Potential of advanced combustion for fuel consumption reduction in the light-duty fleet

Size: px
Start display at page:

Download "Potential of advanced combustion for fuel consumption reduction in the light-duty fleet"

Transcription

1 Potential of advanced combustion for fuel consumption reduction in the light-duty fleet Paul Miles Combustion Research Facility Sandia National Laboratories International Summit on Breakout Technologies of Engine and Fuel (ISEF2018) Tianjin, China August 20-23,

2 Overview Is there potential for a significant reduction in fuel consumption from IC engine powered vehicles? Can we project historical trends into the future? What will the estimated impact on petroleum displacement or GHG emissions be?? Source: ORNL What are the knowledge gaps/barriers that are preventing us from reaching this potential?

3 Our emphasis will be on the light-duty fleet Projected 46% of total transportation energy use in 2050 (EIA AEO 2018)

4 Baseline definition 2015 fleet average fuel consumption (EPA Combined) 24.6 mpg ( Unadjusted ~31.4 mpg) Car 57.4%: 28.2 mpg (~36.5 mpg = 6.44 L/100 km) 1620 kg, 150 kw, ~7.7 s 0-60 mph (Malibu, Fusion, Camry) cf adjusted ~ 25.7 mpg (32.6 mpg) Truck 42.6%: 21.1 mpg (~26.5 mpg = 8.88 L/100 km) 2130 kg, 200 kw, ~7.7 s 0-60 mph (F150, Odyssey, Colorado) cf adjusted ~ 18.8 mpg (23.4 mpg)

5 Best-in-class Best-in-class fuel consumption Car Mazda 6: 32 mpg (43.4 mpg) (1470 kg, 140 kw, ~7.5 s 0-60) 16% fuel consumption reduction from baseline fleet Truck Ford F-150 : 22 mpg (28.5 mpg) (2060 kg, 242 kw, <7.5 s 0-60) 7% fuel consumption reduction from baseline fleet

6 Projected FC reductions Argonne National Laboratory (2016) 2045 FC reduced ~ 17% relative to 2015 baseline (Combustion alone; based on part-load η and adj. via 2010/2015 fleet avgs) USDRIVE (2018) 2025 FC reduced ~ 11% relative to 2015 baseline (Downsized-boosted tech.; 2025 stretch goals ref. to 2010 baseline; adj. via 2010/2015 fleet avgs) 6

7 Projected FC reductions EPA/CARB/NHTSA (2016) 2025 FC reduced 19% relative to PFI + VVT baseline NRC (2015) 2025 FC reduced 18% relative to 2016 vehicle, +5% thereafter (2030)

8 What is the potential of advanced technologies? 2-Cycle Fuel Economy Improvement (relative to 2015 baseline) Best-in-class car 16% Best-in-class truck 7% Adv. comb. car 27% Adv. comb. truck 21% Lab Car 31% Lab Truck 25% Lab Car w/fuel 34% Lab Truck w/fuel 29% BSFC [g/kwh] Co-optimized with fuel Engine displacement scaled to 120 kw Torque [N-m] 1500 rpm Fuel economy improvements of 34% for cars and 29% for trucks over the 2015 baseline are conceivable with combustion improvement alone

9 Several additional technologies can be brought to bear Friction reduction (lubricants and mechanical design) Cylinder deactivation Accessory electrification Transmissions Low friction brakes Hybridization ~ 30% additional FC reduction Gasoline conventional midsize vehicles consume from 20% to 44% less fuel by 2045 compared with the 2015 reference (adj. via 2010/2015 fleet avgs) 2018 Camry 32 mpg 52 mpg A 39% reduction 9

10 researchimpactnetwork.wordpress.com Impact

11 Combustion improvement will play an important role in reducing 2050 fleet petroleum usage Petroleum consumption reduction targets due to combustion enhancement alone: 2015 fleet average baseline Car ~ 34% Truck ~ 29% Estimated per vehicle 2050 Fleet average energy consumption reduction, using very optimistic BEV market penetration (35%): (0.32)* 65% = 21% With additional ICE technology: (0.50)* 65% = 33% Does not include impacts of renewable fuels 11

12 How great is the CO 2 emission reduction advantage for BEVs? Like-utility vehicle comparison 300 mile range Full vehicle lifetime Full LCA accounting for manufacture, maintenance/repair and disposal Proper accounting for carbon intensity of the grid Account for taxes Allow for technology improvement Allow for expected CO 2 reductions resulting from the use of mandated biofuels

13 A closer look at CO 2 emissions from the electric grid Source: Energy Policy 44: (2012) In this example (UK ) marginal CO 2 emissions are 54% higher than the average EPA egrid 2016 puts US non-baseload emissions 50% higher than the national grid average

14 Comparing similar-utility vehicles and using marginal grid CO 2 emissions indicates current ICEs are superior Best-in-class vs. BEV300 (Marginal CO 2 in-use): Best-in-class hybrid vs. BEV300 (Marginal CO 2 in-use): Until we see significant changes to the grid, introduction of PHEVs/BEVs is likely to increase GHG emissions over even current fleet average vehicle emissions

15 ec.europa.eu Barriers (Light-duty)

16 Where should we invest our research effort? Several manufacturers and government agencies have identified multi-mode combustion as a likely future trend (Mazda, GM, US EPA ) Hybridization and cylinder deactivation will de-emphasize low-load region Research should emphasize strategies to increase mid-to-high load efficiency HCCI rpm Lean SI Stoichiometric SI

17 Both fuels and engine architectures are constrained for multi-mode combustion Fuels need to allow: o Stoichiometric operation at full load (Requires autoignition resistant fuel) o Low-temperature, lean combustion at low-to-moderate loads (Benefits from more reactive fuel) Engines need to support: o High-tumble, fast-burn SI combustion o Residual gas retention, low-load boost o Controlled, precise mixture formation o High load ignition & low load combustion timing control Cold-start/re-start emissions exacerbated by hybridization Source: GM, UW Symposium June

18 Stability and combustion phasing control are significant barriers to lean combustion Stabilization of lean, stratified SI combustion o Key flow features causing cyclic variability o Understanding of stabilizing flow/spray interactions (effects of multiple injections) Spark-assisted CI phasing control techniques for HCCI-like combustion o Fuel effects o Fundamental understanding of impact of boost/tin/egr etc., interactions with φ CI combustion phasing control using mixture stratification synergies with SACI

19 Enhanced ignition systems will be an enabler for lean combustion technologies Plasma-assisted ignition systems have potential to support multiple combustion strategies using the same hardware o More robust ignition for ultra-lean or high-egr SI operation o Improved tolerance to high flow velocities o Control and/or reduced intake temperature requirements for inherently low NO x /PM HCCIlike strategies Turbulent jet ignition systems have a similar broad application range, improving both lean and stoichiometric combustion Combustion phasing control and intake temperature requirements can be significantly impacted by O 3

20 Improved emissions will continue to be key Particulate/PAH emission control will be key to future ICE acceptance o GPFs increase residuals and back-pressure, impacting FE through knock & pumping losses o PM dominated by cold-start o Current modeling tools and understanding of fuel effects inadequate EU limit for benzopyrene is 1 ng/m3 Source: J. Ind. Eco. 17: (2013) IC engines are worse than BEVs for photo-chemical oxidation potential Reduced engine-out NOx, HC, and HCO emissions will be essential o Improved, low-temperature lean NO x aftertreatment technologies

21 Sprays and mixture formation are foundational to all high-efficiency, low-emissions combustion strategies SI boosted engine knock & emissions sensitive to mixture formation Sprays are key to cold-start soot/hc emissions DI stratified fuel consumption and COV highly sensitive to spray structure Source: Scomak AMR 2017 Advanced strategies(mazda s SPCCI) rely on precise control of mixture formation Fuel 183: (2016) Improved modeling capabilities will be essential especially multi-phase (enabled by ECN) Sub-cooled Collapse

22 In-cylinder flow control also crosscuts across multiple technologies Key to fast-burn (high tumble) combustion systems need to understand impact of VVT/VVL o Atkinson/Miller cycle implementations o Exhaust gas retention / re-breathing Reduced cyclic variability o More robust ignition and flame kernel growth in lean/dilute systems o Mixture formation variability in stratified systems Optimal scavenging and mixing of residuals for improved: o Knock control in boosted SI engines o Auto-ignition control in HCCI-like system Source: Daimler, THIESEL 2016

23 ec.europa.eu Barriers (Heavy- and Medium-duty)

24 Mixing is key for diesel efficiency improvement Shortening/advancing the heat release rate is the mainstream strategy being pursued by OEMs. Implementation barriers include: o Cavitation erosion issues o Maintaining high late-cycle mixing rates (bowl shape effects) o Optimized multiple injection approaches [Understanding both physical & chemical interactions between injection events] o Maintaining or reducing NO x emissions [Complex aftertreatment systems are expected to incur a ~2% FE penalty] Volvo wave piston Source: Dieselnet.com/news/2016/09sae.php

25 Improved models are also key Turbulence-chemistry interactions Predictions of ignition delay change by an order of magnitude SI flame kernel can either extinguish or double growth rate depending on conditions Two-phase flow and atomization models, including cavitation-turbulence interactions Fuel dependent impacts on spray structure, impacting wall-wetting, emissions, and efficiency Improved soot formation models (particle inception) Plasma-assisted ignition

26 Science-based fuel surrogate formulation for Mixing-Controlled Compression Ignition (CRC) Particulate Matter Index works well for conventional fuels Realistic surrogate fuels enable coupling of real fuel properties to numerical engine optimization. How much complexity is required? Approach matches target fuel chemical structure as well as key physical properties (cetane, density, distillation )

27 Hybridization of medium-duty diesels presents additional cold-start challenges US regulations consider the combination of NO x /NMOG Lean (i.e., diesel) combustion prolongs catalyst light off by approximately a factor or 5 compared with stoichiometric SI Fuel effects (higher cetane) have been shown to allow more aggressive catalyst heating strategies Key objective: Understanding fuel effects on cold-start performance

28 A fuel metric that captures sooting propensity in diesel engines is needed The Particulate Matter Index (PMI) has been shown to predict soot Particulate Matter Index works emissions well for GDI engines well for HT: conventional Bob McCormick, NREL fuels nn PPPPPP = ii=1 DDDDDD = 2CC+2 HH 2 Tendency to form soot DDDDDD ii + 1 VVVV(443KK) ii WWWW ii Tendency to evaporate & mix An equivalent metric for mixing-controlled combustion will also need to incorporate a factor that captures ignition delay variation Key objective: Understanding fuel effects on engine-out emissions

29 Large engines with slower transients are good candidates for full-time kinetically controlled combustion Fuels with identical RON and MON can exhibit very different auto-ignition behavior John Dec, SNL CA50 [ CA] Co-Op - E30, Premixed Co-Op - E30, Early-DI Co-Op - Aromatic, Premixed Co-Op - Aromatic, Early-DI P in = 1.0 bar abs. φ = Intake Temperature (T in ) [ C] John Dec, SNL CI combustion modes often use stratification for CA50 control High sensitivity fuels sacrifice LTHR/ITHR needed for control 29

30 Ducted fuel injection concept holds promise for a large improvement in the soot/nox trade-off A simple new technology with potential for improved efficiency and reduced after-treatment costs compared with conventional diesel o Compatible with existing and new, renewable fuels o Soot formation reduced by 2 orders of magnitude Key research questions: What are the optimal fuel properties for DFI? Can oxygenated fuels enable a similar reduction in NOx?

31 Summary Advanced combustion concepts can reduce ICEV fuel consumption by over 30% compared with the 2015 fleet average Combined with additional measures, we see potential to reduce fuel consumption by 50% or more Renewable fuels can further reduce GHGs and petroleum consumption Improved ICEVs will be an essential element of a transportation GHG reduction technology portfolio through at least mid-century Engines are far from a mature technology. Research and development challenges are numerous, for both light- and heavy-duty engines and can provide rewarding careers

32 Questions?

Module7:Advanced Combustion Systems and Alternative Powerplants Lecture 32:Stratified Charge Engines

Module7:Advanced Combustion Systems and Alternative Powerplants Lecture 32:Stratified Charge Engines ADVANCED COMBUSTION SYSTEMS AND ALTERNATIVE POWERPLANTS The Lecture Contains: DIRECT INJECTION STRATIFIED CHARGE (DISC) ENGINES Historical Overview Potential Advantages of DISC Engines DISC Engine Combustion

More information

The Future for the Internal Combustion Engine and the Advantages of Octane

The Future for the Internal Combustion Engine and the Advantages of Octane The Future for the Internal Combustion Engine and the Advantages of Octane DAVE BROOKS Director, Global Propulsion Systems R&D Laboratories GM Research & Development KEY DRIVERS OF THE TRANSFORMATION

More information

Potential of Modern Internal Combustion Engines Review of Recent trends

Potential of Modern Internal Combustion Engines Review of Recent trends Potential of Modern Internal Combustion Engines Review of Recent trends David Kittelson Department of Mechanical Engineering University of Minnesota February 15, 2011 Outline Background Current engine

More information

Gasoline Engine Performance and Emissions Future Technologies and Optimization

Gasoline Engine Performance and Emissions Future Technologies and Optimization Gasoline Engine Performance and Emissions Future Technologies and Optimization Paul Whitaker - Technical Specialist - Ricardo 8 th June 2005 RD. 05/52402.1 Contents Fuel Economy Trends and Drivers USA

More information

Fuels to Enable More Efficient Engines

Fuels to Enable More Efficient Engines Fuels to Enable More Efficient Engines Robert L. McCormick & Bradley T. Zigler 4 th International Conference on Biofuels Standards: Current Issues, Future Trends Gaithersburg, Maryland, USA November 13,

More information

A Second Law Perspective on Critical IC Research for High Efficiency Low Emissions Gasoline Engines

A Second Law Perspective on Critical IC Research for High Efficiency Low Emissions Gasoline Engines A Second Law Perspective on Critical IC Research for High Efficiency Low Emissions Gasoline Engines University of Wisconsin Symposium on Low Emission Technologies for IC Engines June 8-9 25 J.T. Farrell,

More information

High Efficiency Engines through Dilution Opportunities and Challenges. Dr. Terry Alger Southwest Research Institute

High Efficiency Engines through Dilution Opportunities and Challenges. Dr. Terry Alger Southwest Research Institute High Efficiency Engines through Dilution Opportunities and Challenges Dr. Terry Alger Southwest Research Institute Efficiency Drivers from the Marketplace and Regulators Oil price volatility CO 2 and CAFE

More information

Maximizing Engine Efficiency by Controlling Fuel Reactivity Using Conventional and Alternative Fuels. Sage Kokjohn

Maximizing Engine Efficiency by Controlling Fuel Reactivity Using Conventional and Alternative Fuels. Sage Kokjohn Maximizing Engine Efficiency by Controlling Fuel Reactivity Using Conventional and Alternative Fuels Sage Kokjohn Acknowledgments Direct-injection Engine Research Consortium (DERC) US Department of Energy/Sandia

More information

Lubrication Needs for Next Generation Gasoline Passenger Car Engine Technology

Lubrication Needs for Next Generation Gasoline Passenger Car Engine Technology Lubrication Needs for Next Generation Gasoline Passenger Car Engine Technology V Simpósio de Lubrificantes, Aditivos e Fluidos São Paulo, Brasil, October 24, 2012 Ravi Tallamraju Passenger Car Motor Oil

More information

A PRAGMATIC APPROACH TO REDUCING THE CO2 FOOTPRINT OF THE INTERNAL COMBUSTION ENGINE

A PRAGMATIC APPROACH TO REDUCING THE CO2 FOOTPRINT OF THE INTERNAL COMBUSTION ENGINE A PRAGMATIC APPROACH TO REDUCING THE CO2 FOOTPRINT OF THE INTERNAL COMBUSTION ENGINE SYNERGISTICALLY INTEGRATING ADVANCED SPARK IGNITION ENGINES AND FUTURE FUELS Paul Najt General Motors Global R&D THE

More information

Low Temperature Aftertreatment for Future Engines Challenges and Opportunities

Low Temperature Aftertreatment for Future Engines Challenges and Opportunities Low Temperature Aftertreatment for Future Engines Challenges and Opportunities Is it needed? Is high possible?? Is it affordable??? Kushal Narayanaswamy Propulsion Systems Research Lab General Motors Global

More information

Light-Duty SI Engine Technologies and the Impact of Higher Carbon Alcohol Fuels

Light-Duty SI Engine Technologies and the Impact of Higher Carbon Alcohol Fuels 1 Sustainable Fuels and Clean Vehicles Light-Duty SI Engine Technologies and the Impact of Higher Carbon Alcohol Fuels Jeffrey D. Naber APSRC Center Director Ronald and Elaine Starr Professor of Energy

More information

Dr. Terry Alger. Southwest Research Institute. Southwest Research Institute. San Antonio, Texas

Dr. Terry Alger. Southwest Research Institute. Southwest Research Institute. San Antonio, Texas Gasoline Engine Technology for High Efficiency Dr. Terry Alger Southwest Research Institute Southwest Research Institute San Antonio, Texas Losses and Opportunities for Improvement in Gasoline Engines

More information

Advanced Combustion Strategies for High Efficiency Engines of the 21 st Century

Advanced Combustion Strategies for High Efficiency Engines of the 21 st Century Advanced Combustion Strategies for High Efficiency Engines of the 21 st Century Jason Martz Assistant Research Scientist and Adjunct Assistant Professor Department of Mechanical Engineering University

More information

Whither Diesel? An Overview of Combustion Concepts and Research Directions for Compression Ignition Engines

Whither Diesel? An Overview of Combustion Concepts and Research Directions for Compression Ignition Engines An Overview of Combustion Concepts and Research Directions for Compression Ignition Engines Martin H. University of Oxford, UK FPC2015 Future Powertrain Conference National Motorcycle Museum, Solihull

More information

Module 3: Influence of Engine Design and Operating Parameters on Emissions Lecture 14:Effect of SI Engine Design and Operating Variables on Emissions

Module 3: Influence of Engine Design and Operating Parameters on Emissions Lecture 14:Effect of SI Engine Design and Operating Variables on Emissions Module 3: Influence of Engine Design and Operating Parameters on Emissions Effect of SI Engine Design and Operating Variables on Emissions The Lecture Contains: SI Engine Variables and Emissions Compression

More information

New 2.7L 650 Nm Opposed-Piston Engine for Light Commercial Vehicles

New 2.7L 650 Nm Opposed-Piston Engine for Light Commercial Vehicles New 2.7L 650 Nm Opposed-Piston Engine for Light Commercial Vehicles Laurence Fromm 1) Fabien G. Redon 2) 1) Achates Power, Inc. 4060 Sorrento Valley Blvd, San Diego, CA, U.S.A. (E-mail: fromm@achatespower.com)

More information

Low Emissions IC Engine Development at Ford Motor Company

Low Emissions IC Engine Development at Ford Motor Company Low Emissions IC Engine Development at Ford Motor Company George Davis Powertrain Research and Advanced Engineering ERC Symposium University of Wisconsin at Madison Research and Advanced Engineering June

More information

INTERNATIONAL Diesel Engine Emissions Requirements & Technology

INTERNATIONAL Diesel Engine Emissions Requirements & Technology INTERNATIONAL 2010 Diesel Engine Emissions Requirements & Technology Independent Armored Car Operators Association, Inc. 2008 Annual Convention Monday, June 23, 2008 2007 EPA Emissions Standards 1994 500

More information

State of Engine Technology and Dedicated Transportation Systems as an Enabler

State of Engine Technology and Dedicated Transportation Systems as an Enabler 1/13 UW-Madison: Regional Food Freight Workshop State of Engine Technology and Dedicated Transportation Systems as an Enabler Sage Kokjohn Acknowledgments Direct-injection Engine Research Consortium (DERC)

More information

Overview & Perspectives for Internal Combustion Engine using STAR-CD. Marc ZELLAT

Overview & Perspectives for Internal Combustion Engine using STAR-CD. Marc ZELLAT Overview & Perspectives for Internal Combustion Engine using STAR-CD Marc ZELLAT TOPICS Quick overview of ECFM family models Examples of validation for Diesel and SI-GDI engines Introduction to multi-component

More information

Fuel Economy, ACEA 2016 and other challenges for European Passenger Car Oils Richard van den Bulk

Fuel Economy, ACEA 2016 and other challenges for European Passenger Car Oils Richard van den Bulk Fuel Economy, ACEA 2016 and other challenges for European Passenger Car Oils Richard van den Bulk Presented at UNITI, Stuttgart, April 5 th, 2017 2017Chevron Oronite. Agenda Key drivers for European Specs

More information

Advanced Vehicle Technologies

Advanced Vehicle Technologies Advanced Vehicle Technologies David L. Greene Oak Ridge National Laboratory Governors Summit on Alternative Fuels and Advanced Vehicles Tampa, Florida December 13-14, 2007 What s possible? Proven technologies

More information

Volkswagen Group of America Virginia Energy Conference Session 30: Fossil Fuels Diesel Developments Presented by Stuart Johnson, Engineering and

Volkswagen Group of America Virginia Energy Conference Session 30: Fossil Fuels Diesel Developments Presented by Stuart Johnson, Engineering and Volkswagen Group of America Virginia Energy Conference Session 30: Fossil Fuels Diesel Developments Presented by Stuart Johnson, Engineering and Environmental Office Agenda Introduction Industry Challenges

More information

CONTROLLING COMBUSTION IN HCCI DIESEL ENGINES

CONTROLLING COMBUSTION IN HCCI DIESEL ENGINES CONTROLLING COMBUSTION IN HCCI DIESEL ENGINES Nicolae Ispas *, Mircea Năstăsoiu, Mihai Dogariu Transilvania University of Brasov KEYWORDS HCCI, Diesel Engine, controlling, air-fuel mixing combustion ABSTRACT

More information

Which are the four important control loops of an spark ignition (SI) engine?

Which are the four important control loops of an spark ignition (SI) engine? 151-0567-00 Engine Systems (HS 2017) Exercise 1 Topic: Lecture 1 Johannes Ritzmann (jritzman@ethz.ch), Raffi Hedinger (hraffael@ethz.ch); October 13, 2017 Problem 1 (Control Systems) Why do we use control

More information

POSIBILITIES TO IMPROVED HOMOGENEOUS CHARGE IN INTERNAL COMBUSTION ENGINES, USING C.F.D. PROGRAM

POSIBILITIES TO IMPROVED HOMOGENEOUS CHARGE IN INTERNAL COMBUSTION ENGINES, USING C.F.D. PROGRAM POSIBILITIES TO IMPROVED HOMOGENEOUS CHARGE IN INTERNAL COMBUSTION ENGINES, USING C.F.D. PROGRAM Alexandru-Bogdan Muntean *, Anghel,Chiru, Ruxandra-Cristina (Dica) Stanescu, Cristian Soimaru Transilvania

More information

ATELIER: SIMULATION NUMÉRIQUE POUR LES GROUPES MOTOPROPULSEURS 2 FÉVRIER 2017 SAINT-ETIENNE-DU-ROUVRAY

ATELIER: SIMULATION NUMÉRIQUE POUR LES GROUPES MOTOPROPULSEURS 2 FÉVRIER 2017 SAINT-ETIENNE-DU-ROUVRAY ATELIER: SIMULATION NUMÉRIQUE POUR LES GROUPES MOTOPROPULSEURS 2 FÉVRIER 2017 SAINT-ETIENNE-DU-ROUVRAY 1 ENGINE AND VEHICLE MODELING & SIMULATION SCIENTIFIC AND TECHNICAL CHALLENGES 2 CONTEXT Main drivers

More information

Foundations of Thermodynamics and Chemistry. 1 Introduction Preface Model-Building Simulation... 5 References...

Foundations of Thermodynamics and Chemistry. 1 Introduction Preface Model-Building Simulation... 5 References... Contents Part I Foundations of Thermodynamics and Chemistry 1 Introduction... 3 1.1 Preface.... 3 1.2 Model-Building... 3 1.3 Simulation... 5 References..... 8 2 Reciprocating Engines... 9 2.1 Energy Conversion...

More information

Future Powertrain Technology for the North American Market: Diesel & Hydrogen

Future Powertrain Technology for the North American Market: Diesel & Hydrogen n Future Powertrain Technology for the North American Market: Diesel & Hydrogen Dr. Gerhard Schmidt Vice President - Research Future Future Automotive Automotive Powertrain Powertrain Powertrain Drivers

More information

Emissions Characterization for D-EGR Vehicle

Emissions Characterization for D-EGR Vehicle Emissions Characterization for D-EGR Vehicle Cary Henry Advance Science. Applied Technology Baseline GDI Vehicle 2012 Buick Regal GS Buick Regal GS uses state-of-the-art turbocharged, direct-injected gasoline

More information

REVIEW ON GASOLINE DIRECT INJECTION

REVIEW ON GASOLINE DIRECT INJECTION International Journal of Aerospace and Mechanical Engineering REVIEW ON GASOLINE DIRECT INJECTION Jayant Kathuria B.Tech Automotive Design Engineering jkathuria97@gmail.com ABSTRACT Gasoline direct-injection

More information

Optical Techniques in Gasoline Engine Performance and Emissions Development

Optical Techniques in Gasoline Engine Performance and Emissions Development Optical Techniques in Gasoline Engine Performance and Emissions Development TC GDI engines: analysis and development techniques to solve pre-ignition and soot formation issues Ernst Winklhofer AVL List

More information

Marc ZELLAT, Driss ABOURI and Stefano DURANTI CD-adapco

Marc ZELLAT, Driss ABOURI and Stefano DURANTI CD-adapco 17 th International Multidimensional Engine User s Meeting at the SAE Congress 2007,April,15,2007 Detroit, MI RECENT ADVANCES IN DIESEL COMBUSTION MODELING: THE ECFM- CLEH COMBUSTION MODEL: A NEW CAPABILITY

More information

Marc ZELLAT, Driss ABOURI, Thierry CONTE and Riyad HECHAICHI CD-adapco

Marc ZELLAT, Driss ABOURI, Thierry CONTE and Riyad HECHAICHI CD-adapco 16 th International Multidimensional Engine User s Meeting at the SAE Congress 2006,April,06,2006 Detroit, MI RECENT ADVANCES IN SI ENGINE MODELING: A NEW MODEL FOR SPARK AND KNOCK USING A DETAILED CHEMISTRY

More information

Emission Reduction Technologies towards zero emissions

Emission Reduction Technologies towards zero emissions Emission Reduction Technologies towards zero emissions 12.10.2018 Heikki Korpi, Chief expert, Environmental expertise Marine Solutions, R&D and Engineering THIS IS WÄRTSILÄ Our business areas SERVICES

More information

Hongming Xu (Jaguar Cars) Miroslaw Wyszynski (University of Birmingham) Stan Golunski (Johnson Matthey)

Hongming Xu (Jaguar Cars) Miroslaw Wyszynski (University of Birmingham) Stan Golunski (Johnson Matthey) Hongming Xu (Jaguar Cars) Miroslaw Wyszynski (University of Birmingham) Stan Golunski (Johnson Matthey) SAE Homogeneous Charge Compression Ignition Symposium 19-20 September 2005 ACKNOWLEDGEMENTS Contribution

More information

Promising Alternative Fuels for Improving Emissions from Future Vehicles

Promising Alternative Fuels for Improving Emissions from Future Vehicles Promising Alternative Fuels for Improving Emissions from Future Vehicles Research Seminar: CTS Environment and Energy in Transportation Council Will Northrop 12/17/2014 Outline 1. Alternative Fuels Overview

More information

Potential of the Mild HCCI Combustion for Worldwide Applications

Potential of the Mild HCCI Combustion for Worldwide Applications Potential of the Mild HCCI Combustion for Worldwide Applications Future Fuels for IC Engines ERC Research Symposium Madison June 6-7, 2007 P.Gastaldi M.Besson JP.Hardy Renault Powertrain Division Overview

More information

Direct Injection Ethanol Boosted Gasoline Engines: Biofuel Leveraging For Cost Effective Reduction of Oil Dependence and CO 2 Emissions

Direct Injection Ethanol Boosted Gasoline Engines: Biofuel Leveraging For Cost Effective Reduction of Oil Dependence and CO 2 Emissions Direct Injection Ethanol Boosted Gasoline Engines: Biofuel Leveraging For Cost Effective Reduction of Oil Dependence and CO 2 Emissions D.R. Cohn* L. Bromberg* J.B. Heywood Massachusetts Institute of Technology

More information

Gas exchange and fuel-air mixing simulations in a turbocharged gasoline engine with high compression ratio and VVA system

Gas exchange and fuel-air mixing simulations in a turbocharged gasoline engine with high compression ratio and VVA system Third Two-Day Meeting on Internal Combustion Engine Simulations Using the OpenFOAM technology, Milan 22 nd -23 rd February 2018. Gas exchange and fuel-air mixing simulations in a turbocharged gasoline

More information

Increased efficiency through gasoline engine downsizing

Increased efficiency through gasoline engine downsizing Loughborough University Institutional Repository Increased efficiency through gasoline engine downsizing This item was submitted to Loughborough University's Institutional Repository by the/an author.

More information

Fuel Properties and Vehicle Emissions. Emissions

Fuel Properties and Vehicle Emissions. Emissions Fuel Properties and Vehicle Emissions AVECC 24 at Beijing, April 26-28, 28, 24 Yasunori TAKEI Fuel & Lubricant committee Japan Automobile Manufacturers Association Automobiles and the Environment Global

More information

High Octane Fuels, Making Better use of Ethanol

High Octane Fuels, Making Better use of Ethanol High Octane Fuels, Making Better use of Ethanol Brian West Fuels, Engines, and Emissions Research Center EESI High-Octane Fuels Briefing Washington, DC November 13, 2017 Work supported by DOE Office of

More information

Hydrogen generation from plasmatron reformers and use for diesel exhaust aftertreatment *

Hydrogen generation from plasmatron reformers and use for diesel exhaust aftertreatment * Hydrogen generation from plasmatron reformers and use for diesel exhaust aftertreatment * L. Bromberg **, D.R. Cohn **, J. Heywood ***, A. Rabinovich **, K. Hadidi **,N. Alexeev, A. Samokhin Massachusetts

More information

TRENDS IN GASOLINE POWERTRAIN TECHNOLOGY FOR HIGH PERFORMANCE AND LOW EMISSION

TRENDS IN GASOLINE POWERTRAIN TECHNOLOGY FOR HIGH PERFORMANCE AND LOW EMISSION TRENDS IN GASOLINE POWERTRAIN TECHNOLOGY FOR HIGH PERFORMANCE AND LOW EMISSION CAR2017 Pitesti, November 7 th, 2017 Dr. Hubert FRIEDL AVL List GmbH SOME HEADLINES November 7 th, 2017 2 EXTENDED CONSEQUENCES

More information

Chapter 4 ANALYTICAL WORK: COMBUSTION MODELING

Chapter 4 ANALYTICAL WORK: COMBUSTION MODELING a 4.3.4 Effect of various parameters on combustion in IC engines: Compression ratio: A higher compression ratio increases the pressure and temperature of the working mixture which reduce the initial preparation

More information

Alternative Fuels for DI-Diesel Engines Meeting Future Emission Standards

Alternative Fuels for DI-Diesel Engines Meeting Future Emission Standards 1 Alternative Fuels for DI-Diesel Engines Meeting Future Emission Standards ERC - 2007 Symposium Madison, June 6, 2007 Erik Koehler and Dean Tomazic FEV Engine Technology, Inc. Auburn Hills, MI, USA 2

More information

Chapter 6. NOx Formation and Reduction in Reciprocating Internal Combustion Engines (RICE)

Chapter 6. NOx Formation and Reduction in Reciprocating Internal Combustion Engines (RICE) Chapter 6 NOx Formation and Reduction in Reciprocating Internal Combustion Engines (RICE) Editor s Note: Chapter 6 NOx Formation and Reduction in Reciprocating Internal Combustion Engines (RICE) was written

More information

Towards Clean Diesel Engines The Future of the Advanced Diesel. Chester, June 8-9, Compression Ignition Engine. R.S.G.

Towards Clean Diesel Engines The Future of the Advanced Diesel. Chester, June 8-9, Compression Ignition Engine. R.S.G. The Future of the Advanced Diesel Compression Ignition Engine R.S.G. Baert Towards Clean Diesel Engines 2011 Chester, June 8-9, 2011 some 200.000 horses and around 5000 tonnes of manure had to be removed

More information

System Simulation for Aftertreatment. LES for Engines

System Simulation for Aftertreatment. LES for Engines System Simulation for Aftertreatment LES for Engines Christopher Rutland Engine Research Center University of Wisconsin-Madison Acknowledgements General Motors Research & Development Caterpillar, Inc.

More information

Evolution of Particle Size Distribution within the Engine Exhaust and Aftertreatment System

Evolution of Particle Size Distribution within the Engine Exhaust and Aftertreatment System Evolution of Particle Size Distribution within the Engine Exhaust and Aftertreatment System A. J. Smallbone (1, 2), D. Z. Y. Tay (2), W. L. Heng (2), S. Mosbach (2), A. York (2,3), M. Kraft (2) (1) cmcl

More information

Figure 1: The spray of a direct-injecting four-stroke diesel engine

Figure 1: The spray of a direct-injecting four-stroke diesel engine MIXTURE FORMATION AND COMBUSTION IN CI AND SI ENGINES 7.0 Mixture Formation in Diesel Engines Diesel engines can be operated both in the two-stroke and four-stroke process. Diesel engines that run at high

More information

Application of the SuperGen Electro-Mechanical Supercharger to Miller-Cycle Gasoline Turbocharged Engines

Application of the SuperGen Electro-Mechanical Supercharger to Miller-Cycle Gasoline Turbocharged Engines Application of the SuperGen Electro-Mechanical Supercharger to Miller-Cycle Gasoline Turbocharged Engines A. H. Guzel, J. Martin North American GT Conference 2017 11/14/2017 1 Overview Program Goal & Technology

More information

Recent enhancement to SI-ICE combustion models: Application to stratified combustion under large EGR rate and lean burn

Recent enhancement to SI-ICE combustion models: Application to stratified combustion under large EGR rate and lean burn Recent enhancement to SI-ICE combustion models: Application to stratified combustion under large EGR rate and lean burn G. Desoutter, A. Desportes, J. Hira, D. Abouri, K.Oberhumer, M. Zellat* TOPICS Introduction

More information

Development of a Double Variable Cam Phasing Strategy for Turbocharged SIDI Engines

Development of a Double Variable Cam Phasing Strategy for Turbocharged SIDI Engines !"" #$!%& Development of a Double Variable Cam Phasing Strategy for Turbocharged SIDI Engines GMPT Europe, Engine Development & Simulation Vincenzo Bevilacqua, Jany Krieg, Roland Maucher, Raymond Reinmann

More information

Technology to Meet Future FE and GHG Requirements

Technology to Meet Future FE and GHG Requirements Technology to Meet Future FE and GHG Requirements K.G. Duleep Managing Director, EEA An ICF International Company 2009 Conference on Transportation and Energy Policy, Asilomar Improving Vehicle Fuel Economy

More information

Fuel-Engine Co-Optimization with Ethanol for High Efficiency Engines

Fuel-Engine Co-Optimization with Ethanol for High Efficiency Engines Fuel-Engine Co-Optimization with Ethanol for High Efficiency Engines Robert L. McCormick robert.mccormick@nrel.gov Washington DC November 13, 2017 The Message Liquid fuels will make a substantial contribution

More information

Chapter 6 NOx Formation and Reduction in Reciprocating Internal Combustion Engines (RICE)

Chapter 6 NOx Formation and Reduction in Reciprocating Internal Combustion Engines (RICE) Chapter 6 NOx Formation and Reduction in Reciprocating Internal Combustion Engines (RICE) Editor s Note: Chapter 6 NOx Formation and Reduction in Reciprocating Internal Combustion Engines (RICE) includes

More information

Improving Engine Efficiency and Fuels: An Overview. John B. Heywood. Massachusetts Institute of Technology

Improving Engine Efficiency and Fuels: An Overview. John B. Heywood. Massachusetts Institute of Technology Improving Engine Efficiency and Fuels: An Overview John B. Heywood Sun JaeProfessor of Engineering, Emeritus Massachusetts Institute of Technology Presentation at CRC Advanced Fuel and Engine Efficiency

More information

SuperGen - Novel Low Cost Electro-Mechanical Mild Hybrid and Boosting System. Jason King, Chief Engineer

SuperGen - Novel Low Cost Electro-Mechanical Mild Hybrid and Boosting System. Jason King, Chief Engineer SuperGen - Novel Low Cost Electro-Mechanical Mild Hybrid and Boosting System Jason King, Chief Engineer FPC2015 Quick overview of Integral Powertrain (IPT) SuperGen concept Analysis results Test results

More information

Vehicle Powertrain CO 2 Emissions in Review

Vehicle Powertrain CO 2 Emissions in Review Vehicle Powertrain CO 2 Emissions in Review August 17-18, 2011 MIT/NESCAUM Forum Endicott House Tim Johnson JohnsonTV@Corning.com The US EPA (and CARB) are considering 5%/yr reduction in light-duty (LD)

More information

Ethanol, DME and Renewable Diesel for large scale displacement of fossil diesel in HD applications

Ethanol, DME and Renewable Diesel for large scale displacement of fossil diesel in HD applications Ethanol, DME and Renewable Diesel for large scale displacement of fossil diesel in HD applications Patric Ouellette, Lew Fulton STEPS Presentation May 24, 2017 Intro and Question Large content of biofuel

More information

Medium-Duty Emissions and GHG from a Full-Line Manufacturer s Perspective

Medium-Duty Emissions and GHG from a Full-Line Manufacturer s Perspective Medium-Duty Emissions and GHG from a Full-Line Manufacturer s Perspective 2015 ERC Symposium June 3, 2015 Eric Kurtz, Ford Motor Company Diesel Combustion System Team Leader 1 Outline What is Medium Duty?

More information

Co-Optimization of Fuels and Engines

Co-Optimization of Fuels and Engines Co-Optimization of Fuels and Engines Michael Berube, Director, DOE Vehicle Technologies Office Petroleum Equipment Institute Convention October 19, 2016 Goal: better fuels and better vehicles sooner Fuel

More information

Wood-to-Wheels Engines and Vehicles Research

Wood-to-Wheels Engines and Vehicles Research -Wheels Engines and Vehicles Research Dr. Jeff Naber Associate Professor ME-EM Department Michigan Tech University j.naber@mtu.edu Tel: 906.487.1938 1 Advanced Power Systems Research Center Advanced IC

More information

CNG Equipment Meeting Industry Needs. January 17, 2013 Trevin Fountain

CNG Equipment Meeting Industry Needs. January 17, 2013 Trevin Fountain CNG Equipment Meeting Industry Needs January 17, 2013 Trevin Fountain Natural Gas Market Primary Drivers Economics Natural Gas costs 30-50% less than diesel Energy Policy Abundant domestic supply of natural

More information

R&D on a Medium-speed, Four-cycle Diesel Engine Using Heavy fuel oil

R&D on a Medium-speed, Four-cycle Diesel Engine Using Heavy fuel oil 1999C.4.1.11 R&D on a Medium-speed, Four-cycle Diesel Engine Using Heavy fuel oil 1. R&D contents 1.1 Background and R&D objectives In order to meet increasing demand for light oil and intermediate fraction,

More information

NEW DIESEL EMISSIONS CONTROL STRATEGY for US TIER 2

NEW DIESEL EMISSIONS CONTROL STRATEGY for US TIER 2 NEW DIESEL EMISSIONS CONTROL STRATEGY for US TIER 2 Jeffrey A. Leet Shizuo Sasaki, PhD. Yiqun Huang, PhD. Gary Neely Department of Engine and Emissions Research Southwest Research Institute 24 Diesel Engine

More information

Improving Fuel Efficiency with Fuel-Reactivity-Controlled Combustion

Improving Fuel Efficiency with Fuel-Reactivity-Controlled Combustion ERC Symposium 2009 1 Improving Fuel Efficiency with Fuel-Reactivity-Controlled Combustion Rolf D. Reitz, Reed Hanson, Derek Splitter, Sage Kokjohn Engine Research Center University of Wisconsin-Madison

More information

4. With a neat sketch explain in detail about the different types of fuel injection system used in SI engines. (May 2016)

4. With a neat sketch explain in detail about the different types of fuel injection system used in SI engines. (May 2016) SYED AMMAL ENGINEERING COLLEGE (Approved by the AICTE, New Delhi, Govt. of Tamilnadu and Affiliated to Anna University, Chennai) Established in 1998 - An ISO 9001:2000 Certified Institution Dr. E.M.Abdullah

More information

Heavy-Duty Diesel Engine Trends to Meet Future Emissions Standards (Euro VI)

Heavy-Duty Diesel Engine Trends to Meet Future Emissions Standards (Euro VI) Heavy-Duty Diesel Engine Trends to Meet Future Emissions Standards (Euro VI) Andrew Nicol AECC Technical Seminar on Heavy-Duty Vehicle Emissions (Euro VI) Brussels 25 October 2007 Contents Emissions Legislation

More information

Natural Gas fuel for Internal Combustion Engine

Natural Gas fuel for Internal Combustion Engine Natural Gas fuel for Internal Combustion Engine L. Bartolucci, S. Cordiner, V. Mulone, V. Rocco University of Rome Tor Vergata Department of Industrial Engineering Outline Introduction Motivations and

More information

Homogeneous Charge Compression Ignition (HCCI) Engines

Homogeneous Charge Compression Ignition (HCCI) Engines Homogeneous Charge Compression Ignition (HCCI) Engines Aravind. I. Garagad. Shri Dharmasthala Manjunatheshwara College of Engineering and Technology, Dharwad, Karnataka, India. ABSTRACT Large reductions

More information

Perspectives on Vehicle Technology and Market Trends

Perspectives on Vehicle Technology and Market Trends Perspectives on Vehicle Technology and Market Trends Mike Hartrick Sr. Regulatory Planning Engineer, FCA US LLC UC Davis STEPS Workshop: Achieving Targets Through 2030 - Davis, CA Customer Acceptance and

More information

Internal Combustion Engines

Internal Combustion Engines Emissions & Air Pollution Lecture 3 1 Outline In this lecture we will discuss emission control strategies: Fuel modifications Engine technology Exhaust gas aftertreatment We will become particularly familiar

More information

Opportunities for Reducing Oil Demand for Transportation

Opportunities for Reducing Oil Demand for Transportation M I T Opportunities for Reducing Oil Demand for Transportation John B. Heywood Sun Jae Professor of Mechanical Engineering Director, Sloan Automotive Laboratory M.I.T. NRC Workshop on Trends in Oil Supply

More information

GASOLINE DIRECT INJECTION IN SI ENGINES B. PAVAN VISWANADH P. ASHOK KUMAR. Mobile No : Mobile No:

GASOLINE DIRECT INJECTION IN SI ENGINES B. PAVAN VISWANADH P. ASHOK KUMAR. Mobile No : Mobile No: GASOLINE DIRECT INJECTION IN SI ENGINES SUBMIT TED BY B. PAVAN VISWANADH P. ASHOK KUMAR Y06ME011, III/IV B. Tech Y06ME003, III/IV B. Tech Pavan.visu@gmail.com ashok.me003@gmail.com Mobile No :9291323516

More information

Module 6:Emission Control for CI Engines Lecture 31:Diesel Particulate Filters (contd.) The Lecture Contains: Passive/Catalytic Regeneration

Module 6:Emission Control for CI Engines Lecture 31:Diesel Particulate Filters (contd.) The Lecture Contains: Passive/Catalytic Regeneration Module 6:Emission Control for CI Engines The Lecture Contains: Passive/Catalytic Regeneration Regeneration by Fuel Additives Continuously Regenerating Trap (CRT) Syatem Partial Diesel Particulate Filters

More information

BRP-Rotax GmbH & Co KG Potential of Different Injection Systems for High Performance Two-Stroke Engines Nigel Foxhall October, 17th 2016

BRP-Rotax GmbH & Co KG Potential of Different Injection Systems for High Performance Two-Stroke Engines Nigel Foxhall October, 17th 2016 BRP-Rotax GmbH & Co KG Nigel Foxhall October, 17th 2016 Content 1. Motivation 2. Injection System Descriptions 3. WMTC Steady State comparison 4. WMTC Chassis Roll comparison 5. Summary & Conclusions 2

More information

Crankcase scavenging.

Crankcase scavenging. Software for engine simulation and optimization www.diesel-rk.bmstu.ru The full cycle thermodynamic engine simulation software DIESEL-RK is designed for simulating and optimizing working processes of two-

More information

Scaling Functions for the Simulation of Different SI-Engine Concepts in Conventional and Electrified Power Trains

Scaling Functions for the Simulation of Different SI-Engine Concepts in Conventional and Electrified Power Trains Scaling Functions for the Simulation of Different SI-Engine Concepts in Conventional and Electrified Power Trains Dipl.-Ing. Michael Huß BMW Group (05/2007 04/2010) Prof. Dr.-Ing Georg Wachtmeister LVK

More information

Bioblendstocks that Enable High Efficiency Engine Designs

Bioblendstocks that Enable High Efficiency Engine Designs Bioblendstocks that Enable High Efficiency Engine Designs Robert L. McCormick with Gina M. Fioroni, Matthew A. Ratcliff, Bradley T. Zigler, John Farrell 2nd CRC Advanced Fuel and Engine Efficiency Workshop

More information

Energy, the Environment and Transportation Natural Gas Reciprocating Engine Technolgy July 24, 2012

Energy, the Environment and Transportation Natural Gas Reciprocating Engine Technolgy July 24, 2012 Energy, the Environment and Transportation Natural Gas Reciprocating Engine Technolgy July 24, 2012 Introduction 2 Dave Petruska Engineering Manager at Woodward Licensed Professional Engineer (PE) BS and

More information

NGP2010 Diesel Engine Briefing Sept. 18, 2007

NGP2010 Diesel Engine Briefing Sept. 18, 2007 NGP2010 Diesel Engine Briefing Sept. 18, 2007 Yo Usuba Senior Vice President Nissan Motor Co., Ltd. Agenda 1. Environmental Technology Activities 2. Potential of Diesel Engines 3. Clean Diesels 4. Future

More information

Simulating Gas-Air Mixture Formation for Dual-Fuel Applications

Simulating Gas-Air Mixture Formation for Dual-Fuel Applications Simulating Gas-Air Mixture Formation for Dual-Fuel Applications Karri Keskinen, Ossi Kaario, Mika Nuutinen, Ville Vuorinen, Zaira Künsch and Martti Larmi Thermodynamics and Combustion Technology Research

More information

High efficient SI-engine with ultra high injection pressure Chalmers University]

High efficient SI-engine with ultra high injection pressure Chalmers University] High efficient SI-engine with ultra high injection pressure [Research @ Chalmers University] Event; Energirelaterad forskning, 2017 Gothenburg, Sweden 5 th October 2017 Peter Granqvist President DENSO

More information

The Influence of Fuel Cetane Number on Catalyst Light-Off Operation in a Modern Diesel Engine

The Influence of Fuel Cetane Number on Catalyst Light-Off Operation in a Modern Diesel Engine The Influence of Fuel Cetane Number on Catalyst Light-Off Operation in a Modern Diesel Engine 2nd CRC Advanced Fuel and Engine Efficiency Workshop Nov 3, 2016 Eric Kurtz, Ford Motor Company Diesel Combustion

More information

Introduction to combustion

Introduction to combustion Introduction to combustion EEN-E005 Bioenergy 1 017 D.Sc (Tech) ssi Kaario Motivation Why learn about combustion? Most of the energy in the world, 70-80%, is produced from different kinds of combustion

More information

Advanced Propulsion/Powertrain Track

Advanced Propulsion/Powertrain Track Advanced Propulsion/Powertrain Track The Powertrain, Fuels and Lubricants sessions focus on information in the area of properties, selection, processing, performance, use, and effects of fuels and lubricants

More information

The Path To EPA Tier 4i - Preparing for. the 2011 transition

The Path To EPA Tier 4i - Preparing for. the 2011 transition The Path To EPA Tier 4i - Preparing for Presented by: Todd Howe Global Product Marketing Manager Doosan Infracore Portable Power Office: 704-883-3611 todd.howe@doosan.com the 2011 transition About the

More information

Study of Fuel Oxygenate Effects on Particulates from Gasoline Direct Injection Cars

Study of Fuel Oxygenate Effects on Particulates from Gasoline Direct Injection Cars ENVIRONMENTAL SCIENCE FOR THE EUROPEAN REFINING INDUSTRY Study of Fuel Oxygenate Effects on Particulates from Rod Williams Corrado Fittavolini Cambridge Particle Meeting June 27, 2014 Background It is

More information

Opportunities for Reducing Transportation s Petroleum Use and Greenhouse Gas Emissions

Opportunities for Reducing Transportation s Petroleum Use and Greenhouse Gas Emissions Opportunities for Reducing Transportation s Petroleum Use and Greenhouse Gas Emissions John B. Heywood Professor of Mechanical Engineering Director, Sloan Automotive Laboratory M.I.T. Transportation @

More information

INTRODUCTION TO NEAR TERM TECHNOLOGIES FOR LD DIESEL EFFICIENCY

INTRODUCTION TO NEAR TERM TECHNOLOGIES FOR LD DIESEL EFFICIENCY INTRODUCTION TO NEAR TERM TECHNOLOGIES FOR LD DIESEL EFFICIENCY prepared for: 2014 CRC Advanced Fuel and Engine Efficiency Workshop February 25 th 2014 H. Nanjundaswamy b), B. Holderbaum a), T. Körfer

More information

is the crank angle between the initial spark and the time when about 10% of the charge is burned. θ θ

is the crank angle between the initial spark and the time when about 10% of the charge is burned. θ θ ME 410 Day 30 Phases of Combustion 1. Ignition 2. Early flame development θd θ 3. Flame propagation b 4. Flame termination The flame development angle θd is the crank angle between the initial spark and

More information

Normal vs Abnormal Combustion in SI engine. SI Combustion. Turbulent Combustion

Normal vs Abnormal Combustion in SI engine. SI Combustion. Turbulent Combustion Turbulent Combustion The motion of the charge in the engine cylinder is always turbulent, when it is reached by the flame front. The charge motion is usually composed by large vortexes, whose length scales

More information

Combustion PVM-MF. The PVM-MF model has been enhanced particularly for dualfuel

Combustion PVM-MF. The PVM-MF model has been enhanced particularly for dualfuel Contents Extensive new capabilities available in STAR-CD/es-ice v4.20 Combustion Models see Marc Zellat presentation Spray Models LES New Physics Developments in v4.22 Combustion Models PVM-MF Crank-angle

More information

Cooled EGR and alternative fuels Solutions for improved fuel economy

Cooled EGR and alternative fuels Solutions for improved fuel economy Cooled EGR and alternative fuels Solutions for improved fuel economy Dr. Terry Alger November, 2007 Engine, Emissions and Vehicle Research Division Southwest Research Institute Motivation and Market Forces

More information

2013 NCWM Interim Meeting January Charleston, SC

2013 NCWM Interim Meeting January Charleston, SC 2013 NCWM Interim Meeting January 27-31 Charleston, SC L&R Item 237-2 Ballot (Form-15) to modify U.S. Gasoline Octane Specifications in Handbook 130 Applicable L&R Sections Section 2.1.4. Minimum Antiknock

More information

Spark versus Compression Ignition in a New Energy Environment

Spark versus Compression Ignition in a New Energy Environment ENVIRONMENTAL SCIENCE FOR THE EUROPEAN REFINING INDUSTRY Spark versus Compression Ignition in a New Energy Khurram Gaba ExxonMobil Heather Hamje CONCAWE, Brussels, Belgium Global Progress Drives Demand

More information