LICENCE TO LIGHTING,TEACHER S BOOK

Size: px
Start display at page:

Download "LICENCE TO LIGHTING,TEACHER S BOOK"

Transcription

1

2 Licence to Lighting Teacher s book Licence to Lighting is a small instructional programme intended for the subject natural and technical science in its first level. By working with elementary teaching in electricity, it is our hope that the pupils will get a basic knowledge of issues such as current path, conductive power, line resistance, series connection and parallel connection, and that they will get an intuitive understanding of the relevant items. The items have not necessarily to be used all of them. Licence to Lighting consists of 8 elementary exercises, which the pupils have to work their way through, before they will obtain the Licence. After having solved the 8 exercises, the pupils can start on the extra exercises, which are part of the programme as well. There are also a few theoretical exercises, which the pupils can solve at home together with their parents. The idea with these home exercises is partly to keep the attention on some important items, partly to inform the parents what their children are working with at school through exercises involving the parents active work, and last but not least, the idea is to open for a dialogue on electricity safety in the homes. The Danish Physics and Chemistry Masters Association has kindly lent us some illustrations from their publication Electricity 7. You can print all the teaching and pupils material in colours from the We thank Inger Wøldike and first class A of Søndermarksskolen at Frederiksberg very much for their help in testing and developing Licence to Lighting. Primary and lower secondary school project Licence to Lighting is the first finished teaching programme from the primary and lower secondary school project, which The Danish Committee for Electrical Training and Education started in August Further information El-Fagets Uddannelsesnævn (The Danish Committee for Electrical Training and Education) Højnæsvej 71 DK-2610 Rødovre Telephone: The project is mentioned at our home page: Project adviser is Mr. Erland Andersen Contact by efu@efu.dk or erland@jyde.dk The Danish Committee for Electrical Training and Education is taking care of the interests of The Danish Electrical Union and the Electrical Contractors Association concerning education, development and teaching material within the electrical trade. 1

3 General comments on Licence to Lighting The idea with this programme is that the pupils - without much instruction - are working their way through the practical exercises and have their exercises looked through by the teacher. When a pupil has obtained his/her Licence to Lighting, he/she may start on the extra exercises, which are generally a little more difficult. The theoretical exercises are supporting what the pupils have worked with in practise. Electricity and safety When working with Licence to Lighting the pupils are only working with batteries and bulbs intended for a very small potential difference. So there are no safety problems and restrictions, as long as they are working with the materials, which are shown in the exercises. However, it will be relevant to make it completely clear to the pupils that they are not to experiment with electricity from a switch, as it can be deadly dangerous. Short about important electricity items Potential difference (voltage) is measured in volts with a voltmeter. If the potential difference is large, the source of energy can easier send current through for instance a wire. Earlier, the potential difference was 220 volts in ordinary switches. Today, the potential difference is changed to 230 volts, and by doing so, we are getting a little more power. The three-phase installations are also changed. Today they are at 400 volts against earlier 380 volts. An ordinary battery is at 1.5 volts. If you put two batteries together in series, the potential difference will be at 3 volts. Three batteries in series will be at 4.5 volts. Current intensity (amperage) is measured in amperes with an ammeter. The electric current in a wire consists of electrons, which are moving from! to +. For historical reasons we are saying that the current is going from + to!. The power is measured in watts with a wattmeter. The bigger power (wattage) an electric device is having, the more current is running through the device. For instance, a boiling plate for 1,000 watts is converting 10 times as much energy per second as a bulb for 100 watts. By multiplying the potential difference by the current intensity, you can find the power. Potential Difference multiplied by Current Intensity = Power Units: (volts) (amperes) = (watts) You can find the energy, which an electric device is converting, by multiplying the power by the time during which the device has been used. Power multiplied by Time = Energy Units: (watts) (hours) = (watt-hours) In practise, watt-hours are too small an entity - instead kilo-watt hours are used, abbreviated kwh, where k stands for kilo, which means 1000, and h stands for hour. We know the word kilo from kilometre = 1000 m and from kg (kilogram) = 1000 g. 2

4 The text on the bulbs, which we have used, is 1.5 volts and 0.09 amperes. The power of the bulbs is 1.5 volts multiplied by 0.09 amperes = 0.35 watts. If the1.5 volt-bulb is put at a higher potential difference - for instance by putting more batteries together in series - the current intensity through the bulb will be higher - more energy will be deposited in the filament of the bulb, and it will burn out. You can measure potential difference as well as current intensity and power directly with measuring instruments, which are used in physics/chemistry. If you will use these measuring instruments, it is a good idea to address the physics/chemistry teacher to get a careful instruction how to use the instruments, so that you can use them correctly. Comments on the individual exercises Licence to Lighting 1 In the first exercise, the pupils have to find out that the bulb is only giving light when the side of the bulb - the screw thread - and the bottom of the bulb are connected to the top (+) of the battery (!). It is important that the circuit is closed - that there is a closed current path - if it is not the case, there will be no current. When the pupils have solved the exercise, you can ask them if the wire has to be held at a specific place of the screw thread, or if it can be placed anywhere on the screw thread. Let a pupil draw the closed current path on the blackboard. Together with the pupils, you can now demonstrate that there will be no current if the current path is not closed. The fact that it is once decided that the current goes from + to!, is without importance at this class level, and therefore not necessary to mention. 3

5 Licence to Lighting 2 In the second exercise, the pupils have to look closer at a bulb. The pupils will see the filament, where the electrical energy is deposited, and they will also have to find out what is written on the bulb. Now, it will be natural to discuss: Potential difference - volts Current intensity - amperes Power - watts The ordinary round batteries used in this programme are at 1.5 volts. In the homes, there are installations for 230 volts and three-phase installations for 400 volts 230 volts as well as 400 volts can be deadly dangerous, so the pupils must under no circumstances work with more than 25 volts alternating current (AC) and 60 volts direct current (DC), and furthermore special regulations are set up regarding the power supply. Licence to Lighting 3 This exercise resembles exercise 1, but in this one the pupils have to put the bottom of the bulb or thread directly on one of the battery poles. The other battery pole is then connected either to bottom or thread with the wire. The closed current path is again indicated at the drawing. 4

6 Licence to Lighting 4 In this exercise, the pupils learn how to use a battery holder and a socket for practical reasons. The wires can be fixed so neither bulb nor battery are rolling away. The closed current path is again indicated at the drawing, this time also through the battery holder (?) and the socket. Licence to Lighting 5 and 6 In exercise 5 the pupils have to make a series connection with 2 bulbs - either both bulbs are giving light or both bulbs are out. In a series connection the bulbs CANNOT be turned on independently. It is not necessary at all at this class level to mention technical terms such as series and parallel connections. In exercise 6 the pupils have to make a parallel connection with 2 bulbs - the bulbs can be turned on and off independently. Therefore, the pupils are not allowed to put two wires end to end in this exercise. Series connection In series connections, the bulbs are either all on or all off. Think of many Christmas tree chains. 5

7 Parallel connection In parallel connections, you can turn all the bulbs on and off independently Think of ordinary house installations Licence to Lighting 7 When the pupils have put together the instruments, let them then control if the bulbs are giving light. Some materials are good conductors, others are bad conductors, and some cannot conduct the electric current at all. Those materials, which cannot conduct the current, are called insulators or non-conductors. Generally, metals are good conductors, and therefore they are used in wires, which are normally made of copper with plastic around. Plastic is a very bad conductor - an insulator. The exercise distinguishes between 3 results: The bulb gives normal light The bulb gives dim light The bulb does not give light at all 1. When a good conductor is put in between the alligator clips, the bulb is giving normal light 2. In some cases, you will see the filament light dimly. A little current is passing through the filament but not enough to make the bulb give normal light. The material which is put in between the clip is able to conduct the current but is neither a good conductor nor an insulator (non-conductor). 3. When the bulb does not give light at all, or the filament does not glow, the pupils have put an insulator (non-conductor) into the circuit. If the pupils have put an ordinary pencil into the circuit, it is possible that the bulb is giving normal light, and also that it does not give light. Wood is an insulator, so if the alligator clips are touching the wood, the bulb will not give light. What we write with is black lead, and black lead is able to conduct the current. If you have dropped the pencil on the floor, the black lead inside the pencil may be broken, and then it cannot conduct the current. 6

8 Licence to Lighting 8 This exercise is meant to remind the pupils of the closed current path - if the current path is not closed, there will be no current, and the bulb will not give light. 7

9 Home exercise 1 (answer) Find a bulb for 230 volts. Write at the drawing what is written on the bulb. Draw the wires which you think are inside the bulb 8

10 Home exercise 2 (answer) Look at the bulbs. 2 of the bulbs are giving light. Are you able to find these 2 bulbs? 9

11 Conversation Sheet 1 10

12 Conversation Sheet 2 11

13 Conversation Sheet 3 12

14 Conversation Sheet 4 13

15 14

16 List of materials 15

Science Olympiad Shock Value ~ Basic Circuits and Schematics

Science Olympiad Shock Value ~ Basic Circuits and Schematics Science Olympiad Shock Value ~ Basic Circuits and Schematics Use a single D battery, a single bare wire and a light bulb. Find four different ways to light the light bulb using only a battery, one wire

More information

ACTIVITY 1: Electric Circuit Interactions

ACTIVITY 1: Electric Circuit Interactions CYCLE 5 Developing Ideas ACTIVITY 1: Electric Circuit Interactions Purpose Many practical devices work because of electricity. In this first activity of the Cycle you will first focus your attention on

More information

INVESTIGATION ONE: WHAT DOES A VOLTMETER DO? How Are Values of Circuit Variables Measured?

INVESTIGATION ONE: WHAT DOES A VOLTMETER DO? How Are Values of Circuit Variables Measured? How Are Values of Circuit Variables Measured? INTRODUCTION People who use electric circuits for practical purposes often need to measure quantitative values of electric pressure difference and flow rate

More information

Mandatory Experiment: Electric conduction

Mandatory Experiment: Electric conduction Name: Class: Mandatory Experiment: Electric conduction In this experiment, you will investigate how different materials affect the brightness of a bulb in a simple electric circuit. 1. Take a battery holder,

More information

Technical Workshop: Electrical December 3, 2016

Technical Workshop: Electrical December 3, 2016 Technical Workshop: Electrical December 3, 2016 ELECTRICAL: CIRCUITS Key terms we will be using today: Voltage (V): The difference in electrical potential at one point in a circuit in relation to another.

More information

Engaging Inquiry-Based Activities Grades 3-6

Engaging Inquiry-Based Activities Grades 3-6 ELECTRICITY AND CIRCUITS Engaging Inquiry-Based Activities Grades 3-6 Janette Smith 2016 Janette Smith 2016 1 What s Inside Activity 1: Light it Up!: Students investigate different ways to light a light

More information

Electromagnetism - Invisible Forces

Electromagnetism - Invisible Forces Science Unit: Lesson 6: Physics Ideas Electromagnetism - Invisible Forces School year: 2006/2007 Developed for: Developed by: Grade level: Duration of lesson: Notes: Tecumseh Elementary School, Vancouver

More information

INTERACTIVE SCIENCE 2A

INTERACTIVE SCIENCE 2A INTERACTIVE SCIENCE 2A Workbook Solutions (Enrichment Edition) Chapter 8 MAKING USE OF ELECTRICITY Part A Sectional Exercise 8.1 & 8.2 Concept checking p.35 1. False 2. True 3. False 4. True 5. True Questions

More information

Series and Parallel Circuits

Series and Parallel Circuits Science Unit: Lesson 2: Electricity with Applications Series and Parallel Circuits School Year: 2010/2011 Developed for: Developed by: Grade level: Duration of lesson: Notes: Pierre Eliot Trudeau Elementary

More information

Class X Chapter 09 Electrical Power and Household circuits Physics

Class X Chapter 09 Electrical Power and Household circuits Physics EXERCISE- 9 (A) Question 1: Write an expression for the electrical energy spent in flow of current through an electrical appliance in terms of current, resistance and time. Solution 1: Electrical energy,

More information

Your web browser (Safari 7) is out of date. For more security, comfort and. the best experience on this site: Update your browser Ignore

Your web browser (Safari 7) is out of date. For more security, comfort and. the best experience on this site: Update your browser Ignore Your web browser (Safari 7) is out of date. For more security, comfort and Activitydevelop the best experience on this site: Update your browser Ignore Circuits with Friends What is a circuit, and what

More information

Batteries n Bulbs: Voltage, Current and Resistance (8/6/15) (approx. 2h)

Batteries n Bulbs: Voltage, Current and Resistance (8/6/15) (approx. 2h) Batteries n Bulbs: Voltage, Current and Resistance (8/6/15) (approx. 2h) Introduction A simple electric circuit can be made from a voltage source (batteries), wires through which current flows and a resistance,

More information

LESSON PLAN: Circuits and the Flow of Electricity

LESSON PLAN: Circuits and the Flow of Electricity LESSON PLAN: Michigan Curriculum Framework Middle School Benchmark SCI.IV.1.MS.5 Construct simple circuits and explain how they work in terms of the flow of current. Benchmark SCI.IV.1.MS.6 Investigate

More information

Electricity. Teacher/Parent Notes.

Electricity. Teacher/Parent Notes. Electricity. Teacher/Parent Notes. Caution. The yellow fan. If this is used with 6 Volts, the fan will fly into the air with some force so it is advisable to keep faces well away from it! Batteries. Please

More information

Fun-Size: Starting Electricity Bingo

Fun-Size: Starting Electricity Bingo Fun-Size: Starting Electricity Bingo Teacher notes Introduction This game is a revision activity to a lesson or series of lessons on early Yr 7 electric topics. Running the activity There are 50 cards,

More information

Based on results from TIMSS Key. bulb. bulb. switch. wir. battery. wir. switch. Lesson plan on investigative science. wire.

Based on results from TIMSS Key. bulb. bulb. switch. wir. battery. wir. switch. Lesson plan on investigative science. wire. bulb Based on results from TIMSS 2015 Key battery Key ba bu tte switch sw h itc bulb e wir battery switch wire bat sw Lesson plan on investigative science Electricity wir Electricity Pupils performed less

More information

12 Electricity and Circuits

12 Electricity and Circuits 12 Electricity and Circuits We use electricity for many purposes to make our tasks easier. For example, we use electricity to operate pumps that lift water from wells or from ground level to the roof top

More information

LETTER TO PARENTS SCIENCE NEWS. Dear Parents,

LETTER TO PARENTS SCIENCE NEWS. Dear Parents, LETTER TO PARENTS Cut here and paste onto school letterhead before making copies. Dear Parents, SCIENCE NEWS Our class is beginning a new science unit using the FOSS Magnetism and Electricity Module. We

More information

Cabrillo College Physics 10L. LAB 7 Circuits. Read Hewitt Chapter 23

Cabrillo College Physics 10L. LAB 7 Circuits. Read Hewitt Chapter 23 Cabrillo College Physics 10L Name LAB 7 Circuits Read Hewitt Chapter 23 What to learn and explore Every electrical circuit must have at least one source (which supplies electrical energy to the circuit)

More information

4 Electric Circuits. TAKE A LOOK 2. Identify Below each switch, label the circuit as a closed circuit or an open circuit.

4 Electric Circuits. TAKE A LOOK 2. Identify Below each switch, label the circuit as a closed circuit or an open circuit. CHAPTER 1 4 Electric Circuits SECTION Introduction to Electricity BEFORE YOU READ After you read this section, you should be able to answer these questions: What are the three main parts of a circuit?

More information

Name Date Period. MATERIALS: Light bulb Battery Wires (2) Light socket Switch Penny

Name Date Period. MATERIALS: Light bulb Battery Wires (2) Light socket Switch Penny Name Date Period Lab: Electricity and Circuits CHAPTER 34: CURRENT ELECTRICITY BACKGROUND: Just as water is the flow of H 2 O molecules, electric current is the flow of charged particles. In circuits of

More information

4 Electric Circuits. TAKE A LOOK 2. Identify Below each switch, label the circuit as a closed circuit or an open circuit.

4 Electric Circuits. TAKE A LOOK 2. Identify Below each switch, label the circuit as a closed circuit or an open circuit. CHAPTER 17 4 Electric Circuits SECTION Introduction to Electricity BEFORE YOU READ After you read this section, you should be able to answer these questions: What are the three main parts of a circuit?

More information

Simplifying Electricity

Simplifying Electricity Simplifying Electricity Fundamentals of electricity LK6816 www.matrixtsl.com Copyright 2014 Matrix Technology Solutions Ltd TEACHER S NOTES Fundamentals of Electricity The Locktronics Fundamentals of Electricity

More information

A Supplementary Material in Science Grade Five. En Route to Brilliance

A Supplementary Material in Science Grade Five. En Route to Brilliance A Supplementary Material in Science Grade Five En Route to Brilliance Published by the DEPED-VECO PROJECT IN DEVELOPMENT AND PRODUCTION OF SCIENCE SUPPLEMENTARY MATERIALS (DPSSM) LEARNING RESOURCE MATERIALS

More information

HOW IS ELECTRICITY PRODUCED?

HOW IS ELECTRICITY PRODUCED? ELECTRICITY HOW IS ELECTRICITY PRODUCED? All electricity is produced from other sources of energy. Hydroelectricity is produced from the stored energy of water held back by a dam. As the water runs downhill

More information

Solar Kit Lesson #13 Solarize a Toy

Solar Kit Lesson #13 Solarize a Toy UCSD TIES adapted from NYSERDA Energy Smart www.schoolpowernaturally.org Solar Kit Lesson #13 Solarize a Toy TEACHER INFORMATION LEARNING OUTCOME After designing and constructing solar electric power sources

More information

Introduction: Electromagnetism:

Introduction: Electromagnetism: This model of both an AC and DC electric motor is easy to assemble and disassemble. The model can also be used to demonstrate both permanent and electromagnetic motors. Everything comes packed in its own

More information

Essential Electricity Homework Exercise 1

Essential Electricity Homework Exercise 1 Homework Exercise 1 1. For each of the following electrical symbols, copy the symbol into you jotter and label it using the words below. Word bank resistor, voltmeter, battery, ammeter, bulb V A 2. State

More information

Understanding Electricity and Electrical Safety Teacher s Guide

Understanding Electricity and Electrical Safety Teacher s Guide Understanding Electricity and Electrical Safety Teacher s Guide Note to Instructor: The activities and experiments in this booklet build on each other to develop a student s understanding of electricity

More information

Electricity Unit Review

Electricity Unit Review Science 9 Electricity Unit Review Name: General Definitions: Neutral Object Charge Separation Electrical Discharge Electric Current Amperes (amps) Voltage (volts) Voltmeter Ammeters Galvanometer Multimeter

More information

Can You Light the Bulb?

Can You Light the Bulb? 3-5 Physical Science Southern Nevada Regional Professional Development Program Can You Light the Bulb? INTRODUCTION Electrical energy is easily transferred through loops that we call circuits. This activity

More information

EPSE Project 1: Sample Diagnostic Questions - Set 2

EPSE Project 1: Sample Diagnostic Questions - Set 2 EPSE Project 1: Sample Diagnostic Questions - Set 2 Electric current These questions all probe pupils understanding of the idea of electric current as a conserved quantity, i.e. as something which goes

More information

This appendix gives you a general introduction to what electricity is

This appendix gives you a general introduction to what electricity is C5865_App B_CTP.qxd 24/09/2006 01:50 PM Page 1215 APPENDIX B Electricity and Multimeters This appendix gives you a general introduction to what electricity is and how it is measured. In addition, you will

More information

2. There are 2 types of batteries: wet cells and dry cells.

2. There are 2 types of batteries: wet cells and dry cells. How Batteries Work 1. Imagine a world where all electric devices had to be plugged in. we would need cords for our cell phones. Wires would run from our calculators and TV remotes. We would trip over cords

More information

Physics 144 Chowdary How Things Work. Lab #5: Circuits

Physics 144 Chowdary How Things Work. Lab #5: Circuits Physics 144 Chowdary How Things Work Spring 2006 Name: Partners Name(s): Lab #5: Circuits Introduction In today s lab, we ll learn about simple electric circuits. All electrical and electronic appliances

More information

FUN! Protected Under 18 U.S.C. 707

FUN! Protected Under 18 U.S.C. 707 FUN! Protected Under 18 U.S.C. 707 6 Volt Lantern Battery Spring terminals (also available in screw terminals) Alligator Clips Best method to attach wires to the spring terminals on a lantern battery.

More information

7.9.2 Potential Difference

7.9.2 Potential Difference 7.9.2 Potential Difference 62 minutes 69 marks Page 1 of 20 Q1. A set of Christmas tree lights is made from twenty identical lamps connected in series. (a) Each lamp is designed to take a current of 0.25

More information

Voltage and Current in Simple Circuits (Voltage Sensor, Current Sensor)

Voltage and Current in Simple Circuits (Voltage Sensor, Current Sensor) 68 Voltage and Current in Simple Circuits (Voltage Sensor, Current Sensor) E&M: Voltage and current Equipment List DataStudio file: 68 Simple Circuits.ds Qty Items Part Numbers 1 PASCO interface (for two

More information

CHAPTER 6.3: CURRENT ELECTRICITY

CHAPTER 6.3: CURRENT ELECTRICITY CHAPTER 6.3: CURRENT ELECTRICITY These components are used in electric circuits. TASK: Draw how you could make this lamp light. Electricity will only flow through a complete circuit. The battery, wires

More information

Circuit Basics and Components

Circuit Basics and Components Circuit Basics Electric circuits are arrangements of conductors and components that permit electrical current to flow. A circuit can be as simple as a battery and lamp or as sophisticated as a computer.

More information

Series circuits. The ammeter

Series circuits. The ammeter Series circuits D o you remember how the parts of the torch on pages 272 3 were connected together? The circuit contained several components, connected one after the other. Conductors, like the metal strip

More information

Circuits. This lab is due at the end of the laboratory period

Circuits. This lab is due at the end of the laboratory period Name: Partner(s): 1114 section: Desk # Date: Purpose Circuits This lab is due at the end of the laboratory period The purpose of this lab is to gain experience with setting up electric circuits and using

More information

11.1 CURRENT ELECTRICITY. Electrochemical Cells (the energy source) pg Wet Cell. Dry Cell. Positive. Terminal. Negative.

11.1 CURRENT ELECTRICITY. Electrochemical Cells (the energy source) pg Wet Cell. Dry Cell. Positive. Terminal. Negative. Date: SNC1D: Electricity 11.1 CURRENT ELECTRICITY Define: CIRCUIT: path that electrons follow. CURRENT ELECTRICITY: continuous flow of electrons in a circuit LOAD: device that converts electrical energy

More information

SC10F Circuits Lab Name:

SC10F Circuits Lab Name: SC10F Circuits Lab Name: Purpose: In this lab you will be making, both, series and parallel circuits. You will then be using a millimeter to take readings at various points in these circuits. Using these

More information

Electricity Program of Study Content Assessment: Explanations for Current Electricity Items

Electricity Program of Study Content Assessment: Explanations for Current Electricity Items Electricity Program of Study Content Assessment: Explanations for Current Electricity Items This document is part of an Inquiry-based Science Curriculum from The Guided Inquiry supporting Multiple Literacies

More information

Lab 08: Circuits. This lab is due at the end of the laboratory period

Lab 08: Circuits. This lab is due at the end of the laboratory period Name: Partner(s): 1114 section: Desk # Date: Purpose Lab 08: Circuits This lab is due at the end of the laboratory period The purpose of this lab is to gain experience with setting up electric circuits

More information

Fourth Grade. Multiplication Review. Slide 1 / 146 Slide 2 / 146. Slide 3 / 146. Slide 4 / 146. Slide 5 / 146. Slide 6 / 146

Fourth Grade. Multiplication Review. Slide 1 / 146 Slide 2 / 146. Slide 3 / 146. Slide 4 / 146. Slide 5 / 146. Slide 6 / 146 Slide 1 / 146 Slide 2 / 146 Fourth Grade Multiplication and Division Relationship 2015-11-23 www.njctl.org Multiplication Review Slide 3 / 146 Table of Contents Properties of Multiplication Factors Prime

More information

POWER and ELECTRIC CIRCUITS

POWER and ELECTRIC CIRCUITS POWER and ELECTRIC CIRCUITS Name For many of us, our most familiar experience with the word POWER (units of measure: WATTS) is when we think about electricity. Most of us know that when we change a light

More information

Fourth Grade. Slide 1 / 146. Slide 2 / 146. Slide 3 / 146. Multiplication and Division Relationship. Table of Contents. Multiplication Review

Fourth Grade. Slide 1 / 146. Slide 2 / 146. Slide 3 / 146. Multiplication and Division Relationship. Table of Contents. Multiplication Review Slide 1 / 146 Slide 2 / 146 Fourth Grade Multiplication and Division Relationship 2015-11-23 www.njctl.org Table of Contents Slide 3 / 146 Click on a topic to go to that section. Multiplication Review

More information

Using your Digital Multimeter

Using your Digital Multimeter Using your Digital Multimeter The multimeter is a precision instrument and must be used correctly. The rotary switch should not be turned unnecessarily. To measure Volts, Milliamps or resistance, the black

More information

8.2 Electric Circuits and Electrical Power

8.2 Electric Circuits and Electrical Power 8.2 Electric Circuits and Electrical Power Every electrical device uses current to carry energy and voltage to push the current. How are electrical devices designed? What types of parts are used in an

More information

Section 3 Electric Circuits

Section 3 Electric Circuits Section 3 Electric Circuits As You Read What You'll Learn Explain how voltage, current, and resistance are related in an electric circuit. Investigate the difference between series and parallel circuits.

More information

Electricity for Youth Division 1

Electricity for Youth Division 1 Electricity for Youth Division 1 4-H Electric Circuit Board Judging Sheet Name County Project Description Ribbon Placing ITEM COMMENTS CIRCUIT BOARD - Labelled, parallel or series - Complete - Neat - Attractive

More information

EPSE Project 1: Sample Diagnostic Questions - Set 3

EPSE Project 1: Sample Diagnostic Questions - Set 3 EPSE Project 1: Sample Diagnostic Questions - Set 3 Circuit behaviour These questions probe pupils understanding of the behaviour of simple electric circuits. Most are about series circuits, and check

More information

Period 11 Activity Sheet Solutions: Electric Current

Period 11 Activity Sheet Solutions: Electric Current Period 11 Activity Sheet Solutions: Electric Current Activity 11.1: How Can Electric Charge Do Work? Your instructor will demonstrate a Wimshurst machine, which separates electric charge. a) Describe what

More information

Simplifying Electricity

Simplifying Electricity Simplifying Electricity Fundamentals of electricity LK6816 www.matrixmultimedia.com Copyright 2009 Matrix Multimedia Limited TEACHER S NOTES Introduction Congratulations! You have just bought one of the

More information

Lesson Plan 11 Electric Experiments

Lesson Plan 11 Electric Experiments Lesson Plan 11 Electric Experiments Brief description Students experiment with aluminium foil, batteries and cheap, readily availably low voltage light bulbs* to construct a simple conductivity tester.

More information

13.10 How Series and Parallel Circuits Differ

13.10 How Series and Parallel Circuits Differ 13.10 How Series and Parallel Circuits Differ In Activity 13.2, you observed that when the two lamps were connected in series, the brightness of the lamps was less than when the lamps were connected in

More information

Electromagnets ENERGY USE AND DELIVERY LESSON PLAN 3.3. Public School System Teaching Standards Covered

Electromagnets ENERGY USE AND DELIVERY LESSON PLAN 3.3. Public School System Teaching Standards Covered ENERGY USE AND DELIVERY LESSON PLAN 3.3 Electromagnets This lesson is designed for 3rd 5th grade students in a variety of school settings (public, private, STEM schools, and home schools) in the seven

More information

Electric Current. Electric current: is the movement of electrons from a negative terminal back to the positive terminal of a battery.

Electric Current. Electric current: is the movement of electrons from a negative terminal back to the positive terminal of a battery. Electric Current Electric current: is the movement of electrons from a negative terminal back to the positive terminal of a battery. Electric Current Electrons flow from regions of high Potential Energy

More information

Section 6 HOW ARE VALUES OF CIRCUIT VARIABLES MEASURED?

Section 6 HOW ARE VALUES OF CIRCUIT VARIABLES MEASURED? Section 6 HOW RE VUES OF CIRCUIT VRIBES MESURED? INTRODUCTION People who use electric circuits for practical purposes often need to measure quantitative values of electric pressure difference and flow

More information

It s a Wired World Teacher s Guide

It s a Wired World Teacher s Guide It s a Wired World Teacher s Guide Introduction It s a Wired World uses experiments and activities to explain electricity-related science concepts to students in grades 4-8. Through a focus on circuits,

More information

7. How long must a 100-watt light bulb be used in order to dissipate 1,000 joules of electrical energy? 1) 10 s 3) 1,000 s 2) 100 s 4) 100,000 s

7. How long must a 100-watt light bulb be used in order to dissipate 1,000 joules of electrical energy? 1) 10 s 3) 1,000 s 2) 100 s 4) 100,000 s 1. Which quantity must be the same for each component in any series circuit? 1) power 3) current 2) resistance 4) voltage 2. A student needs a 4-ohm resistor to complete a circuit. Only a large quantity

More information

Current, resistance and potential difference

Current, resistance and potential difference Multiple choice questions 1. Three conductors join as shown in the diagram. The direction of the current in each conductor is shown by the arrow. Y Z X The current in the conductor Z is 10 A. The current

More information

Electricity. Electric Charge. Before You Read. Read to Learn. Positive and Negative Charges. Picture This. section.

Electricity. Electric Charge. Before You Read. Read to Learn. Positive and Negative Charges. Picture This. section. chapter 6 Electricity 1 section Electric Charge What You ll Learn how electric charges exert forces about conductors and insulators how things become electrically charged Before You Read Think about some

More information

Section 4: Voltage. The EMF, ideal voltage or open circuit voltage is defined as the energy per unit charge developed within a source.

Section 4: Voltage. The EMF, ideal voltage or open circuit voltage is defined as the energy per unit charge developed within a source. Section 4: Voltage As electrons are moved within the cell by the electrolyte, work is done on the electrons. This work is stored as potential energy in the electrons. In other words, they have the ability

More information

7J Electrical circuits Multiple-choice main test

7J Electrical circuits Multiple-choice main test For each question, circle the correct answer. Question 1 A switch turns off a torch by... A) breaking the circuit B) making the circuit C) shorting the circuit D) turning a series circuit into a parallel

More information

AP Physics B Ch 18 and 19 Ohm's Law and Circuits

AP Physics B Ch 18 and 19 Ohm's Law and Circuits Name: Period: Date: AP Physics B Ch 18 and 19 Ohm's Law and Circuits MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A device that produces electricity

More information

Physical Science. Chp 22: Electricity

Physical Science. Chp 22: Electricity Physical Science Chp 22: Electricity Yes, we all know what electricity is, but exactly what is it? -where does it come from -can you see it -how is it created Electricity Electricity is a force created

More information

A device that measures the current in a circuit. It is always connected in SERIES to the device through which it is measuring current.

A device that measures the current in a circuit. It is always connected in SERIES to the device through which it is measuring current. Goals of this second circuit lab packet: 1 to learn to use voltmeters an ammeters, the basic devices for analyzing a circuit. 2 to learn to use two devices which make circuit building far more simple:

More information

Getting on Track with Electricity

Getting on Track with Electricity 4-H-421-EPUB Getting on Track with Electricity 4-H Electric Division I Welcome to the 4-H Electric Project! The first division of the Electricity project is intended for youth in grades 3 or 4 or those

More information

Activity 3: Electricity

Activity 3: Electricity Name Section Activity 3: Electricity 3.1 Electric Charge, Voltage and Energy 1) Electric charge Your instructor will demonstrate a Wimshurst machine, which separates electric charge. a) Describe what happens

More information

Stay Safe Around Electricity Teacher s Guide

Stay Safe Around Electricity Teacher s Guide Stay Safe Around Electricity Teacher s Guide INTRODUCTION The Stay Safe Around Electricity activity booklet can be used as a follow-up to an electric utility presentation or as a stand-alone piece to teach

More information

English for Electrical Engineers

English for Electrical Engineers University of Kurdistan Department of Electrical & Computer Engineering English for Electrical Engineers H. Bevrani October, 2017 1 Contents Unit 1. Current, voltage and resistance... 3 Unit 2. Electrical

More information

Physical Processes B Light & Sound / Electricity

Physical Processes B Light & Sound / Electricity Upper Key Stage 2 Physical Processes B Light & Sound / Introduction This book of Science activities aims to help the busy teacher deliver high quality science lessons with as much manageable practical

More information

ELECTRICITY & MAGNETISM - EXAMINATION QUESTIONS (4)

ELECTRICITY & MAGNETISM - EXAMINATION QUESTIONS (4) ELECTRICITY & MAGNETISM - EXAMINATION QUESTIONS (4) 1. Which two electrical quantities are measured in volts? A current and e.m.f. B current and resistance C e.m.f. and potential difference D potential

More information

45 Current Electricity. February 09, Current Electricity. What we will learn, Arc Attack. Electric Man. 1

45 Current Electricity. February 09, Current Electricity. What we will learn, Arc Attack. Electric Man.   1 Current Electricity What we will learn, Arc Attack Electric Man www.mrcjcs.com 1 Conductors and Insulators An electric current is a flow of electric charge. Set up a simple electrical circuit and insert

More information

1103 Period 16: Electrical Resistance and Joule Heating

1103 Period 16: Electrical Resistance and Joule Heating Name Section 1103 Period 16: Electrical Resistance and Joule Heating Activity 16.1: What Does the Electrical Resistance of a Wire Depend Upon? 1) Measuring resistance a) Resistor length, L Use a multimeter

More information

Chapter 21 Practical Electricity

Chapter 21 Practical Electricity Chapter 21 Practical Electricity (A) Electrical Power 1. State four applications of the heating effect of electricity. Home: o Used in electric kettles o Used in electric irons o Used in water heaters

More information

Name Period. (c) Now replace the round bulb(s) with long bulb(s). How does the brightness change?

Name Period. (c) Now replace the round bulb(s) with long bulb(s). How does the brightness change? Name Period P Phys 1 Discovery Lesson Electric Circuits 2.1 Experiment: Charge Flow Strength & Resistors circuit is an unbroken loop of conductors. Charge (q) can flow continuously in a circuit. If an

More information

Construction Set: Smart Grid System

Construction Set: Smart Grid System Construction Set: Smart Grid System Curriculum for Grades 3-5 Student Edition Center for Mathematics, Science, and Technology Illinois State University 2017 www.smartgridforschools.org Look around your

More information

Electric Circuits. Lab. FCJJ 16 - Solar Hydrogen Science Kit. Goals. Background

Electric Circuits. Lab. FCJJ 16 - Solar Hydrogen Science Kit. Goals. Background Goals Build a complete circuit with a solar panel Power a motor and electrolyzer with a solar panel Measure voltage and amperage in different circuits Background Electricity has fundamentally changed the

More information

Overcurrent protection

Overcurrent protection Overcurrent protection This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

More information

Series and Parallel Circuits Virtual Lab

Series and Parallel Circuits Virtual Lab Series and Parallel Circuits Virtual Lab Learning Goals: Students will be able to Discuss basic electricity relationships Discuss basic electricity relationships in series and parallel circuits Build series,

More information

reflect energy: the ability to do work

reflect energy: the ability to do work reflect Have you ever thought about how much we depend on electricity? Electricity is a form of energy that runs computers, appliances, and radios. Electricity lights our homes, schools, and office buildings.

More information

Name: Paisley Grammar Physics Department UNIT 2 USING ELECTRICITY PUPIL PACK. National 4/5 Physics. Study Guides Summary Notes Homework Sheets

Name: Paisley Grammar Physics Department UNIT 2 USING ELECTRICITY PUPIL PACK. National 4/5 Physics. Study Guides Summary Notes Homework Sheets Name: National 4/5 Physics Paisley Grammar Physics Department UNIT 2 USING ELECTRICITY PUPIL PACK Study Guides Summary Notes Homework Sheets USING ELECTRICITY Working at Home TO THE PUPIL Each day you

More information

Download Automotive Electricity & Electronics Books

Download Automotive Electricity & Electronics Books Download Automotive Electricity & Electronics Books Today's automotive technicians need a thorough understanding of electrical principles and electronic systems to service modern vehicles. With Automotive

More information

Ordinary Level Physics SOLUTIONS: EFFECTS OF AN ELECTRIC CURRENT

Ordinary Level Physics SOLUTIONS: EFFECTS OF AN ELECTRIC CURRENT Ordinary Level Physics SOLUTIONS: EFFECTS OF AN ELECTRIC CURRENT Safety Features and kilowatt hours The unit of energy is called the kilowatt hour One kilowatt hour is the amount of energy used by a 1000

More information

Using Electricity. Summary Notes. 1. From the Wall Socket Household appliances. Earth wire and safety.

Using Electricity. Summary Notes. 1. From the Wall Socket Household appliances. Earth wire and safety. Using Electricity Summary Notes Section Content 1. From the Wall Socket Household appliances. Earth wire and safety. 2. Alternating and Direct Battery and transformer. Current Circuit diagrams. Current

More information

Electronics Technology and Robotics I Week 2 Basic Electrical Meters and Ohm s Law

Electronics Technology and Robotics I Week 2 Basic Electrical Meters and Ohm s Law Electronics Technology and Robotics I Week 2 Basic Electrical Meters and Ohm s Law Administration: o Prayer o Bible Verse o Turn in quiz Meters: o Terms and Definitions: Analog vs. Digital Displays: Analog

More information

Welcome to the SEI presentation on the basics of electricity

Welcome to the SEI presentation on the basics of electricity Welcome to the SEI presentation on the basics of electricity 1 Electricity is a secondary energy source, meaning that it is produced from other, primary, energy sources. There are several primary sources

More information

LETTER TO FAMILY. Science News. Cut here and glue letter onto school letterhead before making copies.

LETTER TO FAMILY. Science News. Cut here and glue letter onto school letterhead before making copies. LETTER TO FAMILY Cut here and glue letter onto school letterhead before making copies. Science News Dear Family, Our class is beginning a new science unit using the. We will investigate energy, build electric

More information

Activity 3 Solutions: Electricity

Activity 3 Solutions: Electricity Activity 3 Solutions: Electricity 3.1 Electric Charge, Voltage and Energy 1) Electric charge Your instructor will demonstrate a Wimshurst machine, which separates electric charge. a) Describe what happens

More information

Electrical Circuits Discussion Questions:

Electrical Circuits Discussion Questions: Electrical Circuits Discussion Questions: 1) What is electricity? 2) How does an electrical circuit work? 3) What types of materials conduct electrical energy? 4) How is electrical energy measured? 5)

More information

Electricity Merit Badge

Electricity Merit Badge Electricity Merit Badge Class 4 Safety at Home June 13, 2017 Electricity Merit Badge Class 4 2017 National Scout Jamboree 1 Classes Class 1 Basics Electricity Class 2 Magnetism Class 3 Electric Power,

More information

Introduction to Electricity & Electrical Current

Introduction to Electricity & Electrical Current Introduction to Electricity & Electrical Current Physical Science Georgia Performance Standards: SPS10a. Investigate static electricity in terms of friction, induction, and conduction. SPS10b. Explain

More information

Physics - Chapters Task List

Physics - Chapters Task List Name Hour Physics - Chapters 34-35 Task List Task In Class? (Yes/No) Date Due Grade Lab 33.1 - Wet Cell Battery Yes */15 * Vodcast #1 Electric Circuits & Ohm s Law /21 Worksheet Concept Review #1-12, Ch

More information

16.3 Ohm s Law / Energy and Power / Electric Meters

16.3 Ohm s Law / Energy and Power / Electric Meters 16.3 Ohm s Law / Energy and Power / Electric Meters Voltage Within a battery, a chemical reaction occurs that transfers electrons from one terminal to another terminal. This potential difference across

More information

Physical Science Lesson on Cars Julie Smith

Physical Science Lesson on Cars Julie Smith Physical Science Lesson on Cars Julie Smith Julie Smith Physical Science Lesson on Cars Title: Cars and Parts Grade level: Kindergarten Subject Area: Science and Technology and Engineering Education Standard

More information

Student Exploration: Advanced Circuits

Student Exploration: Advanced Circuits Name: Date: Student Exploration: Advanced Circuits [Note to teachers and students: This Gizmo was designed as a follow-up to the Circuits Gizmo. We recommend doing that activity before trying this one.]

More information