Batteries for electric commercial vehicles and mobile machinery

Size: px
Start display at page:

Download "Batteries for electric commercial vehicles and mobile machinery"

Transcription

1 Batteries for electric commercial vehicles and mobile machinery Tekes EVE annual seminar, Dipoli Dr. Mikko Pihlatie VTT Technical Research Centre of Finland

2 2 Outline 1. Battery technology for electric vehicles and mobile machinery Current state-of-the-art Challenges and limitations Beyond state-of-the-art 2. From battery cells to applications Application-specific requirements Battery use and operation window Cost analysis factors

3 3 What is a battery? A battery contains one or more electrochemical cells for storage of electric energy; these may be connected in series or parallel to provide the desired voltage and power The anode is the negative electrode from which electrons are generated to do external work The cathode is the positive electrode to which positive ions migrate inside the cell and electrons migrate through the external electrical circuit The electrolyte allows the flow of positive ions from one electrode to another. The electrolyte is commonly a liquid solution containing a salt dissolved in a solvent. The electrolyte must be stable in the presence of both electrodes. Typically lithium salt (LiPF 6 ) + mixed organic solvent (ethylene carbonatedimethyl carbonate EC-DMC). The current collectors allow the transport of electrons to and from the electrodes. B. Scrosati, Journal of Power Sources 195 (2010)

4 4 Basic principle of Li-ion battery charging - discharging Source: auto.howstaffworks.com

5 5 Operation principle of SEI formation in a C/LiCoO 2 battery The C/LiMO 2 system with current electrolytes is thermodynamically unstable (low kinetics!) Reaction with the electrolyte creates a passive Solid Electrolyte Interface (SEI) on the anode side Normally the SEI stabilises the cell (normal operation limits) Abnormal conditions can lead to oxidative processes on the cathode cell failure risk B. Scrosati, Journal of Power Sources 195 (2010)

6 6 Li-ion batteries a large range of possible materials combinations Positive electrodes Electrode material Average potential difference Specific capacity Specific energy LiCoO V 140 ma h/g kw h/kg LiMn 2 O V 100 ma h/g kw h/kg LiNiO V 180 ma h/g kw h/kg LiFePO V 150 ma h/g kw h/kg Li 2 FePO 4 F 3.6 V 115 ma h/g kw h/kg LiCo 1/3 Ni 1/3 Mn 1/3 O V 160 ma h/g kw h/kg Li(Li a Ni x Mn y Co z )O V 220 ma h/g kw h/kg Negative electrodes Electrode material Average potential difference Specific capacity Specific energy Graphite (LiC 6 ) V 372 ma h/g kw h/kg Hard Carbon (LiC 6 )? V 450 ma h/g? kw h/kg Titanate (Li 4 Ti 5 O 12 ) 1-2 V 160 ma h/g kw h/kg Si (Li 4.4 Si) [38] V 4212 ma h/g kw h/kg Ge (Li 4.4 Ge) [39] V 1624 ma h/g kw h/kg

7 7 Li-ion battery materials roadmap expected innovations

8 8 Tradeoffs among state-of-the-art Li-ion battery technologies

9 9 The safe operability window for Lithium-ion battery The battery should be strictly kept in the proper operating window Safety concerns from improper use or conditions Durability and performance suffer greatly when misoperated Requirements for pack design and battery management FTA, US Department of Transportation, Report No. FTA-MA

10 10 Li-ion and beyond status and outlook Energy density insufficient for full EV operation New electrode materials for higher capacity / lower cost Lithium-metal alloys for anode, e.g. Li-Si (4000 mah/g) and Li-Sn (990 mah/g) anodes instead of graphite (370 mah/g) Higher voltage cathodes, such as LMO ( stability of electrolytes!) Challenges with safety of operation Replacement of the organic carbonate lquid electrolyte solutions with more reliable and safer electrolytes E.g., solid polymer or ionic liquid electrolytes Inherently safe electrode materials, such as LTO anodes ( improved cycle life) Power capability when quick charging becomes imprative, both electrodes have to be optimised for this Completely new systems will take several years to come to demonstrations, but clear performance improvements are expected Metal-air (Li-air) batteries bring potentially high electrode capacity (1200 mah/g) Li-S Lithium-suphur batteries offer potentially great capacity (2500 Wh/kg)

11 11 Battery pack engineering towards application case by case Nissan Leaf battery pack Exact designs highly dependent on vehicle / application Geometries and the available space vary drastically depending on vehicle / application Source: Wikipedia

12 12 Relative performance of electrochemical storage devices Different types of power sources have each their optimal application areas Li-ion batteries are struggling to fulfil requirements for all-electric vehicles Venkat Srinivasan, Almaden Conf. 2009: The Batteries for Advanced Transportation Technologies (BATT) Program. )

13 13 Battery management system vs. vehicle energy balance The tasks of the BMS Protect the cells or the battery from damage Prolong the life of the battery Maintain the battery in a state in which it can fulfil the functional requirements of the application for which it was specified Communication interfaces BMS vehicle control BMS charger Charger power/energy grid Source: Electropaedia,

14 14

15 15 Comparison of different current Li-ion battery types (power/energy) Work cycle analysis and end-user view are central in designing the driveline and energy storages Right choice of battery type and battery design are the key to succesful EV design Source: Al-Hallaj, EV Li-ion Battery forum, Barcelona 2012

16 16

17 17 Batteries cost OEM s about 1100 $/kwh at low volumes (2010)

18 18 Battery cost will decline drastically by 2020

19 19 Battery lifetime has a crucial impact on the total system cost Calendar life or cycle life may be limiting Different fading modes Capacity loss Impedance rise Increase in self discharge Strong effect from how the battery is used Load cycles (C-rate) Temperature Depth of discharge

20 20 Thank you!

Understanding Lithium-Ion Technology Jim McDowall (updated from Battcon 2008)

Understanding Lithium-Ion Technology Jim McDowall (updated from Battcon 2008) Understanding Lithium-Ion Technology Jim McDowall (updated from Battcon 2008) PE/SB Winter Meeting 2015, New Orleans Background History Started with primary batteries with metallic lithium negatives True

More information

From materials to vehicle what, why, and how? From vehicle to materials

From materials to vehicle what, why, and how? From vehicle to materials From materials to vehicle what, why, and how? From vehicle to materials Helena Berg Outline 1. Electric vehicles and requirements 2. Battery packs for vehicles 3. Cell selection 4. Material requirements

More information

The BEEST: An Overview of ARPA-E s Program in Ultra-High Energy Batteries for Electrified Vehicles

The BEEST: An Overview of ARPA-E s Program in Ultra-High Energy Batteries for Electrified Vehicles The BEEST: An Overview of ARPA-E s Program in Ultra-High Energy Batteries for Electrified Vehicles David Danielson, PhD Program Director, ARPA-E NDIA Workshop to Catalyze Adoption of Next-Generation Energy

More information

The Inside Story of the Lithium Ion Battery. John Dunning, Research Scholar in Residence Daniel Forbes, Graduate Student Electrical Engineering

The Inside Story of the Lithium Ion Battery. John Dunning, Research Scholar in Residence Daniel Forbes, Graduate Student Electrical Engineering The Inside Story of the Lithium Ion Battery John Dunning, Research Scholar in Residence Daniel Forbes, Graduate Student Electrical Engineering Outline Background - Why this is important Electrochemistry/Battery

More information

The Challenges of Electric Energy Storage. Nigel Taylor, Nick Green, Chris Lyness, Steve Nicholls

The Challenges of Electric Energy Storage. Nigel Taylor, Nick Green, Chris Lyness, Steve Nicholls The Challenges of Electric Energy Storage Nigel Taylor, Nick Green, Chris Lyness, Steve Nicholls Technology Walk Customer familiarity with recharging IC HEV PHEV EV Kinetic energy recovery Plug-in Battery

More information

Lithium Ion Batteries - for vehicles and other applications

Lithium Ion Batteries - for vehicles and other applications Lithium Ion Batteries - for vehicles and other applications Tekes 2008-12-03 Kai Vuorilehto / European Batteries What do we need? High energy (Wh/kg) driving a car for 5 hours High power (W/kg) accelerating

More information

Battery technologies and their applications in sustainable developments. Dr. Denis Y.W. Yu Assistant Professor School of Energy and Environment

Battery technologies and their applications in sustainable developments. Dr. Denis Y.W. Yu Assistant Professor School of Energy and Environment Battery technologies and their applications in sustainable developments Dr. Denis Y.W. Yu Assistant Professor School of Energy and Environment May 29, 2014 Energy flow Energy Energy generation Energy storage

More information

Review of status of the main chemistries for the EV market

Review of status of the main chemistries for the EV market Review of status of the main chemistries for the EV market EMIRI Energy Materials Industrial Research Initiative Dr. Marcel Meeus Consultant Sustesco www.emiri.eu 1 Agenda 1. Review of status of current

More information

UN/SCETDG/47/INF.13/Rev.1

UN/SCETDG/47/INF.13/Rev.1 Committee of Experts on the Transport of Dangerous Goods and on the Globally Harmonized System of Classification and Labelling of Chemicals New proper shipping name for rechargeable lithium metal batteries

More information

Storage: the state of the technology

Storage: the state of the technology Storage: the state of the technology Torbjörn Gustafsson Ångström Advanced Battery Centre Department of Materials Chemistry Uppsala University 1 Acknowledgements Ångström Advanced Battery Centre 2 Over

More information

State-of-Charge (SOC) governed fast charging method for lithium based batteries. Fahmida Naznin M/s. TVS Motor Company Ltd.

State-of-Charge (SOC) governed fast charging method for lithium based batteries. Fahmida Naznin M/s. TVS Motor Company Ltd. State-of-Charge (SOC) governed fast charging method for lithium based batteries Fahmida Naznin M/s. TVS Motor Company Ltd. Hosur, Tamilnadu Hybrid technology & battery requirement References: 1. Battery

More information

Requirement, Design, and Challenges in Inorganic Solid State Batteries

Requirement, Design, and Challenges in Inorganic Solid State Batteries Requirement, Design, and Challenges in Inorganic Solid State Batteries Venkat Anandan Energy Storage Research Department 1 Ford s Electrified Vehicle Line-up HEV Hybrid Electric Vehicle C-Max Hybrid Fusion

More information

AUTOMOTIVE BATTERIES 101

AUTOMOTIVE BATTERIES 101 AUTOMOTIVE BATTERIES 101 JULY 2018 WMG, University of Warwick Professor David Greenwood, Advanced Propulsion Systems The battery is the defining component of an electrified vehicle Range Cost Power Package

More information

Li-ion Technology Overview NTSB Hearing Washington, D.C. July 12-13, 2006

Li-ion Technology Overview NTSB Hearing Washington, D.C. July 12-13, 2006 Li-ion Technology Overview NTSB Hearing Washington, D.C. July 12-13, 2006 Jason Howard, Ph.D. Distinguished Member of the Technical Staff, Motorola, Inc. Board of Directors, Portable Rechargeable Battery

More information

New proper shipping name for rechargeable lithium metal batteries

New proper shipping name for rechargeable lithium metal batteries Committee of Experts on the Transport of Dangerous Goods and on the Globally Harmonized System of Classification and Labelling of Chemicals New proper shipping name for rechargeable lithium metal batteries

More information

Rechargeable Batteries

Rechargeable Batteries Nanomaterial approaches to enhance lithium ion batteries Potential Environmental Benefits of Nanotechnology: Fostering Safe Innovation-Led Growth July 17 th, 2009 Brian J. Landi Assistant Professor of

More information

Status & Future Perspectives of Li-Ion Batteries and PEM Fuel Cell Systems in the Automotive Industry

Status & Future Perspectives of Li-Ion Batteries and PEM Fuel Cell Systems in the Automotive Industry German-Japanese Energy Symposium 2011 Munich, 10 th February Dr.-Ing. Arnold Lamm, Senior Manager Daimler AG Group Research / 7th February 2011 Contents 1. Battery Requirements HEV/EV 2. Battery Development

More information

Portable Power & Storage

Portable Power & Storage Portable Power & Storage NMTC Disruptive Technology Summit and TECH CONN3CT Workshops 28 April 2017 Edward J. Plichta Chief Scientist for Power & Energy Command Power & Integration Directorate Aberdeen

More information

THE BUSINESS CASE FOR INDUSTRIAL-SCALE BATTERIES

THE BUSINESS CASE FOR INDUSTRIAL-SCALE BATTERIES 11 THE BUSINESS CASE FOR INDUSTRIAL-SCALE BATTERIES TECHNOLOGY OVERVIEW Batteries store electricity as chemical energy so that it can be recovered for later use. There are many different battery types;

More information

Large Format Lithium Power Cells for Demanding Hybrid Applications

Large Format Lithium Power Cells for Demanding Hybrid Applications Large Format Lithium Power Cells for Demanding Hybrid Applications Adam J. Hunt Manager of Government Programs 2011 Joint Service Power Expo Power to Sustain Warfighter Dominance Myrtle Beach, SC May 4,

More information

Li-Ion battery Model. Octavio Salazar. Octavio Salazar

Li-Ion battery Model. Octavio Salazar. Octavio Salazar Li-Ion battery Model 1 Energy Storage- Lithium Ion Batteries C-PCS: Control and Power Conditioning System Energy Storage- Lithium Ion Batteries Nature [0028-0836] Tarascon (2001) volume: 414 issue: 6861

More information

U.S. Department of Energy

U.S. Department of Energy U.S. Department of Energy Vehicle Technologies Office Electric Vehicle Battery Research Pathways and Key Results March 21, 2017 David Howell Brian Cunningham (Presenter) Tien Duong Peter Faguy Samuel Gillard

More information

Vehicle Battery R&D Progress and Future Plans

Vehicle Battery R&D Progress and Future Plans Vehicle Battery R&D Progress and Future Plans Tien Q. Duong Office of Vehicle Technologies U.S. Department of Energy KSAE and IEA IA-HEV International Symposium on Electric Mobility and IA-HEV Task 1 Information

More information

Lithium-Ion Batteries for Electric Cars: Elena Aleksandrova Honda R&D Europe (Deutschland) GmbH Automobile Advanced Technology Research

Lithium-Ion Batteries for Electric Cars: Elena Aleksandrova Honda R&D Europe (Deutschland) GmbH Automobile Advanced Technology Research Lithium-Ion Batteries for Electric Cars: Opportunities and Challenges Elena Aleksandrova Honda R&D Europe (Deutschland) GmbH Automobile Advanced Technology Research 19.01.2010 1 Introduction Li-Ion technology

More information

UN/SCETDG/52/INF.11. Sodium-Ion Batteries. Introduction

UN/SCETDG/52/INF.11. Sodium-Ion Batteries. Introduction Committee of Experts on the Transport of Dangerous Goods and on the Globally Harmonized System of Classification and Labelling of Chemicals UN/SCETDG/52/INF.11 Sub-Committee of Experts on the Transport

More information

Battery Power for All-Electric Road Vehicles John B. Goodenough and M. Helena Braga The University of Texas at Austin, and of Porto, Portugal

Battery Power for All-Electric Road Vehicles John B. Goodenough and M. Helena Braga The University of Texas at Austin, and of Porto, Portugal Battery Power for All-Electric Road Vehicles John B. Goodenough and M. Helena Braga The University of Texas at Austin, and of Porto, Portugal Modern Society runs on the energy stored in fossil fuels. This

More information

Stefan van Sterkenburg Stefan.van.sterken

Stefan van Sterkenburg Stefan.van.sterken Stefan van Sterkenburg Stefan.vansterkenburg@han.nl Stefan.van.sterken burgr@han.nl Contents Introduction of Lithium batteries Development of measurement equipment Electric / thermal battery model Aging

More information

EU activities in the battery sector

EU activities in the battery sector VTT TECHNICAL RESEARCH CENTRE OF FINLAND LTD EU activities in the battery sector Akkualan kehittäminen Suomessa, BF 7.2.2018 Mikko Pihlatie, VTT mikko.pihlatie@vtt.fi Motivation "I want Europe to be the

More information

2011 Advanced Energy Conference -Buffalo, NY

2011 Advanced Energy Conference -Buffalo, NY 2011 Advanced Energy Conference -Buffalo, NY Electrification Technology and the Future of the Automobile Mark Mathias Electrochemical Energy Research Lab General Motors R&D Oct. 13, 2011 Transitioning

More information

BOSTON-POWER LITHIUM-ION BATTERY SOLUTIONS BENCHMARK WORLD TOUR 2017 TORONTO APRIL 24, 2017

BOSTON-POWER LITHIUM-ION BATTERY SOLUTIONS BENCHMARK WORLD TOUR 2017 TORONTO APRIL 24, 2017 BOSTON-POWER LITHIUM-ION BATTERY SOLUTIONS BENCHMARK WORLD TOUR 2017 TORONTO APRIL 24, 2017 BOSTON-POWER MISSION Provide Next-Gen Li-Ion Batteries Enabling Enhanced Mobility and Environmental Sustainability

More information

Lithium-ion Batteries Material Strategy and Positioning. Energy Storage HARDWARE

Lithium-ion Batteries Material Strategy and Positioning. Energy Storage HARDWARE HARDWARE Energy Storage Lithium-ion Batteries Material Strategy and Positioning Lithium-ion batteries are to replace the nickel-metal hydride batteries that are currently being used in hybrid motor vehicles

More information

DOE OVT Energy Storage R&D Overview

DOE OVT Energy Storage R&D Overview DOE OVT Energy Storage R&D Overview David Howell Hybrid and electric vehicles, energy storage technologies and control systems National and international R&D-projects, research institutions and funding

More information

The success of HEV, PHEV and EV market evolution relies on the availability of efficient energy storage systems

The success of HEV, PHEV and EV market evolution relies on the availability of efficient energy storage systems APPLES Project From Batteries 2010 2 From Batteries 2010 3 To control the air pollution and fight global warming the replacement of large fraction of internal combustion cars with sustainable vehicles

More information

Ionic Additives for Electrochemical Devices Using Intercalation Electrodes

Ionic Additives for Electrochemical Devices Using Intercalation Electrodes U.S. Army Research, Development and Engineering Command Ionic Additives for Electrochemical Devices Using Intercalation Electrodes Inventor: Dr. Kang Xu ARL 09-18 February 16, 2011 Technology Overview

More information

STUDY OF HIGH ENERGY CATHODE MATERIALS : LI-RICH MATERIALS

STUDY OF HIGH ENERGY CATHODE MATERIALS : LI-RICH MATERIALS STUDY OF HIGH ENERGY CATHODE MATERIALS : LI-RICH MATERIALS Jean-François Colin, A. Boulineau, L. Simonin, D. Peralta, C. Bourbon, F. Fabre CEA LITEN DEHT October 28 th, 2014 MATERIALS FOR POSITIVE ELECTRODE

More information

ZOE Battery Durability, Field Experience and Future Vision

ZOE Battery Durability, Field Experience and Future Vision ZOE Battery Durability, Field Experience and Future Vision Dr. Bruno DELOBEL, Dr. Isabel JIMENEZ GORDON, Dr. Lucie LEVEAU Renault Battery Development Department 1 World EV Market ZOE Fluence / SM3 Twizy

More information

Introduction. Today, we can convert energy from many different forms into usable electricity.

Introduction. Today, we can convert energy from many different forms into usable electricity. Introduction Today, we can convert energy from many different forms into usable electricity. But how did we get here? In ancient times, the generation of electricity was purely accidental. 1. Drag feet

More information

ELiTE Battery Information

ELiTE Battery Information ELiTE Battery Information History of Li- Ion Batteries What is a Lithium-ion Battery? Two or more electrochemical cells, electrically interconnected. Each cell contains two electrodes and an electrolyte.

More information

Brief Assessment of progress in EV Battery Technology since the BTAP June 2000 Report

Brief Assessment of progress in EV Battery Technology since the BTAP June 2000 Report Brief Assessment of progress in EV Battery Technology since the BTAP June 2000 Report Dr. Menahem Anderman President Advanced Automotive Batteries This report is a brief evaluation of changes in EV battery

More information

Battery Technology Roadmap Valentin Wernecke, Patrick Morgenroth

Battery Technology Roadmap Valentin Wernecke, Patrick Morgenroth Battery Technology Roadmap Valentin Wernecke, Patrick Morgenroth 02.02.2018 1 Outline of the presentation 1. Requirements for stationary and mobile applications 2. Battery technologies in the past 3. Battery

More information

innovation at work The NanoSafe Battery Alan J. Gotcher, PhD President & CEO Altair Nanotechnologies, Inc. November 29 th, 2006 Research Manufacturing

innovation at work The NanoSafe Battery Alan J. Gotcher, PhD President & CEO Altair Nanotechnologies, Inc. November 29 th, 2006 Research Manufacturing Research The NanoSafe Battery Manufacturing Alan J. Gotcher, PhD President & CEO Altair Nanotechnologies, Inc. November 29 th, 2006 Products Partners With the exception of historical information, matters

More information

Materials Design and Diagnosis for Rechargeable Battery Energy Storage

Materials Design and Diagnosis for Rechargeable Battery Energy Storage Materials Design and Diagnosis for Rechargeable Battery Energy Storage Shirley Meng Department of NanoEngineering University of California San Diego The Challenge of Power vs. Energy Power& 1& 1& W& 10

More information

EU-Commission JRC Contribution to EVE IWG

EU-Commission JRC Contribution to EVE IWG EU-Commission JRC Contribution to EVE IWG M. De Gennaro, E. Paffumi European Commission, Joint Research Centre Directorate C, Energy, Transport and Climate Sustainable Transport Unit June 6 th 2017, Geneva

More information

ZEBRA Battery Flat Plate Cell Design

ZEBRA Battery Flat Plate Cell Design ZEBRA Battery Flat Plate Cell Design Cord-H. Dustmann, Michael Bayer Battery Consult AG, Switzerland Introduction The ZEBRA battery chemistry was discovered by Johan Coetzer in CSIR 1986 [1]. The principle

More information

Leveraging developments in xev Lithium batteries for stationary applications

Leveraging developments in xev Lithium batteries for stationary applications Leveraging developments in xev Lithium batteries for stationary applications International Colloquium on Energy Storage Brussels, Nov 8 th, 2017 Daniel Gloesener Global technical leader- Battery Technologies,

More information

Battery Market Trends and Safety Aspects

Battery Market Trends and Safety Aspects Battery Market Trends and Safety Aspects Adam Sobkowiak PhD, Battery Technologies adam.sobkowiak@etteplan.com 2018-01-17, Breakfast Seminar at Celltech, Kista 1 Battery Market Trends Engineering with a

More information

U.S. DOE Perspective on Lithium-ion Battery Safety

U.S. DOE Perspective on Lithium-ion Battery Safety U.S. DOE Perspective on Lithium-ion Battery Safety David Howell US Department of Energy Washington, DC Technical Symposium: Safety Considerations for EVs powered by Li-ion Batteries The National Highway

More information

Next Generation Battery Technologies & Thermal Management for BEVs

Next Generation Battery Technologies & Thermal Management for BEVs Mobility, Logistics and Automotive Technology Research Centre Next Generation Battery Technologies & Thermal Management for BEVs Where Technology meets Society, Where Mobility meets Technology, Where Logistics

More information

HAWLEY George C. Hawley & Associates

HAWLEY George C. Hawley & Associates COMPARISON OF GRAPHITE ANODES WITH COMPETITORS GRAPHITE SUPPLY CHAIN 13-15 NOVEMBER 2016 ISLAND HOTEL NEWPORT BEACH CALIFORNIA USA GEORGE C. George Hawley was Research and Development Chemist at Morgan

More information

Thermal runaway inhibiting electrolytes

Thermal runaway inhibiting electrolytes Thermal runaway inhibiting electrolytes Surya Moganty, PhD CT HMs Technologies Y-BEST Energy Storage Technology Conference 2017 1 utline Li-ion battery- Safety challenges Liquid electrolyte systems HMs

More information

Li-ION BATTERY DEVELOPMENT IN SOUTH AFRICA

Li-ION BATTERY DEVELOPMENT IN SOUTH AFRICA Li-ION BATTERY DEVELOPMENT IN SOUTH AFRICA BJ BLADERGROEN 2017 -Nov- 28 Li-ION BATTERY DEVELOPMENT IN SA (2011-2017) VISION NATION LI-ION BATTERY PROGRAMME Navigant Research forecasts that global revenue

More information

Energy Storage Technology Roadmap Lithium Ion Technologies

Energy Storage Technology Roadmap Lithium Ion Technologies Energy, Mining and Environment Portfolio Energy Storage Technology Roadmap Lithium Ion Technologies Isobel Davidson, Principal Research Officer 19 November 2014 Energy Storage Technology Roadmap Li ion

More information

Lithium-Ion Battery Simulation for Greener Ford Vehicles

Lithium-Ion Battery Simulation for Greener Ford Vehicles Lithium-Ion Battery Simulation for Greener Ford Vehicles October 13, 2011 COMSOL Conference 2011 Boston, MA Dawn Bernardi, Ph.D., Outline Vehicle Electrification at Ford from Nickel/Metal-Hydride to Lithium-Ion

More information

A Structure of Cylindrical Lithium-ion Batteries

A Structure of Cylindrical Lithium-ion Batteries Introduction A Structure of Cylindrical Lithium-ion Batteries A lithium-ion battery is an energy storage device providing electrical energy by using chemical reactions. A few types of lithium-ion battery

More information

CAM-7/LTO Cells for Lithium-Ion Batteries with Rapid Charging Capability at Low Temperature

CAM-7/LTO Cells for Lithium-Ion Batteries with Rapid Charging Capability at Low Temperature CAM-7/LTO Cells for Lithium-Ion Batteries with Rapid Charging Capability at Low Temperature David Ofer, Leah Nation, Sharon Dalton-Castor, Brian Barnett, and Suresh Sriramulu TIAX LLC 35 Hartwell Avenue

More information

Keeping up with the increasing demands for electrochemical energy storage

Keeping up with the increasing demands for electrochemical energy storage Keeping up with the increasing demands for electrochemical energy storage Jeff Sakamoto 2015 Top of the learning curve: optimize current technology 2020 Frontiers of Li-ion technology: new materials 2030

More information

12V Start-Stop and 48V Mild Hybrid LMO-LTO Batteries

12V Start-Stop and 48V Mild Hybrid LMO-LTO Batteries 12V Start-Stop and 48V Mild Hybrid LMO-LTO Batteries Veselin Manev Ph.D., Kevin Dahlberg Ph.D., Susmitha Gopu, Steve Cochran 35 th International Battery Seminar & Exhibit Ft. Lauderdale, Florida, March

More information

Thin film coatings on lithium metal for Li-S batteries AIMCAL 2016 Memphis, TN

Thin film coatings on lithium metal for Li-S batteries AIMCAL 2016 Memphis, TN Thin film coatings on lithium metal for Li-S batteries AIMCAL 2016 Memphis, TN Stephen Lawes, Research Scientist OXIS Company Background OXIS have been working on Li-S since 2005 at Culham Science Centre

More information

Energy Storage (Battery) Systems

Energy Storage (Battery) Systems Energy Storage (Battery) Systems Overview of performance metrics Introduction to Li Ion battery cell technology Electrochemistry Fabrication Battery cell electrical circuit model Battery systems: construction

More information

Altairnano Grid Stability and Transportation Products

Altairnano Grid Stability and Transportation Products Altairnano Grid Stability and Transportation Products Joe Heinzmann Senior Director Energy Storage Solutions 1 Altairnano Overview Altairnano is an emerging growth company which is developing and commercializing

More information

IBA 2013 Barcelona March Electrolytes; The Key To Safe Li Electrode Operation? Michel Armand

IBA 2013 Barcelona March Electrolytes; The Key To Safe Li Electrode Operation? Michel Armand IBA 2013 Barcelona March 10-15 2013 Cations Only Conduction In Polymer Electrolytes; The Key To Safe Li Electrode Operation? 013 2 C energigune. 2010 All rights re eserved CI Michel Armand Needs to improve

More information

Studies on Capacity Fade of Spinel-Based Li-Ion Batteries

Studies on Capacity Fade of Spinel-Based Li-Ion Batteries A54 0013-4651/2001/149 1 /A54/7/$7.00 The Electrochemical Society, Inc. Studies on Capacity Fade of Spinel-Based Li-Ion Batteries Ramadass Premanand, Anand Durairajan,* Bala Haran,** Ralph White,*** and

More information

Study of Thermal and Electrochemical Characteristics of Li-ion Battery

Study of Thermal and Electrochemical Characteristics of Li-ion Battery Study of Thermal and Electrochemical Characteristics of Li-ion Battery 1 Anand R. Savandkar, 2 D. S. Watvisave 1 P.G. Student, 2 Assistant Professor (Dept. of Mechanical Engineering, SCoE, Pune University,

More information

Duracell Battery Glossary

Duracell Battery Glossary Duracell Battery Glossary 1 Duracell Battery Glossary AB Absorption Alloy Ambient Humidity Ambient Temperature Ampere-Hour Capacity Anode Battery or Pack Bobbin C-Rate (also see Hourly Rate) Capacity Capacity

More information

Panasonic Industrial Europe D&E Forum 2011Industrial Batteries. Safety, Power, Long-life. Li-Ion batteries from Panasonic

Panasonic Industrial Europe D&E Forum 2011Industrial Batteries. Safety, Power, Long-life. Li-Ion batteries from Panasonic Panasonic Industrial Europe D&E Forum 2011Industrial Batteries Safety, Power, Long-life Li-Ion batteries from Panasonic Lithium-Ion, Ni-MH, Lithium, Lithium, VRLA, VRLA, Zinc-Carbon, Zinc-Carbon, Alkaline,

More information

Lithium battery knowledge

Lithium battery knowledge Seminar on Safe Transport of Lithium Battery by Air Lithium battery knowledge 12 December 2008 At Cathay City s s Auditorium Battery Association of Japan(BAJ) 1 Seminar on Safe Transport of Lithium Battery

More information

Available online at ScienceDirect. 21st CIRP Conference on Life Cycle Engineering

Available online at   ScienceDirect. 21st CIRP Conference on Life Cycle Engineering Available online at www.sciencedirect.com ScienceDirect Procedia CIRP 15 ( 2014 ) 218 222 21st CIRP Conference on Life Cycle Engineering A method for pre-determining the optimal remanufacturing point of

More information

Seoul, Korea. 6 June 2018

Seoul, Korea. 6 June 2018 Seoul, Korea 6 June 2018 Innovation roadmap in clean mobility materials SPEAKER Denis Goffaux Chief Technology Officer Executive Vice-President Energy & Surface Technologies 2 Agenda Well to wheel efficiency

More information

GLOSSARY: TECHNICAL BATTERY TERMS

GLOSSARY: TECHNICAL BATTERY TERMS GLOSSARY: TECHNICAL BATTERY TERMS AB5 Absorption Alloy Ambient Humidity Ambient Temperature Ampere-Hour Capacity Anode Battery or Pack Bobbin C-Rate (also see Hourly Rate) Capacity Capacity Retention (or

More information

Energy Storage. 3. Batteries. Assoc. prof. Hrvoje Pandžić. Ivan Pavić, MEE Vedran Bobanac, PhD

Energy Storage. 3. Batteries. Assoc. prof. Hrvoje Pandžić. Ivan Pavić, MEE Vedran Bobanac, PhD Energy Storage 3. Batteries Assoc. prof. Hrvoje Pandžić Ivan Pavić, MEE Vedran Bobanac, PhD 1 Batteries - definition Electrochemical devices Potential difference between two different metals submerged

More information

Impact of Vehicle-to-Grid (V2G) on Battery Life

Impact of Vehicle-to-Grid (V2G) on Battery Life Impact of Vehicle-to-Grid (V2G) on Battery Life The Importance of Accurate Models David Howey, Jorn Reniers, Grietus Mulder, Sina Ober-Blöbaum Department of Engineering Science, University of Oxford EnergyVille,

More information

Electrochemical Energy Storage Devices

Electrochemical Energy Storage Devices Electrochemical Energy Storage Devices Rajeswari Chandrasekaran, Ph.D. from Energy Storage, Materials & Strategy Research and Advanced Engineering, Ford Motor Company, Dearborn, MI-48124. presented at

More information

CSIRO Energy Storage Projects: David Lamb Low Emission Transport Theme Leader

CSIRO Energy Storage Projects: David Lamb Low Emission Transport Theme Leader CSIRO Energy Storage Projects: David Lamb Low Emission Transport Theme Leader Energy Storage for Transport Three projects Safe, High-Performance Lithium-Metal Batteries Supercapacitors Ultrabattery 10

More information

Breaking Lithium-Ion Market Barriers: Safety and Total Cost of Ownership. Dr. Tomasz Poznar

Breaking Lithium-Ion Market Barriers: Safety and Total Cost of Ownership. Dr. Tomasz Poznar Breaking Lithium-Ion Market Barriers: Safety and Total Cost of Ownership Dr. Tomasz Poznar 1 Storing Energy = Risks Risks are presents in all energy storage systems Storing energy always poses inherent

More information

Traction batteries Hawker XFC Fast charge battery system. Plug & Play power solution

Traction batteries Hawker XFC Fast charge battery system. Plug & Play power solution Traction batteries Hawker XFC Fast charge battery system Plug & Play power solution Adapting power to today s market needs. EnerSys launched their range of 12 volt Hawker XFC TM bloc batteries into the

More information

Design of Electric Drive Vehicle Batteries for Long Life and Low Cost

Design of Electric Drive Vehicle Batteries for Long Life and Low Cost Design of Electric Drive Vehicle Batteries for Long Life and Low Cost Robustness to Geographic and Consumer-Usage Variation Kandler Smith* Tony Markel Gi-Heon Kim Ahmad Pesaran Presented at the IEEE 2010

More information

Towards competitive European batteries

Towards competitive European batteries Towards competitive European batteries GC.NMP.2013-1 Grant. 608936 Lecture I: Materials improvement and cells manufacturing Leclanché GmbH External Workshop Brussels, 23.05.2016 1 Plan About Leclanché

More information

Energy Storage Overview Technologies & Applications. Presented by Dr. Rahul Walawalkar VP, Emerging Tech & Markets, Customized Energy Solutions

Energy Storage Overview Technologies & Applications. Presented by Dr. Rahul Walawalkar VP, Emerging Tech & Markets, Customized Energy Solutions Energy Storage Overview Technologies & Applications Presented by Dr. Rahul Walawalkar VP, Emerging Tech & Markets, Customized Energy Solutions Executive Director, IESA Vice Chair, GESA Outline Introduction

More information

Advances in Direct Recycling for Lithium-ion Batteries

Advances in Direct Recycling for Lithium-ion Batteries Advances in Direct Recycling for Lithium-ion Batteries Steve Sloop NDIA Event #7670 Joint Service Power Expo Virgina Beach, VA May 1-4, 2017 Location OnTo Technology is in Bend, Oregon, which has flights

More information

10 MINUTE LTO ULTRAFAST CHARGE PUBLIC TRANSIT EV BUS FLEET OPERATIONAL DATA - ANALYSIS OF 240,000 KM, 6 BUS FLEET SHOWS VIABLE SOLUTION"

10 MINUTE LTO ULTRAFAST CHARGE PUBLIC TRANSIT EV BUS FLEET OPERATIONAL DATA - ANALYSIS OF 240,000 KM, 6 BUS FLEET SHOWS VIABLE SOLUTION World Electric Vehicle Journal Vol. 5 - ISSN 2032-6653 - 2012 WEVA Page 0261 EVS26 Los Angeles, California, May 6-9, 2012 10 MINUTE LTO ULTRAFAST CHARGE PUBLIC TRANSIT EV BUS FLEET OPERATIONAL DATA - ANALYSIS

More information

Electric Vehicle Battery Chemistry and Pack Architecture

Electric Vehicle Battery Chemistry and Pack Architecture Cedric Weiss, PhD A2Mac1, EV/Hybrid Department Charles Hatchett Seminar High Energy and High Power Batteries for e-mobility Opportunities for Niobium London, England July 4, 2018 Updated on Mar. 2015 Outline

More information

Energy Storage Advancement

Energy Storage Advancement Energy Storage Advancement LiFeYPO4 as replacement for Lead-Acid Lithium Iron Yttrium Phosphate (LiFeYPO4) February 2016 Summary & Conclusion For the same Price today; retailing @ $550/kWh (daily useable)

More information

High Energy Rechargeable Li-S Battery Development at Sion Power and BASF

High Energy Rechargeable Li-S Battery Development at Sion Power and BASF High Energy Rechargeable Li-S Battery Development at Sion Power and BASF Y. Mikhaylik*, C. Scordilis-Kelley*, M. Safont*, M. Laramie*, R. Schmidt**, H. Schneider**, K. Leitner** *Sion Power Corporation,

More information

I. Equivalent Circuit Models Lecture 3: Electrochemical Energy Storage

I. Equivalent Circuit Models Lecture 3: Electrochemical Energy Storage I. Equivalent Circuit Models Lecture 3: Electrochemical Energy Storage MIT Student In this lecture, we will learn some examples of electrochemical energy storage. A general idea of electrochemical energy

More information

Enhancing the Reliability & Safety of Lithium Ion Batteries

Enhancing the Reliability & Safety of Lithium Ion Batteries Enhancing the Reliability & Safety of Lithium Ion Batteries Over the past 20 years, significant advances have been made in rechargeable lithium-ion (Li-Ion) battery technologies. Li-Ion batteries now offer

More information

BETTERY: An Italian startup for the design of novel redox flow batteries FRANCESCA DE GIORGIO - COFOUNDER

BETTERY: An Italian startup for the design of novel redox flow batteries FRANCESCA DE GIORGIO - COFOUNDER BETTERY: An Italian startup for the design of novel redox flow batteries FRANCESCA DE GIORGIO - COFOUNDER SOLAR PV ELECTRIC MOBILITY WIND KEY TECHNOLOGY OPTIONS FOR THE ENERGY TRANSITION Accelerating the

More information

CATALOG. <Japanese> <English>

CATALOG. <Japanese> <English> CATALOG About delivery style, consult the sales representative. About the minimum order quantity, consult the sales representative. Product specification and appearance are subject to change for improvement.

More information

New energy for the future

New energy for the future World Class Charging Systems E x c e l l e n t T e c h n o l o g y, E f f i c i e n c y a n d Q u a l i t y New energy for the future Lithium-ion energy systems for the materials handling industry LIONIC

More information

The battery Bottleneck for the E-mobility?

The battery Bottleneck for the E-mobility? Workshop of the The Dutch Royal Institute of Engineers The battery Bottleneck for the E-mobility? Prof. Dr. rer. nat. Dirk Uwe Sauer Email: sr@isea.rwth-aachen.de Electrochemical Energy Conversion and

More information

Survey of Commercial Small Lithium Polymer Batteries

Survey of Commercial Small Lithium Polymer Batteries Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6110--07-9073 Survey of Commercial Small Lithium Polymer Batteries Arnold M. Stux Karen Swider-Lyons Chemical Dynamics and Diagnostics Branch

More information

Lithium-based Batteries

Lithium-based Batteries Lithium-based Batteries Pioneer work with the lithium battery began in 1912 under G.N. Lewis, but it was not until the early 1970s that the first non-rechargeable lithium batteries became commercially

More information

Guidelines for Battery Electric Vehicles in the Underground

Guidelines for Battery Electric Vehicles in the Underground Guidelines for Battery Electric Vehicles in the Underground Energy Storage Systems Rich Zajkowski Energy Storage Safety & Compliance Eng. GE Transportation Agenda Terminology Let s Design a Battery System

More information

Lithium Coin Handbook and Application Manual

Lithium Coin Handbook and Application Manual : Lithium coin cells were originally developed in the 1970 s as a 3 volt miniature power source for low drain and battery backup applications. Their high energy density and long shelf life made them well

More information

U.S. Department of Energy s Materials Research for Advanced Lithium Ion Batteries

U.S. Department of Energy s Materials Research for Advanced Lithium Ion Batteries Page 1 of 6 Page 1 of 6 Return to Web Version U.S. Department of Energy s Materials Research for Advanced Lithium Ion Batteries By: David Howell, Tien Duong, John B. Deppe, Irwin Weinstock, Material Matters

More information

Cathode material for batteries the safe bridge to e-mobility

Cathode material for batteries the safe bridge to e-mobility Innovation Spotlight Life Power P2 Andrew Silver Cathode material for batteries the safe bridge to e-mobility Issue: Summer 2012 Lithium iron phosphate is at present the only inherently safe cathode material

More information

Metal-air batteries. Joan Gómez Chabrera Alejandro Andreu Nácher Pablo Bou Pérez

Metal-air batteries. Joan Gómez Chabrera Alejandro Andreu Nácher Pablo Bou Pérez Metal-air batteries Joan Gómez Chabrera Alejandro Andreu Nácher Pablo Bou Pérez Index 1. Introduction 2. Principle of operation of metal-air batteries 3. Air cathodes 4. Types 5. General aplications 6.

More information

Model Comparison with Experiments. 341 N. Science Park Road State College, PA U.S.A.

Model Comparison with Experiments. 341 N. Science Park Road State College, PA U.S.A. Model Comparison with Experiments 41 N. Science Park Road State College, PA 168 U.S.A. www.ecpowergroup.com AutoLion TM : Unprecedented Accuracy in Capturing Liion Battery Performance Voltage (V) Temperature

More information

Customcells. Tailormade Energystorage Solutions.

Customcells. Tailormade Energystorage Solutions. Customcells Tailormade Energystorage Solutions www.customcells.de 02 // Company Company // 03 Customcells Multi-option Lithium-Ion Cells Europe s most versatile manufacturer in the Lithium-Ion cell industry.

More information

Storage at the Threshod: Li-ion Batteries and Beyond

Storage at the Threshod: Li-ion Batteries and Beyond Storage at the Threshod: Li-ion Batteries and Beyond George Crabtree Director, Joint Center for Energy Storage Research Argonne National Laboratory University of Illinois at Chicago Outline Li-ion Battery

More information

BATTERIES & SUPERCAPS POST MORTEM ANALYSIS PLATFORM EXTERNAL SERVICES

BATTERIES & SUPERCAPS POST MORTEM ANALYSIS PLATFORM EXTERNAL SERVICES BATTERIES & SUPERCAPS POST MORTEM ANALYSIS PLATFORM EXTERNAL SERVICES CONTEXT Over the last years a remarkable evolution has taken place by the introduction of new batteries & supercapacitors technologies

More information