Pipelined MIPS Datapath with Control Signals

Size: px
Start display at page:

Download "Pipelined MIPS Datapath with Control Signals"

Transcription

1 uction ess uction Rs [:26] (Opcode[5:]) [5:] ranch luor. Decoder Pipelined MIPS path with Signals luor Raddr at

2 Five instruction sequence to be processed by pipeline: op [:26] rs [25:2] rt [2:6] rd [5:] funct [5:] immed [5:] : lw r, 9(r) 5 n/a n/a 9 4: sub r, r2, r 2 4 n/a 8: and r2, r4, r n/a 2: or r, r6, r n/a 6: add r4, r8, r n/a decoding for each of these instructions: luctrl rctrl luor lw x sub x x and x x or x x add x x (N.., control for all R-type instructions is generated by the funct field, and luctrl in this case serves to allow local decoding of this field). ssume that, initially, r = 9, r2 = 4, r = 7, r4 = 6, r5 =, r6 =, r7 =, r8 =, and r9 =2. ory location 4 is assumed to contain the value 2.

3 uction ess uction ($8C29) Rs [:26] (Opcode[5:]) [5:] ranch luor. Decoder luor : lw r, 9(r). Fetch 4 4 Raddr at

4 4: sub r, r2, r. Fetch : lw r, 9(r). Decode 8 4 uction ess 8 uction ($45822) 4 [:26] = 5 (Opcode[5:]) Rs () (). Decoder [5:] (9) luor x Raddr 9 at () () 9 ranch luor

5 8: and r2, r4, r5. Fetch 4: sub r, r2, r. Decode : lw r, 9(r) Execute 2 8 uction ess 2 uction ($85624) 8 [:26] = (Opcode[5:]) Rs (2) (). Decoder [5:] ($5822) luor Raddr 4 at 7 x x () () x 9 () () (6) ranch luor

6 2: or r, r6, r7 8: and r2, r4, r5 4: sub r, r2, r : lw r, 9(r). Fetch. Decode Execute ory 6 2 uction ess 6 uction ($C7825) 2 [:26] = (Opcode[5:]) Rs (4) (5). Decoder [5:] luor Raddr 6 at x x (5) (2) x () () x 9 ranch 2 luor

7 6: addr4, r8, r9 2: or r, r6, r7 8: and r2, r4, r5 4: sub r, r2, r : lw.... Fetch. Decode Execute ory back 2 6 uction ess 2 uction ($972) 6 [:26] = (Opcode[5:]) Rs (6) (7) 2. Decoder luor [5:] x x Raddr at (7) () x (5) (2) x 7 ranch luor 4 2

8 6: add r4, r8, r9 2: or r, r6, r7 8: and r2, r4, r5 4: sub.... Decode Execute ory back 24 2 uction ess 24 uction 2 [:26] = (Opcode[5:]) Rs (8) (9) 7. Decoder [5:] luor Raddr at 2 x x (9) (4) x (7) () 6 6 x 2 ranch luor 7

9 6: add r4, r8, r9 Execute 2: or r, r6, r7 ory 8: and... back uction ess 28 uction 24 [:26] = (Opcode[5:]) Rs 2 6. Decoder luor Raddr at [5:] x (9) (4) x ranch luor 6 2

10 Raddr uction ess uction Rs [:26] = (Opcode[5:]) [5:] ranch luor. Decoder luor 6: add r4, r8, r ory x 4 2 back 2: or... at

11 Raddr uction ess uction Rs [:26] = (Opcode[5:]) [5:] ranch luor. Decoder luor 2 6? back 6: add... at

12 Important points about the pipeline operation: lthough the pipeline allows one instruction to complete in every clock cycle (when operating at maximum efficiency), each individual instruction still takes five clock cycles to complete. 2 It takes four clock cycles before the pipeline is operating a maximum efficiency (startup time). Register writeback data and controls (, and ) are provided by the W stage, not the ID stage. This can be a pitfall because the pipeline diagram shows the register file as being part of the ID stage. Don t forget the feedback. 4 Register reads from instruction i happen in parallel with register writes from instruction i -. 5 When a stage is inactive, any lines which control memory or register accesses are deasserted (in active high logic, set to ). 6 Notice that the sequencing of the pipeline is controlled by the instruction currently in the MEM stage of execution, i.e., the decision about whether to sequence or branch is made by the instruction which entered the pipeline three cycles ago.

Anne Bracy CS 3410 Computer Science Cornell University. [K. Bala, A. Bracy, S. McKee, E. Sirer, H. Weatherspoon]

Anne Bracy CS 3410 Computer Science Cornell University. [K. Bala, A. Bracy, S. McKee, E. Sirer, H. Weatherspoon] Anne Bracy CS 3410 Computer Science Cornell University [K. Bala, A. Bracy, S. McKee, E. Sirer, H. Weatherspoon] Prog. Mem PC +4 inst Reg. File 5 5 5 control ALU Data Mem Fetch Decode Execute Memory WB

More information

Improving Performance: Pipelining!

Improving Performance: Pipelining! Iproving Perforance: Pipelining! Meory General registers Meory ID EXE MEM WB Instruction Fetch (includes PC increent) ID Instruction Decode + fetching values fro general purpose registers EXE EXEcute arithetic/logic

More information

Out-of-order Pipeline. Register Read. OOO execution (2-wide) OOO execution (2-wide) OOO execution (2-wide) OOO execution (2-wide)

Out-of-order Pipeline. Register Read. OOO execution (2-wide) OOO execution (2-wide) OOO execution (2-wide) OOO execution (2-wide) Out-of-order Pipeline Register Read When do instructions read the register file? Fetch Decode Rename Dispatch Buffer of instructions Issue Reg-read Execute Writeback Commit Option #: after select, right

More information

Pipelining A B C D. Readings: Example: Doing the laundry. Ann, Brian, Cathy, & Dave. each have one load of clothes to wash, dry, and fold

Pipelining A B C D. Readings: Example: Doing the laundry. Ann, Brian, Cathy, & Dave. each have one load of clothes to wash, dry, and fold Pipelining Readings: 4.5-4.8 Example: Doing the laundry Ann, Brian, Cathy, & Dave A B C D each have one load of clothes to wash, dry, and fold Washer takes 30 minutes Dryer takes 40 minutes Folder takes

More information

Lecture 14: Instruction Level Parallelism

Lecture 14: Instruction Level Parallelism Lecture 14: Instruction Level Parallelism Last time Pipelining in the real world Today Control hazards Other pipelines Take QUIZ 10 over P&H 4.10-15, before 11:59pm today Homework 5 due Thursday March

More information

Advanced Superscalar Architectures. Speculative and Out-of-Order Execution

Advanced Superscalar Architectures. Speculative and Out-of-Order Execution 6.823, L16--1 Advanced Superscalar Architectures Asanovic Laboratory for Computer Science M.I.T. http://www.csg.lcs.mit.edu/6.823 Speculative and Out-of-Order Execution Branch Prediction kill kill Branch

More information

Hakim Weatherspoon CS 3410 Computer Science Cornell University

Hakim Weatherspoon CS 3410 Computer Science Cornell University Hakim Weatherspoon CS 3410 Computer Science Cornell University The slides are the product of many rounds of teaching CS 3410 by Professors Weatherspoon, Bala, Bracy, McKee, and Sirer. memory inst register

More information

Computer Architecture 计算机体系结构. Lecture 3. Instruction-Level Parallelism I 第三讲 指令级并行 I. Chao Li, PhD. 李超博士

Computer Architecture 计算机体系结构. Lecture 3. Instruction-Level Parallelism I 第三讲 指令级并行 I. Chao Li, PhD. 李超博士 Computer Architecture 计算机体系结构 Lecture 3. Instruction-Level Parallelism I 第三讲 指令级并行 I Chao Li, PhD. 李超博士 SJTU-SE346, Spring 2018 Review ISA, micro-architecture, physical design Evolution of ISA CISC vs

More information

M2 Instruction Set Architecture

M2 Instruction Set Architecture M2 Instruction Set Architecture Module Outline Addressing modes. Instruction classes. MIPS-I ISA. High level languages, Assembly languages and object code. Translating and starting a program. Subroutine

More information

Announcements. Programming assignment #2 due Monday 9/24. Talk: Architectural Acceleration of Real Time Physics Glenn Reinman, UCLA CS

Announcements. Programming assignment #2 due Monday 9/24. Talk: Architectural Acceleration of Real Time Physics Glenn Reinman, UCLA CS Lipasti, artin, Roth, Shen, Smith, Sohi, Tyson, Vijaykumar GAS STATION Pipelining II Fall 2007 Prof. Thomas Wenisch http://www.eecs.umich.edu/courses/eecs470 Slides developed in part by Profs. Austin,

More information

CS152: Computer Architecture and Engineering Introduction to Pipelining. October 22, 1997 Dave Patterson (http.cs.berkeley.

CS152: Computer Architecture and Engineering Introduction to Pipelining. October 22, 1997 Dave Patterson (http.cs.berkeley. CS152: Computer Architecture and Engineering Introduction to Pipelining October 22, 1997 Dave Patterson (http.cs.berkeley.edu/~patterson) lecture slides: http://www-inst.eecs.berkeley.edu/~cs152/ cs 152

More information

Chapter 3: Computer Organization Fundamentals. Oregon State University School of Electrical Engineering and Computer Science.

Chapter 3: Computer Organization Fundamentals. Oregon State University School of Electrical Engineering and Computer Science. Chapter 3: Computer Organization Fundamentals Prof. Ben Lee Oregon State University School of Electrical Engineering and Computer Science Chapter Goals Understand the organization of a computer system

More information

FabComp: Hardware specication

FabComp: Hardware specication Sol Boucher and Evan Klei CSCI-453-01 04/28/14 FabComp: Hardware specication 1 Hardware The computer is composed of a largely isolated data unit and control unit, which are only connected by a couple of

More information

PIPELINING: BRANCH AND MULTICYCLE INSTRUCTIONS

PIPELINING: BRANCH AND MULTICYCLE INSTRUCTIONS PIPELINING: BRANCH AND MULTICYCLE INSTRUCTIONS Mahdi Nazm Bojnordi Assistant Professor School of Computing University of Utah CS/ECE 6810: Computer Architecture Overview Announcement Homework 1 submission

More information

COSC 6385 Computer Architecture. - Tomasulos Algorithm

COSC 6385 Computer Architecture. - Tomasulos Algorithm COSC 6385 Computer Architecture - Tomasulos Algorithm Fall 2008 Analyzing a short code-sequence DIV.D F0, F2, F4 ADD.D F6, F0, F8 S.D F6, 0(R1) SUB.D F8, F10, F14 MUL.D F6, F10, F8 1 Analyzing a short

More information

CIS 662: Sample midterm w solutions

CIS 662: Sample midterm w solutions CIS 662: Sample midterm w solutions 1. (40 points) A processor has the following stages in its pipeline: IF ID ALU1 MEM1 MEM2 ALU2 WB. ALU1 stage is used for effective address calculation for loads, stores

More information

ENGN1640: Design of Computing Systems Topic 05: Pipeline Processor Design

ENGN1640: Design of Computing Systems Topic 05: Pipeline Processor Design ENGN64: Design of Computing Systems Topic 5: Pipeline Processor Design Professor Sherief Reda http://scale.engin.brown.edu Electrical Sciences and Computer Engineering School of Engineering Brown University

More information

DAT105: Computer Architecture Study Period 2, 2009 Exercise 2 Chapter 2: Instruction-Level Parallelism and Its Exploitation

DAT105: Computer Architecture Study Period 2, 2009 Exercise 2 Chapter 2: Instruction-Level Parallelism and Its Exploitation Study Period 2, 29 Exercise 2 Chapter 2: Instruction-Level Parallelism and Its Exploitation Mafijul Islam Department of Computer Science and Engineering November 12, 29 Study Period 2, 29 Goals: To understand

More information

Pipeline Hazards. See P&H Chapter 4.7. Hakim Weatherspoon CS 3410, Spring 2013 Computer Science Cornell University

Pipeline Hazards. See P&H Chapter 4.7. Hakim Weatherspoon CS 3410, Spring 2013 Computer Science Cornell University Pipeline Hazards See P&H Chapter 4.7 Hakim Weatherspoon CS 341, Spring 213 Computer Science Cornell niversity Goals for Today Data Hazards Revisit Pipelined Processors Data dependencies Problem, detection,

More information

Pipeline Hazards. See P&H Chapter 4.7. Hakim Weatherspoon CS 3410, Spring 2013 Computer Science Cornell University

Pipeline Hazards. See P&H Chapter 4.7. Hakim Weatherspoon CS 3410, Spring 2013 Computer Science Cornell University Pipeline Hazards See P&H Chapter 4.7 Hakim Weatherspoon CS 341, Spring 213 Computer Science Cornell niversity Goals for Today Data Hazards Revisit Pipelined Processors Data dependencies Problem, detection,

More information

Parallelism I: Inside the Core

Parallelism I: Inside the Core Parallelism I: Inside the Core 1 The final Comprehensive Same general format as the Midterm. Review the homeworks, the slides, and the quizzes. 2 Key Points What is wide issue mean? How does does it affect

More information

Advanced Superscalar Architectures

Advanced Superscalar Architectures Advanced Suerscalar Architectures Krste Asanovic Laboratory for Comuter Science Massachusetts Institute of Technology Physical Register Renaming (single hysical register file: MIPS R10K, Alha 21264, Pentium-4)

More information

6.823 Computer System Architecture Prerequisite Self-Assessment Test Assigned Feb. 6, 2019 Due Feb 11, 2019

6.823 Computer System Architecture Prerequisite Self-Assessment Test Assigned Feb. 6, 2019 Due Feb 11, 2019 6.823 Computer System Architecture Prerequisite Self-Assessment Test Assigned Feb. 6, 2019 Due Feb 11, 2019 http://csg.csail.mit.edu/6.823/ This self-assessment test is intended to help you determine your

More information

- DQ0 - NC DQ1 - NC - NC DQ0 - NC DQ2 DQ1 DQ

- DQ0 - NC DQ1 - NC - NC DQ0 - NC DQ2 DQ1 DQ SYNCHRONOUS DRAM ADVANCE MT48LC28M4A2 32 Meg x 4 x 4 banks MT48LC64M8A2 6 Meg x 8 x 4 banks MT48LC32M6A2 8 Meg x 6 x 4 banks For the latest data sheet, please refer to the Micron Web site: www.micron.com/dramds

More information

CS 152 Computer Architecture and Engineering

CS 152 Computer Architecture and Engineering CS 152 Computer Architecture and Engineering Lecture 23 Synchronization 2006-11-16 John Lazzaro (www.cs.berkeley.edu/~lazzaro) TAs: Udam Saini and Jue Sun www-inst.eecs.berkeley.edu/~cs152/ 1 Last Time:

More information

Registers Shift Registers Accumulators Register Files Register Transfer Language. Chapter 8 Registers. SKEE2263 Digital Systems

Registers Shift Registers Accumulators Register Files Register Transfer Language. Chapter 8 Registers. SKEE2263 Digital Systems Chapter 8 Registers SKEE2263 igital Systems Mun im Zabidi {munim@utm.my} Ismahani Ismail {ismahani@fke.utm.my} Izam Kamisian {e-izam@utm.my} Faculty of Electrical Engineering, Universiti Teknologi Malaysia

More information

- - DQ0 NC DQ1 DQ0 DQ2 - NC DQ1 DQ3 NC - NC

- - DQ0 NC DQ1 DQ0 DQ2 - NC DQ1 DQ3 NC - NC SYNCHRONOUS DRAM 64Mb: x4, x8, x16 MT48LC16M4A2 4 Meg x 4 x 4 banks MT48LC8M8A2 2 Meg x 8 x 4 banks MT48LC4M16A2 1 Meg x 16 x 4 banks For the latest data sheet, please refer to the Micron Web site: www.micron.com/mti/msp/html/datasheet.html

More information

Computer Architecture: Out-of-Order Execution. Prof. Onur Mutlu (editted by Seth) Carnegie Mellon University

Computer Architecture: Out-of-Order Execution. Prof. Onur Mutlu (editted by Seth) Carnegie Mellon University Computer Architecture: Out-of-Order Execution Prof. Onur Mutlu (editted by Seth) Carnegie Mellon University Reading for Today Smith and Sohi, The Microarchitecture of Superscalar Processors, Proceedings

More information

CIS 371 Computer Organization and Design

CIS 371 Computer Organization and Design CIS 371 Computer Organization and Design Unit 10: Static & Dynamic Scheduling Slides developed by Milo Martin & Amir Roth at the University of Pennsylvania with sources that included University of Wisconsin

More information

CS 250! VLSI System Design

CS 250! VLSI System Design CS 250! VLSI System Design Lecture 3 Timing 2014-9-4! Professor Jonathan Bachrach! slides by John Lazzaro TA: Colin Schmidt www-insteecsberkeleyedu/~cs250/ UC Regents Fall 2013/1014 UCB everything doesn

More information

AVS64( )L

AVS64( )L AVS640416.1604.0808L 64 Mb Synchronous DRAM 16 Mb x 4 0416 8 Mb x 8 0808 4 Mb x 161604 Features PC100/PC133/PC143/PC166compliant Fully synchronous; all signals registered on positive edge of system clock

More information

- - DQ0 NC DQ1 DQ0 DQ2 - NC DQ1 DQ3 NC - NC

- - DQ0 NC DQ1 DQ0 DQ2 - NC DQ1 DQ3 NC - NC SYHRONOUS DRAM 128Mb: x4, x8, x16 MT48LC32M4A2 8 Meg x 4 x 4 banks MT48LC16M8A2 4 Meg x 8 x 4 banks MT48LC8M16A2 2 Meg x 16 x 4 banks For the latest data sheet, please refer to the Micron Web site: www.micron.com/dramds

More information

Optimality of Tomasulo s Algorithm Luna, Dong Gang, Zhao

Optimality of Tomasulo s Algorithm Luna, Dong Gang, Zhao Optimality of Tomasulo s Algorithm Luna, Dong Gang, Zhao Feb 28th, 2002 Our Questions about Tomasulo Questions about Tomasulo s Algorithm Is it optimal (can always produce the wisest instruction execution

More information

Computer Architecture ELE 475 / COS 475 Slide Deck 6: Superscalar 3. David Wentzlaff Department of Electrical Engineering Princeton University

Computer Architecture ELE 475 / COS 475 Slide Deck 6: Superscalar 3. David Wentzlaff Department of Electrical Engineering Princeton University Computer Architecture ELE 475 / COS 475 Slide Deck 6: Superscalar 3 David Wentzlaff Department of Electrical Engineering Princeton University 1 Agenda SpeculaJon and Branches Register Renaming Memory DisambiguaJon

More information

Unit 9: Static & Dynamic Scheduling

Unit 9: Static & Dynamic Scheduling CIS 501: Computer Architecture Unit 9: Static & Dynamic Scheduling Slides originally developed by Drew Hilton, Amir Roth and Milo Mar;n at University of Pennsylvania CIS 501: Comp. Arch. Prof. Milo Martin

More information

CS 152 Computer Architecture and Engineering. Lecture 15 - Advanced Superscalars

CS 152 Computer Architecture and Engineering. Lecture 15 - Advanced Superscalars CS 152 Comuter Architecture and Engineering Lecture 15 - Advanced Suerscalars Krste Asanovic Electrical Engineering and Comuter Sciences University of California at Berkeley htt://www.eecs.berkeley.edu/~krste

More information

- DQ0 - NC DQ1 - NC - NC DQ0 - NC DQ2 DQ1 DQ CONFIGURATION. None SPEED GRADE

- DQ0 - NC DQ1 - NC - NC DQ0 - NC DQ2 DQ1 DQ CONFIGURATION. None SPEED GRADE SYNCHRONOUS DRAM 52Mb: x4, x8, x6 MT48LC28M4A2 32 MEG x 4 x 4 S MT48LC64M8A2 6 MEG x 8 x 4 S MT48LC32M6A2 8 MEG x 6 x 4 S For the latest data sheet, please refer to the Micron Web site: www.micron.com/dramds

More information

128Mb Synchronous DRAM. Features High Performance: Description. REV 1.0 May, 2001 NT5SV32M4CT NT5SV16M8CT NT5SV8M16CT

128Mb Synchronous DRAM. Features High Performance: Description. REV 1.0 May, 2001 NT5SV32M4CT NT5SV16M8CT NT5SV8M16CT Features High Performance: f Clock Frequency -7K 3 CL=2-75B, CL=3-8B, CL=2 Single Pulsed RAS Interface Fully Synchronous to Positive Clock Edge Four Banks controlled by BS0/BS1 (Bank Select) Units 133

More information

CMU Introduction to Computer Architecture, Spring 2013 HW 3 Solutions: Microprogramming Wrap-up and Pipelining

CMU Introduction to Computer Architecture, Spring 2013 HW 3 Solutions: Microprogramming Wrap-up and Pipelining CMU 18-447 Introduction to Computer Architecture, Spring 2013 HW 3 Solutions: Microprogramming Wrap-up and Pipelining Instructor: Prof. Onur Mutlu TAs: Justin Meza, Yoongu Kim, Jason Lin 1 Adding the REP

More information

CprE 281: Digital Logic

CprE 281: Digital Logic CprE 28: Digital Logic Instructor: Alexander Stoytchev http://www.ece.iastate.edu/~alexs/classes/ Registers and Counters CprE 28: Digital Logic Iowa State University, Ames, IA Copyright Alexander Stoytchev

More information

DTC P0181: Fuel Tank Temperature Sensor Circuit Range/Performance

DTC P0181: Fuel Tank Temperature Sensor Circuit Range/Performance 2004 Endeavor (3.8L 6G75) DTC P0181: Fuel Tank Temperature Sensor Circuit Range/Performance Report a problem with this article caution If DTC P0181 has been set, TCL related DTC U1120 is also set. After

More information

CIS 371 Computer Organization and Design

CIS 371 Computer Organization and Design CIS 371 Computer Organization and Design Unit 10: Static & Dynamic Scheduling Slides developed by M. Martin, A.Roth, C.J. Taylor and Benedict Brown at the University of Pennsylvania with sources that included

More information

CSCI 510: Computer Architecture Written Assignment 2 Solutions

CSCI 510: Computer Architecture Written Assignment 2 Solutions CSCI 510: Computer Architecture Written Assignment 2 Solutions The following code does compution over two vectors. Consider different execution scenarios and provide the average number of cycles per iterion

More information

JNC, JC, and JNZ Instructions for the WIMP51

JNC, JC, and JNZ Instructions for the WIMP51 JNC, JC, and JNZ Instructions for the WIMP51 EE 213 For the beginning of the project I looked up the Hex code for the JNC, JC, JNZ, as well as JZ so that I could compare with how it was created with the

More information

- DQ0 - NC DQ1 - NC - NC DQ0 - NC DQ2 DQ1 DQ

- DQ0 - NC DQ1 - NC - NC DQ0 - NC DQ2 DQ1 DQ SYHRONOUS DRAM Features PC66, PC100, and PC133compliant Fully synchronous; all signals registered on positive edge of system clock Internal pipelined operation; column address can be changed every clock

More information

SDRAM DEVICE OPERATION

SDRAM DEVICE OPERATION POWER UP SEQUENCE SDRAM must be initialized with the proper power-up sequence to the following (JEDEC Standard 21C 3.11.5.4): 1. Apply power and start clock. Attempt to maintain a NOP condition at the

More information

Code Scheduling & Limitations

Code Scheduling & Limitations This Unit: Static & Dynamic Scheduling CIS 371 Computer Organization and Design Unit 11: Static and Dynamic Scheduling App App App System software Mem CPU I/O Code scheduling To reduce pipeline stalls

More information

CS 6354: Tomasulo. 21 September 2016

CS 6354: Tomasulo. 21 September 2016 1 CS 6354: Tomasulo 21 September 2016 To read more 1 This day s paper: Tomasulo, An Efficient Algorithm for Exploiting Multiple Arithmetic Units Supplementary readings: Hennessy and Patterson, Computer

More information

To read more. CS 6354: Tomasulo. Intel Skylake. Scheduling. How can we reorder instructions? Without changing the answer.

To read more. CS 6354: Tomasulo. Intel Skylake. Scheduling. How can we reorder instructions? Without changing the answer. To read more CS 6354: Tomasulo 21 September 2016 This day s paper: Tomasulo, An Efficient Algorithm for Exploiting Multiple Arithmetic Units Supplementary readings: Hennessy and Patterson, Computer Architecture:

More information

SYNCHRONOUS DRAM. 128Mb: x32 SDRAM. MT48LC4M32B2-1 Meg x 32 x 4 banks

SYNCHRONOUS DRAM. 128Mb: x32 SDRAM. MT48LC4M32B2-1 Meg x 32 x 4 banks SYNCHRONOUS DRAM 128Mb: x32 MT48LC4M32B2-1 Meg x 32 x 4 banks For the latest data sheet, please refer to the Micron Web site: www.micron.com/sdramds FEATURES PC100 functionality Fully synchronous; all

More information

Direct-Mapped Cache Terminology. Caching Terminology. TIO Dan s great cache mnemonic. UCB CS61C : Machine Structures

Direct-Mapped Cache Terminology. Caching Terminology. TIO Dan s great cache mnemonic. UCB CS61C : Machine Structures Lecturer SOE Dan Garcia inst.eecs.berkeley.edu/~cs61c UCB CS61C : Machine Structures Lecture 31 Caches II 2008-04-12 HP has begun testing research prototypes of a novel non-volatile memory element, the

More information

SDRAM AS4SD8M Mb: 8 Meg x 16 SDRAM Synchronous DRAM Memory. PIN ASSIGNMENT (Top View)

SDRAM AS4SD8M Mb: 8 Meg x 16 SDRAM Synchronous DRAM Memory. PIN ASSIGNMENT (Top View) 128 Mb: 8 Meg x 16 SDRAM Synchronous DRAM Memory FEATURES Full Military temp (-55 C to 125 C) processing available Configuration: 8 Meg x 16 (2 Meg x 16 x 4 banks) Fully synchronous; all signals registered

More information

IS42S32200C1. 512K Bits x 32 Bits x 4 Banks (64-MBIT) SYNCHRONOUS DYNAMIC RAM

IS42S32200C1. 512K Bits x 32 Bits x 4 Banks (64-MBIT) SYNCHRONOUS DYNAMIC RAM 512K Bits x 32 Bits x 4 Banks (64-MBIT) SYNCHRONOUS DYNAMIC RAM JANUARY 2007 FEATURES Clock frequency: 183, 166, 143 MHz Fully synchronous; all signals referenced to a positive clock edge Internal bank

More information

EECS 583 Class 9 Classic Optimization

EECS 583 Class 9 Classic Optimization EECS 583 Class 9 Classic Optimization University of Michigan September 28, 2016 Generalizing Dataflow Analysis Transfer function» How information is changed by something (BB)» OUT = GEN + (IN KILL) /*

More information

Technical Service Information Bulletin

Technical Service Information Bulletin Technical Service Information Bulletin August 4, 2003 Title: Models: 02 03 ES 300 & 04 05 ES 330 REVISION NOTICE: April 1, 2005: 2004 2005 model year ES 330 vehicles have been added to Applicable Vehicles.

More information

IS42S32200L IS45S32200L

IS42S32200L IS45S32200L IS42S32200L IS45S32200L 512K Bits x 32 Bits x 4 Banks (64-MBIT) SYNCHRONOUS DYNAMIC RAM OCTOBER 2012 FEATURES Clock frequency: 200, 166, 143, 133 MHz Fully synchronous; all signals referenced to a positive

More information

DOUBLE DATA RATE (DDR) SDRAM

DOUBLE DATA RATE (DDR) SDRAM UBLE DATA RATE Features VDD = +2.5V ±.2V, VD = +2.5V ±.2V Bidirectional data strobe transmitted/ received with data, i.e., source-synchronous data capture x6 has two one per byte Internal, pipelined double-data-rate

More information

CS 152 Computer Architecture and Engineering. Lecture 14 - Advanced Superscalars

CS 152 Computer Architecture and Engineering. Lecture 14 - Advanced Superscalars CS 152 Comuter Architecture and Engineering Lecture 14 - Advanced Suerscalars Krste Asanovic Electrical Engineering and Comuter Sciences University of California at Berkeley htt://www.eecs.berkeley.edu/~krste

More information

Multi Core Processing in VisionLab

Multi Core Processing in VisionLab Multi Core Processing in Multi Core CPU Processing in 25 August 2014 Copyright 2001 2014 by Van de Loosdrecht Machine Vision BV All rights reserved jaap@vdlmv.nl Overview Introduction Demonstration Automatic

More information

DQ0 NC DQ1 DQ0 DQ2 DQ3 DQ Speed Grade

DQ0 NC DQ1 DQ0 DQ2 DQ3 DQ Speed Grade Features SDRAM MT48LC32M4A2 8 Meg x 4 x 4 banks MT48LC16M8A2 4 Meg x 8 x 4 banks MT48LC8M16A2 2 Meg x 16 x 4 banks For the latest data sheet, refer to Micron s Web site: www.micron.com Features PC100 and

More information

Tomasulo-Style Register Renaming

Tomasulo-Style Register Renaming Tomasulo-Style Register Renaming ldf f0,x(r1) allocate RS#4 map f0 to RS#4 mulf f4,f0, allocate RS#6 ready, copy value f0 not ready, copy tag Map Table f0 f4 RS#4 RS T V1 V2 T1 T2 4 REG[r1] 6 REG[] RS#4

More information

Lecture 20: Parallelism ILP to Multicores. James C. Hoe Department of ECE Carnegie Mellon University

Lecture 20: Parallelism ILP to Multicores. James C. Hoe Department of ECE Carnegie Mellon University 18 447 Lecture 20: Parallelism ILP to Multicores James C. Hoe Department of ECE Carnegie Mellon University 18 447 S18 L20 S1, James C. Hoe, CMU/ECE/CALCM, 2018 18 447 S18 L20 S2, James C. Hoe, CMU/ECE/CALCM,

More information

RAM-Type Interface for Embedded User Flash Memory

RAM-Type Interface for Embedded User Flash Memory June 2012 Introduction Reference Design RD1126 MachXO2-640/U and higher density devices provide a User Flash Memory (UFM) block, which can be used for a variety of applications including PROM data storage,

More information

Programming Languages (CS 550)

Programming Languages (CS 550) Programming Languages (CS 550) Mini Language Compiler Jeremy R. Johnson 1 Introduction Objective: To illustrate how to map Mini Language instructions to RAL instructions. To do this in a systematic way

More information

Unidrive M600 High performance drive for induction and sensorless permanent magnet motors

Unidrive M600 High performance drive for induction and sensorless permanent magnet motors Unidrive M600 High performance drive for induction and sensorless permanent magnet motors 0.75 kw - 2.8 MW Heavy Duty (1.0 hp - 4,200 hp) 200 V 400 V 575 V 690 V Unidrive M600 features Easy click-in keypad

More information

Lab # 4 Parallel Circuits

Lab # 4 Parallel Circuits Lab # 4 Parallel Circuits Name(s) Obtain an Electro-Trainer and wire it exactly as shown (Be sure to use the 100 ohm resistor) 1) Record the volt drop and current flow for the Switch, the Resistor and

More information

Notes: Clock Frequency (MHz) Target t RCD- t RP-CL t RCD (ns) t RP (ns) CL (ns) A

Notes: Clock Frequency (MHz) Target t RCD- t RP-CL t RCD (ns) t RP (ns) CL (ns) A SDR SDRAM MT48LC4M32B2 1 Meg x 32 x 4 s 128Mb: x32 SDRAM Features Features PC100-compliant Fully synchronous; all signals registered on positive edge of system clock Internal pipelined operation; column

More information

Matti Loukas. Display Builder 1MRS755671

Matti Loukas. Display Builder 1MRS755671 Matti Loukas Display Builder 2005 ABB ABB - 1 - - 1 - Contents General Data handling Object Transformations Object Features Tools Conclusion 2005 ABB - 2 - General 2005 ABB - 3 - What are the major changes

More information

An Introduction to R 2.5 A few data manipulation tricks!

An Introduction to R 2.5 A few data manipulation tricks! An Introduction to R 2.5 A few data manipulation tricks! Dan Navarro (daniel.navarro@adelaide.edu.au) School of Psychology, University of Adelaide ua.edu.au/ccs/people/dan DSTO R Workshop, 29-Apr-2015

More information

IS42S Meg Bits x 16 Bits x 4 Banks (64-MBIT) SYNCHRONOUS DYNAMIC RAM FEATURES OVERVIEW. PIN CONFIGURATIONS 54-Pin TSOP (Type II)

IS42S Meg Bits x 16 Bits x 4 Banks (64-MBIT) SYNCHRONOUS DYNAMIC RAM FEATURES OVERVIEW. PIN CONFIGURATIONS 54-Pin TSOP (Type II) 1 Meg Bits x 16 Bits x 4 Banks (64-MBIT) SYNCHRONOUS DYNAMIC RAM JANUARY 2008 FEATURES Clock frequency: 166, 143 MHz Fully synchronous; all signals referenced to a positive clock edge Internal bank for

More information

More Complex Circuit

More Complex Circuit Series and Parallel Circuits Circuits usually include three components. One is a source of voltage difference that can be provided by a battery or an electrical outlet. Another is one or more devices that

More information

Cardinal Station Plan Change & Sub-Plan Change Instructions

Cardinal Station Plan Change & Sub-Plan Change Instructions Cardinal Station Plan Change & Sub-Plan Change Instructions A. Entering Plan Change Only or Plan Change and Sub-Plan Change Simultaneously I. Go to the Student Program/Plan page. To access Student Program/Plan

More information

Warped-Compression: Enabling Power Efficient GPUs through Register Compression

Warped-Compression: Enabling Power Efficient GPUs through Register Compression WarpedCompression: Enabling Power Efficient GPUs through Register Compression Sangpil Lee, Keunsoo Kim, Won Woo Ro (Yonsei University*) Gunjae Koo, Hyeran Jeon, Murali Annavaram (USC) (*Work done while

More information

CMPEN 411 VLSI Digital Circuits Spring Lecture 20: Multiplier Design

CMPEN 411 VLSI Digital Circuits Spring Lecture 20: Multiplier Design CMPEN 411 VLSI Digital Circuits Spring 2011 Lecture 20: Multiplier Design [Adapted from Rabaey s Digital Integrated Circuits, Second Edition, 2003 J. Rabaey, A. Chandrakasan, B. Nikolic] Sp11 CMPEN 411

More information

Technical Service BULLETIN

Technical Service BULLETIN Technical Service BULLETIN February 8, 2005 Title: Models: 04 05 Camry (V6) EG009-05 ENGINE Introduction Under certain driving conditions, some 2004 and 2005 model year Camry vehicles may exhibit a M.I.L.

More information

Mobile Low-Power SDR SDRAM

Mobile Low-Power SDR SDRAM Mobile Low-Power SDR SDRAM MT48H8M6LF 2 Meg x 6 x 4 banks MT48H4M32LF Meg x 32 x 4 banks 28Mb: 8 Meg x 6, 4 Meg x 32 Mobile SDRAM Features Features V DD /V D =.7.95V Fully synchronous; all signals registered

More information

Code Generation Part III

Code Generation Part III 1 Code Generation Part III Chapters 8 and 9.1 (1 st ed. Ch.9) COP5621 Compiler Construction Copyright Robert van Engelen, Florida State University, 2007-2013 2 Classic Examples of Local and Global Code

More information

Notes: Clock Frequency (MHz) Target t RCD- t RP-CL t RCD (ns) t RP (ns) CL (ns) -6A E

Notes: Clock Frequency (MHz) Target t RCD- t RP-CL t RCD (ns) t RP (ns) CL (ns) -6A E SDR SDRAM MT48LC32M4A2 8 Meg x 4 x 4 Banks MT48LC16M8A2 4 Meg x 8 x 4 Banks MT48LC8M16A2 2 Meg x 16 x 4 Banks 128Mb: x4, x8, x16 SDRAM Features Features PC100- and PC133-compliant Fully synchronous; all

More information

UPS Wizard User s Manual

UPS Wizard User s Manual 1. The communication cable M2502: This is a special designed cable for the communication of UPS with your PC; only connecting with the correct cable, the PC can detect the UPS. 2. The main window of the

More information

TABLE OF CONTENTS 1. GENERAL DESCRIPTION FEATURES PIN DESCRIPTION Signal Descriptions BLOCK DIAGRAM...

TABLE OF CONTENTS 1. GENERAL DESCRIPTION FEATURES PIN DESCRIPTION Signal Descriptions BLOCK DIAGRAM... TABLE OF CONTENTS 1. GENERAL DESCRIPTION... 3 2. FEATURES... 3 3. PIN DESCRIPTION... 4 3.1 Signal Descriptions... 5 4. BLOCK DIAGRAM... 7 4.1 Block Diagram... 7 4.2 Simplified State Diagram... 8 5. FUNCTION

More information

128Mb DDR SDRAM. Features. Description. REV 1.1 Oct, 2006

128Mb DDR SDRAM. Features. Description. REV 1.1 Oct, 2006 Features Double data rate architecture: two data transfers per clock cycle Bidirectional data strobe () is transmitted and received with data, to be used in capturing data at the receiver is edge-aligned

More information

256M (16Mx16bit) Hynix SDRAM Memory

256M (16Mx16bit) Hynix SDRAM Memory 256Mb Synchronous DRAM based on 4M x 4Bank x16 I/O 256M (16Mx16bit) Hynix SDRAM Memory Memory Cell Array - Organized as 4banks of 4,194,304 x 16 This document is a general product description and is subject

More information

SDR SDRAM. MT48LC32M4A2 8 Meg x 4 x 4 Banks MT48LC16M8A2 4 Meg x 8 x 4 Banks MT48LC8M16A2 2 Meg x 16 x 4 Banks. Features. 128Mb: x4, x8, x16 SDRAM

SDR SDRAM. MT48LC32M4A2 8 Meg x 4 x 4 Banks MT48LC16M8A2 4 Meg x 8 x 4 Banks MT48LC8M16A2 2 Meg x 16 x 4 Banks. Features. 128Mb: x4, x8, x16 SDRAM SDR SDRAM MT48LC32M4A2 8 Meg x 4 x 4 Banks MT48LC16M8A2 4 Meg x 8 x 4 Banks MT48LC8M16A2 2 Meg x 16 x 4 Banks 128Mb: x4, x8, x16 SDRAM Features Features PC100- and PC133-compliant Fully synchronous; all

More information

Series circuits. The ammeter

Series circuits. The ammeter Series circuits D o you remember how the parts of the torch on pages 272 3 were connected together? The circuit contained several components, connected one after the other. Conductors, like the metal strip

More information

High Perform ance Caches: The Q uiet Revolution

High Perform ance Caches: The Q uiet Revolution High Perform ance Caches: The Q uiet Revolution David Chapm an M anager, pplications Engineering FSR M D ivision M em ory and M icroprocessor Technology Group M otorola Sem iconductor Products Sector ustin,texas

More information

Dyadic Mechatronics Cylinder Price List

Dyadic Mechatronics Cylinder Price List Page 1/9 Mechatronics Cylinder 1 TAS03 303SS Tip Screw (M10 x P1.25 with Nut) US$12.00 2 050AS03-10kgf type 3 100AS03- -303SS Thread 4 150AS03- (Alum. housing) 5 200AS03- (IP-40) 6 250AS03-1 2 US$325.00

More information

IS42S Meg x MBIT SYNCHRONOUS DRAM SEPTEMBER 2009

IS42S Meg x MBIT SYNCHRONOUS DRAM SEPTEMBER 2009 16Meg x16 256-MBIT SYNCHRONOUS DRAM SEPTEMBER 2009 FEATURES Clock frequency: 166, 143, 133 MHz Fully synchronous; all signals referenced to a positive clock edge Internal bank for hiding row access/precharge

More information

Sinfonia: a new paradigm for building scalable distributed systems

Sinfonia: a new paradigm for building scalable distributed systems CS848 Paper Presentation Sinfonia: a new paradigm for building scalable distributed systems Aguilera, Merchant, Shah, Veitch, Karamanolis SOSP 2007 Presented by Somayyeh Zangooei David R. Cheriton School

More information

HYB25D256400B[T/C](L) HYB25D256800B[T/C](L) HYB25D256160B[T/C](L)

HYB25D256400B[T/C](L) HYB25D256800B[T/C](L) HYB25D256160B[T/C](L) Data Sheet, Rev. 1.21, Jul. 2004 HYB25D256400B[T/C](L) HYB25D256800B[T/C](L) HYB25D256160B[T/C](L) 256 Mbit Double Data Rate SDRAM DDR SDRAM Memory Products N e v e r s t o p t h i n k i n g. Edition 2004-07

More information

Optimal Start Time: Precool and Preheat

Optimal Start Time: Precool and Preheat Metasys Network Technical Manual 636 Air Handlers Section Technical Bulletin Issue Date 0191 Optimal Start Time: Precool and Preheat Optimal start logic to determine the precool and preheat times for an

More information

Series and Parallel Circuits

Series and Parallel Circuits Series and Parallel Circuits 1 of 23 Boardworks Ltd 2016 Series and Parallel Circuits 2 of 23 Boardworks Ltd 2016 What are series and parallel circuits? 3 of 23 Boardworks Ltd 2016 Circuit components can

More information

UC Berkeley CS61C : Machine Structures

UC Berkeley CS61C : Machine Structures inst.eecs.berkeley.edu/~cs61c UC Berkeley CS61C : Machine Structures Lecture 20 Synchronous Digital Systems Blu-ray vs HD-DVD war over? As you know, there are two different, competing formats for the next

More information

Sequential Circuit Background. Young Won Lim 11/6/15

Sequential Circuit Background. Young Won Lim 11/6/15 Sequential Circuit /6/5 Copyright (c) 2 25 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free ocumentation License, Version.2 or any later

More information

Service Bulletin. Applies To: MDX ALL 2006 MDX From VIN 2HNYD18..6H thru 2HNYD18..6H535538

Service Bulletin. Applies To: MDX ALL 2006 MDX From VIN 2HNYD18..6H thru 2HNYD18..6H535538 Service Bulletin Applies To: 2003 05 MDX ALL 2006 MDX From VIN 2HNYD18..6H500001 thru 2HNYD18..6H535538 06-028 July 13, 2007 MIL Comes On With DTC P0335, P0339, P0385, or P0389, and the Engine Runs Roughly

More information

Exploiting Clock Skew Scheduling for FPGA

Exploiting Clock Skew Scheduling for FPGA Exploiting Clock Skew Scheduling for FPGA Sungmin Bae, Prasanth Mangalagiri, N. Vijaykrishnan Email {sbae, mangalag, vijay}@cse.psu.edu CSE Department, Pennsylvania State University, University Park, PA

More information

Embedded system design for a multi variable input operations

Embedded system design for a multi variable input operations IOSR Journal of Engineering (IOSRJEN) ISSN: 2250-3021 Volume 2, Issue 8 (August 2012), PP 29-33 Embedded system design for a multi variable input operations Niranjan N. Parandkar, Abstract: - There are

More information

SC10F Circuits Lab Name:

SC10F Circuits Lab Name: SC10F Circuits Lab Name: Purpose: In this lab you will be making, both, series and parallel circuits. You will then be using a millimeter to take readings at various points in these circuits. Using these

More information

t WR = 2 CLK A2 Notes:

t WR = 2 CLK A2 Notes: SDR SDRAM MT48LC16M4A2 4 Meg x 4 x 4 Banks MT48LC8M8A2 2 Meg x 8 x 4 Banks MT48LC4M16A2 1 Meg x 16 x 4 Banks 64Mb: x4, x8, x16 SDRAM Features Features PC100- and PC133-compliant Fully synchronous; all

More information

Furnace Web Site FAQs. Pro Press 100 / Pro 100 / Pro 100 plus. Lift. Belt Noise

Furnace Web Site FAQs. Pro Press 100 / Pro 100 / Pro 100 plus. Lift. Belt Noise Furnace Web Site FAQs Pro Press 100 / Pro 100 / Pro 100 plus Lift Belt Noise A Worn belt Over time the belt may become dry or worn due to heat and travel. Replace the belt Tight If the belt was recently

More information

2007 MAXIMA; MIL 'ON' W/DTC P0840 OR P0845

2007 MAXIMA; MIL 'ON' W/DTC P0840 OR P0845 Classification: Reference: Date: AT08-001 NTB08-042 April 3, 2008 2007 MAXIMA; MIL 'ON' W/DTC P0840 OR P0845 APPLIED VEHICLE: 2007 Maxima (A34) IF YOU CONFIRM The MIL is ON with one of the following DTC

More information