Voltage and Current in Simple Circuits (Voltage Sensor, Current Sensor)

Size: px
Start display at page:

Download "Voltage and Current in Simple Circuits (Voltage Sensor, Current Sensor)"

Transcription

1 68 Voltage and Current in Simple Circuits (Voltage Sensor, Current Sensor) E&M: Voltage and current Equipment List DataStudio file: 68 Simple Circuits.ds Qty Items Part Numbers 1 PASCO interface (for two sensors) (see note) 1 Voltage Sensor( see note) CI Current Sensor (see note) CI AC/DC Electronics Lab EM D cell 1.5 volt Note: You will not use the PASCO interface, the voltage sensor or the current sensor for this lab; instead you will use the ammeter to measure current and voltmeter to measure voltages. Please remember that the current you are dealing with are the order of 1-2 A, so be sure to select the proper range to measure the current with the ammeter or else you will damage the device. Introduction The purpose of this activity is to explore what happens to the voltage and the current in a simple circuit composed of batteries and light bulbs arranged in series and then arranged in parallel. Use a voltage sensor, a current sensor, and the DataStudio software to measure the voltage across parts of the series and parallel circuits and a current sensor to measure the current through the circuits. Background Voltage is the ratio of electric potential energy to charge. One volt is one joule of energy per one coulomb of charge. Current is the volume of electric charge, or the number of charges per second moving past a point in an electric circuit. The unit for current is the ampere and one ampere is one coulomb of charge per second. In a simple circuit of a battery connected to a light bulb, the battery is a voltage source, and the light bulb is a load. Light bulbs in a series circuit are connected end-to-end like links in a chain bracelet. Imagine a circuit with one light bulb in it. What would happen to the brightness of the light bulb if a second light bulb were added in series to the first light bulb? What would happen to the voltage across each individual bulb as more and more bulbs are added in series to the circuit? What would happen to the current through the circuit as more and more bulbs are added in series to the circuit? Light bulbs in a parallel circuit are connected side-by-side like rung in a stepladder. Again imagine a circuit with one light in it. What would happen to the brightness of the light bulb if a second light bulb were added in parallel to the first light bulb? What would happen to the voltage across each individual bulb as more bulbs are added in parallel to the circuit? What would happen to the current through the circuit as more and more bulbs are added in parallel to the circuit? PASCO of 7

2 68 Voltage and Current Physics Experiment Manual Prediction 1. If one bulb in a series circuit is removed, what happens to the rest of the bulbs? 2. If one bulb in a parallel circuit of many bulbs is removed, what happens to the rest of the bulbs? SAFETY REMINDER Follow directions for using the equipment. Setup 1. Set up the PASCO interface and computer and start DataStudio. Connect the Voltage Sensor and the Current Sensor into the interface. 2. Open the DataStudio file: 68 Simple Circuits.ds The file opens with Digits displays of voltage and current. The voltage Digits display will show the voltage across whatever part of the circuit you select. The current Digits display will show the current through the circuit. 3. Insert two D cell batteries into the AC/DC Electronics Laboratory board. 4. Use wire leads to build up a circuit with the two D cells, the pushbutton switch, the Current Sensor, and bulb A as shown. 5. Clip the leads of the Voltage Sensor to the positive and negative terminals of the battery holders as shown. Note: The diagram is not to scale and doesn t show the connections to the PASCO interface. Bulb A Pushbutton switch 68-2 of PASCO

3 Physics Experiment Manual 68 Voltage and Current Procedure 1 voltage and current for bulbs in series Note: Data recording is easier if one person runs the computer and records data, a second person presses the pushbutton switch, and a third person handles the Voltage Sensor leads. One Bulb 1. Begin measuring data. Select Monitor from the Experiment menu in DataStudio. 2. Press and hold the pushbutton switch. Observe bulb A and the Digits displays of Voltage and Current. 3. Record the values of voltage across the voltage source (D cells) and current through the circuit in the Lab Report section. 4. Move the Voltage Sensor leads to the spring clips on either side of bulb A and record the voltage across the light bulb. 5. Release the pushbutton switch. Two Bulbs in Series 6. Change the circuit to add bulb B in series. Move the wire lead from the negative terminal of the battery holder to the spring clip below bulb B. Add a wire lead from the spring clip below bulb A to the spring clip above bulb B as shown. 7. Press and hold the pushbutton switch. 8. Record the values of voltage across the voltage source (D cells) and current through the circuit with two bulbs in series. 9. Move the Voltage Sensor leads to the spring clips on either side of bulb A and record the voltage across bulb A as before. 10. Move the Voltage Sensor leads to the spring clips on either side of bulb B and record the voltage across bulb B. 11. Move the sensor leads so one is on the clip above bulb A and the other is on the clip below bulb B and record the voltage across both bulbs. 12. Release the pushbutton switch. Add a Move a across 2 bulbs. PASCO of 7

4 68 Voltage and Current Physics Experiment Manual Three Bulbs in Series 13. Change the circuit to add bulb C in series. Move the wire lead from the negative terminal of the battery holder to the spring clip below bulb C. Add a wire lead from the spring clip below bulb B to the spring clip above bulb C as shown. 14. Press and hold the pushbutton switch. 15. Record the values of voltage across the voltage source (D cells) and current through the circuit with three bulbs in series. Add a Move a 16. Move the Voltage Sensor leads to the spring clips on either side of bulb A and record the voltage across bulb A as before. Move the leads and measure the voltage across bulb B. Move the leads and measure the voltage across bulb C. 17. Next, move the sensor leads so one is on the spring clip above bulb A and the other is on the spring clip below bulb C and record the voltage across three bulbs. 18. Finally, unscrew any one of the three bulbs and record what happens to the other two bulbs. Screw the bulb back into its socket. 19. Release the pushbutton switch. across 3 bulbs of PASCO

5 Physics Experiment Manual 68 Voltage and Current Procedure 2 voltage and current for bulbs in parallel Two Bulbs in Parallel 1. Return the AC/DC Electronics Laboratory board to the way it was at the beginning of Procedure 1. The measurements of voltage and current for one bulb in parallel are the same as the measurements for one bulb in series. 2. Change the circuit to add bulb B in parallel to bulb A. Add a wire lead from the spring clip above bulb A to the spring clip above bulb B as shown. Add a second wire lead from the spring clip below bulb A to the spring clip below bulb B. 3. Press and hold the pushbutton switch. 4. Record the values of voltage across the voltage source (D cells) and current through the circuit with two bulbs in parallel. 5. Move the Voltage Sensor leads to the spring clips on either side of bulb B and record the voltage across bulb B as before. 6. Release the pushbutton switch. Three Bulbs in Parallel 7. Change the circuit to add bulb C in parallel to the other bulbs. Add a wire lead from the spring clip above bulb B to the spring clip above bulb C. Add a second wire lead from the spring clip below bulb B to the spring clip below bulb C. 8. Press and hold the pushbutton switch. 9. Record the values of voltage across the voltage source (D cells) and current through the circuit with three bulbs in parallel. 10. Move the Voltage Sensor leads to the spring clips on either side of bulb B and record the voltage across bulb B as before. Move the leads to the spring clips on either side of bulb C and record the voltage across bulb C. 11. Finally, unscrew any one of the three bulbs and record what happens to the other two bulbs. Screw the bulb back into its socket. 12. Release the pushbutton switch. Click Stop in DataStudio. Add a across B. across C. PASCO of 7

6 68 Voltage and Current Physics Experiment Manual Lab Report: Voltage and Current in Simple Circuits Prediction 1. If one bulb in a series circuit of many bulbs is removed, what happens to the rest of the bulbs? 2. If one bulb in a parallel circuit of many bulbs is removed, what happens to the rest of the bulbs? Data Procedure 1: Voltage and Current for Bulbs in Series Item One Bulb Voltage across voltage source Value V Current through circuit: A Procedure 2: Voltage and Current for Voltage across bulb A V Bulbs in Parallel Two Bulbs in Series Two Bulbs in Parallel Item Value Item Value Voltage across voltage source V Voltage across voltage source V Current through circuit: A Current through circuit: A Voltage across bulb A V Voltage across bulb A V Voltage across bulb B V Voltage across bulb B V Voltage across A and B V Voltage across A and B V Three Bulbs in Series Three Bulbs in Parallel Item Value Item Value Voltage across voltage source V Voltage across voltage source V Current through circuit: A Current through circuit: A Voltage across bulb A V Voltage across bulb A V Voltage across bulb B V Voltage across bulb B V Voltage across bulb C V Voltage across bulb C V Voltage across A to C V Voltage across A to C V What happens in the series circuit of three bulbs if one bulb is removed? What happens in the parallel circuit of three bulbs if one bulb is removed? 68-6 of PASCO

7 Physics Experiment Manual 68 Voltage and Current Analysis Questions 1. What happens to the voltage across the voltage source change as more light bulbs are added in a series circuit? 2. How did your calculated (theoretical) value for current through the resistors in series compare to the actual (measured) value for current? 3. What happens to the current through a series circuit change as more light bulbs are added in series? 4. How did your calculated (theoretical) value for current through the resistors compare to the actual (measured) value for current? 5. What happens to the voltage across the voltage source change as more light bulbs are added in a parallel circuit? 6. What happens to the voltages across the light bulbs in a parallel circuit change as more light bulbs are added to the circuit? 7. What happens to the current through a parallel circuit change as more light bulbs are added in parallel? 8. What happens to the brightness of each bulb in a parallel circuit as more bulbs are added? PASCO of 7

SC10F Circuits Lab Name:

SC10F Circuits Lab Name: SC10F Circuits Lab Name: Purpose: In this lab you will be making, both, series and parallel circuits. You will then be using a millimeter to take readings at various points in these circuits. Using these

More information

Phys 202A. Lab 7 Batteries, Bulbs and Current

Phys 202A. Lab 7 Batteries, Bulbs and Current Phys 202A Lab 7 Batteries, Bulbs and Current Name Objectives: To understand how a voltage (potential difference) results in a current flow through a conductor. To learn to design and wire simple circuits

More information

Science Olympiad Shock Value ~ Basic Circuits and Schematics

Science Olympiad Shock Value ~ Basic Circuits and Schematics Science Olympiad Shock Value ~ Basic Circuits and Schematics Use a single D battery, a single bare wire and a light bulb. Find four different ways to light the light bulb using only a battery, one wire

More information

Lab 4. DC Circuits II

Lab 4. DC Circuits II Physics 2020, Spring 2005 Lab 4 page 1 of 7 Lab 4. DC Circuits II INTRODUCTION: This week we will continue with DC circuits, but now with an emphasis on current rather than voltage. Of course, in order

More information

PROPERTIES OF ELECTRIC CIRCUITS

PROPERTIES OF ELECTRIC CIRCUITS Name: PROPERTIES OF ELECTRIC CIRCUITS Date: Go to www.linville.ca and click on the page Computer Simulations or go to http://phet.colorado.edu/simulations open the Circuit Construction: DC and then click

More information

Lab 08: Circuits. This lab is due at the end of the laboratory period

Lab 08: Circuits. This lab is due at the end of the laboratory period Name: Partner(s): 1114 section: Desk # Date: Purpose Lab 08: Circuits This lab is due at the end of the laboratory period The purpose of this lab is to gain experience with setting up electric circuits

More information

7J Electrical circuits Multiple-choice main test

7J Electrical circuits Multiple-choice main test For each question, circle the correct answer. Question 1 A switch turns off a torch by... A) breaking the circuit B) making the circuit C) shorting the circuit D) turning a series circuit into a parallel

More information

Series and Parallel Networks

Series and Parallel Networks Series and Parallel Networks Department of Physics & Astronomy Texas Christian University, Fort Worth, TX January 17, 2014 1 Introduction In this experiment you will examine the brightness of light bulbs

More information

Circuits. This lab is due at the end of the laboratory period

Circuits. This lab is due at the end of the laboratory period Name: Partner(s): 1114 section: Desk # Date: Purpose Circuits This lab is due at the end of the laboratory period The purpose of this lab is to gain experience with setting up electric circuits and using

More information

7. How long must a 100-watt light bulb be used in order to dissipate 1,000 joules of electrical energy? 1) 10 s 3) 1,000 s 2) 100 s 4) 100,000 s

7. How long must a 100-watt light bulb be used in order to dissipate 1,000 joules of electrical energy? 1) 10 s 3) 1,000 s 2) 100 s 4) 100,000 s 1. Which quantity must be the same for each component in any series circuit? 1) power 3) current 2) resistance 4) voltage 2. A student needs a 4-ohm resistor to complete a circuit. Only a large quantity

More information

Batteries n Bulbs: Voltage, Current and Resistance (8/6/15) (approx. 2h)

Batteries n Bulbs: Voltage, Current and Resistance (8/6/15) (approx. 2h) Batteries n Bulbs: Voltage, Current and Resistance (8/6/15) (approx. 2h) Introduction A simple electric circuit can be made from a voltage source (batteries), wires through which current flows and a resistance,

More information

Physics Labs with Computers, Vol. 1 P29: Electrostatic Charge A

Physics Labs with Computers, Vol. 1 P29: Electrostatic Charge A Name Class Date Activity P29: Electrostatic Charge (Charge Sensor) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Electrostatics P29 Charge.ds (See end of activity) (See end of activity)

More information

Activity P58: Magnetic Field of a Solenoid (Magnetic Field Sensor, Power Amplifier)

Activity P58: Magnetic Field of a Solenoid (Magnetic Field Sensor, Power Amplifier) Name Class Date Activity P58: Magnetic Field of a Solenoid (Magnetic Field Sensor, Power Amplifier) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Magnetism P58 Solenoid.DS P52 Mag Field

More information

POWER and ELECTRIC CIRCUITS

POWER and ELECTRIC CIRCUITS POWER and ELECTRIC CIRCUITS Name For many of us, our most familiar experience with the word POWER (units of measure: WATTS) is when we think about electricity. Most of us know that when we change a light

More information

16.3 Ohm s Law / Energy and Power / Electric Meters

16.3 Ohm s Law / Energy and Power / Electric Meters 16.3 Ohm s Law / Energy and Power / Electric Meters Voltage Within a battery, a chemical reaction occurs that transfers electrons from one terminal to another terminal. This potential difference across

More information

All Worn Out! Measure the voltage of batteries as they discharge. Predict how different size batteries will behave when being discharged.

All Worn Out! Measure the voltage of batteries as they discharge. Predict how different size batteries will behave when being discharged. All Worn Out! Computer 43 Have you ever wondered why some flashlights use small batteries and some use big ones? What difference does it make? Do larger batteries make the light brighter? Will the size

More information

Cabrillo College Physics 10L. LAB 7 Circuits. Read Hewitt Chapter 23

Cabrillo College Physics 10L. LAB 7 Circuits. Read Hewitt Chapter 23 Cabrillo College Physics 10L Name LAB 7 Circuits Read Hewitt Chapter 23 What to learn and explore Every electrical circuit must have at least one source (which supplies electrical energy to the circuit)

More information

11.1 CURRENT ELECTRICITY. Electrochemical Cells (the energy source) pg Wet Cell. Dry Cell. Positive. Terminal. Negative.

11.1 CURRENT ELECTRICITY. Electrochemical Cells (the energy source) pg Wet Cell. Dry Cell. Positive. Terminal. Negative. Date: SNC1D: Electricity 11.1 CURRENT ELECTRICITY Define: CIRCUIT: path that electrons follow. CURRENT ELECTRICITY: continuous flow of electrons in a circuit LOAD: device that converts electrical energy

More information

Lab 4. DC Circuits II

Lab 4. DC Circuits II Physics 2020, Spring 2005 Lab 4 page 1 of 7 Lab 4. DC Circuits II INTRODUCTION: This week we will continue with DC circuits, but now with an emphasis on current rather than voltage. Of course, in order

More information

Electric current, resistance and voltage in simple circuits

Electric current, resistance and voltage in simple circuits Lab 6: Electric current, resistance and voltage in simple circuits Name: Group Members: Date: T s Name: pparatus: ulb board with batteries, connecting wires, two identical bulbs and a different bulb, a

More information

Electrostatic Charging

Electrostatic Charging 64 Electrostatic Charging Equipment List Qty Items Part Numbers 1 Charge Sensor CI-6555 1 Charge Producers and Proof Planes ES-9057A 1 Faraday Ice Pail ES-9024A Introduction The purpose of this activity

More information

APHY 112 EXPERIMENT 1: ELECTROSTATIC CHARGE

APHY 112 EXPERIMENT 1: ELECTROSTATIC CHARGE General Department PHYSICS LABORATORY APHY 112 EXPERIMENT 1: ELECTROSTATIC CHARGE + + + + + + Student s name Course Semester Year.Reg.No FREDERICK UNIVERSITY 1 EXPERIMENT 1 Electrostatic Charge Equipment

More information

Name Period. (c) Now replace the round bulb(s) with long bulb(s). How does the brightness change?

Name Period. (c) Now replace the round bulb(s) with long bulb(s). How does the brightness change? Name Period P Phys 1 Discovery Lesson Electric Circuits 2.1 Experiment: Charge Flow Strength & Resistors circuit is an unbroken loop of conductors. Charge (q) can flow continuously in a circuit. If an

More information

Laboratory 5: Electric Circuits Prelab

Laboratory 5: Electric Circuits Prelab Phys 132L Fall 2018 Laboratory 5: Electric Circuits Prelab 1 Current and moving charges Atypical currentinanelectronic devicemightbe5.0 10 3 A.Determinethenumber of electrons that pass through the device

More information

34.5 Electric Current: Ohm s Law OHM, OHM ON THE RANGE. Purpose. Required Equipment and Supplies. Discussion. Procedure

34.5 Electric Current: Ohm s Law OHM, OHM ON THE RANGE. Purpose. Required Equipment and Supplies. Discussion. Procedure Name Period Date CONCEPTUAL PHYSICS Experiment 34.5 Electric : Ohm s Law OHM, OHM ON THE RANGE Thanx to Dean Baird Purpose In this experiment, you will arrange a simple circuit involving a power source

More information

LAB 7. SERIES AND PARALLEL RESISTORS

LAB 7. SERIES AND PARALLEL RESISTORS Name: LAB 7. SERIES AND PARALLEL RESISTORS Problem How do you measure resistance, voltage, and current in a resistor? How are these quantities related? What is the difference between a series circuit and

More information

Mandatory Experiment: Electric conduction

Mandatory Experiment: Electric conduction Name: Class: Mandatory Experiment: Electric conduction In this experiment, you will investigate how different materials affect the brightness of a bulb in a simple electric circuit. 1. Take a battery holder,

More information

CHAPTER 6.3: CURRENT ELECTRICITY

CHAPTER 6.3: CURRENT ELECTRICITY CHAPTER 6.3: CURRENT ELECTRICITY These components are used in electric circuits. TASK: Draw how you could make this lamp light. Electricity will only flow through a complete circuit. The battery, wires

More information

Series and Parallel Circuits Virtual Lab

Series and Parallel Circuits Virtual Lab Series and Parallel Circuits Virtual Lab Learning Goals: Students will be able to Discuss basic electricity relationships Discuss basic electricity relationships in series and parallel circuits Build series,

More information

PHYSICS MCQ (TERM-1) BOARD PAPERS

PHYSICS MCQ (TERM-1) BOARD PAPERS GRADE: 10 PHYSICS MCQ (TERM-1) BOARD PAPERS 1 The number of division in ammeter of range 2A is 10 and voltmeter of range 5 V is 20. When the switch of the circuit given below is closed, ammeter reading

More information

PHY152H1S Practical 3: Introduction to Circuits

PHY152H1S Practical 3: Introduction to Circuits PHY152H1S Practical 3: Introduction to Circuits Don t forget: List the NAMES of all participants on the first page of each day s write-up. Note if any participants arrived late or left early. Put the DATE

More information

Electric Circuits Lab

Electric Circuits Lab Electric Circuits Lab Purpose: To construct series and parallel circuits To compare the current, voltage, and resistance in series and parallel circuits To draw schematic (circuit) diagrams of various

More information

Unit 9. (Filled In) Draw schematic circuit diagrams for resistors in series and in parallel

Unit 9. (Filled In) Draw schematic circuit diagrams for resistors in series and in parallel Name: Date: Period: Unit 9 Series & Parallel Circuits (Filled In) Essential Questions: Does adding resistors to a circuit always reduce current? Does adding more light bulbs to a circuit always make them

More information

Electric Circuits Exam

Electric Circuits Exam Electric Circuits Exam 1. The diagram below represents a lamp, a 10-volt battery, and a length of nichrome wire connected in series. 4. Which circuit has the smallest equivalent resistance? A) B) As the

More information

Current, resistance and potential difference

Current, resistance and potential difference Multiple choice questions 1. Three conductors join as shown in the diagram. The direction of the current in each conductor is shown by the arrow. Y Z X The current in the conductor Z is 10 A. The current

More information

JSUNIL TUTORIAL PUNJABI COLONY GALI 01

JSUNIL TUTORIAL PUNJABI COLONY GALI 01 10 th Electricity Numerical 1. The current passing through a room heater has been halved. What will happen to the heat produced by it? 2. An electric iron of resistance 20 ohm draws a current of 5 amperes.

More information

ACTIVITY 1: Electric Circuit Interactions

ACTIVITY 1: Electric Circuit Interactions CYCLE 5 Developing Ideas ACTIVITY 1: Electric Circuit Interactions Purpose Many practical devices work because of electricity. In this first activity of the Cycle you will first focus your attention on

More information

AP Physics B Ch 18 and 19 Ohm's Law and Circuits

AP Physics B Ch 18 and 19 Ohm's Law and Circuits Name: Period: Date: AP Physics B Ch 18 and 19 Ohm's Law and Circuits MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A device that produces electricity

More information

PHY132 Practicals Week 5 Student Guide

PHY132 Practicals Week 5 Student Guide PHY132 Practicals Week 5 Student Guide Concepts of this Module Introducing current and voltage Simple circuits Circuit diagrams Background When water flows through a garden hose, we can characterize the

More information

Circuits. Now put the round bulb in a socket and set up the following circuit. The bulb should light up.

Circuits. Now put the round bulb in a socket and set up the following circuit. The bulb should light up. Name: Partner(s): 1118 section: Desk # Date: Purpose Circuits The purpose of this lab is to gain experience with setting up electric circuits and using meters to measure voltages and currents, and to introduce

More information

Circuits-Circuit Analysis

Circuits-Circuit Analysis Base your answers to questions 1 through 3 on the information and diagram below. 4. A 9-volt battery is connected to a 4-ohm resistor and a 5-ohm resistor as shown in the diagram below. A 3.0-ohm resistor,

More information

EXPERIMENT - 1 OHM S LAW

EXPERIMENT - 1 OHM S LAW NOTE: While you copy the practical record see that you are following the note. Write Aim, theory, materials required, procedure, results, discussion and precautions on the right side of your record. While

More information

Searching for Patterns in Series and Parallel Circuits

Searching for Patterns in Series and Parallel Circuits Searching for Patterns in Series and Parallel Circuits Use the Circuit Construction Kit on phet.colorado.edu (DC Circuits only) to build the following circuits. fter building each circuit, use the ammeter

More information

Figure 1: (a) cables with alligator clips and (b) cables with banana plugs.

Figure 1: (a) cables with alligator clips and (b) cables with banana plugs. Ohm s Law Safety and Equipment Computer with PASCO Capstone, PASCO 850 Universal Interface Double banana/alligator Cable, 2 Alligator Wires PASCO Voltage Sensor Cable Multimeter with probes. Rheostat Ruler

More information

Essential Electricity Homework Exercise 1

Essential Electricity Homework Exercise 1 Homework Exercise 1 1. For each of the following electrical symbols, copy the symbol into you jotter and label it using the words below. Word bank resistor, voltmeter, battery, ammeter, bulb V A 2. State

More information

INVESTIGATION ONE: WHAT DOES A VOLTMETER DO? How Are Values of Circuit Variables Measured?

INVESTIGATION ONE: WHAT DOES A VOLTMETER DO? How Are Values of Circuit Variables Measured? How Are Values of Circuit Variables Measured? INTRODUCTION People who use electric circuits for practical purposes often need to measure quantitative values of electric pressure difference and flow rate

More information

Electricity and Magnetism Module 2 Student Guide

Electricity and Magnetism Module 2 Student Guide Concepts of this Module Introducing current and voltage Simple circuits Circuit diagrams Background Electricity and Magnetism Module 2 Student Guide When water flows through a garden hose, we can characterize

More information

Section 4: Voltage. The EMF, ideal voltage or open circuit voltage is defined as the energy per unit charge developed within a source.

Section 4: Voltage. The EMF, ideal voltage or open circuit voltage is defined as the energy per unit charge developed within a source. Section 4: Voltage As electrons are moved within the cell by the electrolyte, work is done on the electrons. This work is stored as potential energy in the electrons. In other words, they have the ability

More information

FUN! Protected Under 18 U.S.C. 707

FUN! Protected Under 18 U.S.C. 707 FUN! Protected Under 18 U.S.C. 707 6 Volt Lantern Battery Spring terminals (also available in screw terminals) Alligator Clips Best method to attach wires to the spring terminals on a lantern battery.

More information

Physics Work with your neighbor. Ask me for help if you re stuck. Don t hesistate to compare notes with nearby groups.

Physics Work with your neighbor. Ask me for help if you re stuck. Don t hesistate to compare notes with nearby groups. Physics 9 2016-04-13 Work with your neighbor. Ask me for help if you re stuck. Don t hesistate to compare notes with nearby groups. Today we ll build on what we did Monday with batteries and light bulbs.

More information

A device that measures the current in a circuit. It is always connected in SERIES to the device through which it is measuring current.

A device that measures the current in a circuit. It is always connected in SERIES to the device through which it is measuring current. Goals of this second circuit lab packet: 1 to learn to use voltmeters an ammeters, the basic devices for analyzing a circuit. 2 to learn to use two devices which make circuit building far more simple:

More information

Basic Circuits Notes- THEORY. An electrical circuit is a closed loop conducting path in which electrical current flows

Basic Circuits Notes- THEORY. An electrical circuit is a closed loop conducting path in which electrical current flows Basic Circuits Notes- THEORY NAME: An electrical circuit is a closed loop conducting path in which electrical current flows Now how does a circuit work? In order to get the water flowing, you d need a

More information

Evaluation copy. The Magnetic Field in a Slinky. computer OBJECTIVES MATERIALS INITIAL SETUP

Evaluation copy. The Magnetic Field in a Slinky. computer OBJECTIVES MATERIALS INITIAL SETUP The Magnetic Field in a Slinky Computer 26 A solenoid is made by taking a tube and wrapping it with many turns of wire. A metal Slinky is the same shape and will serve as our solenoid. When a current passes

More information

HOW IS ELECTRICITY PRODUCED?

HOW IS ELECTRICITY PRODUCED? ELECTRICITY HOW IS ELECTRICITY PRODUCED? All electricity is produced from other sources of energy. Hydroelectricity is produced from the stored energy of water held back by a dam. As the water runs downhill

More information

Student Exploration: Advanced Circuits

Student Exploration: Advanced Circuits Name: Date: Student Exploration: Advanced Circuits [Note to teachers and students: This Gizmo was designed as a follow-up to the Circuits Gizmo. We recommend doing that activity before trying this one.]

More information

Review for formula, circuit and resistance test

Review for formula, circuit and resistance test Review for formula, circuit and resistance test 1. Fill in the table giving the symbol and unit(s) for each. Current intensity Potential difference Voltage Resistance Power Energy Time 2. Give the formula

More information

Period 11 Activity Sheet Solutions: Electric Current

Period 11 Activity Sheet Solutions: Electric Current Period 11 Activity Sheet Solutions: Electric Current Activity 11.1: How Can Electric Charge Do Work? Your instructor will demonstrate a Wimshurst machine, which separates electric charge. a) Describe what

More information

Lab 2 Electrical Measurements and Ohm s Law

Lab 2 Electrical Measurements and Ohm s Law Lab 2 Electrical Measurements and Ohm s Law Safety and Equipment No special safety precautions are necessary for this lab. Computer with PASCO Capstone, PASCO 850 Universal Interface Double banana/alligator

More information

Ohm s Law. 1-Introduction: General Physics Laboratory (PHY119) Basic Electrical Concepts:

Ohm s Law. 1-Introduction: General Physics Laboratory (PHY119) Basic Electrical Concepts: Ohm s Law General Physics Laboratory (PHY119) 1-Introduction: Basic Electrical Concepts: 1- Current (I): Is the flow of electrons through a conductor or semiconductor. For current to flow, it requires

More information

Science 10-Electricity & Magnetism Activity 4 (2007) Activity 3E Investigating Electric Current

Science 10-Electricity & Magnetism Activity 4 (2007) Activity 3E Investigating Electric Current Science 10-Electricity & Magnetism ctivity 4 (2007) ctivity 3E Investigating Electric Current Name Due Date Show Me Hand In Purpose: To use an ammeter to measure electric current in circuits with lamps

More information

4.2 Electrical Quantities

4.2 Electrical Quantities For more awesome GSE and level resources, visit us at www.savemyexams.co.uk/ 4.2 Electrical Quantities Question Paper Level IGSE Subject Physics (625) Exam oard Topic Sub Topic ooklet ambridge International

More information

The Magnetic Field in a Coil. Evaluation copy. Figure 1. square or circular frame Vernier computer interface momentary-contact switch

The Magnetic Field in a Coil. Evaluation copy. Figure 1. square or circular frame Vernier computer interface momentary-contact switch The Magnetic Field in a Coil Computer 25 When an electric current flows through a wire, a magnetic field is produced around the wire. The magnitude and direction of the field depends on the shape of the

More information

Write the term that correctly completes the statement. Use each term once. ampere. electric current. resistor battery.

Write the term that correctly completes the statement. Use each term once. ampere. electric current. resistor battery. Date Period Name CHAPTER 22 Study Guide Current Electricity Vocabulary Review Write the term that correctly completes the statement. Use each term once. ampere electric current resistor battery kilowatt-hour

More information

Chapter Assessment Use with Chapter 22.

Chapter Assessment Use with Chapter 22. Date Period 22 Use with Chapter 22. Current Electricity Understanding Concepts Part A Use each of the following terms once to complete the statements below. ampere electric current potential difference

More information

Circuit Notes. Def: 1. Power supply:

Circuit Notes. Def: 1. Power supply: Circuit Notes Def: Parts of a circuit 1. Power supply: Types: 1- photovoltaic cell: generates current when exposed to light. ex: solar calculator or watch. 2- Batteries and generators. 2. Wires: 3. Switch

More information

NORTHERN ILLINOIS UNIVERSITY PHYSICS DEPARTMENT. Physics 211 E&M and Quantum Physics Spring Lab #6: Magnetic Fields

NORTHERN ILLINOIS UNIVERSITY PHYSICS DEPARTMENT. Physics 211 E&M and Quantum Physics Spring Lab #6: Magnetic Fields NORTHERN ILLINOIS UNIVERSITY PHYSICS DEPARTMENT Physics 211 E&M and Quantum Physics Spring 2018 Lab #6: Magnetic Fields Lab Writeup Due: Mon/Wed/Thu/Fri, March 5/7/8/9, 2018 Background Magnetic fields

More information

University of TN Chattanooga Physics 1040L 8/28/2012

University of TN Chattanooga Physics 1040L 8/28/2012 PHYSICS 1040L LAB 5: MAGNETIC FIELD Objectives: 1. Determine the relationship between magnetic field and the current in a solenoid. 2. Determine the relationship between magnetic field and the number of

More information

Physics 144 Chowdary How Things Work. Lab #5: Circuits

Physics 144 Chowdary How Things Work. Lab #5: Circuits Physics 144 Chowdary How Things Work Spring 2006 Name: Partners Name(s): Lab #5: Circuits Introduction In today s lab, we ll learn about simple electric circuits. All electrical and electronic appliances

More information

1103 Period 16: Electrical Resistance and Joule Heating

1103 Period 16: Electrical Resistance and Joule Heating Name Section 1103 Period 16: Electrical Resistance and Joule Heating Activity 16.1: What Does the Electrical Resistance of a Wire Depend Upon? 1) Measuring resistance a) Resistor length, L Use a multimeter

More information

PHYSICS 111 LABORATORY Experiment #3 Current, Voltage and Resistance in Series and Parallel Circuits

PHYSICS 111 LABORATORY Experiment #3 Current, Voltage and Resistance in Series and Parallel Circuits PHYSCS 111 LABORATORY Experiment #3 Current, Voltage and Resistance in Series and Parallel Circuits This experiment is designed to investigate the relationship between current and potential in simple series

More information

Electrical power. Objectives. Assessment. Assessment. Equations. Physics terms 5/27/14

Electrical power. Objectives. Assessment. Assessment. Equations. Physics terms 5/27/14 Electrical power Objectives Use the equation for electrical power to solve circuit problems. Understand basic concepts for home electricity usage and wiring. Calculate the power used by electric circuit

More information

Getting Started with the Digilent Electronics Explorer Board

Getting Started with the Digilent Electronics Explorer Board Getting Started with the Digilent Electronics Explorer Board This tutorial provides a very basic overview of the Digilent Electronics Explorer (EE) Board. 1. EE Board Physical Description A top view of

More information

Series circuits. The ammeter

Series circuits. The ammeter Series circuits D o you remember how the parts of the torch on pages 272 3 were connected together? The circuit contained several components, connected one after the other. Conductors, like the metal strip

More information

Name: Base your answer to the question on the information below and on your knowledge of physics.

Name: Base your answer to the question on the information below and on your knowledge of physics. Name: Figure 1 Base your answer to the question on the information below and on your knowledge of physics. A student constructed a series circuit consisting of a 12.0-volt battery, a 10.0-ohm lamp, and

More information

Series and Parallel Circuits

Series and Parallel Circuits Series and Parallel Circuits 1 of 23 Boardworks Ltd 2016 Series and Parallel Circuits 2 of 23 Boardworks Ltd 2016 What are series and parallel circuits? 3 of 23 Boardworks Ltd 2016 Circuit components can

More information

Investigation Electrical Circuits

Investigation Electrical Circuits ACTIVITY #1 Task: To design and construct a circuit where 2 light bulbs can turn on and off at the same time Materials: - 1 power supply - 2 light bulbs - Connecting wires ( ) - Switch(s) - Multi-meter

More information

Unit 6: Electricity and Magnetism

Unit 6: Electricity and Magnetism Objectives Unit 6: Electricity and Magnetism Identify the factors influencing the electric force between objects. Explain the interaction between charged and uncharged objects. Design, construct, and explain

More information

CHAPTER 2. Current and Voltage

CHAPTER 2. Current and Voltage CHAPTER 2 Current and Voltage The primary objective of this laboratory exercise is to familiarize the reader with two common laboratory instruments that will be used throughout the rest of this text. In

More information

Electric Current. Electric current: is the movement of electrons from a negative terminal back to the positive terminal of a battery.

Electric Current. Electric current: is the movement of electrons from a negative terminal back to the positive terminal of a battery. Electric Current Electric current: is the movement of electrons from a negative terminal back to the positive terminal of a battery. Electric Current Electrons flow from regions of high Potential Energy

More information

Science 10-Electricity & Magnetism Activity 3 Activity 3D Voltage of Electrical Cells in Series and in Parallel

Science 10-Electricity & Magnetism Activity 3 Activity 3D Voltage of Electrical Cells in Series and in Parallel Science 10-Electricity & Magnetism Activity 3 Activity 3D oltage of Electrical Cells in Series and in Parallel Name Due Date Show Me Hand In Purpose: To see how connecting cells in series and in parallel

More information

Electronics Technology and Robotics I Week 2 Basic Electrical Meters and Ohm s Law

Electronics Technology and Robotics I Week 2 Basic Electrical Meters and Ohm s Law Electronics Technology and Robotics I Week 2 Basic Electrical Meters and Ohm s Law Administration: o Prayer o Bible Verse o Turn in quiz Meters: o Terms and Definitions: Analog vs. Digital Displays: Analog

More information

Current Electricity. GRADE 10 PHYSICAL SCIENCE Robyn Basson CAPS

Current Electricity. GRADE 10 PHYSICAL SCIENCE Robyn Basson CAPS Current Electricity GRADE 10 PHYSICAL SCIENCE Robyn Basson CAPS What is current electricity? The flow of moving charge, usually carried by moving electrons in a wire. Circuits A path in which charges continually

More information

Chapter 3. ECE Tools and Concepts

Chapter 3. ECE Tools and Concepts Chapter 3 ECE Tools and Concepts 31 CHAPTER 3. ECE TOOLS AND CONCEPTS 3.1 Section Overview This section has four exercises. Each exercise uses a prototyping board for building the circuits. Understanding

More information

Technical Workshop: Electrical December 3, 2016

Technical Workshop: Electrical December 3, 2016 Technical Workshop: Electrical December 3, 2016 ELECTRICAL: CIRCUITS Key terms we will be using today: Voltage (V): The difference in electrical potential at one point in a circuit in relation to another.

More information

Circuits. What are circuits?

Circuits. What are circuits? Circuits Circuits What are circuits? A closed loop made of a conducting substance that allows electrons to flow from the negative terminal to the positive terminal Parts of a Circuit 1 Power Supply Provides

More information

Which of the following statements is/are correct about the circuit above?

Which of the following statements is/are correct about the circuit above? Name: ( ) Class: Date: Electricity Exercises 1. Which of the following statements is/are correct about the circuit above? (1) Electrons flow from right to left through the bulb A. (2) Charges will be used

More information

Activity 3 Solutions: Electricity

Activity 3 Solutions: Electricity Activity 3 Solutions: Electricity 3.1 Electric Charge, Voltage and Energy 1) Electric charge Your instructor will demonstrate a Wimshurst machine, which separates electric charge. a) Describe what happens

More information

Electric Circuits. Lab. FCJJ 16 - Solar Hydrogen Science Kit. Goals. Background

Electric Circuits. Lab. FCJJ 16 - Solar Hydrogen Science Kit. Goals. Background Goals Build a complete circuit with a solar panel Power a motor and electrolyzer with a solar panel Measure voltage and amperage in different circuits Background Electricity has fundamentally changed the

More information

Unit 15: Electrical Circuits

Unit 15: Electrical Circuits INQUIRY PHYSICS A Modified Learning Cycle Curriculum by Granger Meador Unit 15: Electrical Circuits Student Papers 2010 by Granger Meador inquiryphysics.org 15 Electrical Circuits Nam e Lab A: BASIC CIRCUITRY

More information

Faraday's Law of Induction

Faraday's Law of Induction Induction EX-9914 Page 1 of 6 EQUIPMENT Faraday's Law of Induction INCLUDED: 1 Induction Wand EM-8099 1 Variable Gap Lab Magnet EM-8641 1 Large Rod Stand ME-8735 2 45 cm Long Steel Rod ME-8736 1 Multi

More information

Your web browser (Safari 7) is out of date. For more security, comfort and. the best experience on this site: Update your browser Ignore

Your web browser (Safari 7) is out of date. For more security, comfort and. the best experience on this site: Update your browser Ignore Your web browser (Safari 7) is out of date. For more security, comfort and Activitydevelop the best experience on this site: Update your browser Ignore Circuits with Friends What is a circuit, and what

More information

Pre-lab Quiz/PHYS 224 Ohm s Law and Resistivity. Your name Lab section

Pre-lab Quiz/PHYS 224 Ohm s Law and Resistivity. Your name Lab section Pre-lab Quiz/PHYS 224 Ohm s Law and Resistivity Your name Lab section 1. What do you investigate in this lab? 2. When 1.0-A electric current flows through a piece of cylindrical copper wire, the voltage

More information

The graphs show the voltage across two different types of cell as they transfer the last bit of their stored energy through the torch bulb.

The graphs show the voltage across two different types of cell as they transfer the last bit of their stored energy through the torch bulb. Q1. A small torch uses a single cell to make the bulb light up. (a) The graphs show the voltage across two different types of cell as they transfer the last bit of their stored energy through the torch

More information

LICENCE TO LIGHTING,TEACHER S BOOK

LICENCE TO LIGHTING,TEACHER S BOOK Licence to Lighting Teacher s book Licence to Lighting is a small instructional programme intended for the subject natural and technical science in its first level. By working with elementary teaching

More information

Circuit Basics and Components

Circuit Basics and Components Circuit Basics Electric circuits are arrangements of conductors and components that permit electrical current to flow. A circuit can be as simple as a battery and lamp or as sophisticated as a computer.

More information

Figure 1. Figure

Figure 1. Figure Q1.Figure 1 shows a circuit including a thermistor T in series with a variable resistor R. The battery has negligible internal resistance. Figure 1 The resistance temperature (R θ) characteristic for T

More information

Series and Parallel Circuits

Series and Parallel Circuits Science Unit: Lesson 2: Electricity with Applications Series and Parallel Circuits School Year: 2010/2011 Developed for: Developed by: Grade level: Duration of lesson: Notes: Pierre Eliot Trudeau Elementary

More information

Product design: Mechanical systems. Pneumatics. Putting tops on milk bottles. Opening and closing bus doors

Product design: Mechanical systems. Pneumatics. Putting tops on milk bottles. Opening and closing bus doors Pneumatics Pneumatic circuits work by means of compressed air. Here are two examples to introduce the components used to make a pneumatic circuit. Putting tops on milk bottles Here the pneumatic circuit

More information

15 Electrical Circuits Name Worksheet A: SERIES CIRCUIT PROBLEMS

15 Electrical Circuits Name Worksheet A: SERIES CIRCUIT PROBLEMS Worksheet A: SERIES CIRCUIT PROBLEMS be careful to use proper significant figures on all answers 1. What would be the required voltage of an energy source in a circuit with a current of 10.0 A and a resistance

More information

Activity 3: Electricity

Activity 3: Electricity Name Section Activity 3: Electricity 3.1 Electric Charge, Voltage and Energy 1) Electric charge Your instructor will demonstrate a Wimshurst machine, which separates electric charge. a) Describe what happens

More information