# COVENANT UNIVERSITY NIGERIA TUTORIAL KIT OMEGA SEMESTER PROGRAMME: MECHANICAL ENGINEERING

Size: px
Start display at page:

Download "COVENANT UNIVERSITY NIGERIA TUTORIAL KIT OMEGA SEMESTER PROGRAMME: MECHANICAL ENGINEERING"

Transcription

1 COVENANT UNIVERSITY NIGERIA TUTORIAL KIT OMEGA SEMESTER PROGRAMME: MECHANICAL ENGINEERING COURSE: MCE 320

2 DISCLAIMER The contents of this document are intended for practice and leaning purposes at the undergraduate level. The materials are from different sources including the internet and the contributors do not in any way claim authorship or ownership of them. The materials are also not to be used for any commercial purpose. 2

3 MCE 320: INTRODUCTION TO AUTOMOTIVE ENGINEERING Contributor: Dr. S.A Adeosun 1. A pickup truck has a five-liter, V6, SI engine operating at 2400 RPM. The compression ratio rc = 10.2:1, the volumetric efficiency Tlv = 0.91, and the bore and stroke are related as stroke S = 0.92 B. Calculate: (a) Stroke length. [cm] (b) Average piston speed. [m/sec] (c) Clearance volume of one cylinder. [cm3] (d) Air flow rate into engine. [kg/see] 2. A construction vehicle has a diesel engine with eight cylinders of inch bore and 8.0- inch stroke, operating on a four-stroke cycle. It delivers 152-shaft horsepower at 1000 RPM, with a mechanical efficiency of Calculate: (a) Total engine displacement. [in.3] (b) Brake mean effective pressure. [psia] (c) Torque at 1000RPM. [lbf-ft] (d) Indicated horsepower. (e) Friction horsepower. 3. Methanol is burned in an engine with air at an equivalence ratio of = Exhaust pressure and inlet pressure are 101 kpa. Write the balanced chemical equation for this reaction. Calculate: (a) Air-fuel ratio. (b) Dew point temperature of the exhaust if the inlet air is dry. [0C] (c) Dew point temperature of the exhaust if the inlet air has a relative humidity of 40% at 25 C. [0C] (d) Antiknock index of methanol. 4. Compute the indicated power generated at WOT by a three-liter, four-cylinder, four stroke cycle SI engine operating at 4800 RPM using either gasoline or methanol. For each case, the intake manifold is heated such that all fuel is evaporated before the intake ports, and the air-fuel mixture enters the cylinders at 60 C and 100 kpa. Compression ratio rc = 8.5, fuel equivalence ratio = 1.0, combustion efficiency 'T/c = 98%, and volumetric efficiency 'T/v = 100%. Calculate the indicated specific fuel consumption for each fuel. [gm/kw-hr] 5. A six-cylinder, four-stroke cycle SI engine with multipoint fuel injection has a displacement of 204 liters and a volumetric efficiency of 87% at 3000 RPM, and operates on ethyl alcohol with an equivalence ratio of Each cylinder has one port injector which delivers fuel at a rate of 0.02 kg/sec. The engine also has an auxiliary injector upstream in the intake manifold which delivers fuel at a rate of kg/sec to change the air-fuel ratio and give a richer mixture when needed. When in use, the auxiliary injector operates continuously and supplies all cylinders. Calculate: (a) Time of one injection pulse for one cylinder for one cycle. [sec] (b) AF if the auxiliary injector is not being used. (c) AF if the auxiliary injector is being used. 6. A 3.6-liter, V6 SI engine is designed to have a maximum speed of 7000 RPM. There are two intake valves per cylinder, and valve lift equals one-fourth valve diameter. Bore and stroke are related as S = 1.06B. Design temperature of the air-fuel mixture entering the cylinders is 60 C. Calculate! (: (a) Ideal theoretical valve diameter. [cm]. (b) Maximum flow velocity through intake valve. [m/sec] (c) Do the valve diameters and bore size seem compatible? 7. A 6.8-liter, in-line, eight-cylinder CI engine has a compression ratio rc = 18.5 and a crevice volume equal to 3% of the clearance volume. During the engine cycle pressure ill. The 3

4 crevice volume equals combustion chamber pressure while remaining at the cylinder wall temperature of 190 C.Cylinder conditions at the start of compression are 75 C and 120kPa, and peak pressure is 11,000kPa. Cutoff ratio is f3 = 2.3. Calculate: (a) Crevice volume of one cylinder. [em3] (b) Percent of air-fuel mixture in the crevice volume at the end of compression. [%] (c) Percent of air-fuel mixture in the crevice volume at the end of combustion. [%] 8. A 2.6-liter, four-cylinder, stratified charge SI engine with a compression ratio of 10.5:1 operates on an Otto cycle. The engine has divided combustion chambers, with a secondary chamber containing 18% of the clearance volume in each cylinder. A 1-cm2 orifice connects the secondary chamber with the main combustion chamber. AF = 13.2 in the secondary chamber where the spark plug is located, and AF = 20.8 in the main chamber. The fuel is gasoline with a 98% combustion efficiency. When operating at 2600 RPM, the conditions in both chambers at the start of combustion are 700 K and 2100 kpa. Combustion can be modeled as an instantaneous heat addition in the secondary chamber, followed by a gas expansion into the main chamber which lasts for about 7 of engine rotation. Additional heat is then added from combustion in the main chamber. Calculate: (a) Overall AF. (b) Peak temperature and pressure in the secondary chamber. r o C, kpa] (c) Approximate velocity of gas flow into the main chamber immediately after combustion in the secondary chamber. [m/sec] 9. A CI engine with a 3.2-inch bore and 3.9-inch stroke operates at 1850 RPM. In each cycle, fuel injection starts at 16 btdc and lasts for second. Combustion starts at 8 btdc. Due to the higher temperature, the ignition delay of any fuel injected after combustion starts is reduced by a factor of two from the original ID. Calculate: (a) ID of first fuel injected. [see] (b) ID of first fuel injected in degrees of engine rotation. (c) Crank angle position when combustion starts on last fuel droplets injected. 10. The engine in Problem 7-7 has a volumetric efficiency of 92%, an overall combustion efficiency of 99%, an indicated thermal efficiency of 52%, and a mechanical efficiency of 86% when operating at 3500 RPM. Calculate: (a) Brake power at this condition. [kw] (b) bmep. [kpa] (c) Amount of unburned fuel exhausted from the engine.[kglhr] (d) bsfc. [gmlkw-hr] 4

5 QUESTION 1: SOLUTION 5

6 QUESTION 2: The engine in Example Problem 2-1 is connected to a dynamometer which gives a brake output torque reading of 205 N-m at 3600 RPM. At this speed air enters the cylinders at 85 kpa and 6

7 60 C, and the mechanical efficiency of the engine is 85%. Calculate: 7

8 Extracted from example problem 2-2 8

9 QUESTION 3: The engine in Example Problem 2-2 (Question 2) is running with an air-fuel ratio AF = 15, a fuel heating value of 44,000kJ/kg, and a combustion efficiency of 97%. Calculate: Extracted from example problem

10 QUESTION 4: 10

11 Extracted from example problem 4-1 &

12 QUESTION 5: B) The four-cylinder engine of a light truck owned by a utility company has been converted to run on propane fuel. A dry analysis of the engine exhaust gives the following volumetric 12

13 percentages: Extracted from example problem 4-3 & 4-4 QUESTION 6: A) A 2.8-liter four-cylinder square engine (bore = stroke) with two intake valves per cylinder is designed to have a maximum speed of 7500 RPM. Intake temperature is 600C. Calculate: 13

14 B) A six-cylinder, 3.6-liter SI engine is designed to have a maximum speed of 6000RPM. At this speed the volumetric efficiency of the engine is The engine will be equipped with a twobarrel carburetor, one barrel for low speeds and both barrels for high speed. Gasoline density can 14

15 be considered to be 750kg/m3. Calculate: Extracted from example problem 5-1 & 5-2 QUESTION 7: 15

16 16

17 C) The diesel engine of Example Problem 5-4 (Question 6B) has a compression ratio of 18:1 and operates on an air-standard Dual cycle. At 2400 RPM, combustion starts at 7 btdc and lasts for 42 of engine rotation. The ratio of connecting rod length to crank offset is R = 3.8. Calculate: Extracted from example problem

18 QUESTION 8: QUESTION 9: 18

19 Extracted from example problem 6-2 QUESTION 10: A) The spark plug is fired at 18 btdc in an engine running at 1800 RPM. It takes 8 of engine rotation to start combustion and get into flame propagation mode. Flame termination occurs at 12 atdc. Bore diameter is 8.4 cm and the spark plug is offset 8 mm from the centerline of the cylinder. The flame front can be approximated as a sphere moving out from the spark plug. Calculate the effective flame front speed during flame propagation. 19

20 Rotational angle during flame propagation is from 10 btdc to 12 atdc, which equals 22. Time of flame propagation: t = (22 )/ [(360 /rev)(1800/60 rev/sec)] = sec Maximum flame travel distance: Dmax = bore/2 + offset = (0.084/2) + (0.008) = m Effective flame speed: Vf = Dmax/t = (0.050 m)/( sec) = 24.5 m/sec B) The engine in Example Problem 1A is now run at 3000RPM. As speed is increased in this engine, greater turbulence and swirl increase the flame front speed at a rate such that VI <X 0.85 N. Flame development after spark plug firing still takes 8 of engine rotation. Calculate how much ignition timing must be advanced such that flame termination again occurs at 12 atdc. Flame speed: Vf = (0.85) (3000/1800) (24.5m/sec) = 34.7m/sec With flame travel distance the same, the time of flame propagation is t = Dmax / Vf = (0.050m)/ (34.7 m/sec) = sec Rotational angle during flame propagation: angle = (3000/60rev/sec) (3600/rev) ( sec) = Flame propagation starts at btdc, and spark plug firing is at btdc. Ignition timing must be advanced

### Internal Combustion Engine

Internal Combustion Engine 1. A 9-cylinder, 4-stroke cycle, radial SI engine operates at 900rpm. Calculate: (1) How often ignition occurs, in degrees of engine rev. (2) How many power strokes per rev.

### Internal Combustion Engines TUTORIAL

Internal Combustion Engines TUTORIAL College of Engineering Mechanical Engineering Department Academic Year 2012-2013 Class 3 rd Year Class Subject Lecturer Internal Combustion Engines Dr. Raoof M. Radhi

### Kul Internal Combustion Engine Technology. Definition & Classification, Characteristics 2015 Basshuysen 1,2,3,4,5

Kul-14.4100 Internal Combustion Engine Technology Definition & Classification, Characteristics 2015 Basshuysen 1,2,3,4,5 Definitions Combustion engines convert the chemical energy of fuel to mechanical

### AT AUTOMOTIVE ENGINES QUESTION BANK

AT6301 - AUTOMOTIVE ENGINES QUESTION BANK UNIT I: CONSTRUCTION & WORKING PRINCIPLE OF IC ENGINES 1. State the application of CI engines? 2. What is Cubic capacity of an engine? 3. What is the purpose of

### LECTURE NOTES INTERNAL COMBUSTION ENGINES SI AN INTEGRATED EVALUATION

LECTURE NOTES on INTERNAL COMBUSTION ENGINES SI AN INTEGRATED EVALUATION Integrated Master Course on Mechanical Engineering Mechanical Engineering Department November 2015 Approach SI _ indirect injection

### 2.61 Internal Combustion Engines

Due: Thursday, February 19, 2004 2.61 Internal Combustion Engines Problem Set 2 Tuesday, February 10, 2004 1. Several velocities, time, and length scales are useful in understanding what goes on inside

### 2013 THERMAL ENGINEERING-I

SET - 1 II B. Tech II Semester, Regular Examinations, April/May 2013 THERMAL ENGINEERING-I (Com. to ME, AME) Time: 3 hours Max. Marks: 75 Answer any FIVE Questions All Questions carry Equal Marks ~~~~~~~~~~~~~~~~~~~~~~~~

### 2. Discuss the effects of the following operating variables on detonation

Code No: RR220303 Set No. 1 II B.Tech II Semester Regular Examinations, Apr/May 2006 THERMAL ENGINEERING-I ( Common to Mechanical Engineering and Automobile Engineering) Time: 3 hours Max Marks: 80 Answer

### SI engine combustion

SI engine combustion 1 SI engine combustion: How to burn things? Reactants Products Premixed Homogeneous reaction Not limited by transport process Fast/slow reactions compared with other time scale of

SET - 1 II B. Tech II Semester Regular/Supplementary Examinations, April/May-2017 THERMAL ENGINEERING-I (Mechanical Engineering) Time: 3 hours Max. Marks: 70 Note: 1. Question Paper consists of two parts

### EEN-E2002 Combustion Technology 2017 LE 3 answers

EEN-E2002 Combustion Technology 2017 LE 3 answers 1. Plot the following graphs from LEO-1 engine with data (Excel_sheet_data) attached on my courses? (12 p.) a. Draw cyclic pressure curve. Also non-fired

### Assignment-1 Air Standard Cycles

Assignment-1 Air Standard Cycles 1. What do u mean by air standard cycle? List assumptions for air standard cycle & give reasons why air standard cycle differs from actual cycle. 2. Derive an equation

### density ratio of 1.5.

Problem 1: An 8cyl 426 ci Hemi motor makes 426 HP at 5500 rpm on a compression ratio of 10.5:1. It is over square by 10% meaning that it s stroke is 10% less than it s bore. It s volumetric efficiency

### ACTUAL CYCLE. Actual engine cycle

1 ACTUAL CYCLE Actual engine cycle Introduction 2 Ideal Gas Cycle (Air Standard Cycle) Idealized processes Idealize working Fluid Fuel-Air Cycle Idealized Processes Accurate Working Fluid Model Actual

### Engine Heat Transfer. Engine Heat Transfer

Engine Heat Transfer 1. Impact of heat transfer on engine operation 2. Heat transfer environment 3. Energy flow in an engine 4. Engine heat transfer Fundamentals Spark-ignition engine heat transfer Diesel

### (a) then mean effective pressure and the indicated power for each end ; (b) the total indicated power : [16]

Code No: R05220304 Set No. 1 II B.Tech II Semester Regular Examinations, Apr/May 2007 THERMAL ENGINEERING-I ( Common to Mechanical Engineering and Automobile Engineering) Time: 3 hours Max Marks: 80 Answer

### Internal combustion engines can be classified in a number of different ways: 1. Types of Ignition

Chapter 1 Introduction 1-3 ENGINE CLASSIFICATIONS Internal combustion engines can be classified in a number of different ways: 1. Types of Ignition 1 (a) Spark Ignition (SI). An SI engine starts the combustion

### Operating Characteristics

Chapter 2 Operating Characteristics 2-1 Engine Parameters 2-22 Work 2-3 Mean Effective Pressure 2-4 Torque and Power 2-5 Dynamometers 2-6 Air-Fuel Ratio and Fuel-Air Ratio 2-7 Specific Fuel Consumption

### B.Tech. - VIEP - MECHANICAL ENGINEERING (BTMEVI) Term-End Examination June 2016

No. of Printed Pages : 5 I BIME-010 I B.Tech. - VIEP - MECHANICAL ENGINEERING (BTMEVI) 00 1 Ems, Term-End Examination June 2016 BIME-010 : THERMAL ENGINEERING Time : 3 hours Maximum Marks : 70 Note : Attempt

### SAMPLE STUDY MATERIAL

IC Engine - ME GATE, IES, PSU 1 SAMPLE STUDY MATERIAL Mechanical Engineering ME Postal Correspondence Course Internal Combustion Engine GATE, IES & PSUs IC Engine - ME GATE, IES, PSU 2 C O N T E N T 1.

### Heat Transfer in Engines. Internal Combustion Engines

Heat Transfer in Engines Internal Combustion Engines Energy Distribution Removing heat is critical in keeping an engine and lubricant from thermal failure Amount of energy available for use: Brake thermal

### Lecture 5. Abnormal Combustion

Lecture 5 Abnormal Combustion Abnormal Combustion The Abnormal Combustion:- When the combustion gets deviated from the normal behavior resulting loss of performance or damage to the engine. It is happened

### AME 436. Energy and Propulsion. Lecture 6 Unsteady-flow (reciprocating) engines 1: Basic operating principles, design & performance parameters

AME 436 Energy and Propulsion Lecture 6 Unsteady-flow (reciprocating) engines 1: Basic operating principles, design & performance parameters Outline Classification of unsteady-flow engines Basic operating

### Engine Cycles. T Alrayyes

Engine Cycles T Alrayyes Introduction The cycle experienced in the cylinder of an internal combustion engine is very complex. The cycle in SI and diesel engine were discussed in detail in the previous

### 2.61 Internal Combustion Engines Spring 2008

MIT OpenCourseWare http://ocw.mit.edu 2.61 Internal Combustion Engines Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Engine Heat Transfer

### IC ENGINES. Differences between SI and CI engines: Petrol is fuel, which has a high self ignition temperature

IC ENGINES SI Engines work at constant volume. They have a compression ratio of around 6-10. But CI engines work at constant pressure and has a compression ratio of 16-20. In four stroke engines, one power

### Applied Thermodynamics Internal Combustion Engines

Applied Thermodynamics Internal Combustion Engines Assoc. Prof. Dr. Mazlan Abdul Wahid Faculty of Mechanical Engineering Universiti Teknologi Malaysia www.fkm.utm.my/~mazlan 1 Coverage Introduction Operation

### Assignment-1 Introduction

Assignment-1 Introduction 1. Compare S.I. engines with C.I engines. 2. Explain with the help of neat sketch, the working of a 2-stroke petrol engine. 3. Derive an equation of efficiency, work output and

### LABORATORY MANUAL I. C. ENGINES & GAS TURBINES (ME-317-E)

LABORATORY MANUAL I. C. ENGINES & GAS TURBINES (ME-317-E) LIST OF EXPERIMENTS S.No. Name of the Experiment 1. To study the constructional details & working principles of two-stroke petrol/ four-stroke

### AME 436. Energy and Propulsion. Lecture 6 Unsteady-flow (reciprocating) engines 1: Basic operating principles, design & performance parameters

AME 436 Energy and Propulsion Lecture 6 Unsteady-flow (reciprocating) engines 1: Basic operating principles, design & performance parameters Outline Classification of unsteady-flow engines Basic operating

### Combustion. T Alrayyes

Combustion T Alrayyes Fluid motion with combustion chamber Turbulence Swirl SQUISH AND TUMBLE Combustion in SI Engines Introduction The combustion in SI engines inside the engine can be divided into three

### L34: Internal Combustion Engine Cycles: Otto, Diesel, and Dual or Gas Power Cycles Introduction to Gas Cycles Definitions

Page L: Internal Combustion Engine Cycles: Otto, Diesel, and Dual or Gas Power Cycles Review of Carnot Power Cycle (gas version) Air-Standard Cycles Internal Combustion (IC) Engines - Otto and Diesel Cycles

### Week 10. Gas Power Cycles. ME 300 Thermodynamics II 1

Week 10 Gas Power Cycles ME 300 Thermodynamics II 1 Today s Outline Gas power cycles Internal combustion engines Four-stroke cycle Thermodynamic cycles Ideal cycle ME 300 Thermodynamics II 2 Gas Power

### Module 3: Influence of Engine Design and Operating Parameters on Emissions Lecture 14:Effect of SI Engine Design and Operating Variables on Emissions

Module 3: Influence of Engine Design and Operating Parameters on Emissions Effect of SI Engine Design and Operating Variables on Emissions The Lecture Contains: SI Engine Variables and Emissions Compression

### ADDIS ABABA UNIVERSITY INSTITUTE OF TECHNOLOGY

1 INTERNAL COMBUSTION ENGINES ADDIS ABABA UNIVERSITY INSTITUTE OF TECHNOLOGY MECHANICAL ENGINEERING DEPARTMENT DIVISON OF THERMAL AND ENERGY CONVERSION IC Engine Fundamentals 2 Engine Systems An engine

### Internal Combustion Engines

Internal Combustion Engines Reading Problems 8-3 8-7 8-35, 8-45, 8-52 Definitions 1. spark ignition: a mixture of fuel and air is ignited by a spark plug applications requiring power to about 225 kw (300

### Combustion engines. Combustion

Combustion engines Chemical energy in fuel converted to thermal energy by combustion or oxidation Heat engine converts chemical energy into mechanical energy Thermal energy raises temperature and pressure

### Dr Ali Jawarneh Department of Mechanical Engineering

Chapter 7: Combustion Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University Outline In this lecture we will discuss the combustion process: The characteristics of the process. The different

### Thompson D. Metzka Lanzanova, MSc. Horácio Antonio Vielmo, DSc Federal University of Rio Grande do Sul - Brazil

South American GT-SUITE Conference June 2013 Thompson D. Metzka Lanzanova, MSc. Horácio Antonio Vielmo, DSc Federal University of Rio Grande do Sul - Brazil Mario Eduardo Santos Martins, Phd Rafael Sari

### Experimental Investigation of Performance and Emissions of a Stratified Charge CNG Direct Injection Engine with Turbocharger

MATEC Web of Conferences 1, 7 (17 ) DOI:1.11/matecconf/1717 ICTTE 17 Experimental Investigation of Performance and Emissions of a Stratified Charge CNG Direct Injection Engine with charger Hilmi Amiruddin

### 4. With a neat sketch explain in detail about the different types of fuel injection system used in SI engines. (May 2016)

SYED AMMAL ENGINEERING COLLEGE (Approved by the AICTE, New Delhi, Govt. of Tamilnadu and Affiliated to Anna University, Chennai) Established in 1998 - An ISO 9001:2000 Certified Institution Dr. E.M.Abdullah

### Natural Gas fuel for Internal Combustion Engine

Natural Gas fuel for Internal Combustion Engine L. Bartolucci, S. Cordiner, V. Mulone, V. Rocco University of Rome Tor Vergata Department of Industrial Engineering Outline Introduction Motivations and

### Simulation of Performance Parameters of Spark Ignition Engine for Various Ignition Timings

Research Article International Journal of Current Engineering and Technology ISSN 2277-4106 2013 INPRESSCO. All Rights Reserved. Available at http://inpressco.com/category/ijcet Simulation of Performance

### Normal vs Abnormal Combustion in SI engine. SI Combustion. Turbulent Combustion

Turbulent Combustion The motion of the charge in the engine cylinder is always turbulent, when it is reached by the flame front. The charge motion is usually composed by large vortexes, whose length scales

### Please welcome for any correction or misprint in the entire manuscript and your valuable suggestions kindly mail us

Problems of Practices Of Basic and Applied Thermodynamics I. C. Engine Prepared By Brij Bhooshan Asst. Professor B. S. A. College of Engg. And Technology Mathura, Uttar Pradesh, (India) Supported By: Purvi

### VALVE TIMING DIAGRAM FOR SI ENGINE VALVE TIMING DIAGRAM FOR CI ENGINE

VALVE TIMING DIAGRAM FOR SI ENGINE VALVE TIMING DIAGRAM FOR CI ENGINE Page 1 of 13 EFFECT OF VALVE TIMING DIAGRAM ON VOLUMETRIC EFFICIENCY: Qu. 1:Why Inlet valve is closed after the Bottom Dead Centre

### Scheme - G. Sample Test Paper-I. Course Name : Diploma in Mechanical Engineering Course Code : ME Semester : Fifth Subject Title : Power Engineering

Sample Test Paper-I Marks : 25 Time:1 hour Q1. Attempt any Three 3X3=9 a) Define i) Mean Effective Pressure ii) Piston Speed iii) Swept Volume b) Draw Carnot cycle on P-V and T-S Diagram c) State the need

### This engine is certified to operate on regular 87 octane unleaded fuel (R+M)/2 Idle Speed (in gear): 650 RPM. Timing: Idle: 4-8 ATDC WOT:28 BTDC

FUEL SYSTEMS 3 E Emission Control Information This engine conforms to 1998 Model Year U.S. EPA regulations for marine SI engines. Refer to Owners Manual for required maintenance. Exhaust Emission Control

### The Preliminary Design of an I-4, 4-Stroke Engine

Ben Sandoval ICE Preliminary Design 1 The Preliminary Design of an I-4, 4-Stroke Engine Executive Summary The following contains the mathematical analysis of a four stroke, inline, four cylinder engine

### ME2301 THERMAL ENGINEERING L T P C OBJECTIVE:

ME2301 THERMAL ENGINEERING L T P C 3 1 0 4 OBJECTIVE: To integrate the concepts, laws and methodologies from the first course in thermo dynamics into analysis of cyclic processes To apply the thermodynamic

### MIXTURE FORMATION IN SPARK IGNITION ENGINES. Chapter 5

MIXTURE FORMATION IN SPARK IGNITION ENGINES Chapter 5 Mixture formation in SI engine Engine induction and fuel system must prepare a fuel-air mixture that satisfiesthe requirements of the engine over its

### Chapter 4 ANALYTICAL WORK: COMBUSTION MODELING

a 4.3.4 Effect of various parameters on combustion in IC engines: Compression ratio: A higher compression ratio increases the pressure and temperature of the working mixture which reduce the initial preparation

### REVIEW ON GASOLINE DIRECT INJECTION

International Journal of Aerospace and Mechanical Engineering REVIEW ON GASOLINE DIRECT INJECTION Jayant Kathuria B.Tech Automotive Design Engineering jkathuria97@gmail.com ABSTRACT Gasoline direct-injection

### is the crank angle between the initial spark and the time when about 10% of the charge is burned. θ θ

ME 410 Day 30 Phases of Combustion 1. Ignition 2. Early flame development θd θ 3. Flame propagation b 4. Flame termination The flame development angle θd is the crank angle between the initial spark and

### Principles of Engine Operation. Information

Internal Combustion Engines MAK 4070E Principles of Engine Operation Prof.Dr. Cem Soruşbay Istanbul Technical University Information Prof.Dr. Cem Soruşbay İ.T.Ü. Makina Fakültesi Motorlar ve Taşıtlar Laboratuvarı

### International Journal of Scientific & Engineering Research, Volume 7, Issue 8, August-2016 ISSN

ISSN 2229-5518 2417 Experimental Investigation of a Two Stroke SI Engine Operated with LPG Induction, Gasoline Manifold Injection and Carburetion V. Gopalakrishnan and M.Loganathan Abstract In this experimental

### Module7:Advanced Combustion Systems and Alternative Powerplants Lecture 32:Stratified Charge Engines

ADVANCED COMBUSTION SYSTEMS AND ALTERNATIVE POWERPLANTS The Lecture Contains: DIRECT INJECTION STRATIFIED CHARGE (DISC) ENGINES Historical Overview Potential Advantages of DISC Engines DISC Engine Combustion

### Modern Automotive Technology Chapter 16. Engine Size and Performance Measurements

Modern Automotive Technology Chapter 16 Engine Size and Performance Measurements 1 Learning Objectives Describe safety practices when making engine performance measurements Describe engine size measurements

### Introduction. Internal Combustion Engines

Introduction Internal Combustion Engines Internal Combustion Engines A heat engine that converts chemical energy in a fuel into mechanical energy. Chemical energy first converted into thermal energy (Combustion)

### Air Cooled Engine Technology. Roth 9 th Ch 6 Engine Performance Pages

Roth 9 th Ch 6 Engine Performance Pages 95 112 1. Internal combustion engines belong to the engine category. Gasoline Diesel Heat 2. The heavy flywheel provides the necessary to keep the crankshaft spinning

### SHRI SHANKARACHARYA INSTITUTE OF PROFESSIONAL MANAGEMENT AND TECHNOLOGY LAB MANUAL INTERNAL COMBUSTION ENGINES MECHANICAL ENGINEERING DEPARTMENT

SHRI SHANKARACHARYA INSTITUTE OF PROFESSIONAL MANAGEMENT AND TECHNOLOGY LAB MANUAL INTERNAL COMBUSTION ENGINES MECHANICAL ENGINEERING DEPARTMENT LAB MANUAL INTERNAL COMBUSTION ENGINES 1. ) AIM : Study

### Focus on Training Section: Unit 2

All Pump Types Page 1 1. Title Page Learning objectives Become familiar with the 4 stroke cycle Become familiar with diesel combustion process To understand how timing affects emissions To understand the

### Prepared by: Dr. Assim Adaraje

Air-standard cycles Prepared by: Dr. Assim Adaraje CH. 2 ۱ Cold-air-standard assumptions: When the working fluid is considered to be air with constant specific heats at room temperature (25 C). Air-standard

### Internal Combustion Engine. Prepared by- Md Ferdous Alam Lecturer, MEE, SUST

Internal Combustion Engine Prepared by- Md Ferdous Alam Lecturer, MEE, SUST What is an Engine? -a machine designed to convert one form of energy into mechanical energy Two types of engines : 1. Internal

### Comparative performance and emissions study of a lean mixed DTS-i spark ignition engine operated on single spark and dual spark

26 IJEDR Volume 4, Issue 2 ISSN: 232-9939 Comparative performance and emissions study of a lean mixed DTS-i spark ignition engine operated on single spark and dual spark Hardik Bambhania, 2 Vijay Pithiya,

### Combustion Systems What we might have learned

Combustion Systems What we might have learned IMechE ADSC, 6 December 2012 Chris Whelan Contents Engines Big & Small Carnot, Otto & Diesel Thermodynamic Cycles Combustion Process & Systems Diesel & Otto

### COMBUSTION AND EXHAUST EMISSION IN COMPRESSION IGNITION ENGINES WITH DUAL- FUEL SYSTEM

COMBUSTION AND EXHAUST EMISSION IN COMPRESSION IGNITION ENGINES WITH DUAL- FUEL SYSTEM WLADYSLAW MITIANIEC CRACOW UNIVERSITY OF TECHNOLOGY ENGINE-EXPO 2008 OPEN TECHNOLOGY FORUM STUTTGAT, 7 MAY 2008 APPLICATIONS

### COMBUSTION in SI ENGINES

Internal Combustion Engines MAK 493E COMBUSTION in SI ENGINES Prof.Dr. Cem Soruşbay Istanbul Technical University Internal Combustion Engines MAK 493E Combustion in SI Engines Introduction Classification

### Simple Finite Heat Release Model (SI Engine)

Simple Finite Heat Release Model (SI Engine) Introduction In the following, a finite burn duration is taken into account, in which combustion occurs at θ soc (Start Of Combustion), and continues until

### AT 2303 AUTOMOTIVE POLLUTION AND CONTROL Automobile Engineering Question Bank

AT 2303 AUTOMOTIVE POLLUTION AND CONTROL Automobile Engineering Question Bank UNIT I INTRODUCTION 1. What are the design considerations of a vehicle?(jun 2013) 2..Classify the various types of vehicles.

### Abstract 1. INTRODUCTION

Abstract Study on Performance Characteristics of Scuderi Split Cycle Engine Sudeer Gowd Patil 1, Martin A.J. 2, Ananthesha 3 1- M.Sc. [Engg.] Student, 2-Asst. Professor, 3-Asst.Professor, Department of

### Effects of ethanol unleaded gasoline blends on cyclic variability and emissions in an SI engine

Applied Thermal Engineering 25 (2005) 917 925 www.elsevier.com/locate/apthermeng Effects of ethanol unleaded gasoline blends on cyclic variability and emissions in an SI engine M.A. Ceviz *,F.Yüksel Department

### Effect of advanced injection timing on the performance of natural gas in diesel engines

SaÅdhanaÅ, Vol. 25, Part 1, February 2000, pp. 11±20. # Printed in India Effect of advanced injection timing on the performance of natural gas in diesel engines 1. Introduction O M I NWAFOR Department

### (v) Cylinder volume It is the volume of a gas inside the cylinder when the piston is at Bottom Dead Centre (B.D.C) and is denoted by V.

UNIT II GAS POWER CYCLES AIR STANDARD CYCLES Air standard cycles are used for comparison of thermal efficiencies of I.C engines. Engines working with air standard cycles are known as air standard engines.

### Module 2:Genesis and Mechanism of Formation of Engine Emissions Lecture 9:Mechanisms of HC Formation in SI Engines... contd.

Mechanisms of HC Formation in SI Engines... contd. The Lecture Contains: HC from Lubricating Oil Film Combustion Chamber Deposits HC Mixture Quality and In-Cylinder Liquid Fuel HC from Misfired Combustion

### UNIT 2 POWER PLANTS 2.1 INTRODUCTION 2.2 CLASSIFICATION OF IC ENGINES. Objectives. Structure. 2.1 Introduction

UNIT 2 POWER PLANTS Power Plants Structure 2.1 Introduction Objectives 2.2 Classification of IC Engines 2.3 Four Stroke Engines versus Two Stroke Engines 2.4 Working of Four Stroke Petrol Engine 2.5 Working

### VIII Semester ME ADVANCED IC ENGINES. Part-A

VIII Semester ME 2041 - ADVANCED IC ENGINES UNIT - 1 Part-A 1. What are the stages of combustion in a SI engines? The stages of combustion in a SI engines are: FIRST STAGE: Ignition lag (or) preparation

### 2.61 Internal Combustion Engine Final Examination. Open book. Note that Problems 1 &2 carry 20 points each; Problems 3 &4 carry 10 points each.

2.61 Internal Combustion Engine Final Examination Open book. Note that Problems 1 &2 carry 20 points each; Problems 3 &4 carry 10 points each. Problem 1 (20 points) Ethanol has been introduced as the bio-fuel

### Performance and Emissions of the 1999 LS1 Engine. Edward Froehlich Eric Tribbett Lex Bayer Mechanical Engineering Department Stanford University

Performance and Emissions of the 1999 LS1 Engine Edward Froehlich Eric Tribbett Lex Bayer Mechanical Engineering Department Stanford University 2 ABSTRACT In this study we examine the performance and emissions

### CHAPTER 2 : ESSENTIAL CHARACTERISTICS OF THE VEHICLE AND ENGINE AND INFORMATION CONCERNING THE CONDUCT OF TESTS

CHAPTER 2 : ESSENTIAL CHARACTERISTICS OF THE VEHICLE AND ENGINE AND INFORMATION CONCERNING THE CONDUCT OF TESTS 1.0 Description of the Vehicle - 1.1 Trade name or mark of the vehicle - 1.2 Vehicle type

### Chapter 1 Internal Combustion Engines

Chapter 1 Internal Combustion Engines 1.1 Performance Parameters Engine performance parameters can be measured by two means; the indicator equipment or the dynamometer. The indicator system consists of

### Which are the four important control loops of an spark ignition (SI) engine?

151-0567-00 Engine Systems (HS 2017) Exercise 1 Topic: Lecture 1 Johannes Ritzmann (jritzman@ethz.ch), Raffi Hedinger (hraffael@ethz.ch); October 13, 2017 Problem 1 (Control Systems) Why do we use control

### CHAPTER 2 : ESSENTIAL CHARACTERISTICS OF THE VEHICLE AND ENGINE AND INFORMATION CONCERNING THE CONDUCT OF TESTS

CHAPTER 2 : ESSENTIAL CHARACTERISTICS OF THE VEHICLE AND ENGINE AND INFORMATION CONCERNING THE CONDUCT OF TESTS 1.0 Description of the Vehicle - 1.1 Trade name or mark of the vehicle - 1.2 Vehicle type

### Introduction to Fuel-Air Injection (FAI) Engine. KansLab

Introduction to uel-ir Injection (I) Engine kanslab@yahoo.com www.kanslab.com KansLab 1 I Engine is: 1. clean two-stroke engine with fuel and air injections. 2. n air motor with internal combustor. 3.

### Technical File and Copy of United States Environmental Protection Agency (EPA) Statement of Compliance

Technical File and Copy of United States Environmental Protection Agency (EPA) Statement of Compliance MARINE DIESEL ENGINES D4.2L 230 (4.2 MS 230 and 4.2 MI 230 Model) IMPORTANT: To comply with regulations

### Introduction to I.C Engines CH. 1. Prepared by: Dr. Assim Adaraje

Introduction to I.C Engines CH. 1 Prepared by: Dr. Assim Adaraje 1 An internal combustion engine (ICE) is a heat engine where the combustion of a fuel occurs with an oxidizer (usually air) in a combustion

### SWIRL MEASURING EQUIPMENT FOR DIRECT INJECTION DIESEL ENGINE

SWIRL MEASURING EQUIPMENT FOR DIRECT INJECTION DIESEL ENGINE G.S.Gosavi 1, R.B.Solankar 2, A.R.Kori 3, R.B.Chavan 4, S.P.Shinde 5 1,2,3,4,5 Mechanical Engineering Department, Shivaji University, (India)

### Noble Group of Institutions, Junagadh. Faculty of Engineering Department of Mechanical Engineering

Semester:1 st Subject: Elements of Mechanical Engineering (2110006) Faculty: Mr. Ishan Bhatt Year: 2017-18 Class: Comp. & IT Ele TUTORIAL 1 INTRODUCTION Q.1 Define: Force, Work, Pressure, Energy, Heat

### INTERNAL COMBUSTION ENGINE (SKMM 4413)

INTERNAL COMBUSTION ENGINE (SKMM 4413) Dr. Mohd Farid bin Muhamad Said Room : Block P21, Level 1, Automotive Development Centre (ADC) Tel : 07-5535449 Email: mfarid@fkm.utm.my HISTORY OF ICE History of

### UNIT IV INTERNAL COMBUSTION ENGINES

UNIT IV INTERNAL COMBUSTION ENGINES Objectives After the completion of this chapter, Students 1. To know the different parts of IC engines and their functions. 2. To understand the working principle of

### New 2.7L 650 Nm Opposed-Piston Engine for Light Commercial Vehicles

New 2.7L 650 Nm Opposed-Piston Engine for Light Commercial Vehicles Laurence Fromm 1) Fabien G. Redon 2) 1) Achates Power, Inc. 4060 Sorrento Valley Blvd, San Diego, CA, U.S.A. (E-mail: fromm@achatespower.com)

### ME Thermal Engineering Question Bank

ME2301 - Thermal Engineering Question Bank UNIT I GAS POWER CYCLES Otto, Diesel, Dual, Brayton cycles, Calculation of mean effective pressure, and air standard efficiency -Actual and theoretical PV diagram

### HOMOGENEOUS CHARGE CATALYTIC IGNITION OF ETHANOL-WATER/AIR MIXTURES IN A RECIPROCATING ENGINE

HOMOGENEOUS CHARGE CATALYTIC IGNITION OF ETHANOL-WATER/AIR MIXTURES IN A RECIPROCATING ENGINE Final Report KLK752A Compression Ratio and Catalyst Aging Effects on Aqueous Ethanol N09-04 National Institute

### Alternative Fuels & Advance in IC Engines

Alternative Fuels & Advance in IC Engines IIT Kanpur Kanpur, India (208016) Combustion in SI Engine Course Instructor Dr. Avinash Kumar Agarwal Professor Department of Mechanical Engineering Indian Institute

### Template for the Storyboard stage

Template for the Storyboard stage Animation can be done in JAVA 2-D. Mention what will be your animation medium: 2D or 3D Mention the software to be used for animation development: JAVA, Flash, Blender,

### Engine Systems. Basic Engine Operation. Firing Order. Four Stroke Cycle. Overhead Valves - OHV. Engine Design. AUMT Engine Systems 4/4/11

Advanced Introduction Brake to Automotive Systems Diagnosis Service and Service Basic Engine Operation Engine Systems Donald Jones Brookhaven College The internal combustion process consists of: admitting

### INTRODUCTION OF FOUR STROKE ENGINE

INTRODUCTION OF FOUR STROKE ENGINE Engine: An engine is motor which converts chemical energy into mechanical energy Fuel/petrol engine: A petrol engine (known as a gasoline engine in North America) is

### 2) Rich mixture: A mixture which contains less air than the stoichiometric requirement is called a rich mixture (ex. A/F ratio: 12:1, 10:1 etc.

Unit 3. Carburettor University Questions: 1. Describe with suitable sketches : Main metering system and Idling system 2. Draw the neat sketch of a simple carburettor and explain its working. What are the