Downloaded from SAE International by Brought To You Michigan State Univ, Thursday, April 02, 2015

Size: px
Start display at page:

Download "Downloaded from SAE International by Brought To You Michigan State Univ, Thursday, April 02, 2015"

Transcription

1 High-Speed Flow and Combustion Visualization to Study the Effects of Charge Motion Control on Fuel Spray Development and Combustion Inside a Direct- Injection Spark-Ignition Engine Published 04/12/2011 Mayank Mittal MSU College of Engineering David L.S. Hung, Guoming Zhu and Harold Schock Michigan State Univ. Copyright 2011 SAE International doi: / ABSTRACT An experimental study is performed to investigate the effects of charge motion control on in-cylinder fuel-air mixture preparation and combustion inside a direct-injection sparkignition engine with optical access to the cylinder. Highpressure production injector is used with fuel pressures of 5 and 10 MPa. Three different geometries of charge motion control (CMC) device are considered; two are expected to enhance the swirl motion inside the engine cylinder whereas the third one is expected to enhance the tumble motion. Experiments are performed at 1500 rpm engine speed with the variation in fuel injection timing, fuel pressure and the number of injections. It is found that swirl-type CMC devices significantly enhance the fuel-air mixing inside the engine cylinder with slower spray tip penetration than that of the baseline case without CMC device. Combustion images show that the flame growth is faster with CMC device compared to the similar case without CMC device. INTRODUCTION Improvement in fuel efficiency and reduction in exhaust emissions are the main goals behind the new developments in internal combustion engines (Mittal et al., 2010). The concept of direct-injection spark-ignition (DISI) engine has the potential to achieve such goals. In this technology, fuel is directly injected into the engine cylinder, which offers great flexibility to control the fuel injection timing, its duration and the number of injections. Note that the fuel-air mixture preparation in the combustion chamber is one of the key factors that influence the in-cylinder combustion characteristics and hence the engine performance (Hung et al., 2007). Therefore, optimizing the fuel-air mixture homogeneity is an important parameter for the engine designers. In general, a homogeneous fuel-air mixture is achieved by injecting the fuel during the intake stroke. In addition, the use of a charge motion control (CMC) device is an important factor that affects the flow (Mittal and Schock, 2010) and hence the fuel-air mixing and combustion inside the engine cylinder. It is expected that the CMC device imparts an angular momentum to the charge entering the engine cylinder. Several studies have been reported to investigate the influence of charge motion control on the engine performance. Clarke and Stein (1999) combined the variable valve timing with the charge motion control valve (CMCV). Variable valve timing was obtained using the dual equal variable camshaft timing (VCT) strategy. The combination of dual equal VCT with a CMCV allows an engine to be operated either at or near stoichiometric or at lean conditions, which allows the use of a NOx trap for the purpose of further reducing air pollutants. The authors indicated that the synergy between the CMCV and the dual equal VCT allows the fuel consumption to be less than the fuel consumption during lean operation at standard valve timing. This is due to the fact that CMCV increases the in-cylinder charge motion, and hence improves the combustion and the ability to handle the charge dilution, which occurs from increased levels of internal 1469

2 exhaust gas recirculation resulting from valve timing retard. Li et al. (2000) investigated the effects of swirl control valve on in-cylinder flow using a laser doppler anemometry technique. Mittal and Schock (2010) used molecular tagging velocimetry to study the influence of charge motion control on in-cylinder flow inside an internal combustion engine assembly. Kim et al. (2005) investigated the effects of injection timing and intake port flow control on fuel wetting inside the engine cylinder. They found that a tumble mixturemotion plate inside the intake port significantly reduced cylinder liner and piston top fuel wetting. This is because the use of the tumble mixture-motion plate provided more turbulence, which effectively enhanced the mixing during the intake process. Lee and Heywood (2006) studied the effects of CMCV on combustion characteristics and hydrocarbon emissions. The authors concluded that CMCV improved mixture preparation due to increased swirl and tumble intensities which enhanced fuel transport, distribution, and evaporation. CMCV in the closed condition allowed reduced fuel injection and retarded spark timing strategies that reduced hydrocarbon emissions significantly during the cold start due to greater fuel evaporation and faster burning rate. Overall, previous investigations show that a charge motion control device is an important factor that controls the combustion process, and hence, influences the engine performance (Mittal and Schock, 2010). However, to the best of authors' knowledge, visualization studies of the charge motion control device on in-cylinder fuel-air mixture preparation and combustion are not available. Therefore, an experimental study is performed to investigate the effects of charge motion control on in-cylinder fuel-air mixture preparation and combustion inside a direct-injection sparkignition engine. Experiments were performed at 1500 rpm engine speed with the variation in fuel injection timing, fuel pressure and the number of injections. In the following sections, a detail of experimental setup is first outlined, followed by the results of various tests performed. Finally, concluding remarks are summarized from this work. EXPERIMENTAL SETUP The engine used in the present work is a four-valve, two intake and two exhaust, 0.4 liter single-cylinder sparkignition engine. It has a bore diameter of 83 mm and stroke length of 73.9 mm. A flat-top piston with optical access is used. This provided a compression ratio of 9.75:1. Mittal et al. (2010) used a custom-designed piston in the same engine, which allowed the compression ratio of 13.5:1. The head accommodates a pressure transducer to record the in-cylinder pressure data. A view of the combustion chamber geometry showing intake and exhaust valves, direct-injector, spark plug and the pressure transducer is illustrated in Figure 1 (Mittal et al., 2010). It should be noted that in this paper 0 crank angle corresponds to the top dead center (TDC) of the compression, and therefore, 180 crank angle degrees (CAD) corresponds to the bottom dead center (BDC) of the intake, i.e. 180 BTDC (before top dead center). Different fuel injection timings (240, 210 and 180 BTDC) are considered with gasoline fuel. A high-pressure direct-injection (HPDI) 7-hole injector (Mittal et al., 2010) is used with the fuel pressures of 5 and 10 MPa. Figure 1. Optical engine combustion chamber SETUP FOR FUEL SPRAY VISUALIZATION Figure 2 shows the experimental rig used for spray visualization tests. The laser is introduced into the cylinder through the flat-top piston with optical access. A Mie scattering technique is used to visualize the liquid phase of the fuel dispersion inside the combustion chamber. A quartz cylinder is used to provide the optical access to the cylinder for high-speed imaging. The fuel spray was imaged with a Photron APX-RS non-intensified highspeed CMOS camera with a Nikon 105 mm AF micro lens. The camera was set to operate at 10 khz, which provided an image size of pixels. At 1500 rpm engine speed, each frame corresponds to 0.9 crank angle degrees. A high repetition rate pulsed copper vapor laser, synchronized with the high-speed camera and the fuel injection timing logic, was used to illuminate the liquid fuel dispersion. For each test condition, the engine was first motored to reach the desired rpm, i.e rpm. Once the engine was stabilized, a signal from the Cosworth engine controller was sent out to the fuel injector to trigger the start of injection at a specific crank angle position as well as to trigger the camera to start recording the specified number of images in consecutive cycles. The fuel injection duration at each test point is defined to achieve a stoichiometric air-fuel ratio based on gasoline. For each imaging test, five-injection-cycle spray images were recorded to visualize the fuel dispersion with 400 consecutive frames from each cycle. 1470

3 Downloaded from SAE International by Brought To You Michigan State Univ, Thursday, April 02, 2015 Figure 2. Experimental rig for in-cylinder fuel spray visualization SETUP FOR COMBUSTION VISUALIZATION Figure 3 shows the experimental rig for combustion visualization. Note that the quartz cylinder was replaced with the metal cylinder for the combustion tests. Experiments were performed at 1500 rpm engine speed with part-load condition (0.45 bar MAP). This part-load condition was selected due to optical limitations of the flattop piston. The effects of split (or dual) injection were also studied and compared with the corresponding cases of single injection by maintaining the same relative air-to-fuel ratio (λ), inverse of fuel-to-air equivalence ratio (φ). With the split injection, the second injection was 90 CAD apart from the first injection and the two pulse widths (of fuel injection) were kept the same. The combustion images were captured by Photron APX-RS highspeed camera (operated at 10 khz) through the optical piston. For each test condition, the engine was first motored to reach the desired rpm. Once the engine was stabilized, a signal from the Opal-RT engine controller was sent out to the fuel injector to trigger the start of injection at a specific crank angle position as well as to trigger the camera at the spark timing crank angle position to start recording the specified number of images in consecutive cycles. The fuel injection duration at each test point was selected to achieve the desired relative air-to-fuel ratio. For each imaging test, forty consecutive cycles were recorded to visualize the combustion process with 200 frames from each cycle. Due to optical engine limitations, the fuel supply was cut off as soon as the camera recorded the specified number of cycles. In-cylinder pressure was recorded with one degree of crank angle resolution that has been synchronized with the imaging signal. The Kistler piezoelectric pressure transducer was used with the measurement range varying from 0 to 250 bars. The averaged in-cylinder pressure data is then used to evaluate the engine performance. Mass fraction burned (MFB) and burn durations are determined using the well-known RassweilerWithrow method (Rassweiler and Withrow, 1938). A linear model for the polytropic index during the combustion process is used to evaluate the pressure change due to the volume change (Mittal et al., 2009). Figure 3. Experimental rig for combustion visualization 1471

4 CHARGE MOTION CONTROL DEVICE The charge motion control device was installed between the intake manifold and the intake port. The nature of CMC device influence depends on its geometry. Three different geometries of charge motion control device were considered (see Figure 4); two are expected to enhance the swirl motion inside the engine cylinder whereas the third one is expected to enhance the tumble motion. Each CMC device used in this study reduced the port cross sectional area by about 75%, i.e., the flow area about 25%. Experiments were performed with both the conditions: CMC device open (i.e. without CMC device) and CMC device closed (i.e. with CMC device). RESULTS AND DISCUSSION Results of fuel spray development; combustion visualization and in-cylinder pressure analyses are presented for a directinjection spark-ignition engine with both open (without) and closed (with) charge motion control devices. Three different geometric configurations of charge motion control device are considered. FUEL SPRAY VISUALIZATION Figure 5 shows the spray development of gasoline with open (left column) and closed CMC devices of all three configurations, i.e. swirl-types 1 (second column) and 2 (third column) and tumble-type (right column). In each case, highpressure direct-injection injector is used with 5 MPa of injection pressure at 1500 rpm engine speed. The start of injection (SOI) is at 240 crank angle degrees (or 240 BTDC). The size of each spray image shown in this paper is pixels. The physical size of a pixel is about 0.19 mm. Note that the intake valves are located towards the left side of each spray image. The spray development at BTDC shows that the spray tip penetration is faster with tumble-type CMC device compared to the baseline case with open CMC device. However, it is to be noticed that the spray tip penetration is slower with swirl-type CMC devices compared to both open and tumble-type CMC devices. Spray images at BTDC clearly show that the spray tip penetration is even slower with swirl type-1 CMC device compared to the swirl type-2 CMC device. It is interesting to note that no significant difference is observed in spray development when the baseline case (with open CMC device) is compared with the tumble-type CMC device. However, the fuel dispersion is wider with swirl-type CMC devices. Also, note that the intensity values in these images (with swirltypes 1 and 2) are relatively low compared to the intensity values in spray images of both open and tumble-type CMC devices (see the presence of more liquid fuel towards the left side of the piston top with both open and tumble-type CMC devices). This clearly shows that the air-fuel mixing improves with swirl-type CMC devices with reduced piston top impingement. Figure 6 shows the spray development of gasoline with open and closed CMC devices of all three configurations. In each case, an HPDI injector is used with 5 MPa of injection pressure at 1500 rpm engine speed. The start of injection is at 180 BTDC. Similar to the results observed with SOI at 240 BTDC, the spray tip penetration is slower with swirl-type CMC devices than that of open and tumble-type CMC devices. Note that the fuel dispersion is wider with swirl- and tumble-type CMC devices than that of open CMC device. Therefore, it is expected that the air-fuel mixing improves with the charge motion control device. SPRAY TIP PENETRATION Figure 7 shows the effects of injection pressure (at 5 and 10 MPa) and the injection timing (at 240 and 180 BTDC with 5 MPa of injection pressure) on spray tip penetration with open CMC device. The penetration length is determined as the axial location of the spray tip from the injector tip. As expected, the spray tip penetration is faster with the injection pressure of 10 MPa than that of 5 MPa. Note that the spray tip penetration is slower when fuel injection starts at 180 BTDC than that of 240 BTDC injection timing due to upward movement of the piston. Figure 8 shows the effects of different configurations of charge motion control devices on spray tip penetration. As observed in spray images (of Figure 5), the spray tip penetration is faster with tumble-type CMC device compared to open and swirl-type CMC devices. Note that the spray tip penetration is slowest with swirl type-1 CMC device compared to open and other configurations (swirl type-2 and tumble-type) of CMC devices. Figure 4. Three different types of charge motion control devices: (a) Swirl type-1, (b) Swirl type-2 and (c) Tumble type CMC devices 1472

5 Downloaded from SAE International by Brought To You Michigan State Univ, Thursday, April 02, 2015 Figure 5. Spray development with (a) Open, (b) swirl-type 1, (c) swirl-type 2 and (d) tumble-type CMC devices at 5 MPa of injection pressure with SOI at 240 BTDC 1473

6 Downloaded from SAE International by Brought To You Michigan State Univ, Thursday, April 02, 2015 Figure 6. Spray development with (a) Open, (b) swirl-type 1, (c) swirl-type 2 and (d) tumble-type CMC devices at 5 MPa of injection pressure with SOI at 180 BTDC 1474

7 Figure 7. Effect of injection pressure and injection timing on spray tip penetration Figure 8. Effect of charge motion control device on spray tip penetration COMBUSTION VISUALIZATION AND IN-CYLINDER PRESSURE ANALYSES Combustion visualization and in-cylinder pressure analyses are presented with open and closed (swirl type-2) CMC devices. The characteristics displayed in the combustion images, such as the flame sizes, shapes and appearance, may provide useful insight into what happens over the combustion period (Aleiferis et al., 2008). It should be pointed out here that the images presented are a two-dimensional representation of the three-dimensional flame development inside the engine cylinder. Also, it is to be noticed that each combustion image shown in this paper is a reduced form of its original image size of pixels to pixels (for better visibility to the reader) by eliminating the dark area band of pixels outside the cylinder. The physical size of a pixel is about 0.22 mm. Figure 9 shows the stoichiometric combustion images of gasoline with single injection for both open and closed (swirl type-2) CMC devices at 25.2, 28.8, 31.5 and 34.2 after spark timing (AST). High-pressure direct-injection injector is used at 5 MPa of injection pressure. The images are enhanced so that the early flame development and its growth is clearly visible to the reader for comparison purpose. The spark timing (ST) was at 35 BTDC based on MBT. The MBT timing at each test point was determined based on the maximum value of the mean IMEP during the spark sweep. The engine was operated at 1500 rpm with part-load condition. In each case the start of injection was considered at 210 BTDC. Note that Mittal et al. (2010) showed less overall impingement on in-cylinder surfaces in the same engine at this injection timing, and due to this, injection 1475

8 Figure 9. Flame images of gasoline with single injection (λ =1 and ST = 35 BTDC) using HPDI injector at 5 MPa with open (upper) and closed (lower) CMC devices timing of 210 BTDC is selected. The intake valves in all the combustion images are located towards the upper half of the images. It is evident from the images that the flame growth is slower with open CMC device than that of closed CMC device. It is expected that there will be some cycle-to-cycle variations in the flame development. Figure 10 shows the combustion images of gasoline with split (or dual) injection for both open and closed CMC devices at 25.2, 28.8, 31.5 and 34.2 after the spark timing. In each case, the start of first injection was at 210 BTDC with injection pressure of 5 MPa. The start of second injection was at 120 BTDC (90 CADs apart from the first injection). Note that the total amount of fuel was divided equally in both the injections for stoichiometric air-to-fuel condition. The spark timing was at 32 BTDC based on MBT. The combustion images show that the flame growth is much faster with closed CMC device than that of open CMC device. It is to be noticed that some bright rich spots are also visible in the combustion images (more with open CMC device than that of closed CMC device) of split injection. This may be occurring due to droplet burning (Aleiferis et al., 2008). Early start of the second injection may help to reduce these hot spots by allowing more mixing time. Also, hot in-cylinder conditions of the metal engine may help to reduce these hot spots due to faster evaporation of liquid fuel inside the engine cylinder. Aleiferis et al. (2008) discussed that gasoline is particularly susceptible to these hot spots. Figure 11 shows the averaged in-cylinder pressures for gasoline at stoichiometric conditions for both open and closed CMC devices with both single and split injections. An HPDI injector at 5 MPa is used in each case. It can be observed that the peak in-cylinder pressure increases with the split injection than that of the corresponding case with single injection. Also, the peak in-cylinder pressure is slightly higher with the closed CMC device than that of open CMC device. It is noticed that the crank angle at which the peak in-cylinder pressure occurs is 2 CAD earlier for closed CMC device than that of its corresponding open CMC device case for single injections. Similarly, for open CMC device the peak incylinder pressure location is 2 CAD earlier with split injection than that of its corresponding case of single injection. The mean IMEPs are 2.59 and 2.73 bar with open CMC device for single and split injections, respectively. This shows that the mean IMEP increases with the split injection than that of its corresponding case with the single injection. The mean IMEPs with closed CMC device are 2.52 and 2.58 bar for single and split injections, respectively. This shows that the mean IMEP reduces with closed CMC device than that of its corresponding case with open CMC device. This is expected due to increased pumping power with the closed CMC device. 1476

9 Downloaded from SAE International by Brought To You Michigan State Univ, Thursday, April 02, 2015 Figure 10. Flame images of gasoline with split injection (λ =1 and ST = 32 BTDC) using HPDI injector at 5 MPa with open (upper) and closed (lower) CMC devices Figure 11. Averaged in-cylinder pressure for gasoline (λ =1) with open and closed CMC devices for both single and split injections at 5 MPa of injection pressure Figure 12. Mass fraction burned for gasoline (λ =1) with both open and closed CMC devices for single and split injections at 5 MPa of injection pressure 1477

10 Downloaded from SAE International by Brought To You Michigan State Univ, Thursday, April 02, 2015 Figure 13. Flame images of gasoline with single injection (λ =1 and ST = 35 BTDC) using HPDI injector at 10 MPa with open (upper) and closed (lower) CMC device Figure 12 shows the mass fraction burned curves calculated from the averaged in-cylinder pressure data shown in Fig. 11. It can be observed that the burning is faster with closed CMC device than that with open CMC device. Similarly, it is faster with split injection than that of single injection. The 10% burn locations for single injections are at 0 and 1 CAD for open and closed CMC devices, respectively. With split injections, the total burn durations (10% - 90%) are 24 and 27 CAD for closed and open CMC devices, respectively. Therefore, the total burn duration decreases with the closed CMC device more than with the open CMC device. Figure 13 shows the stoichiometric combustion images of gasoline with single injection for both open and closed CMC devices at 25.2, 28.8, 31.5 and 34.2 after the spark timing. An high-pressure direct-injection injector is used at 10 MPa of injection pressure. The spark timing was at 35 BTDC based on MBT. The engine was operated at 1500 rpm with part-load condition. In each case the start of injection was at 210 BTDC. It is evident from the images that the flame growth is much faster at higher injection pressure of 10 MPa than that of lower injection pressure of 5 MPa (see Figure 9 for comparison). Also, at this higher injection pressure of 10 MPa, some bright spots are visible with open CMC device compared to the combustion images with closed CMC device Figure 14. Averaged in-cylinder pressure for gasoline (λ =1) with open and closed CMC devices (single injections) at 10 MPa of injection pressure Figure 14 shows the averaged in-cylinder pressures for gasoline at stoichiometric conditions for both open and closed CMC devices with single injection. An HPDI injector was used with 10 MPa pressure in each case. No significant difference is observed in peak in-cylinder pressure values at this higher injection pressure (of 10 MPa) with open and closed CMC devices. However, the crank angle at which the peak in-cylinder pressure occurs is 1 CAD earlier for closed CMC device than that of open CMC device. The peak incylinder pressure is about 14.8 bar for both cases. The mean IMEPs are 2.78 and 2.62 bar with open and closed CMC devices, respectively.

11 REFERENCES 1. Mittal, M., Hung, D.L.S., Zhu, G. and Schock, H.J., A Study of Fuel Impingement Analysis on In-Cylinder Surfaces in a Direct-Injection Spark-Ignition Engine with Gasoline and Ethanol-Gasoline Blended Fuels, SAE Technical Paper , 2010, doi: / Hung, D.L.S., Zhu, G., Winkelman, J.R., Stuecken, T., Schock, H., and Fedewa, A., A High Speed Flow Visualization Study of Fuel Spray Pattern Effect on Mixture Formation in a Low Pressure Direct Injection Gasoline Engine, SAE Technical Paper , 2007, doi: / Figure 15. Mass fraction burned for gasoline (λ =1) with open and closed CMC devices (single injections) at 10 MPa of injection pressure Figure 15 shows the mass fraction burned curves calculated from the averaged in-cylinder pressure data shown in Figure 14. As seen earlier, it can be observed that the burning is faster with closed CMC device than that of open CMC device at this higher injection pressure of 10 MPa. The 10% burn locations are at 2 and 3 CAD for open and closed CMC devices, respectively. The total burn durations (10% - 90%) are 23 and 26 CAD for closed and open CMC devices, respectively. Therefore, similar to the results at 5 MPa of injection pressure, the total burn duration decreases with closed CMC device than that of open CMC device. CONCLUSIONS An experimental study was performed to investigate the effects of charge motion control on in-cylinder fuel-air mixture preparation and combustion of a direct-injection spark-ignition engine. High-pressure production injector was used with fuel pressures of 5 and 10 MPa. Experiments were performed at 1500 rpm engine speed with the variation in fuel injection timing, fuel pressure and the number of injections. It is found that swirl-type charge motion control devices significantly enhance the fuel-air mixing inside the engine cylinder compared to the baseline case with open CMC device. In addition, the spray tip penetration is found to be slower with swirl-type CMC devices compared to the case with open CMC device. The results of combustion visualization show that the flame growth increases with the increased fuel injection pressure. The peak in-cylinder pressure also increases with the increased injection pressure. The effects of CMC device on flame growth are more significant at lower fuel injection pressure of 5 MPa than that of higher injection pressure of 10 MPa. Overall, it can be concluded that charge motion control is an effective way to enhance the fuel-air mixing and hence to improve the engine performance. 3. Mittal, M., and Schock, H.J., 2010, A study of cycle-tocycle variations and the influence of charge motion control on in-cylinder flow in an I.C. engine, ASME Journal of Fluids Engineering, 132(5), , pp Clarke, J. R., and Stein, R. A., 1999, Internal Combustion Engine With Variable Camshaft Timing, Charge Motion Control Valve, and Variable Air/Fuel Ratio, U.S. Patent No. 5,957, Li, Y., Liu, S., Shi, S., and Xu, Z., Effect of the Swirl Control Valve on the In-Cylinder Air Motion in a Four-Valve SI Engine, SAE Technical Paper , 2000, doi: / Kim, H., Yoon, S., Xie, X. B., Lai, M. C., Quelhas, S., Boyd, R., Kumar, N., and Moran, C., Effects of Injection Timings and Intake Port Flow Control on the In-Cylinder Wetted Fuel Footprints During PFI Engine Startup Process, SAE Technical Paper , 2005, doi: / Lee, D. and Heywood, J. B., Effects of Charge Motion Control During Cold Start of SI Engines, SAE Technical Paper , 2006, doi: / Rassweiler, G. M. and Withrow, L., Motion Pictures of Engine Flames Correlated with Pressure Cards, SAE Technical Paper , 1938, doi: / Mittal, M., Zhu, G., and Schock, H.J., 2009, Fast mass fraction burned calculation using net pressure method for real-time applications, Proc. IMechE, Part D: J. Automobile Engineering, 223(3), pp Aleiferis, P.G., Malcolm, J.S., Todd, A.R., Cairns, A., and Hoffmann, H., An Optical Study of Spray Development and Combustion of Ethanol, Iso-Octane and Gasoline Blends in a DISI Engine, SAE Technical Paper , 2008, doi: /

12 CONTACT INFORMATION Author for correspondence: Mayank Mittal, PhD Department of Mechanical Engineering Michigan State University East Lansing, MI , USA mittalma@msu.edu ACKNOWLEDGMENTS This work was supported in part by the U.S. Department of Energy under Grant DE-FC26-07NT DEFINITIONS/ABBREVIATIONS HPDI High-pressure direct-injection IMEP Indicated mean effective pressure MAP MFB RPM Manifold absolute pressure Mass fraction burned Revolutions per minute λ Relative air-to-fuel ratio SOI Start of injection φ Fuel-to-air equivalence ratio ST Spark timing 180 BTDC 180 crank angle degrees before TDC of compression 25.2 AST 25.2 crank angle degrees after spark timing TDC VCT Top dead center Variable camshaft timing BDC Bottom dead center BTDC Before top dead center CAD Crank angle degree CMC Charge motion control CMCV Charge motion control valve DI Direct-injection DISI Direct-injection spark-ignition 1480

Effects of Pre-injection on Combustion Characteristics of a Single-cylinder Diesel Engine

Effects of Pre-injection on Combustion Characteristics of a Single-cylinder Diesel Engine Proceedings of the ASME 2009 International Mechanical Engineering Congress & Exposition IMECE2009 November 13-19, Lake Buena Vista, Florida, USA IMECE2009-10493 IMECE2009-10493 Effects of Pre-injection

More information

FUEL IMPINGEMENT ANALYSIS OF FLASH-BOILING SPRAY IN A SPARK-IGNITION DIRECT-INJECTION ENGINE

FUEL IMPINGEMENT ANALYSIS OF FLASH-BOILING SPRAY IN A SPARK-IGNITION DIRECT-INJECTION ENGINE FUEL IMPINGEMENT ANALYSIS OF FLASH-BOILING SPRAY IN A SPARK-IGNITION DIRECT-INJECTION ENGINE Hao CHEN 1, Min XU 1, David L.S. HUNG 1, 2, Jie YANG 1, Hanyang ZHUANG 2 1 School of Mechanical Engineering,

More information

Development, Implementation, and Validation of a Fuel Impingement Model for Direct Injected Fuels with High Enthalpy of Vaporization

Development, Implementation, and Validation of a Fuel Impingement Model for Direct Injected Fuels with High Enthalpy of Vaporization Development, Implementation, and Validation of a Fuel Impingement Model for Direct Injected Fuels with High Enthalpy of Vaporization (SAE Paper- 2009-01-0306) Craig D. Marriott PE, Matthew A. Wiles PE,

More information

Module 3: Influence of Engine Design and Operating Parameters on Emissions Lecture 14:Effect of SI Engine Design and Operating Variables on Emissions

Module 3: Influence of Engine Design and Operating Parameters on Emissions Lecture 14:Effect of SI Engine Design and Operating Variables on Emissions Module 3: Influence of Engine Design and Operating Parameters on Emissions Effect of SI Engine Design and Operating Variables on Emissions The Lecture Contains: SI Engine Variables and Emissions Compression

More information

The Effects of Chamber Temperature and Pressure on a GDI Spray Characteristics in a Constant Volume Chamber

The Effects of Chamber Temperature and Pressure on a GDI Spray Characteristics in a Constant Volume Chamber 한국동력기계공학회지제18권제6호 pp. 186-192 2014년 12월 (ISSN 1226-7813) Journal of the Korean Society for Power System Engineering http://dx.doi.org/10.9726/kspse.2014.18.6.186 Vol. 18, No. 6, pp. 186-192, December 2014

More information

Effect of Tangential Grooves on Piston Crown Of D.I. Diesel Engine with Retarded Injection Timing

Effect of Tangential Grooves on Piston Crown Of D.I. Diesel Engine with Retarded Injection Timing International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn : 2278-800X, www.ijerd.com Volume 5, Issue 10 (January 2013), PP. 01-06 Effect of Tangential Grooves on Piston Crown

More information

Module7:Advanced Combustion Systems and Alternative Powerplants Lecture 32:Stratified Charge Engines

Module7:Advanced Combustion Systems and Alternative Powerplants Lecture 32:Stratified Charge Engines ADVANCED COMBUSTION SYSTEMS AND ALTERNATIVE POWERPLANTS The Lecture Contains: DIRECT INJECTION STRATIFIED CHARGE (DISC) ENGINES Historical Overview Potential Advantages of DISC Engines DISC Engine Combustion

More information

EFFECT OF INJECTION ORIENTATION ON EXHAUST EMISSIONS IN A DI DIESEL ENGINE: THROUGH CFD SIMULATION

EFFECT OF INJECTION ORIENTATION ON EXHAUST EMISSIONS IN A DI DIESEL ENGINE: THROUGH CFD SIMULATION EFFECT OF INJECTION ORIENTATION ON EXHAUST EMISSIONS IN A DI DIESEL ENGINE: THROUGH CFD SIMULATION *P. Manoj Kumar 1, V. Pandurangadu 2, V.V. Pratibha Bharathi 3 and V.V. Naga Deepthi 4 1 Department of

More information

The Effect of Volume Ratio of Ethanol Directly Injected in a Gasoline Port Injection Spark Ignition Engine

The Effect of Volume Ratio of Ethanol Directly Injected in a Gasoline Port Injection Spark Ignition Engine 10 th ASPACC July 19 22, 2015 Beijing, China The Effect of Volume Ratio of Ethanol Directly Injected in a Gasoline Port Injection Spark Ignition Engine Yuhan Huang a,b, Guang Hong a, Ronghua Huang b. a

More information

Combustion characteristics of a single-cylinder spark ignition gasoline and ethanol dual-fuelled engine

Combustion characteristics of a single-cylinder spark ignition gasoline and ethanol dual-fuelled engine Combustion characteristics of a single-cylinder spark ignition gasoline and ethanol dual-fuelled engine G Zhu*, D Hung, and H Schock Department of Mechanical Enginering, Michigan State University, East

More information

Proposal to establish a laboratory for combustion studies

Proposal to establish a laboratory for combustion studies Proposal to establish a laboratory for combustion studies Jayr de Amorim Filho Brazilian Bioethanol Science and Technology Laboratory SCRE Single Cylinder Research Engine Laboratory OUTLINE Requirements,

More information

Experimental investigation on influence of EGR on combustion performance in SI Engine

Experimental investigation on influence of EGR on combustion performance in SI Engine - 1821 - Experimental investigation on influence of EGR on combustion performance in SI Engine Abstract M. Božić 1*, A. Vučetić 1, D. Kozarac 1, Z. Lulić 1 1 University of Zagreb, Faculty of Mechanical

More information

Variations of Exhaust Gas Temperature and Combustion Stability due to Changes in Spark and Exhaust Valve Timings

Variations of Exhaust Gas Temperature and Combustion Stability due to Changes in Spark and Exhaust Valve Timings Variations of Exhaust Gas Temperature and Combustion Stability due to Changes in Spark and Exhaust Valve Timings Yong-Seok Cho Graduate School of Automotive Engineering, Kookmin University, Seoul, Korea

More information

Normal vs Abnormal Combustion in SI engine. SI Combustion. Turbulent Combustion

Normal vs Abnormal Combustion in SI engine. SI Combustion. Turbulent Combustion Turbulent Combustion The motion of the charge in the engine cylinder is always turbulent, when it is reached by the flame front. The charge motion is usually composed by large vortexes, whose length scales

More information

A Study of EGR Stratification in an Engine Cylinder

A Study of EGR Stratification in an Engine Cylinder A Study of EGR Stratification in an Engine Cylinder Bassem Ramadan Kettering University ABSTRACT One strategy to decrease the amount of oxides of nitrogen formed and emitted from certain combustion devices,

More information

Smoke Reduction Methods Using Shallow-Dish Combustion Chamber in an HSDI Common-Rail Diesel Engine

Smoke Reduction Methods Using Shallow-Dish Combustion Chamber in an HSDI Common-Rail Diesel Engine Special Issue Challenges in Realizing Clean High-Performance Diesel Engines 17 Research Report Smoke Reduction Methods Using Shallow-Dish Combustion Chamber in an HSDI Common-Rail Diesel Engine Yoshihiro

More information

Increased efficiency through gasoline engine downsizing

Increased efficiency through gasoline engine downsizing Loughborough University Institutional Repository Increased efficiency through gasoline engine downsizing This item was submitted to Loughborough University's Institutional Repository by the/an author.

More information

Maximizing Engine Efficiency by Controlling Fuel Reactivity Using Conventional and Alternative Fuels. Sage Kokjohn

Maximizing Engine Efficiency by Controlling Fuel Reactivity Using Conventional and Alternative Fuels. Sage Kokjohn Maximizing Engine Efficiency by Controlling Fuel Reactivity Using Conventional and Alternative Fuels Sage Kokjohn Acknowledgments Direct-injection Engine Research Consortium (DERC) US Department of Energy/Sandia

More information

SWIRL MEASURING EQUIPMENT FOR DIRECT INJECTION DIESEL ENGINE

SWIRL MEASURING EQUIPMENT FOR DIRECT INJECTION DIESEL ENGINE SWIRL MEASURING EQUIPMENT FOR DIRECT INJECTION DIESEL ENGINE G.S.Gosavi 1, R.B.Solankar 2, A.R.Kori 3, R.B.Chavan 4, S.P.Shinde 5 1,2,3,4,5 Mechanical Engineering Department, Shivaji University, (India)

More information

Natural Gas fuel for Internal Combustion Engine

Natural Gas fuel for Internal Combustion Engine Natural Gas fuel for Internal Combustion Engine L. Bartolucci, S. Cordiner, V. Mulone, V. Rocco University of Rome Tor Vergata Department of Industrial Engineering Outline Introduction Motivations and

More information

Combustion Characteristics Detection for Low Pressure Direct Injection Engines Using Ionization Signal

Combustion Characteristics Detection for Low Pressure Direct Injection Engines Using Ionization Signal Downloaded from SAE International by Brought To You Michigan State Univ, Saturday, April, SAE TECHNICAL PAPER SERIES 6--7 Combustion Characteristics Detection for Low Direct Injection Engines Using Ionization

More information

INFLUENCE OF FUEL TYPE AND INTAKE AIR PROPERTIES ON COMBUSTION CHARACTERISTICS OF HCCI ENGINE

INFLUENCE OF FUEL TYPE AND INTAKE AIR PROPERTIES ON COMBUSTION CHARACTERISTICS OF HCCI ENGINE ENGINEERING FOR RURAL DEVELOPMENT Jelgava, 23.-24.5.213. INFLUENCE OF FUEL TYPE AND INTAKE AIR PROPERTIES ON COMBUSTION CHARACTERISTICS OF HCCI ENGINE Kastytis Laurinaitis, Stasys Slavinskas Aleksandras

More information

8 th International Symposium TCDE Choongsik Bae and Sangwook Han. 9 May 2011 KAIST Engine Laboratory

8 th International Symposium TCDE Choongsik Bae and Sangwook Han. 9 May 2011 KAIST Engine Laboratory 8 th International Symposium TCDE 2011 Choongsik Bae and Sangwook Han 9 May 2011 KAIST Engine Laboratory Contents 1. Background and Objective 2. Experimental Setup and Conditions 3. Results and Discussion

More information

Combustion and emission characteristics of a dual injection system applied to a DISI engine

Combustion and emission characteristics of a dual injection system applied to a DISI engine 424 Pet.Sci.(214)11:424-431 DOI 1.17/s12182-14-357-y Combustion and emission characteristics of a dual injection system applied to a DISI engine Byungdeok In, Sangwook Park, Hyungmin Kim and Kihyung Lee

More information

Simulation of Performance Parameters of Spark Ignition Engine for Various Ignition Timings

Simulation of Performance Parameters of Spark Ignition Engine for Various Ignition Timings Research Article International Journal of Current Engineering and Technology ISSN 2277-4106 2013 INPRESSCO. All Rights Reserved. Available at http://inpressco.com/category/ijcet Simulation of Performance

More information

Kul Internal Combustion Engine Technology. Definition & Classification, Characteristics 2015 Basshuysen 1,2,3,4,5

Kul Internal Combustion Engine Technology. Definition & Classification, Characteristics 2015 Basshuysen 1,2,3,4,5 Kul-14.4100 Internal Combustion Engine Technology Definition & Classification, Characteristics 2015 Basshuysen 1,2,3,4,5 Definitions Combustion engines convert the chemical energy of fuel to mechanical

More information

INFLUENCE OF INTAKE AIR TEMPERATURE AND EXHAUST GAS RECIRCULATION ON HCCI COMBUSTION PROCESS USING BIOETHANOL

INFLUENCE OF INTAKE AIR TEMPERATURE AND EXHAUST GAS RECIRCULATION ON HCCI COMBUSTION PROCESS USING BIOETHANOL ENGINEERING FOR RURAL DEVELOPMENT Jelgava, 2.-27..216. INFLUENCE OF INTAKE AIR TEMPERATURE AND EXHAUST GAS RECIRCULATION ON HCCI COMBUSTION PROCESS USING BIOETHANOL Kastytis Laurinaitis, Stasys Slavinskas

More information

SI engine control in the cold-fast-idle period. for low HC emissions and fast catalyst light off

SI engine control in the cold-fast-idle period. for low HC emissions and fast catalyst light off 2014-01-1366 SI engine control in the cold-fast-idle period for low HC emissions and fast catalyst light off Author, co-author (Do NOT enter this information. It will be pulled from participant tab in

More information

Marc ZELLAT, Driss ABOURI, Thierry CONTE and Riyad HECHAICHI CD-adapco

Marc ZELLAT, Driss ABOURI, Thierry CONTE and Riyad HECHAICHI CD-adapco 16 th International Multidimensional Engine User s Meeting at the SAE Congress 2006,April,06,2006 Detroit, MI RECENT ADVANCES IN SI ENGINE MODELING: A NEW MODEL FOR SPARK AND KNOCK USING A DETAILED CHEMISTRY

More information

Internal Combustion Optical Sensor (ICOS)

Internal Combustion Optical Sensor (ICOS) Internal Combustion Optical Sensor (ICOS) Optical Engine Indication The ICOS System In-Cylinder Optical Indication 4air/fuel ratio 4exhaust gas concentration and EGR 4gas temperature 4analysis of highly

More information

Combustion. T Alrayyes

Combustion. T Alrayyes Combustion T Alrayyes Fluid motion with combustion chamber Turbulence Swirl SQUISH AND TUMBLE Combustion in SI Engines Introduction The combustion in SI engines inside the engine can be divided into three

More information

Experimental Investigation of Performance and Exhaust Emission Characteristics of Diesel Engine by Changing Piston Geometry

Experimental Investigation of Performance and Exhaust Emission Characteristics of Diesel Engine by Changing Piston Geometry Experimental Investigation of Performance and Exhaust Emission Characteristics of Diesel Engine by Changing Piston Geometry 1 Vaibhav Bhatt, 2 Vandana Gajjar 1 M.E. Scholar, 2 Assistant Professor 1 Department

More information

Gas exchange and fuel-air mixing simulations in a turbocharged gasoline engine with high compression ratio and VVA system

Gas exchange and fuel-air mixing simulations in a turbocharged gasoline engine with high compression ratio and VVA system Third Two-Day Meeting on Internal Combustion Engine Simulations Using the OpenFOAM technology, Milan 22 nd -23 rd February 2018. Gas exchange and fuel-air mixing simulations in a turbocharged gasoline

More information

Comparison of Velocity Vector Components in a Di Diesel Engine: Analysis through Cfd Simulation

Comparison of Velocity Vector Components in a Di Diesel Engine: Analysis through Cfd Simulation IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X PP. 55-60 www.iosrjournals.org Comparison of Velocity Vector Components in a Di Diesel Engine: Analysis

More information

SI engine combustion

SI engine combustion SI engine combustion 1 SI engine combustion: How to burn things? Reactants Products Premixed Homogeneous reaction Not limited by transport process Fast/slow reactions compared with other time scale of

More information

Spray Development, Flow Interactions and Wall Impingement in a Direct-Injection Spark-Ignition Engine

Spray Development, Flow Interactions and Wall Impingement in a Direct-Injection Spark-Ignition Engine 2007-01-2712 Spray Development, Flow Interactions and Wall Impingement in a Direct-Injection Spark-Ignition Engine Copyright 2007 Society of Automotive Engineers, Inc J. Serras-Pereira and P.G. Aleiferis

More information

Comparative performance and emissions study of a lean mixed DTS-i spark ignition engine operated on single spark and dual spark

Comparative performance and emissions study of a lean mixed DTS-i spark ignition engine operated on single spark and dual spark 26 IJEDR Volume 4, Issue 2 ISSN: 232-9939 Comparative performance and emissions study of a lean mixed DTS-i spark ignition engine operated on single spark and dual spark Hardik Bambhania, 2 Vijay Pithiya,

More information

AN EXPERIMENT STUDY OF HOMOGENEOUS CHARGE COMPRESSION IGNITION COMBUSTION AND EMISSION IN A GASOLINE ENGINE

AN EXPERIMENT STUDY OF HOMOGENEOUS CHARGE COMPRESSION IGNITION COMBUSTION AND EMISSION IN A GASOLINE ENGINE THERMAL SCIENCE: Year 2014, Vol. 18, No. 1, pp. 295-306 295 AN EXPERIMENT STUDY OF HOMOGENEOUS CHARGE COMPRESSION IGNITION COMBUSTION AND EMISSION IN A GASOLINE ENGINE by Jianyong ZHANG *, Zhongzhao LI,

More information

Improving Fuel Efficiency with Fuel-Reactivity-Controlled Combustion

Improving Fuel Efficiency with Fuel-Reactivity-Controlled Combustion ERC Symposium 2009 1 Improving Fuel Efficiency with Fuel-Reactivity-Controlled Combustion Rolf D. Reitz, Reed Hanson, Derek Splitter, Sage Kokjohn Engine Research Center University of Wisconsin-Madison

More information

Experimental Study on the Combustion Characteristics of Emulsified Diesel in a RCEM

Experimental Study on the Combustion Characteristics of Emulsified Diesel in a RCEM Seoul 2000 FISITA World Automotive Congress June 12-15, 2000, Seoul, Korea F2000A073 Experimental Study on the Combustion Characteristics of Emulsified Diesel in a RCEM Jae W. Park*, Kang Y. Huh* and Kweon

More information

International Journal of Scientific & Engineering Research, Volume 7, Issue 8, August-2016 ISSN

International Journal of Scientific & Engineering Research, Volume 7, Issue 8, August-2016 ISSN ISSN 2229-5518 2417 Experimental Investigation of a Two Stroke SI Engine Operated with LPG Induction, Gasoline Manifold Injection and Carburetion V. Gopalakrishnan and M.Loganathan Abstract In this experimental

More information

Comparison of Swirl, Turbulence Generating Devices in Compression ignition Engine

Comparison of Swirl, Turbulence Generating Devices in Compression ignition Engine Available online atwww.scholarsresearchlibrary.com Archives of Applied Science Research, 2016, 8 (7):31-40 (http://scholarsresearchlibrary.com/archive.html) ISSN 0975-508X CODEN (USA) AASRC9 Comparison

More information

Eco-diesel engine fuelled with rapeseed oil methyl ester and ethanol. Part 3: combustion processes

Eco-diesel engine fuelled with rapeseed oil methyl ester and ethanol. Part 3: combustion processes Eco-diesel engine fuelled with rapeseed oil methyl ester and ethanol. Part 3: combustion processes A Kowalewicz Technical University of Radom, al. Chrobrego 45, Radom, 26-600, Poland. email: andrzej.kowalewicz@pr.radom.pl

More information

Lecture 5. Abnormal Combustion

Lecture 5. Abnormal Combustion Lecture 5 Abnormal Combustion Abnormal Combustion The Abnormal Combustion:- When the combustion gets deviated from the normal behavior resulting loss of performance or damage to the engine. It is happened

More information

Numerically Analysing the Effect of EGR on Emissions of DI Diesel Engine Having Toroidal Combustion Chamber Geometry

Numerically Analysing the Effect of EGR on Emissions of DI Diesel Engine Having Toroidal Combustion Chamber Geometry Numerically Analysing the Effect of EGR on Emissions of DI Diesel Engine Having Toroidal Combustion Chamber Geometry Jibin Alex 1, Biju Cherian Abraham 2 1 Student, Dept. of Mechanical Engineering, M A

More information

EFFECTS OF INTAKE AIR TEMPERATURE ON HOMOGENOUS CHARGE COMPRESSION IGNITION COMBUSTION AND EMISSIONS WITH GASOLINE AND n-heptane

EFFECTS OF INTAKE AIR TEMPERATURE ON HOMOGENOUS CHARGE COMPRESSION IGNITION COMBUSTION AND EMISSIONS WITH GASOLINE AND n-heptane THERMAL SCIENCE: Year 2015, Vol. 19, No. 6, pp. 1897-1906 1897 EFFECTS OF INTAKE AIR TEMPERATURE ON HOMOGENOUS CHARGE COMPRESSION IGNITION COMBUSTION AND EMISSIONS WITH GASOLINE AND n-heptane by Jianyong

More information

VISUALIZATION OF AUTO-IGNITION OF END GAS REGION WITHOUT KNOCK IN A SPARK-IGNITION NATURAL GAS ENGINE

VISUALIZATION OF AUTO-IGNITION OF END GAS REGION WITHOUT KNOCK IN A SPARK-IGNITION NATURAL GAS ENGINE Journal of KONES Powertrain and Transport, Vol. 17, No. 4 21 VISUALIZATION OF AUTO-IGNITION OF END GAS REGION WITHOUT KNOCK IN A SPARK-IGNITION NATURAL GAS ENGINE Eiji Tomita, Nobuyuki Kawahara Okayama

More information

ISSN: ISO 9001:2008 Certified International Journal of Engineering and Innovative Technology (IJEIT) Volume 4, Issue 7, January 2015

ISSN: ISO 9001:2008 Certified International Journal of Engineering and Innovative Technology (IJEIT) Volume 4, Issue 7, January 2015 Effect of Auxiliary Injection Ratio on the Characteristic of Lean Limit in Early Direct Injection Natural Gas Engine Tran Dang Quoc Department of Internal Combustion Engine School of Transportation Engineering,

More information

Effect of piston profile on performance and emission characteristics of a GDI engine with split injection strategy A CFD study

Effect of piston profile on performance and emission characteristics of a GDI engine with split injection strategy A CFD study IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Effect of piston profile on performance and emission characteristics of a GDI engine with split injection strategy A CFD study

More information

Optical Techniques in Gasoline Engine Performance and Emissions Development Injector Spray Visualisation

Optical Techniques in Gasoline Engine Performance and Emissions Development Injector Spray Visualisation Injector Spray Visualisation Denis Gill, Wolfgang Krankenedl, DEC Ernst Winklhofer 20.03.15 Emissions Development Injector Spray Visualisation Contents Introduction Spray Box Direct Injection (GDI) Spray

More information

An Experimental and Numerical Investigation on Characteristics of Methanol and Ethanol Sprays from a Multi-hole DISI Injector

An Experimental and Numerical Investigation on Characteristics of Methanol and Ethanol Sprays from a Multi-hole DISI Injector An Experimental and Numerical Investigation on Characteristics of Methanol and Ethanol Sprays from a Multi-hole DISI Injector Yajia E 1, Min Xu 1, Wei Zeng 1, Yuyin Zhang 1, David J. Cleary 2 1 Inst. of

More information

* Corresponding author

* Corresponding author Characterization of Dual-Fuel PCCI Combustion in a Light-Duty Engine S. L. Kokjohn * and R. D. Reitz Department of Mechanical Engineering University of Wisconsin - Madison Madison, WI 5376 USA Abstract.

More information

INFLUENCE OF THE NUMBER OF NOZZLE HOLES ON THE UNBURNED FUEL IN DIESEL ENGINE

INFLUENCE OF THE NUMBER OF NOZZLE HOLES ON THE UNBURNED FUEL IN DIESEL ENGINE INFLUENCE OF THE NUMBER OF NOZZLE HOLES ON THE UNBURNED FUEL IN DIESEL ENGINE 1. UNIVERSITY OF RUSE, 8, STUDENTSKA STR., 7017 RUSE, BULGARIA 1. Simeon ILIEV ABSTRACT: The objective of this paper is to

More information

COMBUSTION ANALYSIS OF A CNG DIRECT INJECTION SPARK IGNITION ENGINE. A. Rashid A. Aziz, Firmansyah and Raja Shahzad ABSTRACT

COMBUSTION ANALYSIS OF A CNG DIRECT INJECTION SPARK IGNITION ENGINE. A. Rashid A. Aziz, Firmansyah and Raja Shahzad ABSTRACT International Journal of Automotive and Mechanical Engineering (IJAME) ISSN: 2229-8649 (Print); ISSN: 218-166 (Online); Volume 2, pp. 157-17, July-December 21 Universiti Malaysia Pahang DOI: http://dx.doi.org/1.15282/ijame.2.21.5.13

More information

Comparison of Gasoline and Butanol Spray Characteristics in Low Pressure Port Fuel Injector

Comparison of Gasoline and Butanol Spray Characteristics in Low Pressure Port Fuel Injector ILASS Americas, 25 th Annual Conference on Liquid Atomization and Spray Systems, Pittsburgh, PA, May 2013 Comparison of Gasoline and Butanol Spray Characteristics in Low Pressure Port Fuel Injector Balram

More information

Foundations of Thermodynamics and Chemistry. 1 Introduction Preface Model-Building Simulation... 5 References...

Foundations of Thermodynamics and Chemistry. 1 Introduction Preface Model-Building Simulation... 5 References... Contents Part I Foundations of Thermodynamics and Chemistry 1 Introduction... 3 1.1 Preface.... 3 1.2 Model-Building... 3 1.3 Simulation... 5 References..... 8 2 Reciprocating Engines... 9 2.1 Energy Conversion...

More information

Numerical Investigation of the Influence of different Valve Seat Geometries on the In-Cylinder Flow and Combustion in Spark Ignition Engines

Numerical Investigation of the Influence of different Valve Seat Geometries on the In-Cylinder Flow and Combustion in Spark Ignition Engines Institute for Combustion and Gas Dynamics Fluid Dynamics Numerical Investigation of the Influence of different Valve Seat Geometries on the In-Cylinder Flow and Combustion in Spark Ignition Engines Peter

More information

EXPERIMENTAL INVESTIGATIONS ON 4- STROKE SINGLE CYLINDER DIESEL ENGINE (C.I) WITH CHANGING GEOMETRY OF PISTON

EXPERIMENTAL INVESTIGATIONS ON 4- STROKE SINGLE CYLINDER DIESEL ENGINE (C.I) WITH CHANGING GEOMETRY OF PISTON International Journal of Mechanical Engineering and Technology (IJMET) Volume 9, Issue 13, December 218, pp. 693 7, Article ID: IJMET_9_13_72 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=9&itype=13

More information

EEN-E2002 Combustion Technology 2017 LE 3 answers

EEN-E2002 Combustion Technology 2017 LE 3 answers EEN-E2002 Combustion Technology 2017 LE 3 answers 1. Plot the following graphs from LEO-1 engine with data (Excel_sheet_data) attached on my courses? (12 p.) a. Draw cyclic pressure curve. Also non-fired

More information

Effect of Diesel Injection Parameters on Diesel Dual Fuel Engine Operations with Charge Preheating under Part Load Conditions

Effect of Diesel Injection Parameters on Diesel Dual Fuel Engine Operations with Charge Preheating under Part Load Conditions Effect of Diesel Injection Parameters on Diesel Dual Fuel Engine Operations with Charge Preheating under Part Load Conditions Nattawee Srisattayakul *1, Krisada Wannatong and Tanet Aroonsrisopon 1 1 Department

More information

PERFORMANCE AND EMISSION ANALYSIS OF DIESEL ENGINE BY INJECTING DIETHYL ETHER WITH AND WITHOUT EGR USING DPF

PERFORMANCE AND EMISSION ANALYSIS OF DIESEL ENGINE BY INJECTING DIETHYL ETHER WITH AND WITHOUT EGR USING DPF PERFORMANCE AND EMISSION ANALYSIS OF DIESEL ENGINE BY INJECTING DIETHYL ETHER WITH AND WITHOUT EGR USING DPF PROJECT REFERENCE NO. : 37S1036 COLLEGE BRANCH GUIDES : KS INSTITUTE OF TECHNOLOGY, BANGALORE

More information

Combustion Characteristics of a Single-Cylinder Engine Equipped with Gasoline and Ethanol Dual-Fuel Systems

Combustion Characteristics of a Single-Cylinder Engine Equipped with Gasoline and Ethanol Dual-Fuel Systems SAE TECHNICAL PAPER SERIES 28--767 Combustion Characteristics of a Single-Cylinder Engine Equipped with Gasoline and Ethanol Dual-Fuel Systems Guoming Zhu, Tom Stuecken, Harold Schock and Xiaojian Yang

More information

NUMERICAL INVESTIGATION OF EFFECT OF EXHAUST GAS RECIRCULATION ON COMPRESSIONIGNITION ENGINE EMISSIONS

NUMERICAL INVESTIGATION OF EFFECT OF EXHAUST GAS RECIRCULATION ON COMPRESSIONIGNITION ENGINE EMISSIONS ISSN (Online) : 2319-8753 ISSN (Print) : 2347-6710 International Journal of Innovative Research in Science, Engineering and Technology An ISO 3297: 2007 Certified Organization, Volume 2, Special Issue

More information

IR analysis of diesel combustion in a transparent Euro5 diesel engine

IR analysis of diesel combustion in a transparent Euro5 diesel engine IR analysis of diesel combustion in a transparent Euro5 diesel engine Christoph Allouis 1, Ezio Mancaruso 2, Luigi Sequino 2, Bianca M. Vaglieco 2 1. Institute of Research on Combustion - C.N.R., Napoli

More information

MODERN OPTICAL MEASUREMENT TECHNIQUES APPLIED IN A RAPID COMPRESSION MACHINE FOR THE INVESTIGATION OF INTERNAL COMBUSTION ENGINE CONCEPTS

MODERN OPTICAL MEASUREMENT TECHNIQUES APPLIED IN A RAPID COMPRESSION MACHINE FOR THE INVESTIGATION OF INTERNAL COMBUSTION ENGINE CONCEPTS MODERN OPTICAL MEASUREMENT TECHNIQUES APPLIED IN A RAPID COMPRESSION MACHINE FOR THE INVESTIGATION OF INTERNAL COMBUSTION ENGINE CONCEPTS P. Prechtl, F. Dorer, B. Ofner, S. Eisen, F. Mayinger Lehrstuhl

More information

TECHNICAL PAPER FOR STUDENTS AND YOUNG ENGINEERS - FISITA WORLD AUTOMOTIVE CONGRESS, BARCELONA

TECHNICAL PAPER FOR STUDENTS AND YOUNG ENGINEERS - FISITA WORLD AUTOMOTIVE CONGRESS, BARCELONA TECHNICAL PAPER FOR STUDENTS AND YOUNG ENGINEERS - FISITA WORLD AUTOMOTIVE CONGRESS, BARCELONA 2 - TITLE: Topic: INVESTIGATION OF THE EFFECTS OF HYDROGEN ADDITION ON PERFORMANCE AND EXHAUST EMISSIONS OF

More information

Effect of Helix Parameter Modification on Flow Characteristics of CIDI Diesel Engine Helical Intake Port

Effect of Helix Parameter Modification on Flow Characteristics of CIDI Diesel Engine Helical Intake Port Effect of Helix Parameter Modification on Flow Characteristics of CIDI Diesel Engine Helical Intake Port Kunjan Sanadhya, N. P. Gokhale, B.S. Deshmukh, M.N. Kumar, D.B. Hulwan Kirloskar Oil Engines Ltd.,

More information

INVESTIGATION OF THE FUEL PROPERTY INFLUENCE ON NUMBER OF EMITTED PARTICLES AND THEIR SIZE DISTRIBUTION IN A GASOLINE ENGINE WITH DIRECT INJECTION

INVESTIGATION OF THE FUEL PROPERTY INFLUENCE ON NUMBER OF EMITTED PARTICLES AND THEIR SIZE DISTRIBUTION IN A GASOLINE ENGINE WITH DIRECT INJECTION INVESTIGATION OF THE FUEL PROPERTY INFLUENCE ON NUMBER OF EMITTED PARTICLES AND THEIR SIZE DISTRIBUTION IN A GASOLINE ENGINE WITH DIRECT INJECTION JAN NIKLAS GEILER 1,*, ROMAN GRZESZIK 1, THOMAS BOSSMEYER

More information

CHAPTER 7 CYCLIC VARIATIONS

CHAPTER 7 CYCLIC VARIATIONS 114 CHAPTER 7 CYCLIC VARIATIONS 7.1 INTRODUCTION In an apparently steady running spark ignition engine, there will be as much as 70% variation in peak pressures at certain operating condition (Winsor 1973).

More information

Optical methods for combustion research

Optical methods for combustion research KCFP Södertälje May 8, 2008 Optical methods for combustion research Mattias Richter Associate Professor Division of Combustion, Sweden Tolvan Tolvansson, 2007 Johannes Lindén, Division of Combustion Chemiluminescence

More information

Effects of ethanol unleaded gasoline blends on cyclic variability and emissions in an SI engine

Effects of ethanol unleaded gasoline blends on cyclic variability and emissions in an SI engine Applied Thermal Engineering 25 (2005) 917 925 www.elsevier.com/locate/apthermeng Effects of ethanol unleaded gasoline blends on cyclic variability and emissions in an SI engine M.A. Ceviz *,F.Yüksel Department

More information

Module 2:Genesis and Mechanism of Formation of Engine Emissions Lecture 9:Mechanisms of HC Formation in SI Engines... contd.

Module 2:Genesis and Mechanism of Formation of Engine Emissions Lecture 9:Mechanisms of HC Formation in SI Engines... contd. Mechanisms of HC Formation in SI Engines... contd. The Lecture Contains: HC from Lubricating Oil Film Combustion Chamber Deposits HC Mixture Quality and In-Cylinder Liquid Fuel HC from Misfired Combustion

More information

2.61 Internal Combustion Engine Final Examination. Open book. Note that Problems 1 &2 carry 20 points each; Problems 3 &4 carry 10 points each.

2.61 Internal Combustion Engine Final Examination. Open book. Note that Problems 1 &2 carry 20 points each; Problems 3 &4 carry 10 points each. 2.61 Internal Combustion Engine Final Examination Open book. Note that Problems 1 &2 carry 20 points each; Problems 3 &4 carry 10 points each. Problem 1 (20 points) Ethanol has been introduced as the bio-fuel

More information

Port Fuel Injection (PFI) Strategies for Lean Burn in Small Capacity Spark Ignition Engines

Port Fuel Injection (PFI) Strategies for Lean Burn in Small Capacity Spark Ignition Engines ISSN 2395-1621 Port Fuel Injection (PFI) Strategies for Lean Burn in Small Capacity Spark Ignition Engines #1 Shailendra Patil, #2 Santosh Trimbake 1 shailendrapatil7592@gmail.com 2 santoshtrimbake@yahoo.co.in

More information

Figure 1: The spray of a direct-injecting four-stroke diesel engine

Figure 1: The spray of a direct-injecting four-stroke diesel engine MIXTURE FORMATION AND COMBUSTION IN CI AND SI ENGINES 7.0 Mixture Formation in Diesel Engines Diesel engines can be operated both in the two-stroke and four-stroke process. Diesel engines that run at high

More information

Influence of Fuel Injector Position of Port-fuel Injection Retrofit-kit to the Performances of Small Gasoline Engine

Influence of Fuel Injector Position of Port-fuel Injection Retrofit-kit to the Performances of Small Gasoline Engine Influence of Fuel Injector Position of Port-fuel Injection Retrofit-kit to the Performances of Small Gasoline Engine M. F. Hushim a,*, A. J. Alimin a, L. A. Rashid a and M. F. Chamari a a Automotive Research

More information

Combustion PVM-MF. The PVM-MF model has been enhanced particularly for dualfuel

Combustion PVM-MF. The PVM-MF model has been enhanced particularly for dualfuel Contents Extensive new capabilities available in STAR-CD/es-ice v4.20 Combustion Models see Marc Zellat presentation Spray Models LES New Physics Developments in v4.22 Combustion Models PVM-MF Crank-angle

More information

UV-VISIBLE DIGITAL IMAGING OF SPLIT INJECTION IN A GASOLINE DIRECT INJECTION ENGINE

UV-VISIBLE DIGITAL IMAGING OF SPLIT INJECTION IN A GASOLINE DIRECT INJECTION ENGINE THERMAL SCIENCE: Year 2015, Vol. 19, No. 6, pp. 1873-1886 1873 UV-VISIBLE DIGITAL IMAGING OF SPLIT INJECTION IN A GASOLINE DIRECT INJECTION ENGINE by Simona Silvia MEROLA a,*, Adrian IRIMESCU a, Cinzia

More information

Influence of ANSYS FLUENT on Gas Engine Modeling

Influence of ANSYS FLUENT on Gas Engine Modeling Influence of ANSYS FLUENT on Gas Engine Modeling George Martinas, Ovidiu Sorin Cupsa 1, Nicolae Buzbuchi, Andreea Arsenie 2 1 CERONAV 2 Constanta Maritime University Romania georgemartinas@ceronav.ro,

More information

GASOLINE DIRECT INJECTION IN SI ENGINES B. PAVAN VISWANADH P. ASHOK KUMAR. Mobile No : Mobile No:

GASOLINE DIRECT INJECTION IN SI ENGINES B. PAVAN VISWANADH P. ASHOK KUMAR. Mobile No : Mobile No: GASOLINE DIRECT INJECTION IN SI ENGINES SUBMIT TED BY B. PAVAN VISWANADH P. ASHOK KUMAR Y06ME011, III/IV B. Tech Y06ME003, III/IV B. Tech Pavan.visu@gmail.com ashok.me003@gmail.com Mobile No :9291323516

More information

APPLICATION OF LDA AND PIV TECHNIQUES TO THE VALIDATION OF VECTIS USING BOUNDARY MESH MOTION

APPLICATION OF LDA AND PIV TECHNIQUES TO THE VALIDATION OF VECTIS USING BOUNDARY MESH MOTION APPLICATION OF LDA AND PIV TECHNIQUES TO THE VALIDATION OF VECTIS USING BOUNDARY MESH MOTION S M Sapsford Ricardo Consulting Engineers Ltd. Computational fluid dynamics (CFD) is being increasingly used

More information

EXPERIMENTAL INVESTIGATION OF COMBUSTION CHARACTERISTICS FOR SPRAY COMBUSTION BY IMPINGING INJECTION IN A CLOSED VESSEL

EXPERIMENTAL INVESTIGATION OF COMBUSTION CHARACTERISTICS FOR SPRAY COMBUSTION BY IMPINGING INJECTION IN A CLOSED VESSEL Journal of KONES Powertrain and Transport, Vol. 13, No. 2 EXPERIMENTAL INVESTIGATION OF COMBUSTION CHARACTERISTICS FOR SPRAY COMBUSTION BY IMPINGING INJECTION IN A CLOSED VESSEL Koji Morioka, Tadashige

More information

Homogeneous Charge Compression Ignition combustion and fuel composition

Homogeneous Charge Compression Ignition combustion and fuel composition Loughborough University Institutional Repository Homogeneous Charge Compression Ignition combustion and fuel composition This item was submitted to Loughborough University's Institutional Repository by

More information

1. INTRODUCTION 2. EXPERIMENTAL INVESTIGATIONS

1. INTRODUCTION 2. EXPERIMENTAL INVESTIGATIONS HIGH PRESSURE HYDROGEN INJECTION SYSTEM FOR A LARGE BORE 4 STROKE DIESEL ENGINE: INVESTIGATION OF THE MIXTURE FORMATION WITH LASER-OPTICAL MEASUREMENT TECHNIQUES AND NUMERICAL SIMULATIONS Dipl.-Ing. F.

More information

Hongming Xu (Jaguar Cars) Miroslaw Wyszynski (University of Birmingham) Stan Golunski (Johnson Matthey)

Hongming Xu (Jaguar Cars) Miroslaw Wyszynski (University of Birmingham) Stan Golunski (Johnson Matthey) Hongming Xu (Jaguar Cars) Miroslaw Wyszynski (University of Birmingham) Stan Golunski (Johnson Matthey) SAE Homogeneous Charge Compression Ignition Symposium 19-20 September 2005 ACKNOWLEDGEMENTS Contribution

More information

REDUCTION OF EMISSIONS BY ENHANCING AIR SWIRL IN A DIESEL ENGINE WITH GROOVED CYLINDER HEAD

REDUCTION OF EMISSIONS BY ENHANCING AIR SWIRL IN A DIESEL ENGINE WITH GROOVED CYLINDER HEAD REDUCTION OF EMISSIONS BY ENHANCING AIR SWIRL IN A DIESEL ENGINE WITH GROOVED CYLINDER HEAD Dr.S.L.V. Prasad 1, Prof.V.Pandurangadu 2, Dr.P.Manoj Kumar 3, Dr G. Naga Malleshwara Rao 4 Dept.of Mechanical

More information

CHAPTER 8 EFFECTS OF COMBUSTION CHAMBER GEOMETRIES

CHAPTER 8 EFFECTS OF COMBUSTION CHAMBER GEOMETRIES 112 CHAPTER 8 EFFECTS OF COMBUSTION CHAMBER GEOMETRIES 8.1 INTRODUCTION Energy conservation and emissions have become of increasing concern over the past few decades. More stringent emission laws along

More information

SPRAY CHARACTERISTICS OF A MULTI-CIRCULAR JET PLATE IN AN AIR-ASSISTED ATOMIZER USING SCHLIEREN PHOTOGRAPHY

SPRAY CHARACTERISTICS OF A MULTI-CIRCULAR JET PLATE IN AN AIR-ASSISTED ATOMIZER USING SCHLIEREN PHOTOGRAPHY SPRAY CHARACTERISTICS OF A MULTI-CIRCULAR JET PLATE IN AN AIR-ASSISTED ATOMIZER USING SCHLIEREN PHOTOGRAPHY Shahrin Hisham Amirnordin 1, Amir Khalid, Azwan Sapit, Bukhari Manshoor and Muhammad Firdaus

More information

Validation and Verification of ANSYS Internal Combustion Engine Software. Martin Kuntz, ANSYS, Inc.

Validation and Verification of ANSYS Internal Combustion Engine Software. Martin Kuntz, ANSYS, Inc. Validation and Verification of ANSYS Internal Combustion Engine Software Martin Kuntz, ANSYS, Inc. Contents Definitions Internal Combustion Engines Demonstration example Validation & verification Spray

More information

CFD Simulation of In-Cylinder Flow on Different Piston Bowl Geometries in a DI Diesel Engine

CFD Simulation of In-Cylinder Flow on Different Piston Bowl Geometries in a DI Diesel Engine Journal of Applied Fluid Mechanics, Vol. 9, No. 3, pp. 1147-1155, 2016. Available online at www.jafmonline.net, ISSN 1735-3572, EISSN 1735-3645. DOI: 10.18869/acadpub.jafm.68.228.24397 CFD Simulation of

More information

Dual Fuel Engine Charge Motion & Combustion Study

Dual Fuel Engine Charge Motion & Combustion Study Dual Fuel Engine Charge Motion & Combustion Study STAR-Global-Conference March 06-08, 2017 Berlin Kamlesh Ghael, Prof. Dr. Sebastian Kaiser (IVG-RF), M. Sc. Felix Rosenthal (IFKM-KIT) Introduction: Operation

More information

Saud Bin Juwair, Taib Iskandar Mohamad, Ahmed Almaleki, Abdullah Alkudsi, Ibrahim Alshunaifi

Saud Bin Juwair, Taib Iskandar Mohamad, Ahmed Almaleki, Abdullah Alkudsi, Ibrahim Alshunaifi The effects of research octane number and fuel systems on the performance and emissions of a spark ignition engine: A study on Saudi Arabian RON91 and RON95 with port injection and direct injection systems

More information

Study of Performance and Emission Characteristics of a Two Stroke Si Engine Operated with Gasoline Manifold Injectionand Carburetion

Study of Performance and Emission Characteristics of a Two Stroke Si Engine Operated with Gasoline Manifold Injectionand Carburetion Indian Journal of Science and Technology, Vol 9(37), DOI: 10.17485/ijst/2016/v9i37/101984, October 2016 ISSN (Print) : 0974-6846 ISSN (Online) : 0974-5645 Study of Performance and Emission Characteristics

More information

Effect of using hydrogen mixed gases as a fuel in internal Combustion engines A Review

Effect of using hydrogen mixed gases as a fuel in internal Combustion engines A Review Effect of using hydrogen mixed gases as a fuel in internal Combustion engines A Review Dr. Premkartikkumar. SR * Associate professor School of Mechanical and Building Sciences, Thermal & Automotive Division,

More information

Investigations on performance and emissions of a two-stroke SI engine fitted with a manifold injection system

Investigations on performance and emissions of a two-stroke SI engine fitted with a manifold injection system Indian Journal of Engineering & Materials Sciences Vol. 13, April 2006, pp. 95-102 Investigations on performance and emissions of a two-stroke SI engine fitted with a manifold injection system M Loganathan,

More information

Timing is everything with internal combustion engines By: Bernie Thompson

Timing is everything with internal combustion engines By: Bernie Thompson Timing is everything with internal combustion engines By: Bernie Thompson As one goes through life, it is said that timing is everything. In the case of the internal combustion engine, this could not be

More information

Crankcase scavenging.

Crankcase scavenging. Software for engine simulation and optimization www.diesel-rk.bmstu.ru The full cycle thermodynamic engine simulation software DIESEL-RK is designed for simulating and optimizing working processes of two-

More information

JJMIE Jordan Journal of Mechanical and Industrial Engineering

JJMIE Jordan Journal of Mechanical and Industrial Engineering JJMIE Jordan Journal of Mechanical and Industrial Engineering Volume 2, Number 4, December. 2008 ISSN 1995-6665 Pages 169-174 Improving the Performance of Two Stroke Spark Ignition Engine by Direct Electronic

More information

Recent Advances in DI-Diesel Combustion Modeling in AVL FIRE A Validation Study

Recent Advances in DI-Diesel Combustion Modeling in AVL FIRE A Validation Study International Multidimensional Engine Modeling User s Group Meeting at the SAE Congress April 15, 2007 Detroit, MI Recent Advances in DI-Diesel Combustion Modeling in AVL FIRE A Validation Study R. Tatschl,

More information

Theoretical Study of the effects of Ignition Delay on the Performance of DI Diesel Engine

Theoretical Study of the effects of Ignition Delay on the Performance of DI Diesel Engine Theoretical Study of the effects of Ignition Delay on the Performance of DI Diesel Engine Vivek Shankhdhar a, Neeraj Kumar b a M.Tech Scholar, Moradabad Institute of Technology, India b Asst. Proff. Mechanical

More information