelining. October 22, 1997 Dave Patterson (http.cs.berkeley.

CS152: Computer Architecture and Engineering Introduction to Pipelining. October 22, 1997 Dave Patterson (http.cs.berkeley. CS152: Computer Architecture and Engineering Introduction to Pipelining October 22, 1997 Dave Patterson (http.cs.berkeley.edu/~patterson) lecture slides: http://www-inst.eecs.berkeley.edu/~cs152/ cs 152

More information

Tomasulo-Style Register Renaming

Tomasulo-Style Register Renaming Tomasulo-Style Register Renaming ldf f0,x(r1) allocate RS#4 map f0 to RS#4 mulf f4,f0, allocate RS#6 ready, copy value f0 not ready, copy tag Map Table f0 f4 RS#4 RS T V1 V2 T1 T2 4 REG[r1] 6 REG[] RS#4

More information

Chapter 3: Computer Organization Fundamentals. Oregon State University School of Electrical Engineering and Computer Science.

Chapter 3: Computer Organization Fundamentals. Oregon State University School of Electrical Engineering and Computer Science. Chapter 3: Computer Organization Fundamentals Prof. Ben Lee Oregon State University School of Electrical Engineering and Computer Science Chapter Goals Understand the organization of a computer system

More information

DAT105: Computer Architecture Study Period 2, 2009 Exercise 2 Chapter 2: Instruction-Level Parallelism and Its Exploitation

DAT105: Computer Architecture Study Period 2, 2009 Exercise 2 Chapter 2: Instruction-Level Parallelism and Its Exploitation Study Period 2, 29 Exercise 2 Chapter 2: Instruction-Level Parallelism and Its Exploitation Mafijul Islam Department of Computer Science and Engineering November 12, 29 Study Period 2, 29 Goals: To understand

More information

Decoupling Loads for Nano-Instruction Set Computers

Decoupling Loads for Nano-Instruction Set Computers Decoupling Loads for Nano-Instruction Set Computers Ziqiang (Patrick) Huang, Andrew Hilton, Benjamin Lee Duke University {ziqiang.huang, andrew.hilton, benjamin.c.lee}@duke.edu ISCA-43, June 21, 2016 1

More information

128Mb Synchronous DRAM. Features High Performance: Description. REV 1.0 May, 2001 NT5SV32M4CT NT5SV16M8CT NT5SV8M16CT

128Mb Synchronous DRAM. Features High Performance: Description. REV 1.0 May, 2001 NT5SV32M4CT NT5SV16M8CT NT5SV8M16CT Features High Performance: f Clock Frequency -7K 3 CL=2-75B, CL=3-8B, CL=2 Single Pulsed RAS Interface Fully Synchronous to Positive Clock Edge Four Banks controlled by BS0/BS1 (Bank Select) Units 133

More information

Optimality of Tomasulo s Algorithm Luna, Dong Gang, Zhao

Optimality of Tomasulo s Algorithm Luna, Dong Gang, Zhao Optimality of Tomasulo s Algorithm Luna, Dong Gang, Zhao Feb 28th, 2002 Our Questions about Tomasulo Questions about Tomasulo s Algorithm Is it optimal (can always produce the wisest instruction execution

More information

Direct-Mapped Cache Terminology. Caching Terminology. TIO Dan s great cache mnemonic. UCB CS61C : Machine Structures

Direct-Mapped Cache Terminology. Caching Terminology. TIO Dan s great cache mnemonic. UCB CS61C : Machine Structures Lecturer SOE Dan Garcia inst.eecs.berkeley.edu/~cs61c UCB CS61C : Machine Structures Lecture 31 Caches II 2008-04-12 HP has begun testing research prototypes of a novel non-volatile memory element, the

More information

CMU Introduction to Computer Architecture, Spring 2013 HW 3 Solutions: Microprogramming Wrap-up and Pipelining

CMU Introduction to Computer Architecture, Spring 2013 HW 3 Solutions: Microprogramming Wrap-up and Pipelining CMU 18-447 Introduction to Computer Architecture, Spring 2013 HW 3 Solutions: Microprogramming Wrap-up and Pipelining Instructor: Prof. Onur Mutlu TAs: Justin Meza, Yoongu Kim, Jason Lin 1 Adding the REP

More information

Sinfonia: a new paradigm for building scalable distributed systems

Sinfonia: a new paradigm for building scalable distributed systems CS848 Paper Presentation Sinfonia: a new paradigm for building scalable distributed systems Aguilera, Merchant, Shah, Veitch, Karamanolis SOSP 2007 Presented by Somayyeh Zangooei David R. Cheriton School

More information

CS 250! VLSI System Design

CS 250! VLSI System Design CS 250! VLSI System Design Lecture 3 Timing 2014-9-4! Professor Jonathan Bachrach! slides by John Lazzaro TA: Colin Schmidt www-insteecsberkeleyedu/~cs250/ UC Regents Fall 2013/1014 UCB everything doesn

More information

Fixing the Hyperdrive: Maximizing Rendering Performance on NVIDIA GPUs

Fixing the Hyperdrive: Maximizing Rendering Performance on NVIDIA GPUs Fixing the Hyperdrive: Maximizing Rendering Performance on NVIDIA GPUs Louis Bavoil, Principal Engineer Booth #223 - South Hall www.nvidia.com/gdc Full-Screen Pixel Shader SM TEX L2 DRAM CROP SM = Streaming

More information

EECS 583 Class 9 Classic Optimization

EECS 583 Class 9 Classic Optimization EECS 583 Class 9 Classic Optimization University of Michigan September 28, 2016 Generalizing Dataflow Analysis Transfer function» How information is changed by something (BB)» OUT = GEN + (IN KILL) /*

More information

mith College Computer Science CSC231 Assembly Fall 2017 Week #4 Dominique Thiébaut

mith College Computer Science CSC231 Assembly Fall 2017 Week #4 Dominique Thiébaut mith College Computer Science CSC231 Assembly Fall 2017 Week #4 Dominique Thiébaut dthiebaut@smith.edu How are Integers Stored in Memory? 120 11F 11E 11D 11C 11B 11A 119 118 117 116 115 114 113 112 111

More information

Energy Efficient Content-Addressable Memory

Energy Efficient Content-Addressable Memory Energy Efficient Content-Addressable Memory Advanced Seminar Computer Engineering Institute of Computer Engineering Heidelberg University Fabian Finkeldey 26.01.2016 Fabian Finkeldey, Energy Efficient

More information

Storage and Memory Hierarchy CS165

Storage and Memory Hierarchy CS165 Storage and Memory Hierarchy CS165 What is the memory hierarchy? L1

More information

Pipeline Hazards. See P&H Chapter 4.7. Hakim Weatherspoon CS 3410, Spring 2013 Computer Science Cornell University

Pipeline Hazards. See P&H Chapter 4.7. Hakim Weatherspoon CS 3410, Spring 2013 Computer Science Cornell University Pipeline Hazards See P&H Chapter 4.7 Hakim Weatherspoon CS 341, Spring 213 Computer Science Cornell niversity Goals for Today Data Hazards Revisit Pipelined Processors Data dependencies Problem, detection,

More information

Pipeline Hazards. See P&H Chapter 4.7. Hakim Weatherspoon CS 3410, Spring 2013 Computer Science Cornell University

Pipeline Hazards. See P&H Chapter 4.7. Hakim Weatherspoon CS 3410, Spring 2013 Computer Science Cornell University Pipeline Hazards See P&H Chapter 4.7 Hakim Weatherspoon CS 341, Spring 213 Computer Science Cornell niversity Goals for Today Data Hazards Revisit Pipelined Processors Data dependencies Problem, detection,

More information

CSCI 510: Computer Architecture Written Assignment 2 Solutions

CSCI 510: Computer Architecture Written Assignment 2 Solutions CSCI 510: Computer Architecture Written Assignment 2 Solutions The following code does compution over two vectors. Consider different execution scenarios and provide the average number of cycles per iterion

More information

Lecture 31 Caches II TIO Dan s great cache mnemonic. Issues with Direct-Mapped

Lecture 31 Caches II TIO Dan s great cache mnemonic. Issues with Direct-Mapped CS61C L31 Caches II (1) inst.eecs.berkeley.edu/~cs61c UC Berkeley CS61C : Machine Structures Lecture 31 Caches II 26-11-13 Lecturer SOE Dan Garcia www.cs.berkeley.edu/~ddgarcia GPUs >> CPUs? Many are using

More information

Enhancing Energy Efficiency of Database Applications Using SSDs

Enhancing Energy Efficiency of Database Applications Using SSDs Seminar Energy-Efficient Databases 29.06.2011 Enhancing Energy Efficiency of Database Applications Using SSDs Felix Martin Schuhknecht Motivation vs. Energy-Efficiency Seminar 29.06.2011 Felix Martin Schuhknecht

More information

SDRAM AS4SD8M Mb: 8 Meg x 16 SDRAM Synchronous DRAM Memory. PIN ASSIGNMENT (Top View)

SDRAM AS4SD8M Mb: 8 Meg x 16 SDRAM Synchronous DRAM Memory. PIN ASSIGNMENT (Top View) 128 Mb: 8 Meg x 16 SDRAM Synchronous DRAM Memory FEATURES Full Military temp (-55 C to 125 C) processing available Configuration: 8 Meg x 16 (2 Meg x 16 x 4 banks) Fully synchronous; all signals registered

More information

Near-Optimal Precharging in High-Performance Nanoscale CMOS Caches

Near-Optimal Precharging in High-Performance Nanoscale CMOS Caches Near-Optimal Precharging in High-Performance Nanoscale CMOS Caches Se-Hyun Yang and Babak Falsafi Computer Architecture Laboratory (CALCM) Carnegie Mellon University {sehyun, babak}@cmu.edu http://www.ece.cmu.edu/~powertap

More information

128Mb DDR SDRAM. Features. Description. REV 1.1 Oct, 2006

128Mb DDR SDRAM. Features. Description. REV 1.1 Oct, 2006 Features Double data rate architecture: two data transfers per clock cycle Bidirectional data strobe () is transmitted and received with data, to be used in capturing data at the receiver is edge-aligned

More information

A48P4616B. 16M X 16 Bit DDR DRAM. Document Title 16M X 16 Bit DDR DRAM. Revision History. AMIC Technology, Corp. Rev. No. History Issue Date Remark

A48P4616B. 16M X 16 Bit DDR DRAM. Document Title 16M X 16 Bit DDR DRAM. Revision History. AMIC Technology, Corp. Rev. No. History Issue Date Remark 16M X 16 Bit DDR DRAM Document Title 16M X 16 Bit DDR DRAM Revision History Rev. No. History Issue Date Remark 1.0 Initial issue January 9, 2014 Final (January, 2014, Version 1.0) AMIC Technology, Corp.

More information

In-Place Associative Computing:

In-Place Associative Computing: In-Place Associative Computing: A New Concept in Processor Design 1 Page Abstract 3 What s Wrong with Existing Processors? 3 Introducing the Associative Processing Unit 5 The APU Edge 5 Overview of APU

More information

Code Generation Part III

Code Generation Part III 1 Code Generation Part III Chapters 8 and 9.1 (1 st ed. Ch.9) COP5621 Compiler Construction Copyright Robert van Engelen, Florida State University, 2007-2013 2 Classic Examples of Local and Global Code

More information

Characterizing, Modeling, and Improving the QoE of Mobile Devices with Low Battery Level

Characterizing, Modeling, and Improving the QoE of Mobile Devices with Low Battery Level Characterizing, Modeling, and Imroving the QoE of Mobile Devices with Low Battery Level Kaige Yan, Xingyao Zhang and Xin Fu Deartment of Electrical and Comuter Engineering University of Houston kyan@uh.edu,

More information

CMPEN 411 VLSI Digital Circuits Spring Lecture 24: Peripheral Memory Circuits

CMPEN 411 VLSI Digital Circuits Spring Lecture 24: Peripheral Memory Circuits CMPEN 411 VLSI Digital Circuits Spring 2012 Lecture 24: Peripheral Memory Circuits [Adapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey, A. Chandrakasan, B. Nikolic] Sp12

More information

CMPEN 411 VLSI Digital Circuits Spring Lecture 22: Memery, ROM

CMPEN 411 VLSI Digital Circuits Spring Lecture 22: Memery, ROM CMPEN 411 VLSI Digital Circuits Spring 2012 Lecture 22: Memery, ROM [Adapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey, A. Chandrakasan, B. Nikolic] Sp12 CMPEN 411 L22 S.1

More information

HYB25D256400/800AT 256-MBit Double Data Rata SDRAM

HYB25D256400/800AT 256-MBit Double Data Rata SDRAM 256-MBit Double Data Rata SDRAM Features CAS Latency and Frequency Maximum Operating Frequency (MHz) CAS Latency DDR266A -7 DDR200-8 2 133 100 2.5 143 125 Double data rate architecture: two data transfers

More information

SYNCHRONOUS DRAM. 128Mb: x32 SDRAM. MT48LC4M32B2-1 Meg x 32 x 4 banks

SYNCHRONOUS DRAM. 128Mb: x32 SDRAM. MT48LC4M32B2-1 Meg x 32 x 4 banks SYNCHRONOUS DRAM 128Mb: x32 MT48LC4M32B2-1 Meg x 32 x 4 banks For the latest data sheet, please refer to the Micron Web site: www.micron.com/sdramds FEATURES PC100 functionality Fully synchronous; all

More information

Techniques, October , Boston, USA. Personal use of this material is permitted. However, permission to

Techniques, October , Boston, USA. Personal use of this material is permitted. However, permission to Copyright 1996 IEEE. Published in the Proceedings of the 1996 Conference on Parallel Architectures and Compilation Techniques, October 21-23 1996, Boston, USA. Personal use of this material is permitted.

More information

GRUNDFOS DATA BOOKLET. Hydro 1000 G - X. Grundfos Hydro 1000 G - X booster sets with 1-4 CR pumps 50 Hz

GRUNDFOS DATA BOOKLET. Hydro 1000 G - X. Grundfos Hydro 1000 G - X booster sets with 1-4 CR pumps 50 Hz GRUNDFOS DATA BOOKLET ydro 0 G - X Grundfos ydro 0 G - X booster sets with 1-4 CR ums z Contents Product data Performance range Page 3 ydro 0 G - X Page 4 Tye key Page 4 Oerating conditions Page 4 Other

More information

HYB25D256[400/800/160]B[T/C](L) 256-Mbit Double Data Rate SDRAM, Die Rev. B Data Sheet Jan. 2003, V1.1. Features. Description

HYB25D256[400/800/160]B[T/C](L) 256-Mbit Double Data Rate SDRAM, Die Rev. B Data Sheet Jan. 2003, V1.1. Features. Description Data Sheet Jan. 2003, V1.1 Features CAS Latency and Frequency Maximum Operating Frequency (MHz) CAS Latency DDR200-8 DDR266A -7 DDR266-7F DDR333-6 2 100 133 133 133 2.5 125 143 143 166 Double data rate

More information

IS42S32200C1. 512K Bits x 32 Bits x 4 Banks (64-MBIT) SYNCHRONOUS DYNAMIC RAM

IS42S32200C1. 512K Bits x 32 Bits x 4 Banks (64-MBIT) SYNCHRONOUS DYNAMIC RAM 512K Bits x 32 Bits x 4 Banks (64-MBIT) SYNCHRONOUS DYNAMIC RAM JANUARY 2007 FEATURES Clock frequency: 183, 166, 143 MHz Fully synchronous; all signals referenced to a positive clock edge Internal bank

More information

HYB25D256400B[T/C](L) HYB25D256800B[T/C](L) HYB25D256160B[T/C](L)

HYB25D256400B[T/C](L) HYB25D256800B[T/C](L) HYB25D256160B[T/C](L) Data Sheet, Rev. 1.21, Jul. 2004 HYB25D256400B[T/C](L) HYB25D256800B[T/C](L) HYB25D256160B[T/C](L) 256 Mbit Double Data Rate SDRAM DDR SDRAM Memory Products N e v e r s t o p t h i n k i n g. Edition 2004-07

More information

THE BASICS (GETTING STARTED)

THE BASICS (GETTING STARTED) SamPOS Express Code Genesis Pty Ltd 10 Oct 2009 All rights Reserved This Guide will walk through the following Setting up the Cash Register. Starting SamPOS Express for the first time. Adding Products.

More information

FabComp: Hardware specication

FabComp: Hardware specication Sol Boucher and Evan Klei CSCI-453-01 04/28/14 FabComp: Hardware specication 1 Hardware The computer is composed of a largely isolated data unit and control unit, which are only connected by a couple of

More information

GRUNDFOS DATA BOOKLET. Hydro Grundfos Hydro 1000 booster sets with 1-4 CR pumps 50 Hz

GRUNDFOS DATA BOOKLET. Hydro Grundfos Hydro 1000 booster sets with 1-4 CR pumps 50 Hz GRUNDFOS DATA BOOKLET ydro Grundfos ydro booster sets with 1-4 CR ums z Contents Product data Performance range 3 ydro 4 Tye key 4 Oerating conditions 4 Other versions on request 4 Function 5 Grundfos

More information

M2 Instruction Set Architecture

M2 Instruction Set Architecture M2 Instruction Set Architecture Module Outline Addressing modes. Instruction classes. MIPS-I ISA. High level languages, Assembly languages and object code. Translating and starting a program. Subroutine

More information

CMPEN 411 VLSI Digital Circuits Spring Lecture 20: Multiplier Design

CMPEN 411 VLSI Digital Circuits Spring Lecture 20: Multiplier Design CMPEN 411 VLSI Digital Circuits Spring 2011 Lecture 20: Multiplier Design [Adapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey, A. Chandrakasan, B. Nikolic] Sp11 CMPEN 411

More information

IS42S32200L IS45S32200L

IS42S32200L IS45S32200L IS42S32200L IS45S32200L 512K Bits x 32 Bits x 4 Banks (64-MBIT) SYNCHRONOUS DYNAMIC RAM OCTOBER 2012 FEATURES Clock frequency: 200, 166, 143, 133 MHz Fully synchronous; all signals referenced to a positive

More information

Improving Memory System Performance with Energy-Efficient Value Speculation

Improving Memory System Performance with Energy-Efficient Value Speculation Improving Memory System Performance with Energy-Efficient Value Speculation Nana B. Sam and Min Burtscher Computer Systems Laboratory Cornell University Ithaca, NY 14853 {besema, burtscher}@csl.cornell.edu

More information

Warped-Compression: Enabling Power Efficient GPUs through Register Compression

Warped-Compression: Enabling Power Efficient GPUs through Register Compression WarpedCompression: Enabling Power Efficient GPUs through Register Compression Sangpil Lee, Keunsoo Kim, Won Woo Ro (Yonsei University*) Gunjae Koo, Hyeran Jeon, Murali Annavaram (USC) (*Work done while

More information

Hybrid Myths in Branch Prediction

Hybrid Myths in Branch Prediction Hybrid Myths in Branch Prediction A. N. Eden, J. Ringenberg, S. Sparrow, and T. Mudge {ane, jringenb, ssparrow, tnm}@eecs.umich.edu Dept. EECS, University of Michigan, Ann Arbor Abstract Since the introduction

More information

ARC-H: Adaptive replacement cache management for heterogeneous storage devices

ARC-H: Adaptive replacement cache management for heterogeneous storage devices Journal of Systems Architecture 58 (2012) ARC-H: Adaptive replacement cache management for heterogeneous storage devices Young-Jin Kim, Division of Electrical and Computer Engineering, Ajou University,

More information

18D according to ATEX

18D according to ATEX Pneumatic ressure switch -... bar Hydraulic ressure switch 5... 4 bar For EX-alications according to ATEX 00 a: Zone 2 category ATEX 3G (gases) Zone 22 category ATEX 3D (dust) TÜV (technical insection

More information

UTILIZING WAVE ROTOR TECHNOLOGY TO ENHANCE THE TURBO COMPRESSION IN POWER AND REFRIGERATION CYCLES

UTILIZING WAVE ROTOR TECHNOLOGY TO ENHANCE THE TURBO COMPRESSION IN POWER AND REFRIGERATION CYCLES Proceedings of IMECE 3 3 ASME International Mechanical Engineering Congress & Exosition Washington, D.C., November -, 3 IMECE3- UTILIZING WAVE ROTOR TECHNOLOGY TO ENHANCE THE TURBO COMPRESSION IN POWER

More information

Facilitating Data Set Transfers for International Researchers and Showcasing a perfsonar-based Traceroute Monitoring Tool

Facilitating Data Set Transfers for International Researchers and Showcasing a perfsonar-based Traceroute Monitoring Tool Facilitating Data Set Transfers for International Researchers and Showcasing a perfsonar-based Traceroute Monitoring Tool Simon Peter Green Technical Specialist SingAREN Introduction Institut Teknologi

More information

Chapter 10 And, Finally... The Stack

Chapter 10 And, Finally... The Stack Chapter 10 And, Finally... The Stack Stacks: An Abstract Data Type A LIFO (last-in first-out) storage structure. The first thing you put in is the last thing you take out. The last thing you put in is

More information

Drowsy Caches Simple Techniques for Reducing Leakage Power Krisztián Flautner Nam Sung Kim Steve Martin David Blaauw Trevor Mudge

Drowsy Caches Simple Techniques for Reducing Leakage Power Krisztián Flautner Nam Sung Kim Steve Martin David Blaauw Trevor Mudge Drowsy Caches Simple Techniques for Reducing Leakage Power Krisztián Flautner Nam Sung Kim Steve Martin David Blaauw Trevor Mudge krisztian.flautner@arm.com kimns@eecs.umich.edu stevenmm@eecs.umich.edu

More information

machine design, Vol.3(2011) No.3, ISSN pp

machine design, Vol.3(2011) No.3, ISSN pp machine design, Vol.3(2011) No.3, ISSN 1821-1259. 189-194 Preliminary note ESTIMATION OF THE DRIVING FORCE AND DRAG FORCE OF THE POWERTRAIN SYSTEM WITH THE USE OF A UNIVERSAL PORTABLE DEVICE IN ROAD TEST

More information

- DQ0 - NC DQ1 - NC - NC DQ0 - NC DQ2 DQ1 DQ CONFIGURATION. None SPEED GRADE

- DQ0 - NC DQ1 - NC - NC DQ0 - NC DQ2 DQ1 DQ CONFIGURATION. None SPEED GRADE SYNCHRONOUS DRAM 52Mb: x4, x8, x6 MT48LC28M4A2 32 MEG x 4 x 4 S MT48LC64M8A2 6 MEG x 8 x 4 S MT48LC32M6A2 8 MEG x 6 x 4 S For the latest data sheet, please refer to the Micron Web site: www.micron.com/dramds

More information

- - DQ0 NC DQ1 DQ0 DQ2 - NC DQ1 DQ3 NC - NC

- - DQ0 NC DQ1 DQ0 DQ2 - NC DQ1 DQ3 NC - NC SYNCHRONOUS DRAM 64Mb: x4, x8, x16 MT48LC16M4A2 4 Meg x 4 x 4 banks MT48LC8M8A2 2 Meg x 8 x 4 banks MT48LC4M16A2 1 Meg x 16 x 4 banks For the latest data sheet, please refer to the Micron Web site: www.micron.com/mti/msp/html/datasheet.html

More information

Research Note PRACTICAL IMPLEMENTATION OF MULTI-MOTOR DRIVES FOR WIDE SPAN GANTRY CRANES *

Research Note PRACTICAL IMPLEMENTATION OF MULTI-MOTOR DRIVES FOR WIDE SPAN GANTRY CRANES * ranian Journal of Science & Technology, Transaction B: Engineering, Vol. 34, No. B6, 649-654 Printed in The slamic Reublic of ran, 2010 Shiraz University Research Note PRACTCAL MPLEMENTATON OF MULT-MOTOR

More information

Lecture Secure, Trusted and Trustworthy Computing Trusted Execution Environments Intel SGX

Lecture Secure, Trusted and Trustworthy Computing Trusted Execution Environments Intel SGX 1 Lecture Secure, and Trustworthy Computing Execution Environments Intel Prof. Dr.-Ing. Ahmad-Reza Sadeghi System Security Lab Technische Universität Darmstadt (CASED) Germany Winter Term 2015/2016 Intel

More information

Koen De Schepper, Inton Tsang. Olga Bondarenko. Bob Briscoe. July, 2015

Koen De Schepper, Inton Tsang. Olga Bondarenko. Bob Briscoe. July, 2015 DualQ Couled AQM draft: htt://www.bobbriscoe.net/rojects/latency/draft-briscoe-aqm-dualq-couled-00.txt aer: htt://www.bobbriscoe.net/rojects/latency/dctth_rerint.df Koen De Scheer, Inton Tsang. Olga Bondarenko.

More information

CS250 VLSI Systems Design

CS250 VLSI Systems Design CS250 VLSI Systems Design Lecture 4: Physical Realities: Beneath the Digital Abstraction, Part 1: Timing Spring 2016 John Wawrzynek with Chris Yarp (GSI) Lecture 04, Timing CS250, UC Berkeley Sp16 What

More information

TABLE OF CONTENTS 1. GENERAL DESCRIPTION FEATURES PIN DESCRIPTION Signal Descriptions BLOCK DIAGRAM...

TABLE OF CONTENTS 1. GENERAL DESCRIPTION FEATURES PIN DESCRIPTION Signal Descriptions BLOCK DIAGRAM... TABLE OF CONTENTS 1. GENERAL DESCRIPTION... 3 2. FEATURES... 3 3. PIN DESCRIPTION... 4 3.1 Signal Descriptions... 5 4. BLOCK DIAGRAM... 7 4.1 Block Diagram... 7 4.2 Simplified State Diagram... 8 5. FUNCTION

More information

DQ0 NC DQ1 DQ0 DQ2 DQ3 DQ Speed Grade

DQ0 NC DQ1 DQ0 DQ2 DQ3 DQ Speed Grade Features SDRAM MT48LC32M4A2 8 Meg x 4 x 4 banks MT48LC16M8A2 4 Meg x 8 x 4 banks MT48LC8M16A2 2 Meg x 16 x 4 banks For the latest data sheet, refer to Micron s Web site: www.micron.com Features PC100 and

More information

MASS FRACTION BURNED ALGORITHM BASED ON THE pv PRODUCT

MASS FRACTION BURNED ALGORITHM BASED ON THE pv PRODUCT Journal of KONES Internal Combustion Engines 2002 No. 3 4 ISSN 1231 4005 MASS FRACTION BURNED ALGORITHM BASED ON THE V PRODUCT Krzysztof Z. Mendera, Andrzej Syra, Michał Smereka Technical University of

More information

Digital Hand Controller. Manual

Digital Hand Controller. Manual Digital Hand Controller Manual Authors: Dr.-Ing. T. Vaupel, D. Richter, M. Berger Translated by Wolfram Steinke Copyright Uhlenbrock Elektronik GmbH, Bottrop 3rd Edition March 2004 All Rights Reserved

More information

PMD706416A. Document Title. 64Mb (4M x 16) DDR SDRAM (A die) Datasheet

PMD706416A. Document Title. 64Mb (4M x 16) DDR SDRAM (A die) Datasheet Document Title 64Mb (4M x 16) DDR SDRAM (A die) Datasheet This document is a general product description and subject to change without notice. 64MBIT DDR DRAM Features JEDEC DDR Compliant Differential

More information

Frequently Asked Questions: EMC Captiva 7.5

Frequently Asked Questions: EMC Captiva 7.5 Frequently Asked Questions: EMC Captiva 7.5 Table of Contents What s New? Captiva Web Client Capture REST Services Migration/Upgrades Deprecated Modules Other Changes More Information What s New? Question:

More information

Special conveyor chains

Special conveyor chains 56 Secial conveyor chains iwis offers an extensive rogram of secial chains for various industrial alications and requirements. While the late chain is being used wherever smooth and reliable conveying

More information

JNC, JC, and JNZ Instructions for the WIMP51

JNC, JC, and JNZ Instructions for the WIMP51 JNC, JC, and JNZ Instructions for the WIMP51 EE 213 For the beginning of the project I looked up the Hex code for the JNC, JC, JNZ, as well as JZ so that I could compare with how it was created with the

More information

Advantages of using a Switched Reluctance Generator (SRG) for wind energy applications

Advantages of using a Switched Reluctance Generator (SRG) for wind energy applications Advantages of using a Switched Reluctance Generator (SRG) for wind energy alications Eleonora Darie, Costin Ceisca, Emanuel Darie Abstract Wind energy found to be one of the most useful solutions to hel

More information

Feature. 512Mb DDR SDRAM. REV 1.1 Jul CAS Latency Frequency NT5DS64M8DS NT5DS32M16DS CONSUMER DRAM. 2KB page size for all configurations.

Feature. 512Mb DDR SDRAM. REV 1.1 Jul CAS Latency Frequency NT5DS64M8DS NT5DS32M16DS CONSUMER DRAM. 2KB page size for all configurations. Feature CAS Latency Frequency DDR-333 DDR400 DDR500 Speed Sorts Units -6K/-6KI -5T/-5TI -4T CL-tRCD-tRP 2.5-3-3 3-3-3 3-4-4 tck CL=2 266 266-2KB page size for all configurations. DQS is edge-aligned with

More information

PMD709408C/PMD709416C. Document Title. Revision History. 512Mb (64M x 8 / 32M x 16) DDR SDRAM C die Datasheet

PMD709408C/PMD709416C. Document Title. Revision History. 512Mb (64M x 8 / 32M x 16) DDR SDRAM C die Datasheet Document Title 512Mb (64M x 8 / 32M x 16) DDR SDRAM C die Datasheet Revision History Revision Date Page Notes 0.1 October, 2013 Preliminary 1.0 March, 2014 Official release 1.1 April, 2014 500Mbps speed

More information