A Second Law Perspective on Critical IC Research for High Efficiency Low Emissions Gasoline Engines

Size: px
Start display at page:

Download "A Second Law Perspective on Critical IC Research for High Efficiency Low Emissions Gasoline Engines"

Transcription

1 A Second Law Perspective on Critical IC Research for High Efficiency Low Emissions Gasoline Engines University of Wisconsin Symposium on Low Emission Technologies for IC Engines June J.T. Farrell, J.H. Farenback-Brateman, C.H. Schleyer, J.G. Stevens, and W. Weissman (presenter) ExxonMobil Research and Engineering

2 Outline Availability Analysis Methodology and Simulation Tools Engine / Vehicle Simulations PFI Lean high CR stratified (SIDI) Ultra-Lean High CR Boosted (ULBDI) Mid-size vehicle fuel economies in US city and highway cycles Outline of Other Areas for Efficiency Gains Hurdles and Research Challenges State of the Art Fuel Chemistry and Gaps Autoignition Burn rate Summary

3 Availability Analysis Methodology Availability = Work Available vs. Standard Conditions; Allows Determining Maximum Achievable Potential and Where Losses Occur Reversible Chemistry Reversible Cooling Reversible Isothermal Expansion T, P, μ* T, P, μ T, P, μ T, P, μ Carnot Cycle W Sensible + W Expansion + W Chemical W S = T T 1 T Tˆ * chemical potential C p dtˆ W E = -RT ln(p / P) W C =- G (T )+RT { n i,p ln (P /P i,p ) - n i,r ln(p /P i,r )}

4 Simulation Tools Engine specs: Geometry Valve timings, burn parameters, manifold press., lambda, etc. Modified MIT engine simulator incorporating availability algorithms; CHEMKIN for thermo. GT- Power engine simulator for air flow and turbocharging Efficiency, fuel consumptions, availabilities over range of engine speeds and torques ADVISOR (DOE/NREL) Max. torque over range of engine speeds Driving cycle, vehicle characteristics, transmission specs Engine work outputs and availability balances Drive cycle fuel economies

5 Engine Cases Engine Power kw Comp. Ratio Liters # of Cylinders Lambda Min/Max PFI / 1. SIDI * / 1.7 ULBDI / 4. * stochiometric only at WOT Stochiometric PFI Operation Allows Use of TWC to Meet Emissions Specs SIDI and ULBDI Engines Cases Unconstrained by NOx Limits During Lean Operation Shows efficiency possible if NOx controlled by combustion innovations (e.g., HCCI) and/or aftertreatment advancements

6 Availability Breakdown for Base PFI Engine Available Energy, % fuel Cylinder Heat Losses Combustion Irreversibilities Exhaust to Ambient Fluid Flow Losses Mechanical Losses Brake Work Power, % Peak 8 1 Large Availability Losses in Low Load Region Are Due to Throttling and Low Power Output per Stroke Relative to Throttling and Mechanical Losses About 2% Lost Throughout by Conversion of Chemical Energy to Heat W lost = mt dq T

7 SIDI vs PFI Available Energy, % fuel PFI Engine Cylinder Heat Losses Combustion Irreversibilities Exhaust to Ambient Fluid Flow Losses Mechanical Losses Brake Work Available Energy, % fuel SIDI Engine Cylinder Heat Losses Combustion Irreversibilities Exhaust to Ambient Fluid Flow Losses Mechanical Losses Brake Work Power, % Peak Power, % Peak 8 1 Operating Lean vs. Throttling Increases Efficiency Reduces cylinder heat, exhaust availability and fluid flow losses Higher CR Reduces Exhaust Losses Combustion Losses Increase at Low Load/Lean Conditions due to Lower T and Higher m W lost = mt dq T

8 Fuel Consumption Impacts: Through to ULBDI Fuel Consumption (g/s) Cylinder Heat Losses Combustion Losses Exhaust Losses Fluid Flow Friction 3% peak power Fuel Consumption (g/s) Cylinder Heat Losses Combustion Losses Exhaust Losses Fluid Flow Friction 15% peak power Brake Work Brake Work. PFI SIDI ULBDI. PFI SIDI ULBDI Comparison of PFI, SIDI, and ULBDI Fuel Consumption at Representative Speed/Load Conditions Shows: Reduction in cylinder heat and exhaust losses due to higher CR & leaner operation for SIDI and ULBDI vs PFI + Added benefits in these areas and in fluid flow losses for ULBDI due downsizing and increased enleanment at low load Combustion losses increase slightly in ULBDI due leaner operation

9 Mid-Size Vehicle MPG Estimates US CITY US HIGHWAY AVERAGE PFI (Base) SIDI (1.2x) ULBDI (1.5x) 5% FE improvement = 33% FC benefit

10 Other Areas for Efficiency Gains Adiabatic Engine Design Turbocompounding, Turbogenerator, Bottoming Cycles Low Friction Designs/Lubes ULBDI Medium Power Example Fluid Flow Cylinder Heat Losses Combustion Losses Exhaust Heat Losses Friction Output Work New Concepts That Minimize Combustion Loss Integral: mt T dq Hybridization to Narrow Operating Range Burn Width Reduction Has Small Effect HCCI burn width (~ 5 CA) vs SIDI (~ 4 CA) yields 1-2 % benefit Main HCCI advantage is lower NOx HCCI Approaches That Control Burn Rate Through Wall Cooling Will Suffer Efficiency Debits Due to Increased Heat Losses

11 Research Needs for Creating Future Fuel / Engine / Aftertreatment Systems Current Areas of Research Focus High CR/Lean Operation Turbocharging HCCI Longer Term Adiabatic Engine Major Hurdles NOx Control Ignition Timing, Knock & Noise Control Research Needs for Overcoming Hurdles Chemistry and Fluid Dynamics End gas & HCCI auto-ignition Burn rate in various T/P/ composition profiles Lean De-NOx Catalysis Advanced Exhaust Recovery Concepts Low Cost /High Energy Recovery Concepts Innovations From Various Fields Outside Engine Area; e.g., High Efficiency Thermopiles Reduced Combustion Losses New System Address Through Effects in Work-loss Integral

12 Constant Volume Combustion Losses Similar for Gasoline and Diesel Range Fuels Fraction Availability Destroye H 2 cetane iso-octane butane CH Equivalence Ratio 1. T = 7K P i = 16 bar Entropy Produced During Constant Volume Combustion Similar for ~ C 4 and Larger Molecules Initial mixture properties approach pure air (fuel mole fraction <.2) Final mixture composition (CO 2, H 2 O, N 2 ) and temperature effectively same Largest Fuel Effects on Reducing Availability Losses Will Be Indirect Enabling strategies (HCCI, high CR SI) that minimize other availability losses

13 Temperature (K) Engine Advancements Move Autoignition Chemistry into New Regions Gasoline HCCI 1 2 Pressure (bar) 3 MON RON Diesel HCCI T/P History During Compression Stroke 4 Cylinder Pressure (bar) Fuels with same RON,MON paraffin + naphthene paraffin + aromatic paraffin + olefin Crank Angles (degrees) Fuel Ignitability Key Property for Future Engines SI Engines High CR and turbocharging demand increased knock resistance at peak load Turbocharging, internal EGR move autoignition requirements outside RON/MON region HCCI Fuel structure effects (ignition kinetics) more prominent Wide variability in HCCI approaches precludes definition of a single metric Increased Focus on Understanding Kinetics Constitutes Key Need dq/dt (J/deg)

14 Fuel Burn Rates in Advanced Engines Depend on Interactive Effects of Chemistry and Fluid Dynamics Promoting Lean Burn at High Pressure Will Help to Maximize Fuel Economy SI Engines Effect of high pressure on lean burn limit is incompletely understood Flame speed effects may be dramatically different at very high pressure HCCI May Not Be Flame-less Inhomogeneity / staged ignition can give rise to combination of autoignition + flame propagation late ignition Temperature (K) flame early ignition Cylinder Radius (cm) time Cylinder Radius (cm)

15 Summary SI Concepts Currently Being Developed Have Potential to Increase Fuel Economy by Factor of ~ 1.5 Main Challenges are NOx Control, Knock, HCCI Operability Significant Potential for Further Efficiency Improvements Heat transfer, exhaust losses and combustion irreversibilities are key areas to address New Fuel / Engine / Aftertreatment Combinations Open Areas For Innovation Improved understanding of the engine chemistry and fluid dynamics related to auto-ignition and burn rate Aftertreatment catalysis New system concepts (low irreversibility combustion, adiabatic engine, etc.)

Gasoline Engine Performance and Emissions Future Technologies and Optimization

Gasoline Engine Performance and Emissions Future Technologies and Optimization Gasoline Engine Performance and Emissions Future Technologies and Optimization Paul Whitaker - Technical Specialist - Ricardo 8 th June 2005 RD. 05/52402.1 Contents Fuel Economy Trends and Drivers USA

More information

Advanced Combustion Strategies for High Efficiency Engines of the 21 st Century

Advanced Combustion Strategies for High Efficiency Engines of the 21 st Century Advanced Combustion Strategies for High Efficiency Engines of the 21 st Century Jason Martz Assistant Research Scientist and Adjunct Assistant Professor Department of Mechanical Engineering University

More information

Low Emissions IC Engine Development at Ford Motor Company

Low Emissions IC Engine Development at Ford Motor Company Low Emissions IC Engine Development at Ford Motor Company George Davis Powertrain Research and Advanced Engineering ERC Symposium University of Wisconsin at Madison Research and Advanced Engineering June

More information

CFD Combustion Models for IC Engines. Rolf D. Reitz

CFD Combustion Models for IC Engines. Rolf D. Reitz CFD Combustion Models for IC Engines Rolf D. Reitz Engine Research Center University of Wisconsin-Madison ERC Symposium, June 7, 27 http://www.cae.wisc.edu/~reitz Combustion and Emission Models at the

More information

Homogeneous Charge Compression Ignition combustion and fuel composition

Homogeneous Charge Compression Ignition combustion and fuel composition Loughborough University Institutional Repository Homogeneous Charge Compression Ignition combustion and fuel composition This item was submitted to Loughborough University's Institutional Repository by

More information

SuperGen - Novel Low Cost Electro-Mechanical Mild Hybrid and Boosting System. Jason King, Chief Engineer

SuperGen - Novel Low Cost Electro-Mechanical Mild Hybrid and Boosting System. Jason King, Chief Engineer SuperGen - Novel Low Cost Electro-Mechanical Mild Hybrid and Boosting System Jason King, Chief Engineer FPC2015 Quick overview of Integral Powertrain (IPT) SuperGen concept Analysis results Test results

More information

A PRAGMATIC APPROACH TO REDUCING THE CO2 FOOTPRINT OF THE INTERNAL COMBUSTION ENGINE

A PRAGMATIC APPROACH TO REDUCING THE CO2 FOOTPRINT OF THE INTERNAL COMBUSTION ENGINE A PRAGMATIC APPROACH TO REDUCING THE CO2 FOOTPRINT OF THE INTERNAL COMBUSTION ENGINE SYNERGISTICALLY INTEGRATING ADVANCED SPARK IGNITION ENGINES AND FUTURE FUELS Paul Najt General Motors Global R&D THE

More information

High Efficiency Engines through Dilution Opportunities and Challenges. Dr. Terry Alger Southwest Research Institute

High Efficiency Engines through Dilution Opportunities and Challenges. Dr. Terry Alger Southwest Research Institute High Efficiency Engines through Dilution Opportunities and Challenges Dr. Terry Alger Southwest Research Institute Efficiency Drivers from the Marketplace and Regulators Oil price volatility CO 2 and CAFE

More information

Dr. Terry Alger. Southwest Research Institute. Southwest Research Institute. San Antonio, Texas

Dr. Terry Alger. Southwest Research Institute. Southwest Research Institute. San Antonio, Texas Gasoline Engine Technology for High Efficiency Dr. Terry Alger Southwest Research Institute Southwest Research Institute San Antonio, Texas Losses and Opportunities for Improvement in Gasoline Engines

More information

COMBUSTION in SI ENGINES

COMBUSTION in SI ENGINES Internal Combustion Engines MAK 493E COMBUSTION in SI ENGINES Prof.Dr. Cem Soruşbay Istanbul Technical University Internal Combustion Engines MAK 493E Combustion in SI Engines Introduction Classification

More information

Improving Fuel Efficiency with Fuel-Reactivity-Controlled Combustion

Improving Fuel Efficiency with Fuel-Reactivity-Controlled Combustion ERC Symposium 2009 1 Improving Fuel Efficiency with Fuel-Reactivity-Controlled Combustion Rolf D. Reitz, Reed Hanson, Derek Splitter, Sage Kokjohn Engine Research Center University of Wisconsin-Madison

More information

Module7:Advanced Combustion Systems and Alternative Powerplants Lecture 32:Stratified Charge Engines

Module7:Advanced Combustion Systems and Alternative Powerplants Lecture 32:Stratified Charge Engines ADVANCED COMBUSTION SYSTEMS AND ALTERNATIVE POWERPLANTS The Lecture Contains: DIRECT INJECTION STRATIFIED CHARGE (DISC) ENGINES Historical Overview Potential Advantages of DISC Engines DISC Engine Combustion

More information

EEN-E2002 Combustion Technology 2017 LE 3 answers

EEN-E2002 Combustion Technology 2017 LE 3 answers EEN-E2002 Combustion Technology 2017 LE 3 answers 1. Plot the following graphs from LEO-1 engine with data (Excel_sheet_data) attached on my courses? (12 p.) a. Draw cyclic pressure curve. Also non-fired

More information

Fuel Effects in Advanced Combustion -Partially Premixed Combustion (PPC) with Gasoline-Type Fuels. William Cannella. Chevron

Fuel Effects in Advanced Combustion -Partially Premixed Combustion (PPC) with Gasoline-Type Fuels. William Cannella. Chevron Fuel Effects in Advanced Combustion -Partially Premixed Combustion (PPC) with Gasoline-Type Fuels William Cannella Chevron Acknowledgement Work Done In Collaboration With: Vittorio Manente, Prof. Bengt

More information

Development of a Double Variable Cam Phasing Strategy for Turbocharged SIDI Engines

Development of a Double Variable Cam Phasing Strategy for Turbocharged SIDI Engines !"" #$!%& Development of a Double Variable Cam Phasing Strategy for Turbocharged SIDI Engines GMPT Europe, Engine Development & Simulation Vincenzo Bevilacqua, Jany Krieg, Roland Maucher, Raymond Reinmann

More information

Low Temperature Aftertreatment for Future Engines Challenges and Opportunities

Low Temperature Aftertreatment for Future Engines Challenges and Opportunities Low Temperature Aftertreatment for Future Engines Challenges and Opportunities Is it needed? Is high possible?? Is it affordable??? Kushal Narayanaswamy Propulsion Systems Research Lab General Motors Global

More information

Maximizing Engine Efficiency by Controlling Fuel Reactivity Using Conventional and Alternative Fuels. Sage Kokjohn

Maximizing Engine Efficiency by Controlling Fuel Reactivity Using Conventional and Alternative Fuels. Sage Kokjohn Maximizing Engine Efficiency by Controlling Fuel Reactivity Using Conventional and Alternative Fuels Sage Kokjohn Acknowledgments Direct-injection Engine Research Consortium (DERC) US Department of Energy/Sandia

More information

Hongming Xu (Jaguar Cars) Miroslaw Wyszynski (University of Birmingham) Stan Golunski (Johnson Matthey)

Hongming Xu (Jaguar Cars) Miroslaw Wyszynski (University of Birmingham) Stan Golunski (Johnson Matthey) Hongming Xu (Jaguar Cars) Miroslaw Wyszynski (University of Birmingham) Stan Golunski (Johnson Matthey) SAE Homogeneous Charge Compression Ignition Symposium 19-20 September 2005 ACKNOWLEDGEMENTS Contribution

More information

CONTROLLING COMBUSTION IN HCCI DIESEL ENGINES

CONTROLLING COMBUSTION IN HCCI DIESEL ENGINES CONTROLLING COMBUSTION IN HCCI DIESEL ENGINES Nicolae Ispas *, Mircea Năstăsoiu, Mihai Dogariu Transilvania University of Brasov KEYWORDS HCCI, Diesel Engine, controlling, air-fuel mixing combustion ABSTRACT

More information

Combustion Systems What we might have learned

Combustion Systems What we might have learned Combustion Systems What we might have learned IMechE ADSC, 6 December 2012 Chris Whelan Contents Engines Big & Small Carnot, Otto & Diesel Thermodynamic Cycles Combustion Process & Systems Diesel & Otto

More information

Recent enhancement to SI-ICE combustion models: Application to stratified combustion under large EGR rate and lean burn

Recent enhancement to SI-ICE combustion models: Application to stratified combustion under large EGR rate and lean burn Recent enhancement to SI-ICE combustion models: Application to stratified combustion under large EGR rate and lean burn G. Desoutter, A. Desportes, J. Hira, D. Abouri, K.Oberhumer, M. Zellat* TOPICS Introduction

More information

Potential of the Mild HCCI Combustion for Worldwide Applications

Potential of the Mild HCCI Combustion for Worldwide Applications Potential of the Mild HCCI Combustion for Worldwide Applications Future Fuels for IC Engines ERC Research Symposium Madison June 6-7, 2007 P.Gastaldi M.Besson JP.Hardy Renault Powertrain Division Overview

More information

ACTUAL CYCLE. Actual engine cycle

ACTUAL CYCLE. Actual engine cycle 1 ACTUAL CYCLE Actual engine cycle Introduction 2 Ideal Gas Cycle (Air Standard Cycle) Idealized processes Idealize working Fluid Fuel-Air Cycle Idealized Processes Accurate Working Fluid Model Actual

More information

INVESTIGATION OF AUTO-IGNITION OF HEPTANE-CNG MIXTURE IN HCCI ENGINE. Firmansyah. Universiti Teknologi PETRONAS

INVESTIGATION OF AUTO-IGNITION OF HEPTANE-CNG MIXTURE IN HCCI ENGINE. Firmansyah. Universiti Teknologi PETRONAS INVESTIGATION OF AUTO-IGNITION OF HEPTANE-CNG MIXTURE IN HCCI ENGINE Firmansyah Universiti Teknologi PETRONAS OUTLINE INTRODUCTION OBJECTIVES METHODOLOGY RESULTS and DISCUSSIONS CONCLUSIONS HCCI DUALFUELCONCEPT

More information

L34: Internal Combustion Engine Cycles: Otto, Diesel, and Dual or Gas Power Cycles Introduction to Gas Cycles Definitions

L34: Internal Combustion Engine Cycles: Otto, Diesel, and Dual or Gas Power Cycles Introduction to Gas Cycles Definitions Page L: Internal Combustion Engine Cycles: Otto, Diesel, and Dual or Gas Power Cycles Review of Carnot Power Cycle (gas version) Air-Standard Cycles Internal Combustion (IC) Engines - Otto and Diesel Cycles

More information

DARS FUEL MODEL DEVELOPMENT

DARS FUEL MODEL DEVELOPMENT DARS FUEL MODEL DEVELOPMENT DARS Products (names valid since October 2012) DARS 0D & 1D tools Old name: DARS Basic DARS Reactive Flow Models tools for 3D/ CFD calculations DARS Fuel New! Advanced fuel

More information

is the crank angle between the initial spark and the time when about 10% of the charge is burned. θ θ

is the crank angle between the initial spark and the time when about 10% of the charge is burned. θ θ ME 410 Day 30 Phases of Combustion 1. Ignition 2. Early flame development θd θ 3. Flame propagation b 4. Flame termination The flame development angle θd is the crank angle between the initial spark and

More information

COMBUSTION in SI ENGINES

COMBUSTION in SI ENGINES Internal Combustion Engines ME422 COMBUSTION in SI ENGINES Prof.Dr. Cem Soruşbay Internal Combustion Engines Combustion in SI Engines Introduction Classification of the combustion process Normal combustion

More information

Increased efficiency through gasoline engine downsizing

Increased efficiency through gasoline engine downsizing Loughborough University Institutional Repository Increased efficiency through gasoline engine downsizing This item was submitted to Loughborough University's Institutional Repository by the/an author.

More information

DIESEL OXIDATION CATALYST CONTROL OF PM, CO AND HC FROM REACTIVITY CONTROLLED COMPRESSION IGNITION COMBUSTION

DIESEL OXIDATION CATALYST CONTROL OF PM, CO AND HC FROM REACTIVITY CONTROLLED COMPRESSION IGNITION COMBUSTION DIESEL OXIDATION CATALYST CONTROL OF PM, CO AND HC FROM REACTIVITY CONTROLLED COMPRESSION IGNITION COMBUSTION Vitaly Prikhodko, ScoC Curran, Jim Parks and Robert Wagner Fuels, Engines and Emissions Research

More information

SI engine combustion

SI engine combustion SI engine combustion 1 SI engine combustion: How to burn things? Reactants Products Premixed Homogeneous reaction Not limited by transport process Fast/slow reactions compared with other time scale of

More information

AN EXPERIMENT STUDY OF HOMOGENEOUS CHARGE COMPRESSION IGNITION COMBUSTION AND EMISSION IN A GASOLINE ENGINE

AN EXPERIMENT STUDY OF HOMOGENEOUS CHARGE COMPRESSION IGNITION COMBUSTION AND EMISSION IN A GASOLINE ENGINE THERMAL SCIENCE: Year 2014, Vol. 18, No. 1, pp. 295-306 295 AN EXPERIMENT STUDY OF HOMOGENEOUS CHARGE COMPRESSION IGNITION COMBUSTION AND EMISSION IN A GASOLINE ENGINE by Jianyong ZHANG *, Zhongzhao LI,

More information

8.21 The Physics of Energy Fall 2009

8.21 The Physics of Energy Fall 2009 MIT OpenCourseWare http://ocw.mit.edu 8.21 The Physics of Energy Fall 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 8.21 Lecture 11 Internal Combustion

More information

Potential of Modern Internal Combustion Engines Review of Recent trends

Potential of Modern Internal Combustion Engines Review of Recent trends Potential of Modern Internal Combustion Engines Review of Recent trends David Kittelson Department of Mechanical Engineering University of Minnesota February 15, 2011 Outline Background Current engine

More information

Dual Fuel Engine Charge Motion & Combustion Study

Dual Fuel Engine Charge Motion & Combustion Study Dual Fuel Engine Charge Motion & Combustion Study STAR-Global-Conference March 06-08, 2017 Berlin Kamlesh Ghael, Prof. Dr. Sebastian Kaiser (IVG-RF), M. Sc. Felix Rosenthal (IFKM-KIT) Introduction: Operation

More information

Chapter 8 Production of Power from Heat

Chapter 8 Production of Power from Heat Chapter 8 Production of Power from Heat Different sources of power, such as solar energy (from sun), kinetic energy from atmospheric winds and potential energy from tides. The most important source of

More information

From the new text book by BoostBusters: Internal Combustion Engine Gasexchange and Boosting Order from:

From the new text book by BoostBusters: Internal Combustion Engine Gasexchange and Boosting Order from: 11:th GT-Power Users Conference in Frankfurt Airport October 8 2007 Lennarth Zander BoostBusters Mjölner-Hammer of Thor From the new text book by BoostBusters: Internal Combustion Engine Gasexchange and

More information

Module 3: Influence of Engine Design and Operating Parameters on Emissions Lecture 14:Effect of SI Engine Design and Operating Variables on Emissions

Module 3: Influence of Engine Design and Operating Parameters on Emissions Lecture 14:Effect of SI Engine Design and Operating Variables on Emissions Module 3: Influence of Engine Design and Operating Parameters on Emissions Effect of SI Engine Design and Operating Variables on Emissions The Lecture Contains: SI Engine Variables and Emissions Compression

More information

The Future for the Internal Combustion Engine and the Advantages of Octane

The Future for the Internal Combustion Engine and the Advantages of Octane The Future for the Internal Combustion Engine and the Advantages of Octane DAVE BROOKS Director, Global Propulsion Systems R&D Laboratories GM Research & Development KEY DRIVERS OF THE TRANSFORMATION

More information

Week 10. Gas Power Cycles. ME 300 Thermodynamics II 1

Week 10. Gas Power Cycles. ME 300 Thermodynamics II 1 Week 10 Gas Power Cycles ME 300 Thermodynamics II 1 Today s Outline Gas power cycles Internal combustion engines Four-stroke cycle Thermodynamic cycles Ideal cycle ME 300 Thermodynamics II 2 Gas Power

More information

Marc ZELLAT, Driss ABOURI, Thierry CONTE and Riyad HECHAICHI CD-adapco

Marc ZELLAT, Driss ABOURI, Thierry CONTE and Riyad HECHAICHI CD-adapco 16 th International Multidimensional Engine User s Meeting at the SAE Congress 2006,April,06,2006 Detroit, MI RECENT ADVANCES IN SI ENGINE MODELING: A NEW MODEL FOR SPARK AND KNOCK USING A DETAILED CHEMISTRY

More information

INFLUENCE OF INTAKE AIR TEMPERATURE AND EXHAUST GAS RECIRCULATION ON HCCI COMBUSTION PROCESS USING BIOETHANOL

INFLUENCE OF INTAKE AIR TEMPERATURE AND EXHAUST GAS RECIRCULATION ON HCCI COMBUSTION PROCESS USING BIOETHANOL ENGINEERING FOR RURAL DEVELOPMENT Jelgava, 2.-27..216. INFLUENCE OF INTAKE AIR TEMPERATURE AND EXHAUST GAS RECIRCULATION ON HCCI COMBUSTION PROCESS USING BIOETHANOL Kastytis Laurinaitis, Stasys Slavinskas

More information

Scaling Functions for the Simulation of Different SI-Engine Concepts in Conventional and Electrified Power Trains

Scaling Functions for the Simulation of Different SI-Engine Concepts in Conventional and Electrified Power Trains Scaling Functions for the Simulation of Different SI-Engine Concepts in Conventional and Electrified Power Trains Dipl.-Ing. Michael Huß BMW Group (05/2007 04/2010) Prof. Dr.-Ing Georg Wachtmeister LVK

More information

Fuel Anti-Knock Quality and Knock in SI Engines Gautam Kalghatgi

Fuel Anti-Knock Quality and Knock in SI Engines Gautam Kalghatgi Fuel Anti-Knock Quality and Knock in SI Engines Gautam Kalghatgi Ch.4. Fuel/Engine Interactions Kalghatgi, G.T. 2005 Auto-ignition quality of practical fuels and implications for fuel requirements of future

More information

FRAUNHOFER INSTITUTE MDEC 2017 S6P4-1

FRAUNHOFER INSTITUTE MDEC 2017 S6P4-1 FRAUNHOFER INSTITUTE Elimination of Particulate Filters and SCR Equipment using a novel Catalytic Evaporation (CatVap ) Device to reduce Soot and NO x emissions in Internal Combustion Engines Robert Szolak,

More information

There has been a number of interesting news pertaining to efficiency improvements of Natural Gas Engines

There has been a number of interesting news pertaining to efficiency improvements of Natural Gas Engines There has been a number of interesting news pertaining to efficiency improvements of Natural Gas Engines European HDGAS Objective is to provide breakthroughs in LNG long haul HD vehicles ~30M project,

More information

Technologies for Clean Engines Future Power Train 2019

Technologies for Clean Engines Future Power Train 2019 Technologies for Clean Engines Future Power Train 2019 February 2019 Professor Robert Morgan Joint Secretary of UnICEG Deputy Head of the AEC Scope of presentation 2 What I won t do - make a case for the

More information

Foundations of Thermodynamics and Chemistry. 1 Introduction Preface Model-Building Simulation... 5 References...

Foundations of Thermodynamics and Chemistry. 1 Introduction Preface Model-Building Simulation... 5 References... Contents Part I Foundations of Thermodynamics and Chemistry 1 Introduction... 3 1.1 Preface.... 3 1.2 Model-Building... 3 1.3 Simulation... 5 References..... 8 2 Reciprocating Engines... 9 2.1 Energy Conversion...

More information

Designing Efficient Engines: Strategies Based on Thermodynamics

Designing Efficient Engines: Strategies Based on Thermodynamics Designing Efficient Engines: Strategies Based on Thermodynamics Jerald A. Caton Texas A&M University College Station, TX for CRC Advanced Fuel & Engine Workshop Hyatt Regency Baltimore Inner Harbor Baltimore,

More information

Effect of Reformer Gas on HCCI Combustion- Part II: Low Octane Fuels

Effect of Reformer Gas on HCCI Combustion- Part II: Low Octane Fuels Effect of Reformer Gas on HCCI Combustion- Part II: Low Octane Fuels Vahid Hosseini, and M David Checkel Mechanical Engineering University of Alberta, Edmonton, Canada project supported by Auto21 National

More information

Final Report. Assessment of Higher Efficiency Options For Alcohol Fueled Vehicles +

Final Report. Assessment of Higher Efficiency Options For Alcohol Fueled Vehicles + Final Report Assessment of Higher Efficiency Options For Alcohol Fueled Vehicles + Leslie Bromberg and Daniel R. Cohn Massachusetts Institute of Technology August 11, 2015 + Funded by Fuel Freedom Foundation

More information

Internal Combustion Engines

Internal Combustion Engines Air and Fuel Induction Lecture 3 1 Outline In this lecture we will discuss the following: A/F mixture preparation in gasoline engines using carburetion. Air Charging technologies: Superchargers Turbochargers

More information

REVIEW ON GASOLINE DIRECT INJECTION

REVIEW ON GASOLINE DIRECT INJECTION International Journal of Aerospace and Mechanical Engineering REVIEW ON GASOLINE DIRECT INJECTION Jayant Kathuria B.Tech Automotive Design Engineering jkathuria97@gmail.com ABSTRACT Gasoline direct-injection

More information

Fuels to Enable More Efficient Engines

Fuels to Enable More Efficient Engines Fuels to Enable More Efficient Engines Robert L. McCormick & Bradley T. Zigler 4 th International Conference on Biofuels Standards: Current Issues, Future Trends Gaithersburg, Maryland, USA November 13,

More information

Ultraboost: Investigations into the Limits of Extreme Engine Downsizing Dr J.W.G. Turner

Ultraboost: Investigations into the Limits of Extreme Engine Downsizing Dr J.W.G. Turner Ultraboost: Investigations into the Limits of Extreme Engine Downsizing Dr J.W.G. Turner Jaguar Land Rover Powertrain Research Overview of Presentation The Ultraboost Project Targets and Sizing 3-Phase

More information

Chapter 4 ANALYTICAL WORK: COMBUSTION MODELING

Chapter 4 ANALYTICAL WORK: COMBUSTION MODELING a 4.3.4 Effect of various parameters on combustion in IC engines: Compression ratio: A higher compression ratio increases the pressure and temperature of the working mixture which reduce the initial preparation

More information

Experimental Investigation of Performance and Emissions of a Stratified Charge CNG Direct Injection Engine with Turbocharger

Experimental Investigation of Performance and Emissions of a Stratified Charge CNG Direct Injection Engine with Turbocharger MATEC Web of Conferences 1, 7 (17 ) DOI:1.11/matecconf/1717 ICTTE 17 Experimental Investigation of Performance and Emissions of a Stratified Charge CNG Direct Injection Engine with charger Hilmi Amiruddin

More information

PM Emissions from HCCI Engines

PM Emissions from HCCI Engines PM Emissions from HCCI Engines H.M. Xu, J. Misztal, M.L. Wyszynski University of Birmingham P. Price, R. Stone Oxford University J. Qiao Jaguar Cars Particulate matter and measurement Cambridge University,

More information

Dual Fuel Combustion an Applicable Technology for Mobile Application?

Dual Fuel Combustion an Applicable Technology for Mobile Application? 1 S C I E N C E P A S S I O N T E C H N O L O G Y Dual Fuel Combustion an Applicable Technology for Mobile Application? 10 th Conference Eco Mobility 2025plus Univ.Prof. Dr. Helmut Eichlseder Institute

More information

4. With a neat sketch explain in detail about the different types of fuel injection system used in SI engines. (May 2016)

4. With a neat sketch explain in detail about the different types of fuel injection system used in SI engines. (May 2016) SYED AMMAL ENGINEERING COLLEGE (Approved by the AICTE, New Delhi, Govt. of Tamilnadu and Affiliated to Anna University, Chennai) Established in 1998 - An ISO 9001:2000 Certified Institution Dr. E.M.Abdullah

More information

Diesel HCCI Results at Caterpillar

Diesel HCCI Results at Caterpillar Diesel HCCI Results at Caterpillar Kevin Duffy, Jonathan Kilkenny Andrew Kieser, Eric Fluga DOE Contracts DE-FC5-OR2286, DE-FC5-97OR2265 Contract Monitors Roland Gravel, John Fairbanks DEER Conference

More information

Wood-to-Wheels Engines and Vehicles Research

Wood-to-Wheels Engines and Vehicles Research -Wheels Engines and Vehicles Research Dr. Jeff Naber Associate Professor ME-EM Department Michigan Tech University j.naber@mtu.edu Tel: 906.487.1938 1 Advanced Power Systems Research Center Advanced IC

More information

The BMW Vision and Strategy in Engine CFD Simulation. EASC 2009, Munich.

The BMW Vision and Strategy in Engine CFD Simulation. EASC 2009, Munich. 2009,., July 6th 2009 Overview Simulation benefits in the framework of the powertrain development process Boundary conditions for powertrain development Challenges and requirements for incylinder CFD CAE

More information

BRP-Rotax GmbH & Co KG Potential of Different Injection Systems for High Performance Two-Stroke Engines Nigel Foxhall October, 17th 2016

BRP-Rotax GmbH & Co KG Potential of Different Injection Systems for High Performance Two-Stroke Engines Nigel Foxhall October, 17th 2016 BRP-Rotax GmbH & Co KG Nigel Foxhall October, 17th 2016 Content 1. Motivation 2. Injection System Descriptions 3. WMTC Steady State comparison 4. WMTC Chassis Roll comparison 5. Summary & Conclusions 2

More information

THE INFLUENCE OF THE EGR RATE ON A HCCI ENGINE MODEL CALCULATED WITH THE SINGLE ZONE HCCI METHOD

THE INFLUENCE OF THE EGR RATE ON A HCCI ENGINE MODEL CALCULATED WITH THE SINGLE ZONE HCCI METHOD CONAT243 THE INFLUENCE OF THE EGR RATE ON A HCCI ENGINE MODEL CALCULATED WITH THE SINGLE ZONE HCCI METHOD KEYWORDS HCCI, EGR, heat release rate Radu Cosgarea *, Corneliu Cofaru, Mihai Aleonte Transilvania

More information

Combustion. T Alrayyes

Combustion. T Alrayyes Combustion T Alrayyes Fluid motion with combustion chamber Turbulence Swirl SQUISH AND TUMBLE Combustion in SI Engines Introduction The combustion in SI engines inside the engine can be divided into three

More information

Emissions predictions for Diesel engines based on chemistry tabulation

Emissions predictions for Diesel engines based on chemistry tabulation Emissions predictions for Diesel engines based on chemistry tabulation C. Meijer, F.A. Tap AVL Dacolt BV (The Netherlands) M. Tvrdojevic, P. Priesching AVL List GmbH (Austria) 1. Introduction It is generally

More information

Overview & Perspectives for Internal Combustion Engine using STAR-CD. Marc ZELLAT

Overview & Perspectives for Internal Combustion Engine using STAR-CD. Marc ZELLAT Overview & Perspectives for Internal Combustion Engine using STAR-CD Marc ZELLAT TOPICS Quick overview of ECFM family models Examples of validation for Diesel and SI-GDI engines Introduction to multi-component

More information

Emissions Characterization for D-EGR Vehicle

Emissions Characterization for D-EGR Vehicle Emissions Characterization for D-EGR Vehicle Cary Henry Advance Science. Applied Technology Baseline GDI Vehicle 2012 Buick Regal GS Buick Regal GS uses state-of-the-art turbocharged, direct-injected gasoline

More information

1 ERC Symposium - Future Engines and Their Fuels

1 ERC Symposium - Future Engines and Their Fuels Future Fuels and Reactivity Controlled Compression Ignition (RCCI) Rolf D. Reitz, Reed M. Hanson, Sage L. Kokjohn, Derek A. Splitter, Adam Dempsey, Bishwadipa Das Adhikary, Sandeep Viswanathan, ERC Students

More information

Which are the four important control loops of an spark ignition (SI) engine?

Which are the four important control loops of an spark ignition (SI) engine? 151-0567-00 Engine Systems (HS 2017) Exercise 1 Topic: Lecture 1 Johannes Ritzmann (jritzman@ethz.ch), Raffi Hedinger (hraffael@ethz.ch); October 13, 2017 Problem 1 (Control Systems) Why do we use control

More information

2.61 Internal Combustion Engines

2.61 Internal Combustion Engines Due: Thursday, February 19, 2004 2.61 Internal Combustion Engines Problem Set 2 Tuesday, February 10, 2004 1. Several velocities, time, and length scales are useful in understanding what goes on inside

More information

INFLUENCE OF FUEL TYPE AND INTAKE AIR PROPERTIES ON COMBUSTION CHARACTERISTICS OF HCCI ENGINE

INFLUENCE OF FUEL TYPE AND INTAKE AIR PROPERTIES ON COMBUSTION CHARACTERISTICS OF HCCI ENGINE ENGINEERING FOR RURAL DEVELOPMENT Jelgava, 23.-24.5.213. INFLUENCE OF FUEL TYPE AND INTAKE AIR PROPERTIES ON COMBUSTION CHARACTERISTICS OF HCCI ENGINE Kastytis Laurinaitis, Stasys Slavinskas Aleksandras

More information

2013 NCWM Interim Meeting January Charleston, SC

2013 NCWM Interim Meeting January Charleston, SC 2013 NCWM Interim Meeting January 27-31 Charleston, SC L&R Item 237-2 Ballot (Form-15) to modify U.S. Gasoline Octane Specifications in Handbook 130 Applicable L&R Sections Section 2.1.4. Minimum Antiknock

More information

Direct Injection Ethanol Boosted Gasoline Engines: Biofuel Leveraging For Cost Effective Reduction of Oil Dependence and CO 2 Emissions

Direct Injection Ethanol Boosted Gasoline Engines: Biofuel Leveraging For Cost Effective Reduction of Oil Dependence and CO 2 Emissions Direct Injection Ethanol Boosted Gasoline Engines: Biofuel Leveraging For Cost Effective Reduction of Oil Dependence and CO 2 Emissions D.R. Cohn* L. Bromberg* J.B. Heywood Massachusetts Institute of Technology

More information

Simulation of Performance Parameters of Spark Ignition Engine for Various Ignition Timings

Simulation of Performance Parameters of Spark Ignition Engine for Various Ignition Timings Research Article International Journal of Current Engineering and Technology ISSN 2277-4106 2013 INPRESSCO. All Rights Reserved. Available at http://inpressco.com/category/ijcet Simulation of Performance

More information

Meeting the Time Varying Gasoline Engine s Octane Requirement Through On Board Fuel Blending

Meeting the Time Varying Gasoline Engine s Octane Requirement Through On Board Fuel Blending Meeting the Time Varying Gasoline Engine s Octane Requirement Through On Board Fuel Blending John B. Heywood Sun Jae Professor of Engineering, Emeritus Sloan Automotive Laboratory, MIT 2 nd CRC Advanced

More information

Potential of advanced combustion for fuel consumption reduction in the light-duty fleet

Potential of advanced combustion for fuel consumption reduction in the light-duty fleet Potential of advanced combustion for fuel consumption reduction in the light-duty fleet Paul Miles Combustion Research Facility Sandia National Laboratories International Summit on Breakout Technologies

More information

Direct Injection Spark Ignition Engine Control. Special Features of DISI. DISI Hardware Requirements. Gasoline Direct Injection Spark Ignition Engines

Direct Injection Spark Ignition Engine Control. Special Features of DISI. DISI Hardware Requirements. Gasoline Direct Injection Spark Ignition Engines Direct Injection Spark Ignition Enge Control Gasole Direct Injection Spark Ignition Enges System description Control challenges A major fuel economy enablg technology for gasole enges Enge and aftertreatment

More information

Ethanol, DME and Renewable Diesel for large scale displacement of fossil diesel in HD applications

Ethanol, DME and Renewable Diesel for large scale displacement of fossil diesel in HD applications Ethanol, DME and Renewable Diesel for large scale displacement of fossil diesel in HD applications Patric Ouellette, Lew Fulton STEPS Presentation May 24, 2017 Intro and Question Large content of biofuel

More information

System Simulation for Aftertreatment. LES for Engines

System Simulation for Aftertreatment. LES for Engines System Simulation for Aftertreatment LES for Engines Christopher Rutland Engine Research Center University of Wisconsin-Madison Acknowledgements General Motors Research & Development Caterpillar, Inc.

More information

Gaseous Fuels in Transportation -- Prospects and Promise

Gaseous Fuels in Transportation -- Prospects and Promise Gaseous Fuels in Transportation -- Prospects and Promise Dr. James J. Eberhardt, Director U.S. Department of Energy Presented at the Gas Storage Workshop Kingston, Ontario, Canada July 11-12, 2001 OHVT

More information

Improving the Fuel Economy of Heavy Duty Fleets II San Diego, CA February 20th, 2008

Improving the Fuel Economy of Heavy Duty Fleets II San Diego, CA February 20th, 2008 Improving the Fuel Economy of Heavy Duty Fleets II San Diego, CA February 20th, 2008 Heavy Duty Truck Fuel Economy Options Southwest Research Institute David Branyon 1 Outline Background/history Current

More information

Page 2. (a) (i) Show that during the change AB the gas undergoes an isothermal change.

Page 2. (a) (i) Show that during the change AB the gas undergoes an isothermal change. Q1.The Carnot cycle is the most efficient theoretical cycle of changes for a fixed mass of gas in a heat engine. The graph below shows the pressure volume (p V) diagram for a gas undergoing a Carnot cycle

More information

Introduction to combustion

Introduction to combustion Introduction to combustion EEN-E005 Bioenergy 1 017 D.Sc (Tech) ssi Kaario Motivation Why learn about combustion? Most of the energy in the world, 70-80%, is produced from different kinds of combustion

More information

Efficiency Increase of a High Performance Gas Engine for Distributed Power Generation

Efficiency Increase of a High Performance Gas Engine for Distributed Power Generation Efficiency Increase of a High Performance Gas Engine for Distributed Power Generation M. Grotz, R. Böwing, J. Lang and J. Thalhauser (GE) P. Christiner and A. Wimmer (LEC) February 27, 2015 Imagination

More information

New Engines Aiming for 60% Thermal Efficiency Japanese Automobile Manufacturers Rising to the Post-HEV Challenge

New Engines Aiming for 60% Thermal Efficiency Japanese Automobile Manufacturers Rising to the Post-HEV Challenge New Engines Aiming for 60% Thermal Efficiency Japanese Automobile Manufacturers Rising to the Post-HEV Challenge Yoshiro Tsuruhara Nikkei Automotive Technology Abstract: Internal combustion engines have

More information

Exceeding Expectations

Exceeding Expectations Exceeding Expectations Technical Notes # 32 OCTANE NUMBER Octane number, also known as Antiknock rating, is one of the most important characteristics of gasoline. Octane number is a measure of a gasoline

More information

Combustion PVM-MF. The PVM-MF model has been enhanced particularly for dualfuel

Combustion PVM-MF. The PVM-MF model has been enhanced particularly for dualfuel Contents Extensive new capabilities available in STAR-CD/es-ice v4.20 Combustion Models see Marc Zellat presentation Spray Models LES New Physics Developments in v4.22 Combustion Models PVM-MF Crank-angle

More information

air had to be heated to a high level to achieve HCCI operation due to the low level of internal residuals inherent in four-stroke engines.

air had to be heated to a high level to achieve HCCI operation due to the low level of internal residuals inherent in four-stroke engines. LITERATURE REVIEW HCCI is an alternative and attractive combustion mode for internal combustion engines that offers the potential for high diesel-like efficiencies and dramatic reduction in NOx and PM

More information

Vehicle Powertrain CO 2 Emissions in Review

Vehicle Powertrain CO 2 Emissions in Review Vehicle Powertrain CO 2 Emissions in Review August 17-18, 2011 MIT/NESCAUM Forum Endicott House Tim Johnson JohnsonTV@Corning.com The US EPA (and CARB) are considering 5%/yr reduction in light-duty (LD)

More information

Advanced Propulsion/Powertrain Track

Advanced Propulsion/Powertrain Track Advanced Propulsion/Powertrain Track The Powertrain, Fuels and Lubricants sessions focus on information in the area of properties, selection, processing, performance, use, and effects of fuels and lubricants

More information

Promising Alternative Fuels for Improving Emissions from Future Vehicles

Promising Alternative Fuels for Improving Emissions from Future Vehicles Promising Alternative Fuels for Improving Emissions from Future Vehicles Research Seminar: CTS Environment and Energy in Transportation Council Will Northrop 12/17/2014 Outline 1. Alternative Fuels Overview

More information

Engine Heat Transfer. Engine Heat Transfer

Engine Heat Transfer. Engine Heat Transfer Engine Heat Transfer 1. Impact of heat transfer on engine operation 2. Heat transfer environment 3. Energy flow in an engine 4. Engine heat transfer Fundamentals Spark-ignition engine heat transfer Diesel

More information

The Influence of Fuel Cetane Number on Catalyst Light-Off Operation in a Modern Diesel Engine

The Influence of Fuel Cetane Number on Catalyst Light-Off Operation in a Modern Diesel Engine The Influence of Fuel Cetane Number on Catalyst Light-Off Operation in a Modern Diesel Engine 2nd CRC Advanced Fuel and Engine Efficiency Workshop Nov 3, 2016 Eric Kurtz, Ford Motor Company Diesel Combustion

More information

Modeling of Homogeneous Charge Compression Ignition (HCCI) of Methane. J. R. Smith S. M. Aceves C. Westbrook W. Pitz

Modeling of Homogeneous Charge Compression Ignition (HCCI) of Methane. J. R. Smith S. M. Aceves C. Westbrook W. Pitz UCRL-JC-127387 PREPRINT Modeling of Homogeneous Charge Compression Ignition (HCCI) of Methane J. R. Smith S. M. Aceves C. Westbrook W. Pitz This paper was prepared for submittal to the ASME Internal Combustion

More information

Crankcase scavenging.

Crankcase scavenging. Software for engine simulation and optimization www.diesel-rk.bmstu.ru The full cycle thermodynamic engine simulation software DIESEL-RK is designed for simulating and optimizing working processes of two-

More information

AME 436. Energy and Propulsion. Lecture 6 Unsteady-flow (reciprocating) engines 1: Basic operating principles, design & performance parameters

AME 436. Energy and Propulsion. Lecture 6 Unsteady-flow (reciprocating) engines 1: Basic operating principles, design & performance parameters AME 436 Energy and Propulsion Lecture 6 Unsteady-flow (reciprocating) engines 1: Basic operating principles, design & performance parameters Outline Classification of unsteady-flow engines Basic operating

More information

University of Wisconsin-Madison

University of Wisconsin-Madison University of Wisconsin-Madison SAE Clean Snowmobile Challenge Design Presentation 2015 Presenters: Saager Paliwal and Michael Solger DESIGN PROCESS AND ENGINE SELECTION Average Ranking Design Considerations:

More information

Evolution of Particle Size Distribution within the Engine Exhaust and Aftertreatment System

Evolution of Particle Size Distribution within the Engine Exhaust and Aftertreatment System Evolution of Particle Size Distribution within the Engine Exhaust and Aftertreatment System A. J. Smallbone (1, 2), D. Z. Y. Tay (2), W. L. Heng (2), S. Mosbach (2), A. York (2,3), M. Kraft (2) (1) cmcl

More information