Introduction. 3. The sample calculations used throughout this paper are based on a roadway posted at 35 mph.

Size: px
Start display at page:

Download "Introduction. 3. The sample calculations used throughout this paper are based on a roadway posted at 35 mph."

Transcription

1 Calculating a Legally Enforceable Yellow Change Interval For Turning Lanes in California by Jay Beeber, Executive Director, Safer Streets L.A., Member ITE and J. J. Bahen, Jr., P.E., Life Member National Motorist Association Introduction When set correctly, the yellow interval time should not create situations where motorists are forced to unintentionally run the red light. That is, motorists should not encounter a Type I Dilemma Zone, an area of roadway, within which, if a motorist is present when the yellow signal illuminates, he will neither be able to stop comfortably and safely nor legally enter the intersection before the onset of the red phase. The theory behind calculating the minimum yellow interval is that to eliminate the Type I Dilemma Zone, the traffic engineer must set the yellow interval to at least the time it takes for a vehicle to traverse the critical stopping distance. In order to calculate this time, one must first, a) calculate the critical stopping distance and then, b) calculate how long it will take for a vehicle to cross that distance. For vehicles traveling at a constant velocity, the two equations can be combined into one equation (the ITE Kinematic Formula - See Appendix A) since the velocity used to calculate the critical stopping distance (the initial velocity) is the same as the velocity used to calculate the travel time across that distance. However, where a vehicle does not, or cannot, maintain a constant velocity (such as in a turning lane) the two equations cannot be combined (the ITE Kinematic Formula cannot be used) and the two calculations must be made separately using different velocities. The following is a step by step explanation of how to calculate a legally enforceable yellow change interval for turning lanes in the State of California. The following assumptions are made throughout: 1. Per CVC 22351(a), regardless of travel lane, speeds not in excess of the posted or prima facie speed limit are lawful. Therefore, this protocol assumes that a driver's initial approach speed will be at least the posted or prima facie speed limit. 2. In order to simplify the calculation and generate a chart of minimum yellow change intervals for turning lanes in California, we will assume that vehicles slow down from their initial approach speed and cross the stop bar at 20 mph (30 fps). This represents a curve radius of approximately 95 ft. Where the curve radius in known to be substantially different than 95 ft, practitioners are encouraged to perform the full calculation detailed below to determine the speed at which vehicles cross the stop bar. 3. The sample calculations used throughout this paper are based on a roadway posted at 35 mph.

2 Calculating the Critical Stopping Distance The Critical Stopping Distance = Perception/Reaction Distance + Braking Distance Critical Stopping Distance Equation Adding the distance the vehicle travels during the perception/reaction time to the vehicle's braking distance provides the critical stopping distance. This is the absolute minimum length of roadway a motorist requires in order to bring his vehicle to a safe and complete stop after the onset of the yellow signal and can be calculated using the following equation: d c =v i t pr + v i 2 2a Where: d c = the critical stopping distance v i = the initial approach velocity measured at the critical distance (for turning lanes, assume the posted or prima facie speed limit) t pr = the driver's perception/reaction time (assume 1.0 sec per ITE) a = the deceleration rate of the vehicle (assume 10 fps 2 per ITE) Note that if a driver is closer to the intersection than the critical distance when the yellow light illuminates, based on the laws of motion, the driver is forced to keep going. If he chooses to stop, his vehicle will travel farther than the distance remaining between his position and the limit line and his vehicle will come to a stop beyond the limit line, within the intersection or possibly beyond the intersection. DRIVERS CLOSER TO THE INTERSECTION THAN THE CRITICAL STOPPING DISTANCE WHEN THE YELLOW LIGHT ILLUMINATES MUST KEEP GOING. Sample d c =(51.3) x(1)+ (51.3)2 =183.1 ft 2x10 Note that under the assumptions above, if a driver is closer than ft to the intersection when the yellow light illuminates, based on the laws of motion, the driver is forced to keep going. If he chooses to stop, his vehicle will travel farther than the distance remaining between his position and the limit line and his vehicle will come to a stop beyond the limit line, within the intersection or possibly beyond the intersection.

3 Calculating the Time to Traverse the Critical Stopping Distance Since motorists who are in the section of roadway closer than the critical stopping distance when the yellow light illuminates must keep going, the yellow signal must remain lit long enough to give this driver at least enough time to cover the distance to the intersection before the light turns red. Yellow times set shorter than this amount will create a dilemma zone for drivers. I. Driver Continues at Initial Velocity (not in a turning lane) For the driver who continues at his initial velocity, the minimum time needed to traverse the critical stopping distance can be calculated using the following formula: t y = d c v i Where: t y = minimum time needed to traverse the critical stopping distance = minimum yellow time d c = the critical stopping distance v i = the initial approach velocity at the critical distance t y = =3.53 seconds 51.3 For the driver who continues at his initial velocity, the minimum time needed to traverse the critical stopping distance is 3.53 seconds. II. Driver Slows Down on Approach to Negotiate the Turn If a driver wishes to decelerate at the assumed rate of 10 fps 2 to a lower velocity in order to negotiate the turn, there exists a critical deceleration point that can be calculated based on the driver's initial velocity and the final velocity he wishes to achieve. This is the closest point to the limit line at which a driver can begin his deceleration and achieve his desired turning velocity. The following discussion assumes that a turning driver does not begin to decelerate until he must do so. In other words, that he does not begin to decelerate until he reaches the critical deceleration point. Base on this assumption, there exists a deceleration zone within the critical stopping distance between the critical deceleration point and the limit line. Under this model, the critical stopping distance then consists of two zones, a non-deceleration zone (ndz) where the driver maintains his initial velocity and a deceleration zone (dz) within which the driver decelerates to a velocity at which he can negotiate the turning movement.

4 We can express this as: d c =d ndz +d dz The total time to traverse the critical stopping distance (the minimum yellow interval) would therefore be the sum of the time to traverse the non-deceleration zone (the distance from the initial point of the critical stopping distance to the critical deceleration point) plus the time to traverse the deceleration zone. We can express this as: t tot =t ndz +t dz Calculating the Turning Velocity Although little research has been conducted on the speed at which turning vehicles enter an intersection to negotiate a turn, one method of determining that speed is to use the curve design speed (sometimes called the maximum safe speed or advisory speed ) which has been published by the Institute of Transportation Engineers for this calculation. On roadways with no banking, the equation to determine the curve design speed reduces to: v cds = 15 x R x f

5 Where: v cds = Curve design speed (mph) R = Curve Radius (ft) = 30 ft in this case f = Side friction factor; for speeds of 20 mph or less (as in this case), f = 0.28 Where the point of curvature is at the limit line, the curve design speed (turning velocity) is assumed to be the speed at which the vehicle crosses the limit line. v cds = 15 x 30 x 0.28=11.2mph=16.5 fps As stated in the introduction, we will assume that vehicles cross the stop bar at 20 mph (30 fps). Calculating the Critical Deceleration Point and Length of the Deceleration Zone Using the equations of motion, if we know the vehicle's initial velocity, the final velocity (speed at which the vehicle crosses the limit line), and the deceleration rate, we can calculate both the time it takes to decelerate from the initial velocity to the final velocity and the distance traveled during that time. Step 1 - Calculate the time to decelerate from the initial velocity to the final velocity. This is the time to traverse the deceleration zone and is given by: t dz = v i v f a Where: t dz = time to traverse the deceleration zone v i = the initial approach velocity measured at the critical distance (for turning lanes, assume the posted or prima facie speed limit) v f = final velocity at the limit line (assume 30 fps) a = deceleration rate (assume 10 fps 2 per ITE) Sample t dz = (51.3) (30) =2.13 seconds 10 It therefore takes a driver 2.13 seconds to traverse the deceleration zone t dz.

6 Step 2 - Calculate the distance traveled while decelerating from the initial velocity to the final velocity. This is simply the average velocity v av = v i+v f 2 multiplied by the time calculated in Step 1: d dz =t dz x v av This gives us the length of the deceleration zone d dz. v av = =40.7 fps 2 d dz =(2.13) x(40.7)=87 ft The length of the deceleration zone d dz is therefore 87 ft. Step 3 - Subtracting this distance from the total critical stopping distance gives the length of the nondeceleration zone d ndz : d ndz =d c d dz d ndz =(183.1) (87)=96.1 ft The length of the deceleration zone d ndz (where the driver continues at his initial speed) is 96.1 ft. Step 4 - Since the driver's vehicle remains at its initial velocity while traversing the non-deceleration zone, the time to traverse the non-deceleration zone is simply the length of the non-deceleration zone divided by the initial velocity: t ndz = d ndz v i t ndz = 96.1 =1.87 seconds 51.3 The vehicles travels for 1.87 seconds before the driver begins to slow down.

7 Step 5 - Adding the time to traverse the non-deceleration zone to the time to traverse the deceleration zone as calculated in Step 1 gives us the total time to traverse the critical distance which again is the minimum yellow interval time needed to eliminate the dilemma zone. t y =t tot =t ndz +t dz t y =(2.13)+(1.87)=4.0 seconds For a roadway posted at 35 mph, the minimum yellow change interval to eliminate the dilemma zone would be 4.0 seconds. This is a full 1.0 second longer than the 3.0 second minimum yellow change interval time for dedicated turning lanes currently permitted by the CA MUTCD and 0.4 seconds longer than the 3.6 second yellow change interval time for through lanes. The following table sets out the minimum yellow change interval for posted speed limits in California: Table 4D-102xx (CA) POSTED SPEED or UNPOSTED PRIMA FACIE SPEED Minimum Yellow Interval MPH Seconds > Yellow change interval times set shorter than those in the above table will create a dilemma zone and force some drivers to run the red signal. This puts at risk all roadway users including pedestrians, bicyclists and other motorists.

Isaac Newton vs. Red Light Cameras

Isaac Newton vs. Red Light Cameras 2012 Isaac Newton vs. Red Light Cameras Problems with the ITE Kinematic Formula for Yellow Light Intervals in a Nutshell Brian Ceccarelli redlightrobber.com 2/15/2012 Table of Contents Problem... 3 ITE

More information

JCE4600 Fundamentals of Traffic Engineering

JCE4600 Fundamentals of Traffic Engineering JCE4600 Fundamentals of Traffic Engineering Introduction to Geometric Design Agenda Kinematics Human Factors Stopping Sight Distance Cornering Intersection Design Cross Sections 1 AASHTO Green Book Kinematics

More information

AFFECTED SECTIONS OF MUTCD: Section 2C.36 Advance Traffic Control Signs Table 2C-4. Guidelines for Advance Placement of Warning Signs

AFFECTED SECTIONS OF MUTCD: Section 2C.36 Advance Traffic Control Signs Table 2C-4. Guidelines for Advance Placement of Warning Signs 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 RWSTC June 2012 RW # 3 TOPIC: Advance Traffic Control Signs TECHNICAL COMMITTEE: Regulatory &

More information

Scientific Report AN INVESTIGATION OF THE ITE FORMULA AND ITS USE

Scientific Report AN INVESTIGATION OF THE ITE FORMULA AND ITS USE Scientific Report AN INVESTIGATION OF THE ITE FORMULA AND ITS USE CP = t + + Abstract This working report is a study of the universally adopted ITE formula which calculates a traffic light s change interval.

More information

Short Yellows and Turns

Short Yellows and Turns Short Yellows and Turns Brian Ceccarelli, Joseph Shovlin Traffic engineers use the Institute of Transportation Engineers (ITE) Yellow Light Change Interval Formula to set yellow light durations. When the

More information

TRAFFIC & TRANSPORTATION COMMISSION AGENDA REPORT

TRAFFIC & TRANSPORTATION COMMISSION AGENDA REPORT TRAFFIC & TRANSPORTATION COMMISSION AGENDA REPORT AGENDA ITEM #3 T/T MTG: 072815 DATE: JULY 28, 2015 TO: TRAFFIC & TRANSPORTATION COMMISSION FROM: BENJAMIN CHAN, P.E, T.E., DEPUTY PUBLIC WORKS DIRECTOR

More information

SIGNING UPDATES MANUAL ON UNIFORM TRAFFIC CONTROL DEVICES (MUTCD), 2009 EDITION. CLIFF REUER SDLTAP WESTERN SATELLITE (c)

SIGNING UPDATES MANUAL ON UNIFORM TRAFFIC CONTROL DEVICES (MUTCD), 2009 EDITION. CLIFF REUER SDLTAP WESTERN SATELLITE (c) SIGNING UPDATES MANUAL ON UNIFORM TRAFFIC CONTROL DEVICES (MUTCD), 2009 EDITION CLIFF REUER SDLTAP WESTERN SATELLITE 605-773-5108 605-209-8932 (c) MUTCD 2009 EDITION MUTCD http://mutcd.fhwa.dot.gov/ Purchase

More information

Virginia Department of Education

Virginia Department of Education Virginia Department of Education Module Three Transparencies Basic Maneuvering Tasks: Low Risk Environment Topic 1 -- Basic Maneuvers Topic 2 -- Vision and Perception Topic 3 -- Controlling Risk Using

More information

Helping Autonomous Vehicles at Signalized Intersections. Ousama Shebeeb, P. Eng. Traffic Signals Engineer. Ministry of Transportation of Ontario

Helping Autonomous Vehicles at Signalized Intersections. Ousama Shebeeb, P. Eng. Traffic Signals Engineer. Ministry of Transportation of Ontario Helping Autonomous Vehicles at Signalized Intersections Ousama Shebeeb, P. Eng. Traffic Signals Engineer Ministry of Transportation of Ontario Paper Prepared for Presentation At the NEXT GENERATION TRANSPORTATION

More information

(HIGHWAY GEOMETRIC DESIGN -1)

(HIGHWAY GEOMETRIC DESIGN -1) LECTURE HOUR-21 TE-1(10CV56) UNIT-3 (HIGHWAY GEOMETRIC DESIGN -1) Typical Cross section of highway class: Typical two lane National or state highway (Rural section) Typical single lane road with paved

More information

White Paper: The Physics of Braking Systems

White Paper: The Physics of Braking Systems White Paper: The Physics of Braking Systems The Conservation of Energy The braking system exists to convert the energy of a vehicle in motion into thermal energy, more commonly referred to as heat. From

More information

DELINEATOR REFERENCE POINT 200' TYPICAL SPACING (YELLOW DELINEATORS) END OF MERGE LANE TAPER DELINEATOR REFERENCE POINT

DELINEATOR REFERENCE POINT 200' TYPICAL SPACING (YELLOW DELINEATORS) END OF MERGE LANE TAPER DELINEATOR REFERENCE POINT 200' TYP. 0' < EACH SIDE BOTH ROADWAYS END OF MERGE LANE TAPER TYPICAL FOR ALL 2-LANE MERGES EXCEPT WHERE THERE IS A MERGE FROM THE RIGHT AND NO OFFSET IN THE THROUGH LANES END OF MERGE LANE TAPER 200'

More information

Advance Warning System with Advance Detection

Advance Warning System with Advance Detection N-0002 dvance Warning System with dvance Detection Intersections with limited visibility, high speeds (55 mph and greater), temporary or newly installed intersections, or grade issues often need an advanced

More information

Single Vehicle Loss of Control

Single Vehicle Loss of Control . Single Vehicle Loss of Control the natural motion is to continue in the same direction weight shifts to outside of turn INERTIA weight shifts to outside of turn INERTIA friction a yaw occurs when the

More information

Speed Zoning. District Traffic Engineer ISHC, Seymour, Indiana

Speed Zoning. District Traffic Engineer ISHC, Seymour, Indiana Speed Zoning D e l m a r L. K lo eker District Traffic Engineer ISHC, Seymour, Indiana IN T R O D U C T IO N One of the concerns of the Indiana State Highway Commission and citizens throughout the state

More information

Sight Distance. A fundamental principle of good design is that

Sight Distance. A fundamental principle of good design is that Session 9 Jack Broz, PE, HR Green May 5-7, 2010 Sight Distance A fundamental principle of good design is that the alignment and cross section should provide adequate sight lines for drivers operating their

More information

Isaac Newton vs. Red Light Cameras

Isaac Newton vs. Red Light Cameras 2012 Isaac Newton vs. Red Light Cameras Approach Speed vs. Speed Limit Brian Cecvehicleelli redlightrobber.com 3/1/2012 Table of Contents Approach Speed vs. Speed Limit... 3 Definition of Speed Limit...

More information

STOPPING SIGHT DISTANCE AS A MINIMUM CRITERION FOR APPROACH SPACING

STOPPING SIGHT DISTANCE AS A MINIMUM CRITERION FOR APPROACH SPACING STOPPING SIGHT DISTANCE AS A MINIMUM CRITERION prepared for Oregon Department of Transportation Salem, Oregon by the Transportation Research Institute Oregon State University Corvallis, Oregon 97331-4304

More information

Effective Speed Zoning Why and How

Effective Speed Zoning Why and How Effective Speed Zoning Why and How Introduction Speed zoning is the practice of establishing speed limits that are reasonable and safe for specific sections of roadway. This assumes both that it s possible

More information

Engineering and Traffic Survey

Engineering and Traffic Survey Engineering and Traffic Survey November 2016 FOR THE CITY OF TUSTIN Prepared by: TABLE OF CONTENTS PUBLIC WORKS DEPARTMENT CERTIFICATION... CIVIL ENGINEER S CERTIFICATION... Page EXECUTIVE SUMMARY...

More information

Evaluation of Request to Establish 15 MPH Speed Limits on Streets around Schools

Evaluation of Request to Establish 15 MPH Speed Limits on Streets around Schools Office of the City Manager To: From: Honorable Mayor and Members of the City Council Phil Kamlarz, City Manager Submitted by: Claudette Ford, Director, Public Works Subject: Evaluation of Request to Establish

More information

Traffic Regulations Guidelines

Traffic Regulations Guidelines Traffic Regulations Guidelines PREPARED BY TRAFFIC AND SAFETY June, 2012 Providing the highest quality transportation services for economic benefit and improved quality of life. MDOT Traffic and Safety

More information

Horizontal Alignment

Horizontal Alignment Session 8 Jim Rosenow, PE, Mn/DOT March 5-7, 2010 Horizontal Alignment The shortest distance between two points is: A straight line The circumference of a circle passing through both points and the center

More information

SPEED ZONING ON TEXAS HIGHWAYS

SPEED ZONING ON TEXAS HIGHWAYS SPEED ZONING ON TEXAS HIGHWAYS Where do speed zones come from? How do they come up with speed limits? Questions like this are common in the minds of most citizens when it comes to highway speed limits,

More information

Page

Page Page Page Page 3 Page 4 Page 5 Page 6 Page 7 Page 9 3-6 I A Policy on Geometric of Highways and Streets A strict application of the maximum relative gradient criterion provides runofflengths for four-lane

More information

The final test of a person's defensive driving ability is whether or not he or she can avoid hazardous situations and prevent accident..

The final test of a person's defensive driving ability is whether or not he or she can avoid hazardous situations and prevent accident.. It is important that all drivers know the rules of the road, as contained in California Driver Handbook and the Vehicle Code. However, knowing the rules does not necessarily make one a safe driver. Safe

More information

Speed Workshop. In this workshop we will be covering: a. Average speed b. Units c. Relative Speeds d. Distance/time graphs

Speed Workshop. In this workshop we will be covering: a. Average speed b. Units c. Relative Speeds d. Distance/time graphs Speed Workshop In this workshop we will be covering: a. Average speed b. Units c. Relative Speeds d. Distance/time graphs Average speed Speed is how quickly an object can cover a distance. You may also

More information

Head light sight distance is the distance visible to a driver during night driving under the illumination of head light

Head light sight distance is the distance visible to a driver during night driving under the illumination of head light HPTER 13. SIGHT DISTNE NPTEL May 24, 2006 hapter 13 Sight distance 13.1 Overview The safe and efficient operation of vehicles on the road depends very much on the visibility of the road ahead of the driver.

More information

DATE: August 13, 2013 AGENDA ITEM # 8. City Council. Cedric Novenario, Transportation Manager RECOMMENDATION:

DATE: August 13, 2013 AGENDA ITEM # 8. City Council. Cedric Novenario, Transportation Manager RECOMMENDATION: DATE: August 13, 2013 AGENDA ITEM # 8 TO: FROM: SUBJECT: City Council Cedric Novenario, Transportation Manager Speed zone survey RECOMMENDATION: A. Adopt Resolution No. 2013-27, approving Engineering and

More information

NIGHT DRIVING SAFETY FOR SCHOOL BUS DRIVERS

NIGHT DRIVING SAFETY FOR SCHOOL BUS DRIVERS 1 NIGHT DRIVING SAFETY FOR SCHOOL BUS DRIVERS Reference Guide and Test Produced by Video Communications 2 INTRODUCTION Driving a school bus at night is more difficult than driving in the daytime. Night

More information

Created by: St. Louis County

Created by: St. Louis County Created by: Victor Lund, PE Traffic Engineer St. Louis County Ken Johnson, PE, PTOE State WZ, etc. MnDOT Why do workers want speed limits? How effective are speed limits in work zones? New legislation

More information

85th. HB 87 vs 85 Percentile Speed

85th. HB 87 vs 85 Percentile Speed House Bill 87 25 mph Speed Voluntary Technical Workshop 85th HB 87 vs 85 Percentile Speed Cissy Sylo, P.E. Director of Engineering Services City of Frisco January 20, 2006 Background Prima Facie Speed

More information

NCUTCD Proposal for Changes to the Manual on Uniform Traffic Control Devices

NCUTCD Proposal for Changes to the Manual on Uniform Traffic Control Devices 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 TECHNICAL COMMITTEE: ITEM NUMBER: TOPIC: ORIGIN OF REQUEST: AFFECTED SECTIONS OF MUTCD: NCUTCD Proposal for Changes

More information

Traffic, Transportation & Civil Engineering Ali R. Khorasani, P.E. P.O. Box 804, Spencer, MA 01562, Tel: (508)

Traffic, Transportation & Civil Engineering Ali R. Khorasani, P.E. P.O. Box 804, Spencer, MA 01562, Tel: (508) Associates Traffic, Transportation & Civil Engineering Ali R. Khorasani, P.E. P.O. Box 804, Spencer, MA 01562, Tel: (508) 885-5121 Ms. Teri Ford, Associate 800 Boylston Street, Suite 1570 Boston, MA July

More information

VIRGINIA DEPARTMENT OF TRANSPORTATION TRAFFIC ENGINEERING DIVISION MEMORANDUM

VIRGINIA DEPARTMENT OF TRANSPORTATION TRAFFIC ENGINEERING DIVISION MEMORANDUM VIRGINIA DEPARTMENT OF TRANSPORTATION TRAFFIC ENGINEERING DIVISION MEMORANDUM GENERAL SUBJECT: SPEED LIMITS, ADVISORY SPEEDS, SIGNS SPECIFIC SUBJECT: Pole Mounted Speed Display Signs: Requirements DIRECTED

More information

Plainfield, Indiana Speed Limit Study

Plainfield, Indiana Speed Limit Study March 21 st, 2017 Prepared on behalf of: Town of Plainfield Building and Engineering Department 206 W. Main Street Plainfield, IN 46168 (317) 839-2561 Prepared by: Thomas S. Vandenberg, PE, PTOE Matthew

More information

1400 MISCELLANEOUS Traffic Engineering Manual

1400 MISCELLANEOUS Traffic Engineering Manual TABLE OF CONTENTS Part 14 - MISCELLANEOUS 1400 GENERAL... 14-3 1415 RUMBLE STRIPS (INCLUDING STRIPES) IN THE ROADWAY... 14-4 1415-1 General... 14-4 1415-2 Transverse Rumble Strips... 14-4 1415-2.1 General...

More information

School Bus Driver Trainer Inservice

School Bus Driver Trainer Inservice 2017-2018 School Bus Driver Trainer Inservice TITLE OF LESSON: REFERENCE POINTS AND DRIVING SKILLS Objectives of Lesson: At the end of this lesson you will be able to: Describe how a reference point is

More information

Vehicle Types and Dynamics Milos N. Mladenovic Assistant Professor Department of Built Environment

Vehicle Types and Dynamics Milos N. Mladenovic Assistant Professor Department of Built Environment Vehicle Types and Dynamics Milos N. Mladenovic Assistant Professor Department of Built Environment 19.02.2018 Outline Transport modes Vehicle and road design relationship Resistance forces Acceleration

More information

o or Violating What They Capture?

o or Violating What They Capture? Traffic Cameras: as Capturing Violations o or Violating What They Capture? National Conference of State Legislators (NCSL) Fall Forum San Diego, California December 11, 2009 Who We Are and Why We Established

More information

Car Control Exercises Accident Avoidance Exercise - Setup Diagram

Car Control Exercises Accident Avoidance Exercise - Setup Diagram Accident Avoidance Exercise - Setup Diagram ACGG Car Control Exercise Setup Guide Page 1 Accident Avoidance Exercise Goal: To have the student keep their eyes up looking ahead and scanning the horizon.

More information

PERFORMANCE ACTIVITY 603 SIGNS

PERFORMANCE ACTIVITY 603 SIGNS PERFORMANCE ACTIVITY 603 SIGNS WORK DESCRIPTION 3 WORK DESCRIPTION 4 WORK DESCRIPTION 6 New Install Maintenance / Replace Temporary 603 SIGNS ACTIVITY DESCRIPTION Install new signs and maintain and replace

More information

Spot Speed Study. Engineering H191. Autumn, Hannah Zierden, Seat 20. Ryan King, Seat 29. Jae Lee, Seat 23. Alex Rector, Seat 26

Spot Speed Study. Engineering H191. Autumn, Hannah Zierden, Seat 20. Ryan King, Seat 29. Jae Lee, Seat 23. Alex Rector, Seat 26 Spot Speed Study Engineering H191 Autumn, 2011 Hannah Zierden, Seat 20 Ryan King, Seat 29 Jae Lee, Seat 23 Alex Rector, Seat 26 Instructor: Dr. Kathy Harper Class Section: 1:30 Lab Section: Thursday, 1:30-3:18

More information

Components of Hydronic Systems

Components of Hydronic Systems Valve and Actuator Manual 977 Hydronic System Basics Section Engineering Bulletin H111 Issue Date 0789 Components of Hydronic Systems The performance of a hydronic system depends upon many factors. Because

More information

CITY OF POWAY MEMORANDUM

CITY OF POWAY MEMORANDUM CITY OF POWAY MEMORANDUM TO: FROM: Traffic Safety Committee Steve Crosby P.E., City Engineer DATE: February 14, 2018 SUBJECT: Espola Road speeding concerns BACKGROUND In 2017, staff received a request

More information

Assistant General Manager

Assistant General Manager STAFF REPORT AGENDA ITEM #9F Presentation of Traffic & Engineering Study MEETING DATE: December 13, 2018 PREPARED BY: AGENDA TITLE: Jeff Kermode Assistant General Manager ADOPT Resolution 18/19-21 accepting

More information

Simple Gears and Transmission

Simple Gears and Transmission Simple Gears and Transmission Contents How can transmissions be designed so that they provide the force, speed and direction required and how efficient will the design be? Initial Problem Statement 2 Narrative

More information

TRAFFIC REGULATION APPROVAL PROCESS

TRAFFIC REGULATION APPROVAL PROCESS Approved: Effective: August 22, 2017 Review: June 21, 2017 Office: Traffic Engineering and Operations Topic No.: 750-010-011-e Department of Transportation PURPOSE TRAFFIC REGULATION APPROVAL PROCESS To

More information

Establishing Realistic Speed Limits

Establishing Realistic Speed Limits Establishing Realistic Speed Limits Establishing Realistic Speed Limits This publication updates the Setting Realistic Speed Limits booklet which was originally produced in the 1970s. Technical references

More information

TECHNICAL MEMORANDUM. Part A: Introduction

TECHNICAL MEMORANDUM. Part A: Introduction TECHNICAL MEMORANDUM To: David J. Decker Decker Properties, Inc. 5950 Seminole Centre Ct. Suite 200 Madison, Wisconsin 53711 608-663-1218 Fax: 608-663-1226 www.klengineering.com From: Mike Scarmon, P.E.,

More information

Functional Algorithm for Automated Pedestrian Collision Avoidance System

Functional Algorithm for Automated Pedestrian Collision Avoidance System Functional Algorithm for Automated Pedestrian Collision Avoidance System Customer: Mr. David Agnew, Director Advanced Engineering of Mobis NA Sep 2016 Overview of Need: Autonomous or Highly Automated driving

More information

Ch. 157 ESTABLISHED SOUND LEVELS CHAPTER 157. ESTABLISHED SOUND LEVELS

Ch. 157 ESTABLISHED SOUND LEVELS CHAPTER 157. ESTABLISHED SOUND LEVELS Ch. 157 ESTABLISHED SOUND LEVELS 67 157.1 CHAPTER 157. ESTABLISHED SOUND LEVELS Subchap. A. GENERAL PROVISIONS... 157.1 B. NOISE LIMITS... 157.11 C. ADMINISTRATIVE PROVISIONS... 157.21 D. INSTRUMENTATION...

More information

POLICY FOR THE ESTABLISHMENT AND POSTING OF SPEED LIMITS ON COUNTY AND TOWNSHIP HIGHWAYS WITHIN MCHENRY COUNTY, ILLINOIS

POLICY FOR THE ESTABLISHMENT AND POSTING OF SPEED LIMITS ON COUNTY AND TOWNSHIP HIGHWAYS WITHIN MCHENRY COUNTY, ILLINOIS POLICY FOR THE ESTABLISHMENT AND POSTING OF SPEED LIMITS ON COUNTY AND TOWNSHIP HIGHWAYS WITHIN MCHENRY COUNTY, ILLINOIS MCHENRY COUNTY DIVISION OF TRANSPORTATION 16111 NELSON ROAD WOODSTOCK, IL 60098

More information

MOTOR SAMPLE PROBLEM #1 Low-Slip Drive Belts

MOTOR SAMPLE PROBLEM #1 Low-Slip Drive Belts MOTOR SAMPLE PROBLEM #1 Low-Slip Drive Belts Low-slip drive belts have been recommended to the owner of Grapes dù Räth as a way to reduce the energy consumption of his wine cellar ventilation system. If

More information

Table Existing Traffic Conditions for Arterial Segments along Construction Access Route. Daily

Table Existing Traffic Conditions for Arterial Segments along Construction Access Route. Daily 5.8 TRAFFIC, ACCESS, AND CIRCULATION This section describes existing traffic conditions in the project area; summarizes applicable regulations; and analyzes the potential traffic, access, and circulation

More information

COMPACT CYLINDER CYLINDER FORCE AND WEIGHT TABLE BASE WEIGHT EFFECTIVE AREA

COMPACT CYLINDER CYLINDER FORCE AND WEIGHT TABLE BASE WEIGHT EFFECTIVE AREA CRS COMPACT CYLINDER STROKE TOLERANCE TEMPERATURE LIMITS VELOCITY LIFE EXPECTANCY SERIES CRS 1 psi min to 15 psi max at zero load [.7 bar min to 1 bar max] air.31 inch [.8 mm] -2 to +18 F [-28 to +82 C]

More information

Simple Gears and Transmission

Simple Gears and Transmission Simple Gears and Transmission Simple Gears and Transmission page: of 4 How can transmissions be designed so that they provide the force, speed and direction required and how efficient will the design be?

More information

American Association of State Highway and Transportation Officials. June Dear Customer:

American Association of State Highway and Transportation Officials. June Dear Customer: American Association of State Highway and Transportation Officials John R. Njord, President Executive Director Utah Department of Transportation John Horsley Executive Director June 2004 Dear Customer:

More information

Recommendations for AASHTO Superelevation Design

Recommendations for AASHTO Superelevation Design Recommendations for AASHTO Superelevation Design September, 2003 Prepared by: Design Quality Assurance Bureau NYSDOT TABLE OF CONTENTS Contents Page INTRODUCTION...1 OVERVIEW AND COMPARISON...1 Fundamentals...1

More information

The World s Best Driving Road

The World s Best Driving Road The World s Best Driving Road 1. The Avis Driving Ratio For a great drive you need a road with the right balance of tight corners and long steady stretches. The straight sections give you the relaxation

More information

FOR DETERMINING TIME REQUIREMENTS FOR TRAFFIC SIGNAL PREEMPTION AT HIGHWAY-RAIL GRADE CROSSINGS

FOR DETERMINING TIME REQUIREMENTS FOR TRAFFIC SIGNAL PREEMPTION AT HIGHWAY-RAIL GRADE CROSSINGS INSTRUCTIONS for the Minnesota Department of Transportation GUIDE FOR DETERMINING TIME REQUIREMENTS FOR TRAFFIC SIGNAL PREEMPTION AT HIGHWAY-RAIL GRADE CROSSINGS Version 07-27-2006 SITE DESCRIPTIVE INFORMATION:

More information

FOLLOWING DISTANCE RISK ENGINEERING

FOLLOWING DISTANCE RISK ENGINEERING FOLLOWING DISTANCE Following too close, tailgating, drafting. These words are synonymous with inadequate following distance and a key contributor to rear-end collisions. A definition of following too close

More information

GUIDE FOR DETERMINING TIME REQUIREMENTS FOR TRAFFIC SIGNAL PREEMPTION AT HIGHWAY-RAIL GRADE CROSSINGS

GUIDE FOR DETERMINING TIME REQUIREMENTS FOR TRAFFIC SIGNAL PREEMPTION AT HIGHWAY-RAIL GRADE CROSSINGS INSTRUCTIONS for the Texas Department of Transportation GUIDE FOR DETERMINING TIME REQUIREMENTS FOR TRAFFIC SIGNAL PREEMPTION AT HIGHWAY-RAIL GRADE CROSSINGS USING THESE INSTRUCTIONS The purpose of these

More information

APPLICATION NOTE QuickStick 100 Power Cable Sizing and Selection

APPLICATION NOTE QuickStick 100 Power Cable Sizing and Selection APPLICATION NOTE QuickStick 100 Power Cable Sizing and Selection Purpose This document will provide an introduction to power supply cables and selecting a power cabling architecture for a QuickStick 100

More information

Comments on the Draft South African Learner Driver Manual Compiled by the Department of Transport of the Republic of South Africa

Comments on the Draft South African Learner Driver Manual Compiled by the Department of Transport of the Republic of South Africa Comments on the Draft South African Learner Driver Manual Compiled by the Department of Transport of the Republic of South Africa Note: These comments do not concern themselves with all the detailed text

More information

1. Car crashes are the number one cause of death for teens in the United States. T F

1. Car crashes are the number one cause of death for teens in the United States. T F CLASS D INAL EXAM C SUDEN NAME DAE INSRUCOR INSRUCOR LICENSE# INSRUCOR SIGNAURE X INAL SCORE Please circle the correct answer. RUE / ALSE 1. Car crashes are the number one cause of death for teens in the

More information

Parking Studies. Lecture Notes in Transportation Systems Engineering. Prof. Tom V. Mathew. 1 Overview 1

Parking Studies. Lecture Notes in Transportation Systems Engineering. Prof. Tom V. Mathew. 1 Overview 1 Parking Studies Lecture Notes in Transportation Systems Engineering Prof. Tom V. Mathew Contents 1 Overview 1 2 Parking system 1 2.1 On street parking.................................. 2 2.2 Off street

More information

Act 229 Evaluation Report

Act 229 Evaluation Report R22-1 W21-19 W21-20 Act 229 Evaluation Report Prepared for Prepared by Table of Contents 1. Documentation Page 3 2. Executive Summary 4 2.1. Purpose 4 2.2. Evaluation Results 4 3. Background 4 4. Approach

More information

801-R-xxx LAW ENFORCEMENT OFFICER FOR WORK ZONE SAFETY. (Adopted xx-xx-17)

801-R-xxx LAW ENFORCEMENT OFFICER FOR WORK ZONE SAFETY. (Adopted xx-xx-17) 801-R-xxx LAW ENFORCEMENT OFFICER FOR WORK ZONE SAFETY (Adopted xx-xx-17) Description This work shall consist of providing a Law Enforcement Officer, LEO, to assist with the safe, efficient, orderly movement

More information

Section 2B.59 Weight Limit Signs - Interim Revisions

Section 2B.59 Weight Limit Signs - Interim Revisions Note: this document is an interim modification to Section 2B.59 of the Virginia Supplement to the MUTCD, Revision #1. Once the VDOT District Structure & Bridge section has made the determination that a

More information

TRAFFIC ENGINEERING DIVISION INSTRUCTIONAL & INFORMATIONAL MEMORANDUM

TRAFFIC ENGINEERING DIVISION INSTRUCTIONAL & INFORMATIONAL MEMORANDUM VIRGINIA DEPARTMENT OF TRANSPORTATION TRAFFIC ENGINEERING DIVISION INSTRUCTIONAL & INFORMATIONAL MEMORANDUM GENERAL SUBJECT: Portable Temporary Rumble Strips (PTRS) SPECIFIC SUBJECT: Guidelines for the

More information

Passing Sight Distance Design for Passenger Cars and Trucks

Passing Sight Distance Design for Passenger Cars and Trucks TRANSPORTATION RESEARCH RECORD 59 Passing Sight Distance Design for Passenger Cars and Trucks DOUGLAS W. HARWOOD AND JoHN C. GLENNON Safe and effective passing zones on two-lane highways require both adequate

More information

IMPORTANT. Motion Control Engineering New York Office nd Drive, Unit F Glendale NY (718) O. Thompson M00352 Limit Board

IMPORTANT. Motion Control Engineering New York Office nd Drive, Unit F Glendale NY (718) O. Thompson M00352 Limit Board IMPORTANT Engineering Bulletin #116 M00352 (AKA T-LIMIT-T) Limit Board Installation & Adjustment on Existing Microflite Plus, Ultra, and Ultra 2000 Controllers - M00118 Board Replacements with no Speed

More information

FE Review-Transportation-II. D e p a r t m e n t o f C i v i l E n g i n e e r i n g U n i v e r s i t y O f M e m p h i s

FE Review-Transportation-II. D e p a r t m e n t o f C i v i l E n g i n e e r i n g U n i v e r s i t y O f M e m p h i s FE Review-Transportation-II D e p a r t m e n t o f C i v i l E n g i n e e r i n g U n i v e r s i t y O f M e m p h i s Learning Objectives Design, compute, and solve FE problems on Freeway level of

More information

Conventional Approach

Conventional Approach Session 6 Jack Broz, PE, HR Green May 5-7, 2010 Conventional Approach Classification required by Federal law General Categories: Arterial Collector Local 6-1 Functional Classifications Changing Road Classification

More information

ORANGE COUNTY TRAFFIC COMMITTEE. Speed Limit. Sellas Road North/Sellas Road South; Ladera Ranch; TB 952-F1. Traffic Engineering.

ORANGE COUNTY TRAFFIC COMMITTEE. Speed Limit. Sellas Road North/Sellas Road South; Ladera Ranch; TB 952-F1. Traffic Engineering. ORANGE COUNTY TRAFFIC COMMITTEE SUPERVISORIAL DISTRICT: 5 SUBJECT: LOCATION: INITIATED BY: INVESTIGATOR: REQUEST: Speed Limit Sellas Road North/Sellas Road South; Ladera Ranch; TB 952-F1 Traffic Engineering

More information

Speed measurements were taken at the following three locations on October 13 and 14, 2016 (See Location Map in Exhibit 1):

Speed measurements were taken at the following three locations on October 13 and 14, 2016 (See Location Map in Exhibit 1): 2709 McGraw Drive Bloomington, Illinois 61704 p 309.663.8435 f 309.663.1571 www.f-w.com www.greennavigation.com November 4, 2016 Mr. Kevin Kothe, PE City Engineer City of Bloomington Public Works Department

More information

Traffic Impact Analysis. Alliance Cole Avenue Residential Site Dallas, Texas. Kimley-Horn and Associates, Inc. Dallas, Texas.

Traffic Impact Analysis. Alliance Cole Avenue Residential Site Dallas, Texas. Kimley-Horn and Associates, Inc. Dallas, Texas. Traffic Impact Analysis Alliance Cole Avenue Residential Site Dallas, Texas February 15, 2018 Kimley-Horn and Associates, Inc. Dallas, Texas Project #064524900 Registered Firm F-928 Traffic Impact Analysis

More information

Chapter III Geometric design of Highways. Tewodros N.

Chapter III Geometric design of Highways. Tewodros N. Chapter III Geometric design of Highways Tewodros N. www.tnigatu.wordpress.com tedynihe@gmail.com Introduction Appropriate Geometric Standards Design Controls and Criteria Design Class Sight Distance Design

More information

Model of deceleration lane length calculation based on quadratic

Model of deceleration lane length calculation based on quadratic Model of deceleration lane length calculation based on quadratic konglingzong Tongji University Report Contents 1 Introduction 2 Forms of deceleration lane 3 Model establishment 4 Model parameter and recommended

More information

Highlands Ranch Law Enforcement Training Academy

Highlands Ranch Law Enforcement Training Academy Highlands Ranch Law Enforcement Training Academy Law Enforcement Driving Skills Training Program 8500 N. Moore Rd. Littleton, CO 80125 Cumulative Skills Evaluation Course The purpose of the Cumulative

More information

A Gap-Based Approach to the Left Turn Signal Warrant. Jeremy R. Chapman, PhD, PE, PTOE Senior Traffic Engineer American Structurepoint, Inc.

A Gap-Based Approach to the Left Turn Signal Warrant. Jeremy R. Chapman, PhD, PE, PTOE Senior Traffic Engineer American Structurepoint, Inc. A Gap-Based Approach to the Left Turn Signal Warrant Jeremy R. Chapman, PhD, PE, PTOE Senior Traffic Engineer American Structurepoint, Inc. March 5, 2019 - The problem: Existing signalized intersection

More information

BODYWORK CALCULATIONS 2

BODYWORK CALCULATIONS 2 Table of content BODYWORK CALCULATIONS...2 PRINCIPLES OF CALCULATION...3 OPTIMIZING LOAD...6 EXAMPLE OF CALCULATION...7 Example 1 4X2 Tractor with two axles...7 Example 2 6X4 Tractor with three axles...9

More information

COUNTY ROAD SPEED LIMITS. Policy 817 i

COUNTY ROAD SPEED LIMITS. Policy 817 i Table of Contents COUNTY ROAD SPEED LIMITS Policy 817.1 PURPOSE... 2.2 APPLICABILITY... 2.3 DEFINITIONS... 2.4 STATE ENABLING LEGISLATION... 3.5 SPEED LIMITS ON COUNTY ROADS (CCC 11.04)... 3.6 ESTABLISHING

More information

FAN ENGINEERING. Application Guide for Selecting AC Motors Capable of Overcoming Fan Inertia ( ) 2

FAN ENGINEERING. Application Guide for Selecting AC Motors Capable of Overcoming Fan Inertia ( ) 2 FAN ENGINEERING Information and Recommendations for the Engineer Twin City Fan FE-1800 Application Guide for Selecting AC Motors Capable of Overcoming Fan Inertia Introduction Bringing a fan up to speed

More information

Engineering Dept. Highways & Transportation Engineering

Engineering Dept. Highways & Transportation Engineering The University College of Applied Sciences UCAS Engineering Dept. Highways & Transportation Engineering (BENG 4326) Instructors: Dr. Y. R. Sarraj Chapter 4 Traffic Engineering Studies Reference: Traffic

More information

City of Lafayette Staff Report Circulation Commission

City of Lafayette Staff Report Circulation Commission City of Lafayette Staff Report Circulation Commission Meeting Date: September 5, 2016 Staff: Subject: James Hinkamp, Transportation Planner Consideration of a No Parking Zone on Victoria Avenue Summary

More information

Intersection Design: Switch Point

Intersection Design: Switch Point Intersection Design: Switch Point W. R. BELLIS Director, Division of Research and Evaluation, New Jersey State Highway Department 'AN intersection of two crossroads in which vehicles do not stop or deviate

More information

Rotational Kinematics and Dynamics Review

Rotational Kinematics and Dynamics Review Rotational Kinematics and Dynamics Review 1. The Earth takes slightly less than one day to complete one rotation about the axis passing through its poles. The actual time is 8.616 10 4 s. Given this information,

More information

A KINEMATIC APPROACH TO HORIZONTAL CURVE TRANSITION DESIGN. James A. Bonneson, P.E.

A KINEMATIC APPROACH TO HORIZONTAL CURVE TRANSITION DESIGN. James A. Bonneson, P.E. TRB Paper No.: 00-0590 A KINEMATIC APPROACH TO HORIZONTAL CURVE TRANSITION DESIGN by James A. Bonneson, P.E. Associate Research Engineer Texas A&M University College Station, TX 77843-3135 (409) 845-9906

More information

Applicable California Vehicle Code Sections, 2015 Edition

Applicable California Vehicle Code Sections, 2015 Edition Applicable California Vehicle Code Sections, 2015 Edition Speed limits in California are governed by the California Vehicle Code (CVC), Sections 22348 through 22413; also, pertinent sections are found

More information

Section 6H.01 Typical Applications

Section 6H.01 Typical Applications December 27, 2010 Draft Page 6H-1 Section 6H.01 Typical Applications Support: 01 Whenever the acronym TTC is used in this Chapter, it refers to temporary traffic control. 02 The needs and control of all

More information

2018 NDACE CONFERENCE

2018 NDACE CONFERENCE 2018 NDACE CONFERENCE Setting Speed Limits Ward County Highway Department 1 NDCC 39-09-02. Speed limitations (2003) NDCC 39-09-02 f -Fifty-five miles [88.51 kilometers] an hour on gravel, dirt, or loose

More information

Plan Check Policies and Guidelines

Plan Check Policies and Guidelines Plan Check Policies and Guidelines VII. A. INTRODUCTION Traffic signing and striping plans are required for all General Plan Roads and any roadway that is 56-foot wide curb-to-curb (78 R/W) or wider. Transportation

More information

60 70 Guidelines. Managing Speeds. Work Zones

60 70 Guidelines. Managing Speeds. Work Zones 50 40 30 60 70 Guidelines on Managing Speeds in Work Zones 50 40 30 60 70 This document summarizes available guidance on setting speed limits and managing speeds in work zones. The Manual on Uniform Traffic

More information

GEOMETRIC ALIGNMENT AND DESIGN

GEOMETRIC ALIGNMENT AND DESIGN GEOMETRIC ALIGNMENT AND DESIGN Geometric parameters dependent on design speed For given design speeds, designers aim to achieve at least the desirable minimum values for stopping sight distance, horizontal

More information

Oakbrook Village Plaza City of Laguna Hills

Oakbrook Village Plaza City of Laguna Hills Oakbrook Village Plaza City of Laguna Hills Traffic Impact Analysis Prepared by: HDR Engineering 3230 El Camino Real, Suite 200 Irvine, CA 92602 October 2012 Revision 3 D-1 Oakbrook Village Plaza Laguna

More information

Low Speed Design Criteria for Residential Streets Andrew J. Ballard, P.E. and David M. Haldeman, E.I.T.

Low Speed Design Criteria for Residential Streets Andrew J. Ballard, P.E. and David M. Haldeman, E.I.T. Low Speed Design Criteria for Residential Streets Andrew J. Ballard, P.E. and David M. Haldeman, E.I.T. Background The City of San Antonio receives many complaints regarding speeding in residential areas.

More information

GUIDELINES FOR THE DETERMINATION OF ADVISORY SPEEDS

GUIDELINES FOR THE DETERMINATION OF ADVISORY SPEEDS GUIDELINES FOR THE DETERMINATION OF ADVISORY SPEEDS Robert K. Seyfried, PE, PTOE and James L. Pline, PE, PTOE 01/08/2009 Introduction The determination and posting of advisory speeds for changes in horizontal

More information

CHAPTER 14 TRAFFIC CODE THE MINNESOTA HIGHWAY TRAFFIC REGULATION ACT.

CHAPTER 14 TRAFFIC CODE THE MINNESOTA HIGHWAY TRAFFIC REGULATION ACT. CHAPTER 14 TRAFFIC CODE 14.01 THE MINNESOTA HIGHWAY TRAFFIC REGULATION ACT. 1. Adoption. The City hereby adopts the Minnesota Highway Traffic Regulation Act as set forth in Minnesota Statutes, Chapter

More information