THE UNIVERSITY OF HONG KONG DEPARTMENT OF ELECTRICAL & ELECTRONIC ENGINEERING

Size: px
Start display at page:

Download "THE UNIVERSITY OF HONG KONG DEPARTMENT OF ELECTRICAL & ELECTRONIC ENGINEERING"

Transcription

1 THE UNIVERSITY OF HONG KONG DEPARTMENT OF ELECTRICAL & ELECTRONIC ENGINEERING Experiment MI1: D.C. Shunt and Series Motors Location: Objectives: Apparatus: Part I Laboratory To study the performance characteristics of d.c. shunt and series motors with speed control effected by varying the field current and armature voltage respectively. Motor (FH50 D.C. Compound Machine) under test and brake load Rheostats (FH2 MkIII Test Bed) D.C. voltmeter, ammeters and tachometer. D.C. supply (FH3 Mk III Instrumentation Frame) Measurement Interface and 12V DC Power Supply Computer with LabView data acquisition program Procedures: A. Shunt Motor Load Test 1. Position the FH50 Mimic Diagram over the access sockets of the FH2 MkIII Test Bed.Locate the test FH50 into the right-hand Test Position and insert the 10-way and earth plugs into their respective adjacent sockets. Set-up the equipment and connect as shown in the diagram. Figure A. Switch on the power to the FH2 MkIII Test Bed, first at the Main switch and press the Green ON push-button to activate the contactor. Start the motor by rotating the Armature Rheostat to zero and increase the brake control (torque control) until the motor develops an indicated torque of 0.5Nm. Allow the motor to warm up for approximately 15 minutes. 2. Turn on PC power until the LabView data acquisition program launch ( Click the desktop shortcut MI-Lab DAQ ).Switch on the D.C 12 Volt power supply for the measurement interface. Check all meters reading should be matched with LCD Monitor display. 3. Press save data button from computer and choose saving path as C:\Data\<your student id>\shunt.lvm for taking readings of voltage (kept constant at the rated value), currents and speed for roughly equal increments of load torque (0.05Nm ~ 0.8Nm)Do not allow the armature current to exceed 120% of the rated value. 4. Press the Save Data button again to stop saving data. 5. Repeat the load test (step 1 to 4) with the field current reduced (by adjusting the regulating resistance) to about 70% of the maximum value, choose saving path as C:\Data\<your student id>\shunt-2.lvm in step 3. N.B. During starting the shunt motor may take excessive current if the starting resistance is cut out rapidly. It is desirable to start with full field current or else the motor will not speed up as there is insufficient flux. The back e.m.f. will then be too low to oppose the applied voltage, resulting in excessive armature current.

2 B. Series Motor Load Test 1. Position the FH50 Mimic Diagram over the Machine Access Sockets of the FH2 MkIII Test Bed. Locate the test FH50 into the right-hand test cradle and insert the 10-way and earth plugs into their respective adjacent sockets. Set-up the equipment and connect as shown in the diagram. Figure. B. Switch on the power to the FH2 MkIII Test Bed, first at the Main switch and press the Green ON push-button to activate the contactor. Start the motor by rotating the Armature Rheostat to zero and increase the brake control (torque control) setting until the motor develops an indicated torque of 0.4 Nm. Allow the motor to warm up for approximately 15 minutes. Adjust the brake control (torque control) until the motor nearly stalls and then return it to minimum ( 0.05Nm ). 2. Turn on Computer power until the LabView data acquisition program launch ( Click the desktop shortcut MI-Lab DAQ ), then switch on the D.C 12 Volt power supply for the measurement interface. Check all meters reading should be matched with LCD monitor display. 3. Press save data button from computer and choose saving path as C:\Data\<your student id>\series.lvm for take readings of voltage, speed and current for roughly equal increments of load torque. Do not allow the current to exceed 120% of the rated value. The stall torque may be included in the range of values but the reading must be taken quickly before the overloads operate. DO NOT allow the motor to run without a load, minimum 0.05Nm, otherwise the rotor may seriously overspeed and could disintegrate. 4. Press the Save Data button again to stop saving data. 5. Repeat the load test (Step 1 to 4) for a reduced voltage supply of about 80% of the rated value and choose saving path as C:\Data\<your student id>\series-2.lvm in step 3. Copy you LabView data files from the path C:\Data\<your student id>\ to your USB flash memory/disk. Convert LabView file to Microsoft Excel file Choose Open File command from Microsoft Excel, select "files of type" to All Files (*.*) with "file name" to C:\Data\<your student id>\<filename>.lvm path. Click Open then a import Wizard will be shown. Choose Delimited radio button, start import at row as 1 then choose finish button. Choose File -> Save as command, select save as type to Microsoft Excel (*.xls) and change file name. N.B. A header information is shown for reference; other data will be shown after the header end. Reports: From tests (A) and (B), plot characteristic curves of speed, efficiency and armature current against torque. Also answer the following questions: (i) What is the effect on speed of the reduced field current for the shunt motor? (ii) What is the effect on speed of the reduced armature voltage for the series motor? (iii) Which of the above-mentioned motors are suitable for a). traction applications, b). driving lathes? Why?

3 A. Fill in numbers corresponding to the connection nodes in the photograph. Shunt motor wire connection Figure A

4 A. Shunt Motor Load Tests With Supply = V const. Field I f Torque T Nm Speed N r.p.m Arm I a Supply I=I f +I a Input Power V x I W Output Power T x ω W Eff η % ω = 2π N/ 60 rad/sec η = 100 Tω/ V I

5 B. Fill in numbers corresponding to the connection nodes in the photograph. Series motor wire connection Figure B

6 B Series Motor Load Tests With Supply = V const. Supply Volt V volts Torque T Nm Speed N r.p.m Current I I Input Power V x I Watts Output Power T x ω Watts Eff η % ω = 2π N/ 60 rad/sec η = 100 Tω/ V I

EXPERIMENT CALIBRATION OF 1PHASE ENERGY METER

EXPERIMENT CALIBRATION OF 1PHASE ENERGY METER EXPERIMENT CALIBRATION OF PHASE ENERGY METER THEORY:- Energy Meters are integrating instruments used to measure the quantity of electrical energy supplied to a circuit in a given time. Single phase energy

More information

DIRECT CURRENT GENERATORS SEPARATELY EXITED, SHUNT AND COMPOUND CONNECTION INTRODUCTION

DIRECT CURRENT GENERATORS SEPARATELY EXITED, SHUNT AND COMPOUND CONNECTION INTRODUCTION Islamic University of Gaza Faculty of Engineering Electrical Engineering department Electric Machine Lab Eng. Omar A. Qarmout Eng. Amani S. Abu Reyala Experiment 6 DIRECT CURRENT GENERATORS SEPARATELY

More information

o applied to the motor., 0, and Vo

o applied to the motor., 0, and Vo Induction Motor and Drive Performance 1 Induction Motor Drivee Performance Introduction Over the past few years there have been great improvements in power electronics and their uses in motor drives. Today,

More information

WindLab TM Wind Turbine Power System Sample Laboratory Procedure Manual

WindLab TM Wind Turbine Power System Sample Laboratory Procedure Manual WindLab TM Wind Turbine Power System Sample Laboratory Procedure Manual WindLab TM is a scaled Wind Turbine Electrical Generation System, designed to function like a full-sized wind turbine system. It

More information

DHANALAKSHMI COLLEGE OF ENGINEERING MANIMANGALAM. TAMBARAM, CHENNAI B.E. ELECTRICAL AND ELECTRONICS ENGINEERING

DHANALAKSHMI COLLEGE OF ENGINEERING MANIMANGALAM. TAMBARAM, CHENNAI B.E. ELECTRICAL AND ELECTRONICS ENGINEERING DHANALAKSHMI COLLEGE OF ENGINEERING MANIMANGALAM. TAMBARAM, CHENNAI B.E. ELECTRICAL AND ELECTRONICS ENGINEERING V SEMESTER EE2305 ELECTRICAL MACHINES II LABORATORY LABORATORY MANUAL 1 CONTENT S. No. Name

More information

ELECTRICAL AND ELECTRONICS LABORATROY MANUAL

ELECTRICAL AND ELECTRONICS LABORATROY MANUAL ELECTRICAL AND ELECTRONICS LABORATROY MANUAL K CHAITANYA Assistant Professor Department of Electrical and Electrical Engineering A. NARESH KUMAR Assistant Professor Department of Electrical and Electrical

More information

Experiment 3. The Direct Current Motor Part II OBJECTIVE. To locate the neutral brush position. To learn the basic motor wiring connections.

Experiment 3. The Direct Current Motor Part II OBJECTIVE. To locate the neutral brush position. To learn the basic motor wiring connections. Experiment 3 The Direct Current Motor Part II OBJECTIVE To locate the neutral brush position. To learn the basic motor wiring connections. To observe the operating characteristics of series and shunt connected

More information

Energy Systems Lab FALL Experiment No DC Machines

Energy Systems Lab FALL Experiment No DC Machines Objectives: Experiment No. 2-1 DC Machines The objectives of this experiment are to investigate the operation of dc generator under load, determine the characteristic Kaφ, the resistances r A (total resistance

More information

SPEED CONTROL OF DC SHUNT MOTOR

SPEED CONTROL OF DC SHUNT MOTOR INDEX NO. : M-140 TECHNICAL MANUAL FOR SPEED CONTROL OF DC SHUNT MOTOR Manufactured by : PREMIER TRADING CORPORATION (An ISO 9001:2000 Certified Company) 212/1, Mansarover Civil Lines, MEERUT. Phone :

More information

Chapter 5: DC Motors. 9/18/2003 Electromechanical Dynamics 1

Chapter 5: DC Motors. 9/18/2003 Electromechanical Dynamics 1 Chapter 5: DC Motors 9/18/2003 Electromechanical Dynamics 1 Reversing the Rotation Direction The direction of rotation can be reversed by reversing the current flow in either the armature connection the

More information

Power Losses. b. Field winding copper losses Losses due to the shunt field (i sh 2 R sh. ) or series field winding (i s 2 R s

Power Losses. b. Field winding copper losses Losses due to the shunt field (i sh 2 R sh. ) or series field winding (i s 2 R s Power Losses The various losses inside a generator can be subdivided according to: 1. copper losses a. armature copper losses = i a 2 R a Where R is the resistance of the armature, interpoles and series

More information

Figure 1: (a) cables with alligator clips and (b) cables with banana plugs.

Figure 1: (a) cables with alligator clips and (b) cables with banana plugs. Ohm s Law Safety and Equipment Computer with PASCO Capstone, PASCO 850 Universal Interface Double banana/alligator Cable, 2 Alligator Wires PASCO Voltage Sensor Cable Multimeter with probes. Rheostat Ruler

More information

Sharjah Indian School Sharjah Boys Wing

Sharjah Indian School Sharjah Boys Wing Read the instructions given below carefully before writing the fair record book. The following details are to be written on the LEFT HAND SIDE of the book. CIRCUIT DIAGRAM CALCULATIONS The remaining details

More information

ELECTRICAL MACHINES-II LABORATORY MANUAL

ELECTRICAL MACHINES-II LABORATORY MANUAL ELECTRICAL MACHINES-II LABORATORY MANUAL T. ANIL KUMAR Associate Professor Department of Electrical and Electrical Engineering N. SINDHU Assistant Professor Department of Electrical and Electrical Engineering

More information

Physics Experiment 9 Ohm s Law

Physics Experiment 9 Ohm s Law Fig. 9-1 Simple Series Circuit Equipment: Universal Circuit Board Power Supply 2 DMM's (Digital Multi-Meters) with Leads 150- Resistor 330- Resistor 560- Resistor Unknown Resistor Miniature Light Bulb

More information

EXPERIMENT 19. Starting and Synchronizing Synchronous Machines PURPOSE: BRIEFING: To discover the method of starting synchronous motors.

EXPERIMENT 19. Starting and Synchronizing Synchronous Machines PURPOSE: BRIEFING: To discover the method of starting synchronous motors. EXPERIMENT 19 Starting and Synchronizing Synchronous Machines PURPOSE: To discover the method of starting synchronous motors. BRIEFING: When three-phase is applied to the stator of a three-phase motor,

More information

Permanent Magnet DC Motor

Permanent Magnet DC Motor Renewable Energy Permanent Magnet DC Motor Courseware Sample 86357-F0 A RENEWABLE ENERGY PERMANENT MAGNET DC MOTOR Courseware Sample by the staff of Lab-Volt Ltd. Copyright 2011 Lab-Volt Ltd. All rights

More information

ENSC387: Introduction to Electromechanical Sensors and Actuators LAB 5: DC MOTORS WARNING:

ENSC387: Introduction to Electromechanical Sensors and Actuators LAB 5: DC MOTORS WARNING: ENSC387: Introduction to Electromechanical Sensors and Actuators LAB 5: DC MOTORS WARNING: Please be extremely cautious to precisely follow the procedures described in this manual. It is very easy to break

More information

Experiment 5 Shunt DC Motor (I)

Experiment 5 Shunt DC Motor (I) Objective To determine the torque-speed and efficiency characteristic curves. To f out how to reverse the direction of rotation of a shunt dc motor. Introduction shunt dc motor is essentially the same

More information

a. Open the Lab 2 VI file in Labview. Make sure the Graph Type is set to Displacement (one of the 3 tabs in the graphing window).

a. Open the Lab 2 VI file in Labview. Make sure the Graph Type is set to Displacement (one of the 3 tabs in the graphing window). Lab #2 Free Vibration (Experiment) Name: Date: Section / Group: Part I. Displacement Preliminaries: a. Open the Lab 2 VI file in Labview. Make sure the Graph Type is set to Displacement (one of the 3 tabs

More information

PHYS 2212L - Principles of Physics Laboratory II

PHYS 2212L - Principles of Physics Laboratory II PHYS 2212L - Principles of Physics Laboratory II Laboratory Advanced Sheet Faraday's Law 1. Objectives. The objectives of this laboratory are a. to verify the dependence of the induced emf in a coil on

More information

Armature Reaction and Saturation Effect

Armature Reaction and Saturation Effect Exercise 3-1 Armature Reaction and Saturation Effect EXERCISE OBJECTIVE When you have completed this exercise, you will be able to demonstrate some of the effects of armature reaction and saturation in

More information

TurboGen TM Gas Turbine Electrical Generation System Sample Lab Experiment Procedure

TurboGen TM Gas Turbine Electrical Generation System Sample Lab Experiment Procedure TurboGen TM Gas Turbine Electrical Generation System Sample Lab Experiment Procedure Lab Session #1: System Overview and Operation Purpose: To gain an understanding of the TurboGen TM Gas Turbine Electrical

More information

Union College Winter 2016 Name Partner s Name

Union College Winter 2016 Name Partner s Name Union College Winter 2016 Name Partner s Name Physics 121 Lab 8: Electromagnetic Induction By Faraday s Law, a change in the magnetic flux through a coil of wire results in a current flowing in the wire.

More information

Electrical Machines-I (EE-241) For S.E (EE)

Electrical Machines-I (EE-241) For S.E (EE) PRACTICAL WORK BOOK For Academic Session 2013 Electrical Machines-I (EE-241) For S.E (EE) Name: Roll Number: Class: Batch: Department : Semester/Term: NED University of Engineer ing & Technology Electrical

More information

II/IV B.Tech(Regular) DEGREE EXAMINATION. Electronics & Instrumentation Engineering

II/IV B.Tech(Regular) DEGREE EXAMINATION. Electronics & Instrumentation Engineering SCHME OF EVALUTION II/IV B.Tech(Regular) DEGREE EXAMINATION JUNE,2016 EI ET 403 Electrical Technology Electronics & Instrumentation Engineering Max.Marks :60 marks -----------------------------------------------------------------------------------------------------------

More information

2014 ELECTRICAL TECHNOLOGY

2014 ELECTRICAL TECHNOLOGY SET - 1 II B. Tech I Semester Regular Examinations, March 2014 ELECTRICAL TECHNOLOGY (Com. to ECE, EIE, BME) Time: 3 hours Max. Marks: 75 Answer any FIVE Questions All Questions carry Equal Marks ~~~~~~~~~~~~~~~~~~~~~~~~~~

More information

TurboGen TM Gas Turbine Electrical Generation System Sample Lab Experiment Procedure

TurboGen TM Gas Turbine Electrical Generation System Sample Lab Experiment Procedure TurboGen TM Gas Turbine Electrical Generation System Sample Lab Experiment Procedure Lab Session #1: System Overview and Operation Purpose: To gain an understanding of the TurboGen TM Gas Turbine Electrical

More information

The Magnetic Field in a Coil. Evaluation copy. Figure 1. square or circular frame Vernier computer interface momentary-contact switch

The Magnetic Field in a Coil. Evaluation copy. Figure 1. square or circular frame Vernier computer interface momentary-contact switch The Magnetic Field in a Coil Computer 25 When an electric current flows through a wire, a magnetic field is produced around the wire. The magnitude and direction of the field depends on the shape of the

More information

Lab 2 Electrical Measurements and Ohm s Law

Lab 2 Electrical Measurements and Ohm s Law Lab 2 Electrical Measurements and Ohm s Law Safety and Equipment No special safety precautions are necessary for this lab. Computer with PASCO Capstone, PASCO 850 Universal Interface Double banana/alligator

More information

List of Experiments (Cycle-2)

List of Experiments (Cycle-2) List of Experiments (Cycle-) SL.No Experiment HOPKINSON S TEST RETARDATION TEST 3 SEPARATION OF LOSSES IN A SINGLE PHASE TRANSFORMER 4 SEPERATION OF LOSSES IN A DC SHUNT MACHINE 5 SUMPNER S TEST Experiment

More information

ELEN 460 Laboratory 4 Synchronous Generator Parameters and Equivalent Circuit

ELEN 460 Laboratory 4 Synchronous Generator Parameters and Equivalent Circuit ELEN 460 Laboratory 4 Synchronous Generator Parameters and Equivalent Circuit Objective: To derive the equivalent circuit o a synchronous generator rom the results o the open-circuit and short circuit

More information

Chapter 3. ECE Tools and Concepts

Chapter 3. ECE Tools and Concepts Chapter 3 ECE Tools and Concepts 31 CHAPTER 3. ECE TOOLS AND CONCEPTS 3.1 Section Overview This section has four exercises. Each exercise uses a prototyping board for building the circuits. Understanding

More information

2. Draw the speed-torque characteristics of dc shunt motor and series motor. (May2013) (May 2014)

2. Draw the speed-torque characteristics of dc shunt motor and series motor. (May2013) (May 2014) UNIT 2 - DRIVE MOTOR CHARACTERISTICS PART A 1. What is meant by mechanical characteristics? A curve is drawn between speed-torque. This characteristic is called mechanical characteristics. 2. Draw the

More information

UNIVERSITY OF MINNESOTA DULUTH DEPARTMENT OF CHEMICAL ENGINEERING ChE Centrifugal Pump(Armfield)

UNIVERSITY OF MINNESOTA DULUTH DEPARTMENT OF CHEMICAL ENGINEERING ChE Centrifugal Pump(Armfield) UNIVERSITY OF MINNESOTA DULUTH DEPARTMENT OF CHEMICAL ENGINEERING ChE 3211-4211 Centrifugal Pump(Armfield) OBJECTIVE The objective of this experiment is to investigate the operating characteristics of

More information

INDUCTION MOTORS 1. OBJECTIVE 2. SAFETY

INDUCTION MOTORS 1. OBJECTIVE 2. SAFETY INDUCTION MOTORS 1. OBJECTIE To study a 3-phase induction motor, by using its experimentally developed equivalent circuit diagram and by obtaining its basic characteristics: torque/slip, current/slip and

More information

APPARATUS AND MATERIAL REQUIRED Resistor, ammeter, (0-1.5A) voltmeter (0-5V ), battery, one way key, rheostat, sand paper, connecting wires.

APPARATUS AND MATERIAL REQUIRED Resistor, ammeter, (0-1.5A) voltmeter (0-5V ), battery, one way key, rheostat, sand paper, connecting wires. ACTIVITIES ACTIVITY 1 AIM To assemble the components of a given electrical circuit. APPARATUS AND MATERIAL REQUIRED Resistor, ammeter, (0-1.5A) voltmeter (0-5V ), battery, one way key, rheostat, sand paper,

More information

Permanent Magnet DC Motor Operating as a Generator

Permanent Magnet DC Motor Operating as a Generator Exercise 2 Permanent Magnet DC Motor Operating as a Generator EXERCIE OBJECTIVE When you have completed this exercise, you will be familiar with the construction of permanent magnet dc motors as well as

More information

Mechatronics Chapter 10 Actuators 10-3

Mechatronics Chapter 10 Actuators 10-3 MEMS1049 Mechatronics Chapter 10 Actuators 10-3 Electric Motor DC Motor DC Motor DC Motor DC Motor DC Motor Motor terminology Motor field current interaction Motor commutator It consists of a ring of

More information

Pre-lab Quiz/PHYS 224 Ohm s Law and Resistivity. Your name Lab section

Pre-lab Quiz/PHYS 224 Ohm s Law and Resistivity. Your name Lab section Pre-lab Quiz/PHYS 224 Ohm s Law and Resistivity Your name Lab section 1. What do you investigate in this lab? 2. When 1.0-A electric current flows through a piece of cylindrical copper wire, the voltage

More information

Session #18 Motors. R w+ - T, ω. Dan Frey. Figure by MIT OCW.

Session #18 Motors. R w+ - T, ω. Dan Frey. Figure by MIT OCW. Session #18 Motors Figure by MIT OCW T, ω R w - E i V Dan Frey - Current versus Externally Applied Load I used a NiCd battery pack I discharged it across a (physically) big variable resistance i meas i

More information

ELEN 236 DC Motors 1 DC Motors

ELEN 236 DC Motors 1 DC Motors ELEN 236 DC Motors 1 DC Motors Pictures source: http://hyperphysics.phy-astr.gsu.edu/hbase/magnetic/mothow.html#c1 1 2 3 Some DC Motor Terms: 1. rotor: The movable part of the DC motor 2. armature: The

More information

To expose the students to the operation of D.C. machines and transformers and give them experimental skill.

To expose the students to the operation of D.C. machines and transformers and give them experimental skill. TOTAL: 45 PERIODS EE6411 ELECTRICAL MACHINES LABORATORY I L T P C 0 0 3 2 OBJECTIVES: To expose the students to the operation of D.C. machines and transformers and give them experimental skill. LIST OF

More information

EMEC 1 LAB Laboratory Manual

EMEC 1 LAB Laboratory Manual DEV BHOOMI INSTITUTE OF TECHNOLOGY CHAKRATA ROAD,NAVGAOUN MANDUWALA,UTTARAKHAND Programs: B.TECH. (Electrical and Electronics Engineering) EMEC 1 LAB Laboratory Manual PREPARED BY Saurabh Rajvanshi ASST.PROFESSOR,

More information

DC MOTORS DC Motors DC Motor is a Machine which converts Electrical energy into Mechanical energy. Dc motors are used in steel plants, paper mills, textile mills, cranes, printing presses, Electrical locomotives

More information

PHYSICS MCQ (TERM-1) BOARD PAPERS

PHYSICS MCQ (TERM-1) BOARD PAPERS GRADE: 10 PHYSICS MCQ (TERM-1) BOARD PAPERS 1 The number of division in ammeter of range 2A is 10 and voltmeter of range 5 V is 20. When the switch of the circuit given below is closed, ammeter reading

More information

DC Series Motors by Thomas E. Kissell Industrial Electronics, Second Edition, Prentice Hall PTR

DC Series Motors by Thomas E. Kissell Industrial Electronics, Second Edition, Prentice Hall PTR Site Help Search NI Developer Zone DC Series Motors by Thomas E. Kissell Industrial Electronics, Second Edition, Prentice Hall PTR Back to Document Table of Contents: Series Motor Diagram Series Motor

More information

EE6351 ELECTRIC DRIVES AND CONTROL UNIT-1 INTRODUTION

EE6351 ELECTRIC DRIVES AND CONTROL UNIT-1 INTRODUTION EE6351 ELECTRIC DRIVES AND CONTROL UNIT-1 INTRODUTION 1. What is meant by drive and electric drive? Machines employed for motion control are called drives and may employ any one of the prime movers for

More information

Lab 9: Faraday s and Ampere s Laws

Lab 9: Faraday s and Ampere s Laws Lab 9: Faraday s and Ampere s Laws Introduction In this experiment we will explore the magnetic field produced by a current in a cylindrical coil of wire, that is, a solenoid. In the previous experiment

More information

Figure 1. Figure

Figure 1. Figure Q1.Figure 1 shows a circuit including a thermistor T in series with a variable resistor R. The battery has negligible internal resistance. Figure 1 The resistance temperature (R θ) characteristic for T

More information

Voltage and Current in Simple Circuits (Voltage Sensor, Current Sensor)

Voltage and Current in Simple Circuits (Voltage Sensor, Current Sensor) 68 Voltage and Current in Simple Circuits (Voltage Sensor, Current Sensor) E&M: Voltage and current Equipment List DataStudio file: 68 Simple Circuits.ds Qty Items Part Numbers 1 PASCO interface (for two

More information

PROPERTIES OF ELECTRIC CIRCUITS

PROPERTIES OF ELECTRIC CIRCUITS Name: PROPERTIES OF ELECTRIC CIRCUITS Date: Go to www.linville.ca and click on the page Computer Simulations or go to http://phet.colorado.edu/simulations open the Circuit Construction: DC and then click

More information

Principles of Electrical Engineering

Principles of Electrical Engineering D.C GENERATORS Principle of operation of D.C machines, types of D.C Generators, e.m.f equation of D.C Generator, O.C.C of a D.C Shunt Generator, Load characteristics of D.C.Generators GENERATOR PRINCIPLE:

More information

Lecture 15 Motor Controls & Drives

Lecture 15 Motor Controls & Drives ECE 211 Lectures Page 1 Lecture 15 Motor Controls & Drives Tuesday, July 29, 2014 1:00 PM DC Motors and Control Circuits Types of DC Motors Shunt Motors Series Motors Compound Motors Permanent Magnet Motor

More information

Goals. Introduction (4.1) R = V I

Goals. Introduction (4.1) R = V I Lab 4. Ohm s Law Goals To understand Ohm s law, used to describe behavior of electrical conduction in many materials and circuits. To calculate electrical power dissipated as heat. To understand and use

More information

Application Information

Application Information Moog Components Group manufactures a comprehensive line of brush-type and brushless motors, as well as brushless controllers. The purpose of this document is to provide a guide for the selection and application

More information

ELECTRICAL MAINTENANCE

ELECTRICAL MAINTENANCE ELECTRICAL MAINTENANCE II PRACTICAL JOURNAL DATA 1 EXPERIMENT NO. 1 AIM: TO FIND VOLTAGE RATIO OF A GIVEN TRANSFORMER. CIRCUIT DIAGRAM: OBSERVATION TABLE: Sr.No. 1 2 3 4 Primary Voltage (V 1 ) Secondary

More information

AC Motors vs DC Motors. DC Motors. DC Motor Classification ... Prof. Dr. M. Zahurul Haq

AC Motors vs DC Motors. DC Motors. DC Motor Classification ... Prof. Dr. M. Zahurul Haq AC Motors vs DC Motors DC Motors Prof. Dr. M. Zahurul Haq http://teacher.buet.ac.bd/zahurul/ Department of Mechanical Engineering Bangladesh University of Engineering & Technology ME 6401: Advanced Mechatronics

More information

Electromagnetic Induction Chapter Questions. 1. What is the Electromagnetic Force (EMF)? What are the units of EMF?

Electromagnetic Induction Chapter Questions. 1. What is the Electromagnetic Force (EMF)? What are the units of EMF? Electromagnetic Induction Chapter Questions 1. What is the Electromagnetic Force (EMF)? What are the units of EMF? 2. The discovery of electric currents generating an magnetic field led physicists to look

More information

Which of the following statements is/are correct about the circuit above?

Which of the following statements is/are correct about the circuit above? Name: ( ) Class: Date: Electricity Exercises 1. Which of the following statements is/are correct about the circuit above? (1) Electrons flow from right to left through the bulb A. (2) Charges will be used

More information

Lab 1: DC Motors Tuesday, Feb 8 / Wednesday, Feb 9

Lab 1: DC Motors Tuesday, Feb 8 / Wednesday, Feb 9 Introduction MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science 6.007 Electromagnetic Energy: From Motors to Lasers Spring 2011 Do the pre-lab before you come

More information

DHANALAKSHMI COLLEGE OF ENGINEERING Manimangalam, Tambaram, Chennai

DHANALAKSHMI COLLEGE OF ENGINEERING Manimangalam, Tambaram, Chennai DHANALAKSHMI COLLEGE OF ENGINEERING Manimangalam, Tambaram, Chennai 601 301 DEPARTMENT OF MECHANICAL ENGINEERING EE 8361- Electrical Engineering LABORATORY III SEMESTER - R 2017 LABORATORY MANUAL Name

More information

PhysicsAndMathsTutor.com 1

PhysicsAndMathsTutor.com 1 Q1. A battery of emf 9.0 V and internal resistance, r, is connected in the circuit shown in the figure below. (a) The current in the battery is 1.0 A. (i) Calculate the pd between points A and B in the

More information

Module 9. DC Machines. Version 2 EE IIT, Kharagpur

Module 9. DC Machines. Version 2 EE IIT, Kharagpur Module 9 DC Machines Lesson 38 D.C Generators Contents 38 D.C Generators (Lesson-38) 4 38.1 Goals of the lesson.. 4 38.2 Generator types & characteristics.... 4 38.2.1 Characteristics of a separately excited

More information

Getting Started with the Digilent Electronics Explorer Board

Getting Started with the Digilent Electronics Explorer Board Getting Started with the Digilent Electronics Explorer Board This tutorial provides a very basic overview of the Digilent Electronics Explorer (EE) Board. 1. EE Board Physical Description A top view of

More information

Federal Urdu University of Arts, Science & Technology Islamabad Pakistan ELECTRICAL MACHINES

Federal Urdu University of Arts, Science & Technology Islamabad Pakistan ELECTRICAL MACHINES ELECTRICAL MACHINES CONTROL SYSTEMS & MACHINES LAB DEPARTMENT OF ELECTRICAL ENGINEERING Prepared By: Checked By: Approved By: Engr. Yousaf Hameed Engr. M.Nasim Khan Dr.Noman Jafri Lecturer (Lab) Electrical,

More information

Dev Bhoomi Institute Of Technology LABORATORY Department of Electrical And Electronics Engg. Electro-mechanical Energy Conversion II

Dev Bhoomi Institute Of Technology LABORATORY Department of Electrical And Electronics Engg. Electro-mechanical Energy Conversion II REV. NO. : REV. DATE : PAGE: 1 Electro-mechanical Energy Conversion II 1. To perform no load and blocked rotor tests on a three phase squirrel cage induction motor and determine equivalent circuit. 2.

More information

EGG 101L INTRODUCTION TO ENGINEERING EXPERIENCE

EGG 101L INTRODUCTION TO ENGINEERING EXPERIENCE EGG 101L INTRODUCTION TO ENGINEERING EXPERIENCE LABORATORY 8: DC MOTOR CONTROL DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING UNIVERSITY OF NEVADA, LAS VEGAS GOAL: This section will introduce DC motors

More information

Application Notes. Calculating Mechanical Power Requirements. P rot = T x W

Application Notes. Calculating Mechanical Power Requirements. P rot = T x W Application Notes Motor Calculations Calculating Mechanical Power Requirements Torque - Speed Curves Numerical Calculation Sample Calculation Thermal Calculations Motor Data Sheet Analysis Search Site

More information

Lab # 4 Parallel Circuits

Lab # 4 Parallel Circuits Lab # 4 Parallel Circuits Name(s) Obtain an Electro-Trainer and wire it exactly as shown (Be sure to use the 100 ohm resistor) 1) Record the volt drop and current flow for the Switch, the Resistor and

More information

NORTHERN ILLINOIS UNIVERSITY PHYSICS DEPARTMENT. Physics 211 E&M and Quantum Physics Spring Lab #6: Magnetic Fields

NORTHERN ILLINOIS UNIVERSITY PHYSICS DEPARTMENT. Physics 211 E&M and Quantum Physics Spring Lab #6: Magnetic Fields NORTHERN ILLINOIS UNIVERSITY PHYSICS DEPARTMENT Physics 211 E&M and Quantum Physics Spring 2018 Lab #6: Magnetic Fields Lab Writeup Due: Mon/Wed/Thu/Fri, March 5/7/8/9, 2018 Background Magnetic fields

More information

AE105 PRINCIPLES OF ELECTRICAL ENGINEERING JUNE 2014

AE105 PRINCIPLES OF ELECTRICAL ENGINEERING JUNE 2014 Q.2 a. Explain in detail eddy current losses in a magnetic material. Explain the factors on which it depends. How it can be reduced? IETE 1 b. A magnetic circuit with a single air gap is shown in given

More information

Department of Electrical and Computer Engineering

Department of Electrical and Computer Engineering Page 1 of 1 Faculty of Engineering, Architecture and Science Department of Electrical and Computer Engineering Course Number EES 612 Course Title Electrical Machines and Actuators Semester/Year Instructor

More information

Brake Test On Three Phase Induction Motor Lab Manual

Brake Test On Three Phase Induction Motor Lab Manual Brake Test On Three Phase Induction Motor Lab Manual Electrical engineering machine lab manual. Brake test on three phase squirrel cage induction motor. No-load &, blocked rotor tests on three phase Slip.

More information

All Worn Out! Measure the voltage of batteries as they discharge. Predict how different size batteries will behave when being discharged.

All Worn Out! Measure the voltage of batteries as they discharge. Predict how different size batteries will behave when being discharged. All Worn Out! Computer 43 Have you ever wondered why some flashlights use small batteries and some use big ones? What difference does it make? Do larger batteries make the light brighter? Will the size

More information

Ohm s Law. 1-Introduction: General Physics Laboratory (PHY119) Basic Electrical Concepts:

Ohm s Law. 1-Introduction: General Physics Laboratory (PHY119) Basic Electrical Concepts: Ohm s Law General Physics Laboratory (PHY119) 1-Introduction: Basic Electrical Concepts: 1- Current (I): Is the flow of electrons through a conductor or semiconductor. For current to flow, it requires

More information

Circuit Analysis Questions A level standard

Circuit Analysis Questions A level standard 1. (a) set of decorative lights consists of a string of lamps. Each lamp is rated at 5.0 V, 0.40 W and is connected in series to a 230 V supply. Calculate the number of lamps in the set, so that each lamp

More information

ELECTRICITY: INDUCTORS QUESTIONS

ELECTRICITY: INDUCTORS QUESTIONS ELECTRICITY: INDUCTORS QUESTIONS No Brain Too Small PHYSICS QUESTION TWO (2017;2) In a car engine, an induction coil is used to produce a very high voltage spark. An induction coil acts in a similar way

More information

III EC6362 ELECTRONIC CIRCUITS AND DIGITAL LABORATORY

III EC6362 ELECTRONIC CIRCUITS AND DIGITAL LABORATORY Sl No Faculty of Mechanical Engineering BE Robotics and Automation (R 2013) Semester III EC6362 ELECTRONIC CIRCUITS AND DIGITAL LABORATORY 1 0 30V RPS 12 2 0 50V RPS 2 3 0 5V RPS 2 4 0 30V Voltmeter 10

More information

Electric Circuits Lab

Electric Circuits Lab Electric Circuits Lab Purpose: To construct series and parallel circuits To compare the current, voltage, and resistance in series and parallel circuits To draw schematic (circuit) diagrams of various

More information

DC Choppers Applications in DC motor Drives and Renewable Energies. Part I- Electric DC Motor Drives

DC Choppers Applications in DC motor Drives and Renewable Energies. Part I- Electric DC Motor Drives Electrical Engineering Division Page 1 of 10 DC Choppers Applications in DC motor Drives and Renewable Energies Many industrial applications need a conversion of a voltage coming from a DC source into

More information

SRM Institute of Science and Technology (Deemed to be University)

SRM Institute of Science and Technology (Deemed to be University) 5EE0L-ELECTRICAL MACHINES LAB-II RECORD ACADEMIC YEAR: ODD SEMESTER 08-9 NAME : REG.NO. : DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING FACULTY OF ENGINEERING & TECHNOLOGY SRM Institute of Science

More information

LAB 7. SERIES AND PARALLEL RESISTORS

LAB 7. SERIES AND PARALLEL RESISTORS Name: LAB 7. SERIES AND PARALLEL RESISTORS Problem How do you measure resistance, voltage, and current in a resistor? How are these quantities related? What is the difference between a series circuit and

More information

Mini-Lab Gas Turbine Power System TM Sample Lab Experiment Manual

Mini-Lab Gas Turbine Power System TM Sample Lab Experiment Manual Mini-Lab Gas Turbine Power System TM Sample Lab Experiment Manual Lab Session #1: System Overview and Operation Purpose: To gain an understanding of the Mini-Lab TM Gas Turbine Power System as a whole

More information

ELECTRIC MACHINES EUROLAB 0.3 kw

ELECTRIC MACHINES EUROLAB 0.3 kw index SINGLE-PHASE MOTORS SPLIT-PHASE MOTOR DL 30130 CAPACITOR MOTOR DL 30140 UNIVERSAL MOTOR DL 30150 REPULSION MOTOR DL 30170 THREE PHASE ASYNCHRONOUS MOTORS SQUIRREL CAGE THREE PHASE ASYNCHRONOUS MOTOR

More information

University of TN Chattanooga Physics 1040L 8/28/2012

University of TN Chattanooga Physics 1040L 8/28/2012 PHYSICS 1040L LAB 5: MAGNETIC FIELD Objectives: 1. Determine the relationship between magnetic field and the current in a solenoid. 2. Determine the relationship between magnetic field and the number of

More information

Pre-lab Quiz/PHYS 224 Faraday s Law and Dynamo. Your name Lab section

Pre-lab Quiz/PHYS 224 Faraday s Law and Dynamo. Your name Lab section Pre-lab Quiz/PHYS 224 Faraday s Law and Dynamo Your name Lab section 1. What do you investigate in this lab? 2. In a dynamo, the coil is wound with N=100 turns of wire and has an area A=0.0001 m 2. The

More information

Academic Year

Academic Year EXCELLENCE INTERNATIONAL SCHOOL First Term, Work sheet (1) Grade (9) Academic Year 2014-2015 Subject: quantities Topics:- Static electricity - Eelectrical NAME: DATE: MULTIPLE CHOICE QUESTIONS: 1 - A circuit

More information

Exercise 2-1. The Separately-Excited DC Motor N S EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. Simplified equivalent circuit of a dc motor

Exercise 2-1. The Separately-Excited DC Motor N S EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. Simplified equivalent circuit of a dc motor Exercise 2-1 The Separately-Excited DC Motor EXERCISE OBJECTIVE When you have completed this exercise, you will be able to demonstrate the main operating characteristics of a separately-excited dc motor

More information

Electric Drives Experiment 3 Experimental Characterization of a DC Motor s Mechanical Parameters and its Torque-Speed Behavior

Electric Drives Experiment 3 Experimental Characterization of a DC Motor s Mechanical Parameters and its Torque-Speed Behavior Electric Drives Experiment 3 Experimental Characterization of a DC Motor s Mechanical Parameters and its Torque-Speed Behavior 3.1 Objective The objective of this activity is to experimentally measure

More information

Century Style Analog Panel Meters

Century Style Analog Panel Meters UL Recognized File # E91015 Except for the Wattmeters and Frequency Meters Glass window for optimum viewing Rugged black plastic case Black knife-edge pointer for precision reading The Specifications &

More information

SC10F Circuits Lab Name:

SC10F Circuits Lab Name: SC10F Circuits Lab Name: Purpose: In this lab you will be making, both, series and parallel circuits. You will then be using a millimeter to take readings at various points in these circuits. Using these

More information

Circuits-Circuit Analysis

Circuits-Circuit Analysis Base your answers to questions 1 through 3 on the information and diagram below. 4. A 9-volt battery is connected to a 4-ohm resistor and a 5-ohm resistor as shown in the diagram below. A 3.0-ohm resistor,

More information

To discover the factors affecting the direction of rotation and speed of three-phase motors.

To discover the factors affecting the direction of rotation and speed of three-phase motors. EXPERIMENT 12 Direction of Rotation of Three-Phase Motor PURPOSE: To discover the factors affecting the direction of rotation and speed of three-phase motors. BRIEFING: The stators of three-phase motors

More information

Guaranteed Technical Particulars(GTP) Deviation/Remarks Specify if any. Computerized Motor testing system suitable to test LV 3 phase motors

Guaranteed Technical Particulars(GTP) Deviation/Remarks Specify if any. Computerized Motor testing system suitable to test LV 3 phase motors Section II - Technical Specification Tender Enquiry No: BUY/EATD(BEE)-01/12-13 Name of the Equipment: MOTOR TESTING SYSTEM Note: The Offers should be submitted only in this format otherwise the offer will

More information

RENEWABLE ENERGY TRAINER

RENEWABLE ENERGY TRAINER RENEWABLE ENERGY TRAINER Our most advanced training platform, for your most advanced experiments. Explores the cutting-edge science behind renewable energy engineering Features dozens of customizable expansion

More information

Your Name Lab Section

Your Name Lab Section Pre-Lab Quiz / PHYS 224 Ohm s Law and Resistivity Your Name Lab Section 1. What do you investigate in this lab? 2. When 1.0-A electric current flows through a piece of cylindrical copper wire, the voltage

More information

Powerframes - Power Electronics

Powerframes - Power Electronics Powerframes - Power Electronics 70 series The study of power electronic devices, motor drives and circuits is an essential part of any course on power electrical systems. The Series 70 Power Electronics

More information

Lab 6: Wind Turbine Generators

Lab 6: Wind Turbine Generators Lab 6: Wind Turbine Generators Name: Pre Lab Tip speed ratio: Tip speed ratio (TSR) is defined as: Ω, where Ω=angular velocity of wind, and R=radius of rotor (blade length). If the rotational speed of

More information

Lab 4. DC Circuits II

Lab 4. DC Circuits II Physics 2020, Spring 2005 Lab 4 page 1 of 7 Lab 4. DC Circuits II INTRODUCTION: This week we will continue with DC circuits, but now with an emphasis on current rather than voltage. Of course, in order

More information