Leaner Lifted-Flame Combustion Enabled by the Use of an Oxygenated Fuel or a Novel Mixing-Enhancement Technique

Size: px
Start display at page:

Download "Leaner Lifted-Flame Combustion Enabled by the Use of an Oxygenated Fuel or a Novel Mixing-Enhancement Technique"

Transcription

1 Leaner Lifted-Flame Combustion Enabled by the Use of an Oxygenated Fuel or a Novel Mixing-Enhancement Technique Ryan K. Gehmlich and Charles J. Mueller Research Supported by US Dept. of Energy, Office of Vehicle Technologies, Program Manager Kevin Stork; and Ford Motor Company, Program Manager Eric Kurtz 2 nd CRC Advanced Fuels and Engine Efficiency Workshop Sandia National Laboratories, Livermore, CA November 3, 2016

2 2 Presentation Outline Engines 101 & Leaner Lifted-Flame Combustion (LLFC) Concept Globally premixed vs. mixing-controlled combustion strategies Optical Engine Experiments Fuels tested Engine specifications and schematic Diagnostics Path to LLFC (2-hole injector tip experiments) Injection pressure and IMT effects Sustaining LLFC at higher loads (6-hole injector tip experiments) Oxygenated fuel effects LLFC Enabled by In-Cylinder Mixing Enhancement Technique Ducted fuel injection (DFI) concept Constant volume combustion vessel experiments Key advantages of DFI Summary

3 3 Engines 101: Combustion Strategies Globally Premixed Mixing-Controlled Combustible mixture exists throughout (most of) the combustion chamber Combustible mixture exists only at the lift-off length and downstream

4 Leaner Lifted-Flame Combustion: Research Objective 4 Determine whether moderate-load LLFC can be achieved and sustained through the use of: Oxygenated fuel Enhanced fuel/charge-gas mixing upstream of the liftoff length Small injector orifices (~110 µm) High injection pressures (~240 MPa) Lower charge-gas temperatures / higher charge-gas densities Novel in-cylinder mixing geometries Goal: Maintain (H) 2 during the combustion event

5 5 Fuels Tested CFA = #2 ULSD emission-certification fuel T50 = 50 vol% TPGME + balance CFA TPGME = tri-propylene glycol mono-methyl ether CFA TPGME (C 10 H 22 O 4 ) T50 (TPGME+CFA) v oxy [%] f [%] Y C [%] Y H [%] Y O [%] [kg/m 3 ] CN [-] q LHV [MJ/kg]

6 6 Optical Engine Specifications and Schematic Research engine Cycle Single-cylinder 4-stroke CIDI Valves per cylinder 4 Bore Stroke Displacement per cyl. Conn. rod length Conn. rod offset Piston bowl diameter Piston bowl depth Squish height 125 mm 140 mm 1.72 liters 225 mm None 90 mm 16.4 mm 1.5 mm Swirl ratio 0.59 Compression ratio 12.5:1 Simulated compr. ratio 16.0:1 Engine is skip-fired: 1 fired + 14 motored N 2 and CO 2 added to intake air to achieve X O2 target and same T, p, c p at -10 CAD ATDC

7 7 Diagnostics Fuel injection: Injected quantity yields fuel conversion efficiency; also measure injection rate (per orifice) Cylinder pressure: Apparent heatrelease rate (AHRR), T bulk, T core Two-camera, simultaneous highspeed imaging Natural luminosity (NL): spatial distribution of hot soot Chemiluminescence (CL): mean liftoff length (H) and ( H ) Emissions HC via flame ionization detector CO and CO 2 via non-dispersive infra-red absorption, O 2 via paramagnetic NO x via heated chemiluminescence detector Smoke via smoke meter; soot vol. fraction via laser-induced incandescence in exhaust stream HC, CO, and soot emissions used to determine combustion efficiency

8 8 Presentation Outline Engines 101 & Leaner Lifted-Flame Combustion (LLFC) Concept Globally premixed vs. mixing-controlled combustion strategies Optical Engine Experiments Fuels tested Engine specifications and schematic Diagnostics Path to LLFC (2-hole injector tip experiments) Fuel, injection pressure and IMT effects Sustaining LLFC at higher loads (6-hole injector tip experiments) Oxygenated fuel effects LLFC Enabled by In-Cylinder Mixing Enhancement Technique Ducted fuel injection (DFI) concept Constant volume combustion vessel experiments Key advantages of DFI Summary

9 The Path to LLFC: Fuel, Injection Pressure, and IMT Effects Using a 2-Hole Injector Tip 9 LLFC was previously demonstrated using neat oxygenates While this was a neat result, this is impractical at a large scale Attempted to achieve LLFC with diesel fuel (2-hole, 6-hole, 10-hole injector tips). Approached LLFC with 2-hole tip only. Changed directions toward: Oxygenated fuel mixture effects Fuel injection pressure effects Intake manifold temperature effects A combination of these parameters led to achieving and sustaining LLFC with a 2-hole tip! ( H ) 2.0 and SINL 0 LLFC! LLFC has been achieved and sustained!

10 The Path to LLFC: Fuel, Injection Pressure and IMT Effects Using a 2-Hole Injector Tip 10 Natural luminosity (NL) Chemiluminescence (CL) 80-MPa P inj & 95 C IMT 240-MPa P inj & 50 C IMT: Have high-t chemistry (CL), but not hot soot (NL)

11 11 Next Steps: 6-Hole Injector Tip, Higher Loads Next step is to try a more realistic 6-hole injector, to reach higher loads Turn all the dials to their limits: Fuel: Highest reasonable oxygen content T50 Lower intake manifold temperature (to 30 C) Retard the timing (up to +5 CAD ATDC SOC) Lower coolant temperature (to 85 C) How high of a load can we achieve while sustaining LLFC?

12 Load, Injection, and Operating Parameters 12 Speed Injector 1500 rpm Solenoid Common Rail Injector Tip 6 x mm x 140 Injection Schedule Actual Duration of Injection (DOI a ) Injection Pressure (P inj ) Gross Ind. Mean Eff. Pressure Intake Manifold Abs. Pressure Single Injection Near TDC 2.4 ms (T50), ms (CFA) 240 MPa bar 2.50 bar abs. Coolant Temperature 85 C Intake Manifold Temp. (IMT) 30 C Fuel T50 CFA Start of Comb. (CAD ATDC) Intake-O 2 Mole Fraction (X O2 ) 21% 16% T50 data taken at constant injection duration (2.4 ms) CFA data varied injection duration to match load for each corresponding T50 condition.

13 Start of Combustion: +5 CAD ATDC, Load ~6 bar gimep LLFC Achieved and Sustained at Retarded Injection Timing 13 Apparent heatrelease rate, AHRR Mean lift-off length, H Spatially integrated natural luminosity, SINL, a measure of hot incylinder soot Equivalence ratio at the mean lift-off length, ( H ) T50 in LLFC!

14 Start of Combustion: +5 CAD ATDC LLFC Achieved and Sustained at Retarded Injection Timing 14 CFA 13.0 o Cycle 4 G rel = s n = s 13.0 o Cycle 4 n = 29 AHRR [J/CAD] (blue) Crank Angle [CAD] (H) [-] (black) T o Cycle 2 G rel = s n = s 18.0 o Cycle 2 n = 29 AHRR [J/CAD] (blue) Crank Angle [CAD] (H) [-] (black)

15 15 Soot Emissions LLFC regime 240-MPa P inj, All SOC Timings, 30 C IMT T50 Relative to CFA Smoke is lower for T50, but all cases are well below 2010 targets (~0.1 FSN) Also may need to consider particle #, even with zero filter smoke need more sensitive measurements of soot emissions SINL is 70-90% lower for T50

16 16 NO x, HC, and CO Emissions ISNOx is 25-30% lower for T50 relative to CFA ISHC is up to 25% lower for T50 at +5 ATDC SOC ISCO is generally higher for T50 ISNO x is 25-30% lower 240-MPa P inj, All SOC Timings, 30 C IMT

17 17 Combustion Phasing and Efficiency T50 ign. delay is considerably shorter compared to CFA T50 phasing is later relative to CFA due to longer injection events for equivalent load η c is slightly higher for a given timing and X O2, but η f,ig is slightly lower (~1%) than that of CFA, probably due to less optimal combustion phasing Timing retard required for LLFC was moderate; not a huge efficiency hit 240-MPa P inj, All SOC Timings, 30 C IMT

18 18 Combustion Noise and Ringing Intensity RI < 5 ACEC noise 1500 RPM ~88 dba T50 relative to CFA under matched load conditions: T50 noise reduced by ~4-6 dba Ringing intensity reduced by 60-80% Noise and RI calculated using techniques outlined in the ACEC Tech Team approved Light-Duty Noise Guideline for Advanced Combustion Research 240-MPa P inj, All SOC Timings, 30 C IMT

19 19 Presentation Outline Engines 101 & Leaner Lifted-Flame Combustion (LLFC) Concept Globally premixed vs. mixing-controlled combustion strategies Optical Engine Experiments Fuels tested Engine specifications and schematic Diagnostics Path to LLFC (2-hole injector tip experiments) Fuel, injection pressure and IMT effects Sustaining LLFC at higher loads (6-hole injector tip experiments) Oxygenated fuel effects LLFC Enabled by In-Cylinder Mixing Enhancement Technique Ducted fuel injection (DFI) concept Constant volume combustion vessel experiments Key advantages of DFI Summary

20 Next Steps: Aiming for LLFC Using an In-Cylinder Mixing Enhancement Technique 20 Further increases in fuel-injection pressure and fuel oxygenation are likely insufficient to provide adequate mixing to sustain LLFC at high loads a new approach is necessary. Ducted fuel injection (DFI): Inject fuel through a tube downstream of the orifice exit to increase the velocity gradients that drive turbulent mixing of fuel and charge-gas Could enable the use of less-costly: Fuels (e.g. higher aromatic contents) Fuel-injection equipment (e.g. lower injection pressures) Aftertreatment systems Is it possible to sustain φ(h) < 2 without fuel oxygenation? At higher loads?

21 21 Multiple simultaneous high speed cameras measure time-resolved: Natural luminosity (NL) OH* chemiluminescence (CL) Diffuse back-illumination (DBI) Ignition delay (ID) Optical Diagnostic Setup

22 Fuel: n-dodecane 22

23 23 Key Advantages to the DFI Concept DFI could enable LLFC at higher loads and without changes to fuel Concept is simple and effective Minimal manufacturing costs Tolerant to EGR & fuel variability

24 24 Summary Oxygenates are helpful for facilitating leaner lifted-flame combustion LLFC was sustained with a 6-hole tip and T50 fuel through a combination of: High injection pressure (240 MPa) Low intake manifold temperature (30 C) Slightly retarded timing (+5 CAD ATDC SOC) Targets achieved in LLFC: gimep > 6 bar Zero engine-out smoke Relative to CFA: 25-30% lower ISNO x Noise reduced by 4-6 dba, RI reduced by 60-80% Other emissions relatively unchanged regardless of dilution LLFC is a mixing-controlled, EGR-tolerant, soot-free combustion mode Ducted fuel injection is a promising potential path for sustaining LLFC at higher loads

25 25 Acknowledgements Scott Skeen, Julien Manin, and Lyle Pickett For assistance with setting up diagnostics and running combustion-vessel experiments Sam Fairbanks For assistance with laboratory/engine hardware and running experiments Christopher Nilsen and Dan Ruth Data acquisition and analysis Eric Kurtz and Chris Polonowski (Ford) For helpful technical discussions Bill Cannella (Chevron) For providing the #2 ULSD certification fuel (CFA) Gary Hubbard, Chris Carlen, and Keith Penney For assistance with data-acquisition software and electronics

26 Thank you for your attention! 26

27 Additional Info 27

28 Start of Combustion: -5 CAD ATDC LLFC Approached at Advanced Injection Timing 28 Apparent heatrelease rate, AHRR Mean lift-off length, H Spatially integrated natural luminosity, SINL, a measure of hot incylinder soot Equivalence ratio at the mean lift-off length, ( H ) No sustained LLFC

29 Start of Combustion: -5 CAD ATDC Movies: LLFC Approached at Advanced Ignition Timing 29 CFA 5.0 o Cycle 2 G rel = s n = s 5.0 o Cycle 2 n = 25 AHRR [J/CAD] (blue) Crank Angle [CAD] (H) [-] (black) T o Cycle 2 G rel = s n = s 11.0 o Cycle 2 n = 35 AHRR [J/CAD] (blue) Crank Angle [CAD] (H) [-] (black)

30 OH* Chemiluminescence Camera Phantom intensified v mm f/4.5 UV Nikkor lens 45 µs camera exposure 20,000 fps, 400 x 224 resolution Intensifier gate: 17 µs for 21% O 2, 46 µs for 15% O ±10 nm bandpass filter, long-λ block Quantified Lift-off length Natural Luminosity (Soot) Camera Photron SA-X2 50 mm f/1.2 lens 50,000 fps, 512 x 192 resolution 600 nm short-wave pass filter and heat absorption (KG3) filter were used to suppress high intensity soot luminosity. Shutter time fixed at 5.0 µs f/stop varied from f/1.2 to f/8 depending on O 2 mass fraction and temperature. Ignition Delay (ID) Camera Photron SA-X2 105 mm f/1.8 lens 50,000 fps, 512 x 432 resolution No filters for maximum sensitivity to first high temperature reactions µs shutter time Diffused Back-Illumination (DBI) Camera Photron SA-X2 50 mm f/1.2 lens with 500D close-up lens 100,000 fps, alternating light/dark frames, 640 x 168 resolution 400±10 nm filter (to attenuate broadband luminosity from soot) 1 µs exposure time to measure brightest part of a 1.5 µs LED pulse duration. Sensitive extinction diagnostic allows quantitative 2-D measurements of soot concentration

Maximizing Engine Efficiency by Controlling Fuel Reactivity Using Conventional and Alternative Fuels. Sage Kokjohn

Maximizing Engine Efficiency by Controlling Fuel Reactivity Using Conventional and Alternative Fuels. Sage Kokjohn Maximizing Engine Efficiency by Controlling Fuel Reactivity Using Conventional and Alternative Fuels Sage Kokjohn Acknowledgments Direct-injection Engine Research Consortium (DERC) US Department of Energy/Sandia

More information

B. von Rotz, A. Schmid, S. Hensel, K. Herrmann, K. Boulouchos. WinGD/PSI, 10/06/2016, CIMAC Congress 2016 / B. von Rotz

B. von Rotz, A. Schmid, S. Hensel, K. Herrmann, K. Boulouchos. WinGD/PSI, 10/06/2016, CIMAC Congress 2016 / B. von Rotz Comparative Investigation of Spray Formation, Ignition and Combustion for LFO and HFO at Conditions relevant for Large 2-Stroke Marine Diesel Engine Combustion Systems B. von Rotz, A. Schmid, S. Hensel,

More information

8 th International Symposium TCDE Choongsik Bae and Sangwook Han. 9 May 2011 KAIST Engine Laboratory

8 th International Symposium TCDE Choongsik Bae and Sangwook Han. 9 May 2011 KAIST Engine Laboratory 8 th International Symposium TCDE 2011 Choongsik Bae and Sangwook Han 9 May 2011 KAIST Engine Laboratory Contents 1. Background and Objective 2. Experimental Setup and Conditions 3. Results and Discussion

More information

Improving Fuel Efficiency with Fuel-Reactivity-Controlled Combustion

Improving Fuel Efficiency with Fuel-Reactivity-Controlled Combustion ERC Symposium 2009 1 Improving Fuel Efficiency with Fuel-Reactivity-Controlled Combustion Rolf D. Reitz, Reed Hanson, Derek Splitter, Sage Kokjohn Engine Research Center University of Wisconsin-Madison

More information

Fuel Effects in Advanced Combustion -Partially Premixed Combustion (PPC) with Gasoline-Type Fuels. William Cannella. Chevron

Fuel Effects in Advanced Combustion -Partially Premixed Combustion (PPC) with Gasoline-Type Fuels. William Cannella. Chevron Fuel Effects in Advanced Combustion -Partially Premixed Combustion (PPC) with Gasoline-Type Fuels William Cannella Chevron Acknowledgement Work Done In Collaboration With: Vittorio Manente, Prof. Bengt

More information

Dual Fuel Engine Charge Motion & Combustion Study

Dual Fuel Engine Charge Motion & Combustion Study Dual Fuel Engine Charge Motion & Combustion Study STAR-Global-Conference March 06-08, 2017 Berlin Kamlesh Ghael, Prof. Dr. Sebastian Kaiser (IVG-RF), M. Sc. Felix Rosenthal (IFKM-KIT) Introduction: Operation

More information

Performance of a Compression-Ignition Engine Using Direct-Injection of Liquid Ammonia/DME Mixture

Performance of a Compression-Ignition Engine Using Direct-Injection of Liquid Ammonia/DME Mixture Performance of a Compression-Ignition Engine Using Direct-Injection of Liquid Ammonia/DME Mixture Song-Charng Kong Matthias Veltman, Christopher Gross Department of Mechanical Engineering Iowa State University

More information

Proposal to establish a laboratory for combustion studies

Proposal to establish a laboratory for combustion studies Proposal to establish a laboratory for combustion studies Jayr de Amorim Filho Brazilian Bioethanol Science and Technology Laboratory SCRE Single Cylinder Research Engine Laboratory OUTLINE Requirements,

More information

Satbir Singh and Rolf D. Reitz Engine Research Center, Department of Mechanical Engineering, University of Wisconsin, Madison

Satbir Singh and Rolf D. Reitz Engine Research Center, Department of Mechanical Engineering, University of Wisconsin, Madison Comparison of Characteristic Time (), Representative Interactive Flamelet (RIF), and Direct Integration with Detailed Chemistry Combustion Models against Multi-Mode Combustion in a Heavy-Duty, DI Diesel

More information

Incorporation of Flamelet Generated Manifold Combustion Closure to OpenFOAM and Lib-ICE

Incorporation of Flamelet Generated Manifold Combustion Closure to OpenFOAM and Lib-ICE Multiphase and Reactive Flows Group 3 rd Two-day Meeting on IC Engine Simulations Using OpenFOAM Technology 22-23 Feb 2018 - Milano Incorporation of Flamelet Generated Manifold Combustion Closure to OpenFOAM

More information

Control of PCCI Combustion using Physical and Chemical Characteristics of Mixed Fuel

Control of PCCI Combustion using Physical and Chemical Characteristics of Mixed Fuel Doshisha Univ. - Energy Conversion Research Center International Seminar on Recent Trend of Fuel Research for Next-Generation Clean Engines December 5th, 27 Control of PCCI Combustion using Physical and

More information

is the crank angle between the initial spark and the time when about 10% of the charge is burned. θ θ

is the crank angle between the initial spark and the time when about 10% of the charge is burned. θ θ ME 410 Day 30 Phases of Combustion 1. Ignition 2. Early flame development θd θ 3. Flame propagation b 4. Flame termination The flame development angle θd is the crank angle between the initial spark and

More information

Internal Combustion Optical Sensor (ICOS)

Internal Combustion Optical Sensor (ICOS) Internal Combustion Optical Sensor (ICOS) Optical Engine Indication The ICOS System In-Cylinder Optical Indication 4air/fuel ratio 4exhaust gas concentration and EGR 4gas temperature 4analysis of highly

More information

Module 2:Genesis and Mechanism of Formation of Engine Emissions Lecture 9:Mechanisms of HC Formation in SI Engines... contd.

Module 2:Genesis and Mechanism of Formation of Engine Emissions Lecture 9:Mechanisms of HC Formation in SI Engines... contd. Mechanisms of HC Formation in SI Engines... contd. The Lecture Contains: HC from Lubricating Oil Film Combustion Chamber Deposits HC Mixture Quality and In-Cylinder Liquid Fuel HC from Misfired Combustion

More information

Charles J. Mueller Sandia National Laboratories Livermore, California

Charles J. Mueller Sandia National Laboratories Livermore, California Charles J. Mueller Sandia National Laboratories Livermore, California Research Supported by US DOE Office of FreedomCAR and Vehicle Technologies Program Manager: Kevin Stork Doshisha University Kyoto,

More information

Visualization of OH Chemiluminescence and Natural Luminosity of Biodiesel and Diesel Spray Combustion

Visualization of OH Chemiluminescence and Natural Luminosity of Biodiesel and Diesel Spray Combustion ILASS Americas, 23 nd Annual Conference on Liquid Atomization and Spray Systems, Ventura, CA., May 2011 Visualization of OH Chemiluminescence and Natural Luminosity of Biodiesel and Diesel Spray Combustion

More information

Module7:Advanced Combustion Systems and Alternative Powerplants Lecture 32:Stratified Charge Engines

Module7:Advanced Combustion Systems and Alternative Powerplants Lecture 32:Stratified Charge Engines ADVANCED COMBUSTION SYSTEMS AND ALTERNATIVE POWERPLANTS The Lecture Contains: DIRECT INJECTION STRATIFIED CHARGE (DISC) ENGINES Historical Overview Potential Advantages of DISC Engines DISC Engine Combustion

More information

The Influence of Fuel Cetane Number on Catalyst Light-Off Operation in a Modern Diesel Engine

The Influence of Fuel Cetane Number on Catalyst Light-Off Operation in a Modern Diesel Engine The Influence of Fuel Cetane Number on Catalyst Light-Off Operation in a Modern Diesel Engine 2nd CRC Advanced Fuel and Engine Efficiency Workshop Nov 3, 2016 Eric Kurtz, Ford Motor Company Diesel Combustion

More information

Foundations of Thermodynamics and Chemistry. 1 Introduction Preface Model-Building Simulation... 5 References...

Foundations of Thermodynamics and Chemistry. 1 Introduction Preface Model-Building Simulation... 5 References... Contents Part I Foundations of Thermodynamics and Chemistry 1 Introduction... 3 1.1 Preface.... 3 1.2 Model-Building... 3 1.3 Simulation... 5 References..... 8 2 Reciprocating Engines... 9 2.1 Energy Conversion...

More information

University of Huddersfield Repository

University of Huddersfield Repository University of Huddersfield Repository Stetsyuk, V., Crua, C., Pearson, R. and Gold, M. Direct imaging of primary atomisation in the near-nozzle region of diesel sprays Original Citation Stetsyuk, V., Crua,

More information

An Experimental Investigation of the Origin of Increased NO x Emissions When Fueling a Heavy-Duty Compression-Ignition Engine with Soy Biodiesel

An Experimental Investigation of the Origin of Increased NO x Emissions When Fueling a Heavy-Duty Compression-Ignition Engine with Soy Biodiesel 2009-01-1792 An Experimental Investigation of the Origin of Increased NO x Emissions When Fueling a Heavy-Duty Compression-Ignition Engine with Soy Biodiesel Charles J. Mueller, André L. Boehman, and Glen

More information

Effect of Reformer Gas on HCCI Combustion- Part II: Low Octane Fuels

Effect of Reformer Gas on HCCI Combustion- Part II: Low Octane Fuels Effect of Reformer Gas on HCCI Combustion- Part II: Low Octane Fuels Vahid Hosseini, and M David Checkel Mechanical Engineering University of Alberta, Edmonton, Canada project supported by Auto21 National

More information

Comparison of Soot Measurement Instruments during Transient and Steady State Operation

Comparison of Soot Measurement Instruments during Transient and Steady State Operation Comparison of Soot Measurement Instruments during Transient and Steady State Operation Christophe Barro, Philipp Vögelin, Pascal Wilhelm, Peter Obrecht, Konstantinos Boulouchos (Aerothermochemistry and

More information

Numerical Study of Flame Lift-off and Soot Formation in Diesel Fuel Jets

Numerical Study of Flame Lift-off and Soot Formation in Diesel Fuel Jets Numerical Study of Flame Lift-off and Soot Formation in Diesel Fuel Jets Song-Charng Kong*, Yong Sun and Rolf D. Reitz Engine Research Center, Department of Mechanical Engineering University of Wisconsin

More information

Alternative Fuels for DI-Diesel Engines Meeting Future Emission Standards

Alternative Fuels for DI-Diesel Engines Meeting Future Emission Standards 1 Alternative Fuels for DI-Diesel Engines Meeting Future Emission Standards ERC - 2007 Symposium Madison, June 6, 2007 Erik Koehler and Dean Tomazic FEV Engine Technology, Inc. Auburn Hills, MI, USA 2

More information

Heavy-Duty Diesel Engine Trends to Meet Future Emissions Standards (Euro VI)

Heavy-Duty Diesel Engine Trends to Meet Future Emissions Standards (Euro VI) Heavy-Duty Diesel Engine Trends to Meet Future Emissions Standards (Euro VI) Andrew Nicol AECC Technical Seminar on Heavy-Duty Vehicle Emissions (Euro VI) Brussels 25 October 2007 Contents Emissions Legislation

More information

EFFECT OF LOAD ON CLOSE-COUPLED POST-INJECTION EFFICACY FOR SOOT REDUCTION IN AN OPTICAL, HEAVY-DUTY DIESEL RESEARCH ENGINE

EFFECT OF LOAD ON CLOSE-COUPLED POST-INJECTION EFFICACY FOR SOOT REDUCTION IN AN OPTICAL, HEAVY-DUTY DIESEL RESEARCH ENGINE Internal Combustion Engine Fall Technical Conference ICEF2013 October 13-16, 2013, Dearborn, Michigan, USA ICEF2013-19037 EFFECT OF LOAD ON CLOSE-COUPLED POST-INJECTION EFFICACY FOR SOOT REDUCTION IN AN

More information

Quantifying Statistical Measures of Diesel Spray Soot Characteristics using Laser-Induced Incandescence

Quantifying Statistical Measures of Diesel Spray Soot Characteristics using Laser-Induced Incandescence Quantifying Statistical Measures of Diesel Spray Soot Characteristics using Laser-Induced Incandescence Jaclyn E. Johnson *, Seung Hyun Yoon, Seong-Young Lee, and Jeffrey D. Naber Michigan Technological

More information

POSIBILITIES TO IMPROVED HOMOGENEOUS CHARGE IN INTERNAL COMBUSTION ENGINES, USING C.F.D. PROGRAM

POSIBILITIES TO IMPROVED HOMOGENEOUS CHARGE IN INTERNAL COMBUSTION ENGINES, USING C.F.D. PROGRAM POSIBILITIES TO IMPROVED HOMOGENEOUS CHARGE IN INTERNAL COMBUSTION ENGINES, USING C.F.D. PROGRAM Alexandru-Bogdan Muntean *, Anghel,Chiru, Ruxandra-Cristina (Dica) Stanescu, Cristian Soimaru Transilvania

More information

Marc ZELLAT, Driss ABOURI and Stefano DURANTI CD-adapco

Marc ZELLAT, Driss ABOURI and Stefano DURANTI CD-adapco 17 th International Multidimensional Engine User s Meeting at the SAE Congress 2007,April,15,2007 Detroit, MI RECENT ADVANCES IN DIESEL COMBUSTION MODELING: THE ECFM- CLEH COMBUSTION MODEL: A NEW CAPABILITY

More information

SI engine combustion

SI engine combustion SI engine combustion 1 SI engine combustion: How to burn things? Reactants Products Premixed Homogeneous reaction Not limited by transport process Fast/slow reactions compared with other time scale of

More information

Effect of Biodiesel Fuel on Emissions from Diesel Engine Complied with the Latest Emission Requirements in Japan Ref: JSAE Paper No.

Effect of Biodiesel Fuel on Emissions from Diesel Engine Complied with the Latest Emission Requirements in Japan Ref: JSAE Paper No. Biodiesel Technical Workshop Effect of Biodiesel Fuel on Emissions from Diesel Engine Complied with the Latest Emission Requirements in Japan Ref: JSAE Paper No.20135622 November 5-6, 2013 @ Kansas City,

More information

CHAPTER 8 EFFECTS OF COMBUSTION CHAMBER GEOMETRIES

CHAPTER 8 EFFECTS OF COMBUSTION CHAMBER GEOMETRIES 112 CHAPTER 8 EFFECTS OF COMBUSTION CHAMBER GEOMETRIES 8.1 INTRODUCTION Energy conservation and emissions have become of increasing concern over the past few decades. More stringent emission laws along

More information

Increased efficiency through gasoline engine downsizing

Increased efficiency through gasoline engine downsizing Loughborough University Institutional Repository Increased efficiency through gasoline engine downsizing This item was submitted to Loughborough University's Institutional Repository by the/an author.

More information

Overview of Engine Combustion Research at Sandia National Laboratories

Overview of Engine Combustion Research at Sandia National Laboratories SAE TECHNICAL PAPER SERIES 1999-01-2246 Overview of Engine Combustion Research at Sandia National Laboratories Robert W. Carling Sandia National Laboratories Gurpreet Singh Department of Energy Government/Industry

More information

Effects of Pre-injection on Combustion Characteristics of a Single-cylinder Diesel Engine

Effects of Pre-injection on Combustion Characteristics of a Single-cylinder Diesel Engine Proceedings of the ASME 2009 International Mechanical Engineering Congress & Exposition IMECE2009 November 13-19, Lake Buena Vista, Florida, USA IMECE2009-10493 IMECE2009-10493 Effects of Pre-injection

More information

The Effect of Volume Ratio of Ethanol Directly Injected in a Gasoline Port Injection Spark Ignition Engine

The Effect of Volume Ratio of Ethanol Directly Injected in a Gasoline Port Injection Spark Ignition Engine 10 th ASPACC July 19 22, 2015 Beijing, China The Effect of Volume Ratio of Ethanol Directly Injected in a Gasoline Port Injection Spark Ignition Engine Yuhan Huang a,b, Guang Hong a, Ronghua Huang b. a

More information

System Simulation for Aftertreatment. LES for Engines

System Simulation for Aftertreatment. LES for Engines System Simulation for Aftertreatment LES for Engines Christopher Rutland Engine Research Center University of Wisconsin-Madison Acknowledgements General Motors Research & Development Caterpillar, Inc.

More information

Optical methods for combustion research

Optical methods for combustion research KCFP Södertälje May 8, 2008 Optical methods for combustion research Mattias Richter Associate Professor Division of Combustion, Sweden Tolvan Tolvansson, 2007 Johannes Lindén, Division of Combustion Chemiluminescence

More information

LaVision Automotive. Innovative Measurement Technologies

LaVision Automotive. Innovative Measurement Technologies LaVision Automotive Innovative Measurement Technologies Focusing on Automotive Research & Development Optical Diagnostics for Automotive R&D Optical diagnostic technologies such as laser imaging and fiber

More information

1. INTRODUCTION 2. EXPERIMENTAL INVESTIGATIONS

1. INTRODUCTION 2. EXPERIMENTAL INVESTIGATIONS HIGH PRESSURE HYDROGEN INJECTION SYSTEM FOR A LARGE BORE 4 STROKE DIESEL ENGINE: INVESTIGATION OF THE MIXTURE FORMATION WITH LASER-OPTICAL MEASUREMENT TECHNIQUES AND NUMERICAL SIMULATIONS Dipl.-Ing. F.

More information

MODERN OPTICAL MEASUREMENT TECHNIQUES APPLIED IN A RAPID COMPRESSION MACHINE FOR THE INVESTIGATION OF INTERNAL COMBUSTION ENGINE CONCEPTS

MODERN OPTICAL MEASUREMENT TECHNIQUES APPLIED IN A RAPID COMPRESSION MACHINE FOR THE INVESTIGATION OF INTERNAL COMBUSTION ENGINE CONCEPTS MODERN OPTICAL MEASUREMENT TECHNIQUES APPLIED IN A RAPID COMPRESSION MACHINE FOR THE INVESTIGATION OF INTERNAL COMBUSTION ENGINE CONCEPTS P. Prechtl, F. Dorer, B. Ofner, S. Eisen, F. Mayinger Lehrstuhl

More information

Wood-to-Wheels Engines and Vehicles Research

Wood-to-Wheels Engines and Vehicles Research -Wheels Engines and Vehicles Research Dr. Jeff Naber Associate Professor ME-EM Department Michigan Tech University j.naber@mtu.edu Tel: 906.487.1938 1 Advanced Power Systems Research Center Advanced IC

More information

Advanced Combustion Strategies for High Efficiency Engines of the 21 st Century

Advanced Combustion Strategies for High Efficiency Engines of the 21 st Century Advanced Combustion Strategies for High Efficiency Engines of the 21 st Century Jason Martz Assistant Research Scientist and Adjunct Assistant Professor Department of Mechanical Engineering University

More information

Charles J. Mueller Sandia National Laboratories Livermore, California

Charles J. Mueller Sandia National Laboratories Livermore, California Charles J. Mueller Sandia National Laboratories Livermore, California Research Supported by US DOE Office of FreedomCAR and Vehicle Technologies Program Managers: Kevin Stork, Gurpreet Singh, Stephen Goguen

More information

EEN-E2002 Combustion Technology 2017 LE 3 answers

EEN-E2002 Combustion Technology 2017 LE 3 answers EEN-E2002 Combustion Technology 2017 LE 3 answers 1. Plot the following graphs from LEO-1 engine with data (Excel_sheet_data) attached on my courses? (12 p.) a. Draw cyclic pressure curve. Also non-fired

More information

REDUCTION OF EMISSIONS BY ENHANCING AIR SWIRL IN A DIESEL ENGINE WITH GROOVED CYLINDER HEAD

REDUCTION OF EMISSIONS BY ENHANCING AIR SWIRL IN A DIESEL ENGINE WITH GROOVED CYLINDER HEAD REDUCTION OF EMISSIONS BY ENHANCING AIR SWIRL IN A DIESEL ENGINE WITH GROOVED CYLINDER HEAD Dr.S.L.V. Prasad 1, Prof.V.Pandurangadu 2, Dr.P.Manoj Kumar 3, Dr G. Naga Malleshwara Rao 4 Dept.of Mechanical

More information

OPTICAL ANALYSIS OF A GDI SPRAY WALL-IMPINGEMENT FOR S.I. ENGINES. Istituto Motori CNR, Napoli Italy

OPTICAL ANALYSIS OF A GDI SPRAY WALL-IMPINGEMENT FOR S.I. ENGINES. Istituto Motori CNR, Napoli Italy OPTICAL ANALYSIS OF A GDI SPRAY WALL-IMPINGEMENT FOR S.I. ENGINES A. Montanaro, L. Allocca, S. Alfuso Istituto Motori CNR, Napoli Italy XV National Meeting, Milano 29-30 Novembre 2007 GENERAL CONSIDERATIONS

More information

A Study of EGR Stratification in an Engine Cylinder

A Study of EGR Stratification in an Engine Cylinder A Study of EGR Stratification in an Engine Cylinder Bassem Ramadan Kettering University ABSTRACT One strategy to decrease the amount of oxides of nitrogen formed and emitted from certain combustion devices,

More information

A Successful Approach to Reduce Emissions Using a Group Holes Nozzle. Yoshiaki NISHIJIMA Makoto MASHIDA Satoru SASAKI Kenji OSHIMA

A Successful Approach to Reduce Emissions Using a Group Holes Nozzle. Yoshiaki NISHIJIMA Makoto MASHIDA Satoru SASAKI Kenji OSHIMA A Successful Approach to Reduce Emissions Using a Group Holes Nozzle Yoshiaki NISHIJIMA Makoto MASHIDA Satoru SASAKI Kenji OSHIMA The Common Rail System, (CRS), has revolutionized diesel engines. DENSO

More information

CFD Combustion Models for IC Engines. Rolf D. Reitz

CFD Combustion Models for IC Engines. Rolf D. Reitz CFD Combustion Models for IC Engines Rolf D. Reitz Engine Research Center University of Wisconsin-Madison ERC Symposium, June 7, 27 http://www.cae.wisc.edu/~reitz Combustion and Emission Models at the

More information

COMBUSTION in SI ENGINES

COMBUSTION in SI ENGINES Internal Combustion Engines MAK 493E COMBUSTION in SI ENGINES Prof.Dr. Cem Soruşbay Istanbul Technical University Internal Combustion Engines MAK 493E Combustion in SI Engines Introduction Classification

More information

ETHANOL AND DIESEL FUEL IN EURO5 SINGLE CYLINDER RESEARCH ENGINE

ETHANOL AND DIESEL FUEL IN EURO5 SINGLE CYLINDER RESEARCH ENGINE ETHANOL AND DIESEL FUEL IN EURO5 SINGLE CYLINDER RESEARCH ENGINE E. Mancaruso, B.M. Vaglieco e.mancaruso@im.cnr.it Istituto Motori CNR, Via G. Marconi, 8, 8125, Naples, Italy Abstract Experiments were

More information

EFFECTS OF INTAKE AIR TEMPERATURE ON HOMOGENOUS CHARGE COMPRESSION IGNITION COMBUSTION AND EMISSIONS WITH GASOLINE AND n-heptane

EFFECTS OF INTAKE AIR TEMPERATURE ON HOMOGENOUS CHARGE COMPRESSION IGNITION COMBUSTION AND EMISSIONS WITH GASOLINE AND n-heptane THERMAL SCIENCE: Year 2015, Vol. 19, No. 6, pp. 1897-1906 1897 EFFECTS OF INTAKE AIR TEMPERATURE ON HOMOGENOUS CHARGE COMPRESSION IGNITION COMBUSTION AND EMISSIONS WITH GASOLINE AND n-heptane by Jianyong

More information

Particle Size Distribution Measurements from Early to Late Injection Timing Low Temperature Combustion

Particle Size Distribution Measurements from Early to Late Injection Timing Low Temperature Combustion Particle Size Distribution Measurements from Early to Late Injection Timing Low Temperature Combustion Christopher Kolodziej, Jesús Benajes, Ricardo Novella, Simon Arthozoul CMT Motores Térmicos Universidad

More information

Effects of Pilot Injection Strategies on Spray Visualization and Combustion in a Direct Injection Compression Ignition Engine using DME and Diesel

Effects of Pilot Injection Strategies on Spray Visualization and Combustion in a Direct Injection Compression Ignition Engine using DME and Diesel 7 th Asian DME Conference 16-18 November, 2011 Toki Messe Niigata Convention Center, Niigata, Japan Effects of Pilot Injection Strategies on Spray Visualization and Combustion in a Direct Injection Compression

More information

Crankcase scavenging.

Crankcase scavenging. Software for engine simulation and optimization www.diesel-rk.bmstu.ru The full cycle thermodynamic engine simulation software DIESEL-RK is designed for simulating and optimizing working processes of two-

More information

High Pressure Spray Characterization of Vegetable Oils

High Pressure Spray Characterization of Vegetable Oils , 23rd Annual Conference on Liquid Atomization and Spray Systems, Brno, Czech Republic, September 2010 Devendra Deshmukh, A. Madan Mohan, T. N. C. Anand and R. V. Ravikrishna Department of Mechanical Engineering

More information

SI engine control in the cold-fast-idle period. for low HC emissions and fast catalyst light off

SI engine control in the cold-fast-idle period. for low HC emissions and fast catalyst light off 2014-01-1366 SI engine control in the cold-fast-idle period for low HC emissions and fast catalyst light off Author, co-author (Do NOT enter this information. It will be pulled from participant tab in

More information

EFFECT OF INJECTION ORIENTATION ON EXHAUST EMISSIONS IN A DI DIESEL ENGINE: THROUGH CFD SIMULATION

EFFECT OF INJECTION ORIENTATION ON EXHAUST EMISSIONS IN A DI DIESEL ENGINE: THROUGH CFD SIMULATION EFFECT OF INJECTION ORIENTATION ON EXHAUST EMISSIONS IN A DI DIESEL ENGINE: THROUGH CFD SIMULATION *P. Manoj Kumar 1, V. Pandurangadu 2, V.V. Pratibha Bharathi 3 and V.V. Naga Deepthi 4 1 Department of

More information

Gas exchange and fuel-air mixing simulations in a turbocharged gasoline engine with high compression ratio and VVA system

Gas exchange and fuel-air mixing simulations in a turbocharged gasoline engine with high compression ratio and VVA system Third Two-Day Meeting on Internal Combustion Engine Simulations Using the OpenFOAM technology, Milan 22 nd -23 rd February 2018. Gas exchange and fuel-air mixing simulations in a turbocharged gasoline

More information

Promising Alternative Fuels for Improving Emissions from Future Vehicles

Promising Alternative Fuels for Improving Emissions from Future Vehicles Promising Alternative Fuels for Improving Emissions from Future Vehicles Research Seminar: CTS Environment and Energy in Transportation Council Will Northrop 12/17/2014 Outline 1. Alternative Fuels Overview

More information

CONTROLLING COMBUSTION IN HCCI DIESEL ENGINES

CONTROLLING COMBUSTION IN HCCI DIESEL ENGINES CONTROLLING COMBUSTION IN HCCI DIESEL ENGINES Nicolae Ispas *, Mircea Năstăsoiu, Mihai Dogariu Transilvania University of Brasov KEYWORDS HCCI, Diesel Engine, controlling, air-fuel mixing combustion ABSTRACT

More information

Simulating Gas-Air Mixture Formation for Dual-Fuel Applications

Simulating Gas-Air Mixture Formation for Dual-Fuel Applications Simulating Gas-Air Mixture Formation for Dual-Fuel Applications Karri Keskinen, Ossi Kaario, Mika Nuutinen, Ville Vuorinen, Zaira Künsch and Martti Larmi Thermodynamics and Combustion Technology Research

More information

Normal vs Abnormal Combustion in SI engine. SI Combustion. Turbulent Combustion

Normal vs Abnormal Combustion in SI engine. SI Combustion. Turbulent Combustion Turbulent Combustion The motion of the charge in the engine cylinder is always turbulent, when it is reached by the flame front. The charge motion is usually composed by large vortexes, whose length scales

More information

Fuel and combustion stratification study of Partially Premixed Combustion Izadi Najafabadi, M.; Dam, N.J.; Somers, L.M.T.; Johansson, B.H.

Fuel and combustion stratification study of Partially Premixed Combustion Izadi Najafabadi, M.; Dam, N.J.; Somers, L.M.T.; Johansson, B.H. Fuel and combustion stratification study of Partially Premixed Combustion Izadi Najafabadi, M.; Dam, N.J.; Somers, L.M.T.; Johansson, B.H. Published in: ECCO-MATE Conference I: Combustion Processes in

More information

R&D on Environment-Friendly, Electronically Controlled Diesel Engine

R&D on Environment-Friendly, Electronically Controlled Diesel Engine 20000 M4.2.2 R&D on Environment-Friendly, Electronically Controlled Diesel Engine (Electronically Controlled Diesel Engine Group) Nobuyasu Matsudaira, Koji Imoto, Hiroshi Morimoto, Akira Numata, Toshimitsu

More information

Potential of the Mild HCCI Combustion for Worldwide Applications

Potential of the Mild HCCI Combustion for Worldwide Applications Potential of the Mild HCCI Combustion for Worldwide Applications Future Fuels for IC Engines ERC Research Symposium Madison June 6-7, 2007 P.Gastaldi M.Besson JP.Hardy Renault Powertrain Division Overview

More information

Eco-diesel engine fuelled with rapeseed oil methyl ester and ethanol. Part 3: combustion processes

Eco-diesel engine fuelled with rapeseed oil methyl ester and ethanol. Part 3: combustion processes Eco-diesel engine fuelled with rapeseed oil methyl ester and ethanol. Part 3: combustion processes A Kowalewicz Technical University of Radom, al. Chrobrego 45, Radom, 26-600, Poland. email: andrzej.kowalewicz@pr.radom.pl

More information

Appendix A.1 Calculations of Engine Exhaust Gas Composition...9

Appendix A.1 Calculations of Engine Exhaust Gas Composition...9 Foreword...xi Acknowledgments...xiii Introduction... xv Chapter 1 Engine Emissions...1 1.1 Characteristics of Engine Exhaust Gas...1 1.1.1 Major Components of Engine Exhaust Gas...1 1.1.2 Units Used for

More information

Diesel HCCI Results at Caterpillar

Diesel HCCI Results at Caterpillar Diesel HCCI Results at Caterpillar Kevin Duffy, Jonathan Kilkenny Andrew Kieser, Eric Fluga DOE Contracts DE-FC5-OR2286, DE-FC5-97OR2265 Contract Monitors Roland Gravel, John Fairbanks DEER Conference

More information

Unmanned Aircraft System (UAS) Engine Research at U.S. Army Research Laboratory

Unmanned Aircraft System (UAS) Engine Research at U.S. Army Research Laboratory Presented to: Mech Aero 2015 (San Francisco, CA) Unmanned Aircraft System (UAS) Engine Research at U.S. Army Research Laboratory Dr. Mike Kweon Engines Research Team Lead VTD-Propulsion Division U.S. Army

More information

MIXTURE FORMATION IN SPARK IGNITION ENGINES. Chapter 5

MIXTURE FORMATION IN SPARK IGNITION ENGINES. Chapter 5 MIXTURE FORMATION IN SPARK IGNITION ENGINES Chapter 5 Mixture formation in SI engine Engine induction and fuel system must prepare a fuel-air mixture that satisfiesthe requirements of the engine over its

More information

Model validation of the SI test engine

Model validation of the SI test engine TEKA. COMMISSION OF MOTORIZATION AND ENERGETICS IN AGRICULTURE 2013, Vol. 13, No. 2, 17 22 Model validation of the SI test engine Arkadiusz Jamrozik Institute of Thermal Machinery, Czestochowa University

More information

Module 3: Influence of Engine Design and Operating Parameters on Emissions Lecture 14:Effect of SI Engine Design and Operating Variables on Emissions

Module 3: Influence of Engine Design and Operating Parameters on Emissions Lecture 14:Effect of SI Engine Design and Operating Variables on Emissions Module 3: Influence of Engine Design and Operating Parameters on Emissions Effect of SI Engine Design and Operating Variables on Emissions The Lecture Contains: SI Engine Variables and Emissions Compression

More information

Usage Issues and Fischer-Tropsch Commercialization

Usage Issues and Fischer-Tropsch Commercialization Usage Issues and Fischer-Tropsch Commercialization Presentation at the CCTR Advisory Panel Meeting Terre Haute, Indiana June 1, 2006 Diesel Engine Research John Abraham (ME), Jim Caruthers (CHE) Gas Turbine

More information

PPC FOR LOW LOAD CONDITIONS IN MARINE ENGINE USING COMPUTATIONAL AND EXPERIMENTAL TECHNIQUES

PPC FOR LOW LOAD CONDITIONS IN MARINE ENGINE USING COMPUTATIONAL AND EXPERIMENTAL TECHNIQUES PPC FOR LOW LOAD CONDITIONS IN MARINE ENGINE USING COMPUTATIONAL AND EXPERIMENTAL TECHNIQUES Presented By:Kendra Shrestha Authors: K.Shrestha, O.Kaario, M. Imperato, T. Sarjovaara, M. Larmi Internal Combusion

More information

Dual-fuel RCCI combustion

Dual-fuel RCCI combustion Dual-fuel RCCI combustion Project leader: Prof. Ingemar Denbratt PhD student: Zhiqin Jia Project start date: 30 Jan 2016 Project end date: Feb 2018 Program: CERC Project funding: 2,158,000SEK Zhiqin Jia

More information

INFLUENCE OF INTAKE AIR TEMPERATURE AND EXHAUST GAS RECIRCULATION ON HCCI COMBUSTION PROCESS USING BIOETHANOL

INFLUENCE OF INTAKE AIR TEMPERATURE AND EXHAUST GAS RECIRCULATION ON HCCI COMBUSTION PROCESS USING BIOETHANOL ENGINEERING FOR RURAL DEVELOPMENT Jelgava, 2.-27..216. INFLUENCE OF INTAKE AIR TEMPERATURE AND EXHAUST GAS RECIRCULATION ON HCCI COMBUSTION PROCESS USING BIOETHANOL Kastytis Laurinaitis, Stasys Slavinskas

More information

Smoke Reduction Methods Using Shallow-Dish Combustion Chamber in an HSDI Common-Rail Diesel Engine

Smoke Reduction Methods Using Shallow-Dish Combustion Chamber in an HSDI Common-Rail Diesel Engine Special Issue Challenges in Realizing Clean High-Performance Diesel Engines 17 Research Report Smoke Reduction Methods Using Shallow-Dish Combustion Chamber in an HSDI Common-Rail Diesel Engine Yoshihiro

More information

The Effect of Clean and Cold EGR on the Improvement of Low Temperature Combustion Performance in a Single Cylinder Research Diesel Engine

The Effect of Clean and Cold EGR on the Improvement of Low Temperature Combustion Performance in a Single Cylinder Research Diesel Engine The Effect of Clean and Cold EGR on the Improvement of Low Temperature Combustion Performance in a Single Cylinder Research Diesel Engine C. Beatrice, P. Capaldi, N. Del Giacomo, C. Guido and M. Lazzaro

More information

ENERGY CONVERSION IN A HYDROGEN FUELED DIESEL ENGINE: OPTIMIZATION OF THE MIXTURE FORMATION AND COMBUSTION

ENERGY CONVERSION IN A HYDROGEN FUELED DIESEL ENGINE: OPTIMIZATION OF THE MIXTURE FORMATION AND COMBUSTION ENERGY CONVERSION IN A HYDROGEN FUELED DIESEL ENGINE: OPTIMIZATION OF THE MIXTURE FORMATION AND COMBUSTION PETER PRECHTL; FRANK DORER; FRANZ MAYINGER Lehrstuhl A für Thermodynamik, Technische Universität

More information

Combustion PVM-MF. The PVM-MF model has been enhanced particularly for dualfuel

Combustion PVM-MF. The PVM-MF model has been enhanced particularly for dualfuel Contents Extensive new capabilities available in STAR-CD/es-ice v4.20 Combustion Models see Marc Zellat presentation Spray Models LES New Physics Developments in v4.22 Combustion Models PVM-MF Crank-angle

More information

Whither Diesel? An Overview of Combustion Concepts and Research Directions for Compression Ignition Engines

Whither Diesel? An Overview of Combustion Concepts and Research Directions for Compression Ignition Engines An Overview of Combustion Concepts and Research Directions for Compression Ignition Engines Martin H. University of Oxford, UK FPC2015 Future Powertrain Conference National Motorcycle Museum, Solihull

More information

Mechanical Engineering Design of a Split-Cycle Combustor. Experimental Fluid-Mechanics Research Group

Mechanical Engineering Design of a Split-Cycle Combustor. Experimental Fluid-Mechanics Research Group Mechanical Engineering Design of a Split-Cycle Combustor Dr Daniel D Coren Dr Nicolas D D Miché Experimental Fluid-Mechanics Research Group University of Brighton, March 2015 mechanical design considerations

More information

Modelling Combustion in DI-SI using the G-equation Method and Detailed Chemistry: Emissions and knock. M.Zellat, D.Abouri, Y.Liang, C.

Modelling Combustion in DI-SI using the G-equation Method and Detailed Chemistry: Emissions and knock. M.Zellat, D.Abouri, Y.Liang, C. Modelling Combustion in DI-SI using the G-equation Method and Detailed Chemistry: Emissions and knock Realize innovation. M.Zellat, D.Abouri, Y.Liang, C.Kralj Main topics of the presentation 1. Context

More information

Development, Implementation, and Validation of a Fuel Impingement Model for Direct Injected Fuels with High Enthalpy of Vaporization

Development, Implementation, and Validation of a Fuel Impingement Model for Direct Injected Fuels with High Enthalpy of Vaporization Development, Implementation, and Validation of a Fuel Impingement Model for Direct Injected Fuels with High Enthalpy of Vaporization (SAE Paper- 2009-01-0306) Craig D. Marriott PE, Matthew A. Wiles PE,

More information

COVENANT UNIVERSITY NIGERIA TUTORIAL KIT OMEGA SEMESTER PROGRAMME: MECHANICAL ENGINEERING

COVENANT UNIVERSITY NIGERIA TUTORIAL KIT OMEGA SEMESTER PROGRAMME: MECHANICAL ENGINEERING COVENANT UNIVERSITY NIGERIA TUTORIAL KIT OMEGA SEMESTER PROGRAMME: MECHANICAL ENGINEERING COURSE: MCE 320 DISCLAIMER The contents of this document are intended for practice and leaning purposes at the

More information

Combustion Properties of Alternative Liquid Fuels

Combustion Properties of Alternative Liquid Fuels 1. Prologue Combustion Properties of Alternative Liquid Fuels 21 JULY 211 Cheng Tung Chong, Simone Hochgreb Content 1. Introduction 2. What s biodiesels 3. Burner design and experimental 4. Results - Flame

More information

Multipulse Detonation Initiation by Spark Plugs and Flame Jets

Multipulse Detonation Initiation by Spark Plugs and Flame Jets Multipulse Detonation Initiation by Spark Plugs and Flame Jets S. M. Frolov, V. S. Aksenov N.N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow, Russia Moscow Physical Engineering

More information

COMBUSTION in SI ENGINES

COMBUSTION in SI ENGINES Internal Combustion Engines ME422 COMBUSTION in SI ENGINES Prof.Dr. Cem Soruşbay Internal Combustion Engines Combustion in SI Engines Introduction Classification of the combustion process Normal combustion

More information

ERC 2017 SYMPOSIUM Impact of Future Regulations on Engine Technology

ERC 2017 SYMPOSIUM Impact of Future Regulations on Engine Technology better fuels better vehicles sooner US DOE Co-Optimization of Fuels and Engines (Co-Optima) Initiative: Recent progress on advanced compression-ignition Mark Musculus Combustion Research Facility Sandia

More information

Evolution of Particle Size Distribution within the Engine Exhaust and Aftertreatment System

Evolution of Particle Size Distribution within the Engine Exhaust and Aftertreatment System Evolution of Particle Size Distribution within the Engine Exhaust and Aftertreatment System A. J. Smallbone (1, 2), D. Z. Y. Tay (2), W. L. Heng (2), S. Mosbach (2), A. York (2,3), M. Kraft (2) (1) cmcl

More information

Modeling a Phlegmatized Diesel-Engine in a Hybrid Electric Vehicle Using a Transient Predictive Model Michael Auerbach, October 25th, 2010, Frankfurt

Modeling a Phlegmatized Diesel-Engine in a Hybrid Electric Vehicle Using a Transient Predictive Model Michael Auerbach, October 25th, 2010, Frankfurt Modeling a Phlegmatized Diesel-Engine in a Hybrid Electric Vehicle Using a Transient Predictive Model Michael Auerbach, October 25th, 2010, Frankfurt a. M. Institut für Verbrennungsmotoren und Kraftfahrwesen

More information

LES of Spray Combustion using Flamelet Generated Manifolds

LES of Spray Combustion using Flamelet Generated Manifolds LES of Spray Combustion using Flamelet Generated Manifolds Armin Wehrfritz, Ville Vuorinen, Ossi Kaario and Martti Larmi armin.wehrfritz@aalto.fi Aalto University Thermodynamics and Combustion technology

More information

IR analysis of diesel combustion in a transparent Euro5 diesel engine

IR analysis of diesel combustion in a transparent Euro5 diesel engine IR analysis of diesel combustion in a transparent Euro5 diesel engine Christoph Allouis 1, Ezio Mancaruso 2, Luigi Sequino 2, Bianca M. Vaglieco 2 1. Institute of Research on Combustion - C.N.R., Napoli

More information

Downloaded from SAE International by Brought To You Michigan State Univ, Thursday, April 02, 2015

Downloaded from SAE International by Brought To You Michigan State Univ, Thursday, April 02, 2015 High-Speed Flow and Combustion Visualization to Study the Effects of Charge Motion Control on Fuel Spray Development and Combustion Inside a Direct- Injection Spark-Ignition Engine 2011-01-1213 Published

More information

Laser Spark Ignition for Advanced Reciprocating Engines

Laser Spark Ignition for Advanced Reciprocating Engines Laser Spark Ignition for Advanced Reciprocating Engines Presenter: Mike McMillian December 3, 2003 2003 Distributed Energy Peer Review ARES Overview: Program Benefits The ARES Program provides greater

More information

1 ERC Symposium - Future Engines and Their Fuels

1 ERC Symposium - Future Engines and Their Fuels Future Fuels and Reactivity Controlled Compression Ignition (RCCI) Rolf D. Reitz, Reed M. Hanson, Sage L. Kokjohn, Derek A. Splitter, Adam Dempsey, Bishwadipa Das Adhikary, Sandeep Viswanathan, ERC Students

More information

Emissions predictions for Diesel engines based on chemistry tabulation

Emissions predictions for Diesel engines based on chemistry tabulation Emissions predictions for Diesel engines based on chemistry tabulation C. Meijer, F.A. Tap AVL Dacolt BV (The Netherlands) M. Tvrdojevic, P. Priesching AVL List GmbH (Austria) 1. Introduction It is generally

More information