Lab 4 Constant Acceleration by Drew Von Maluski

Size: px
Start display at page:

Download "Lab 4 Constant Acceleration by Drew Von Maluski"

Transcription

1 Lab 4 Constant Acceleration by Drew Von Maluski Note: Please record all your data and answers on the data sheet. In this lab you will familiarize yourself with using the LoggerPro software, LabPro equipment, and track / cart. You will also explore constant acceleration and become familiar with graphing position vs. time, velocity vs. time, and acceleration vs. time for constant acceleration. Setup: 1. Place the track on top of your table and level it using a level. The track must be leveled so the cart does not roll down the track on its own. 2. From the small table remove the cart, weights, Labpro interface, and optical motion sensor. Place the cart on the track, stop it, and confirm that it does not roll on its own (confirm the track is level). 3. Connect the USB cable from the computer to the Labpro interface. Connect the power cable to the Labpro interface. Connect the motion detector to the Labpro interface. NOTE: The motion detector is connected to the Digital 1 port (if the connector does not fit, do NOT force it). 4. Attach the motion detector to the track end so that the black/white bars line up with the bars on the track. The bars on the cart also have to be in line with the bars on the track. 5. Have someone in your group log on to the computer. Open up LoggerPro (found in the start menu under the Vernier folder). You should see a blank experiment with a position vs. time graph. 6. In LoggerPro, click on the Experiment Menu > Setup Sensors > Show all Sensors. Click the box corresponding to the Digital 1 port, and add sensor > motion encoder cart. Confirm that when the cart is powered on and moved along the track, LoggerPro displays a position value that changes with position. Note: when not taking data please turn the cart off to save battery life. 7. In LoggerPro click on the Experiment Menu, and then click on Data Collection. Adjust the settings so that it runs for a reasonable length of time (20sec) and adjust the sampling rate to 20 samples per second. 8. LoggerPro should now display a position vs. time graph, and a velocity vs. time graph. If you want to view an acceleration vs. time graph you can click the vertical axis of one graph and change it to acceleration. 9. NOTE: Zero the cart when the cart is next to the sensor. You must do this every time before taking data. To do this click on the 0 icon to the left of the start button in LoggerPro. Part 0: Baby steps Place two shims under the track to prop up the 0cm end by 0.5in. Predict the motion of the cart down the ramp when the 0cm side is propped up. Please draw the predicted motion under the graphs in the position vs. time, velocity vs. time, and acceleration vs. time graphs. Once you have predicted the motion run the experiment in LoggerPro. Someone in the group holds the cart at the sensor and another person clicks the start button. Wait until LoggerPro starts collecting data before releasing the cart. When the experiment is running release the cart with 0 initial velocity! As the cart moves Logger Pro should record position and velocity data. Stop the cart before it rolls off the track and stop the experiment. Draw this motion in the graphs (only ever include the relevant motion, not the time before the cart began moving or after it was caught). Part 1: Rolling like the big boys, or how to give your cart an extra 25HP. (vtec just kicked in yo) Now put all 4 shims under the 0cm side of the track to prop it up 1in. Predict the motion of the cart when it is released down the track. Once you sketch your predictions run the experiment and graph the actual motion. 1

2 Part 2: Predict / Measure Acceleration down an inclined plane In this part we predict and measure the acceleration of the cart down the ramp. We need to measure the incline of the ramp. Measure the height of both ends of the track and use trig to determine the angle of incline. Ask if you are unsure. Note: the track has a ruler on it, so you know the length of the track. In class we found the acceleration of a mass moving down an incline (with no friction), a = g sinθ. Calculate the predicted acceleration of the cart moving down the ramp. Now we measure the acceleration down the track. Use LoggerPro to record the position and velocity of the cart down the incline. Perhaps the best way to get the value for average acceleration is to work off the velocity vs. time graph. Highlight the relevant motion by clicking and dragging in the velocity vs. time graph (highlight only the motion after the cart was released but before the cart was stopped). With this portion of the graph highlighted click on the Linear Fit icon. With the linear fit you can read off the acceleration because the slope of the velocity vs. time graph is the acceleration. Do this two more times and find the average acceleration. Is your predicted acceleration within 5% of the actual average acceleration? Part 3: Mass dependence on an inclined plane, or lack thereof hopefully. maybe In this part we will explore if adjusting the cart mass has an effect on its acceleration down the ramp. For each mass you will repeat the measurement 3 times to get an average acceleration. We are interested in the acceleration while the cart is rolling down the track. When adding weight to the cart make sure you place it in the middle of the cart each time. Does adding weight to the cart change its average acceleration by a noticeable amount? Should it? Part 4: Displacement from v vs. t graphs. The area under a velocity vs. time graph equals displacement. Let s see if our equipment agrees. Start the cart at the top of the sensor and have LoggerPro record velocity vs. time as the cart rolls down. Please remember to zero the cart position before collecting data. Stop the cart before it leaves the track. Note: You MUST wait for LoggerPro to start collecting data before you release the cart. Select the appropriate velocity data and click the integrate button to find the area. Record this value on the data sheet as d area. Using the ruler along the track, you can measure the displacement of the cart down the track. Please measure to the same part of the cart each time. Record this value as d measured. Do these two values agree within ±2cm? Part 5: Bridge to Engineering. Negative effect on power reduction. Speed is still increasing. Mr. Spock Now place all 4 shims under the other side of the track to prop up the 100cm side by 1in. With the cart started at the 100cm side predict the new motion. After you predict the motion run the experiment. Make sure you catch the cart before it hits the sensor!!! Part 6: And don't ask for any more warp 9 speeds, Mr. Spock. Our star drive is completely burned out. The only thing we have left is impulse power. --Scott With all 4 shims under the 100cm side predict the motion of the cart when you start the cart at the sensor and give it an initial push up the ramp (so the cart moves up the ramp and then down the ramp). After you predict the motion run the experiment and graph the data. Make sure you catch the cart before it hits the sensor!!! 2

3 Part 0: Lab 4 Data Sheet by Drew Von Maluski Part 1: 3

4 Part 2: θ = a prediction = a 1 = a 2 = a 3 = a avg-measured = Is your predicted acceleration within 5% of the actual average acceleration? Part 3: Mass added (g) A 1 A 2 A 3 A avg Does adding weight to the cart change its average acceleration by a noticeable amount? Should it? Part 4: d area = d measured = Do these two values agree within ±2cm? 4

5 Part 5: Part 6: 5

Concepts of One Dimensional Kinematics Activity Purpose

Concepts of One Dimensional Kinematics Activity Purpose Concepts of One Dimensional Kinematics Activity Purpose During the activity, students will become familiar with identifying how the position, the velocity, and the acceleration of an object will vary with

More information

University of TN Chattanooga Physics 1040L 8/28/2012

University of TN Chattanooga Physics 1040L 8/28/2012 PHYSICS 1040L LAB 5: MAGNETIC FIELD Objectives: 1. Determine the relationship between magnetic field and the current in a solenoid. 2. Determine the relationship between magnetic field and the number of

More information

The Magnetic Field. Magnetic fields generated by current-carrying wires

The Magnetic Field. Magnetic fields generated by current-carrying wires OBJECTIVES The Magnetic Field Use a Magnetic Field Sensor to measure the field of a long current carrying wire and at the center of a coil. Determine the relationship between magnetic field and the number

More information

Newton s First Law. Evaluation copy. Vernier data-collection interface

Newton s First Law. Evaluation copy. Vernier data-collection interface Newton s First Law Experiment 3 INTRODUCTION Everyone knows that force and motion are related. A stationary object will not begin to move unless some agent applies a force to it. But just how does the

More information

The Magnetic Field in a Coil. Evaluation copy. Figure 1. square or circular frame Vernier computer interface momentary-contact switch

The Magnetic Field in a Coil. Evaluation copy. Figure 1. square or circular frame Vernier computer interface momentary-contact switch The Magnetic Field in a Coil Computer 25 When an electric current flows through a wire, a magnetic field is produced around the wire. The magnitude and direction of the field depends on the shape of the

More information

Faraday's Law of Induction

Faraday's Law of Induction Purpose Theory Faraday's Law of Induction a. To investigate the emf induced in a coil that is swinging through a magnetic field; b. To investigate the energy conversion from mechanical energy to electrical

More information

The Magnetic Field in a Slinky

The Magnetic Field in a Slinky The Magnetic Field in a Slinky A solenoid is made by taking a tube and wrapping it with many turns of wire. A metal Slinky is the same shape and will serve as our solenoid. When a current passes through

More information

NORTHERN ILLINOIS UNIVERSITY PHYSICS DEPARTMENT. Physics 211 E&M and Quantum Physics Spring Lab #6: Magnetic Fields

NORTHERN ILLINOIS UNIVERSITY PHYSICS DEPARTMENT. Physics 211 E&M and Quantum Physics Spring Lab #6: Magnetic Fields NORTHERN ILLINOIS UNIVERSITY PHYSICS DEPARTMENT Physics 211 E&M and Quantum Physics Spring 2018 Lab #6: Magnetic Fields Lab Writeup Due: Mon/Wed/Thu/Fri, March 5/7/8/9, 2018 Background Magnetic fields

More information

Momentum, Energy and Collisions

Momentum, Energy and Collisions Experiment 19 The of two carts on a track can be described in terms of conservation and, in some cases, energy conservation. If there is no net external force experienced by the system of two carts, then

More information

Impulse, Momentum, and Energy Procedure

Impulse, Momentum, and Energy Procedure Impulse, Momentum, and Energy Procedure OBJECTIVE In this lab, you will verify the Impulse-Momentum Theorem by investigating the collision of a moving cart with a fixed spring. You will also use the Work-Energy

More information

Experiment P-52 Magnetic Field

Experiment P-52 Magnetic Field 1 Experiment P-52 Magnetic Field Objectives To learn about basic properties of magnets. To study the magnetic field around a bar magnet through a magnetic field sensor. Modules and Sensors PC + NeuLog

More information

2 Dynamics Track User s Guide: 06/10/2014

2 Dynamics Track User s Guide: 06/10/2014 2 Dynamics Track User s Guide: 06/10/2014 The cart and track. A cart with frictionless wheels rolls along a 2- m-long track. The cart can be thrown by clicking and dragging on the cart and releasing mid-throw.

More information

Driven Damped Harmonic Oscillations

Driven Damped Harmonic Oscillations Driven Damped Harmonic Oscillations Page 1 of 8 EQUIPMENT Driven Damped Harmonic Oscillations 2 Rotary Motion Sensors CI-6538 1 Mechanical Oscillator/Driver ME-8750 1 Chaos Accessory CI-6689A 1 Large Rod

More information

Newton s 2 nd Law Activity

Newton s 2 nd Law Activity Newton s 2 nd Law Activity Purpose Students will begin exploring the reason the tension of a string connecting a hanging mass to an object will be different depending on whether the object is stationary

More information

Evaluation copy. The Magnetic Field in a Slinky. computer OBJECTIVES MATERIALS INITIAL SETUP

Evaluation copy. The Magnetic Field in a Slinky. computer OBJECTIVES MATERIALS INITIAL SETUP The Magnetic Field in a Slinky Computer 26 A solenoid is made by taking a tube and wrapping it with many turns of wire. A metal Slinky is the same shape and will serve as our solenoid. When a current passes

More information

Driven Damped Harmonic Oscillations

Driven Damped Harmonic Oscillations Driven Damped Harmonic Oscillations EQUIPMENT INCLUDED: Rotary Motion Sensors CI-6538 1 Mechanical Oscillator/Driver ME-8750 1 Chaos Accessory CI-6689A 1 Large Rod Stand ME-8735 10-cm Long Steel Rods ME-8741

More information

View Numbers and Units

View Numbers and Units To demonstrate the usefulness of the Working Model 2-D program, sample problem 16.1was used to determine the forces and accelerations of rigid bodies in plane motion. In this problem a cargo van with a

More information

All Worn Out! Measure the voltage of batteries as they discharge. Predict how different size batteries will behave when being discharged.

All Worn Out! Measure the voltage of batteries as they discharge. Predict how different size batteries will behave when being discharged. All Worn Out! Computer 43 Have you ever wondered why some flashlights use small batteries and some use big ones? What difference does it make? Do larger batteries make the light brighter? Will the size

More information

Motions and Forces Propeller

Motions and Forces Propeller Motions and Forces Propeller Discovery Question What are the effects of friction on the motion of the propeller-driven cart? Introduction Thinking About the Question Materials Safety Trial I: Adding a

More information

Vernier Dynamics System (Order Code VDS)

Vernier Dynamics System (Order Code VDS) Vernier Dynamics System (Order Code VDS) The Vernier Dynamics System consists of a 1.2 m track, two carts, and related accessories. The system is designed for use in physics and physical science courses

More information

Vernier Dynamics System (Order Code VDS)

Vernier Dynamics System (Order Code VDS) Vernier Dynamics System (Order Code VDS) The Vernier Dynamics System consists of a 1.2 m track, two carts, and related accessories. The system is designed for use in physics and physical science courses

More information

Momentum, Energy and Collisions

Momentum, Energy and Collisions , Energy and Collisions The of two carts on a track can be described in terms of conservation and, in some cases, energy conservation. If there is no net external force experienced by the system of two

More information

Faraday's Law of Induction

Faraday's Law of Induction Induction EX-9914 Page 1 of 6 EQUIPMENT Faraday's Law of Induction INCLUDED: 1 Induction Wand EM-8099 1 Variable Gap Lab Magnet EM-8641 1 Large Rod Stand ME-8735 2 45 cm Long Steel Rod ME-8736 1 Multi

More information

Evaluation copy. Wind Power. Computer

Evaluation copy. Wind Power. Computer Wind Power Computer 26 Power from the wind has become an increasingly popular option for electricity generation. Unlike traditional energy sources such as coal, oil, and gas that contribute large quantities

More information

Physics 103 Lab MC-11: Elastic Collisions

Physics 103 Lab MC-11: Elastic Collisions Physics 103 Lab MC-11: Elastic Collisions Apparatus: Track 2 carts equipped with magnetic bumpers 2 motion sensors (with stands and cables) 2 cardboard vanes Computer and interface Problem You work at

More information

Vernier Rotary Motion Sensor

Vernier Rotary Motion Sensor Vernier Rotary Motion Sensor (Order Code RMV-BTD) The Vernier Rotary Motion Sensor is a bidirectional angle sensor designed to measure rotational or linear position, velocity and acceleration. It is used

More information

Mr. Freeze QUALITATIVE QUESTIONS

Mr. Freeze QUALITATIVE QUESTIONS QUALITATIVE QUESTIONS Many of the questions that follow refer to the graphs of data collected when riding Mr. Freeze with high tech data collection vests. With your I.D., you can borrow a vest without

More information

Prop-tech 5 function car Multi-tester MT-02

Prop-tech 5 function car Multi-tester MT-02 Prop-tech 5 function car Multi-tester MT-02 tool kit Bridge cable device Measurement cable New generation of current sensor ensure a rapid measurement for vehicle diagnostic. Voltage and current view on

More information

EXPERIMENT 11: FARADAY S LAW OF INDUCTION

EXPERIMENT 11: FARADAY S LAW OF INDUCTION LAB SECTION: NAME: EXPERIMENT 11: FARADAY S LAW OF INDUCTION Introduction: In this lab, you will use solenoids and magnets to investigate the qualitative properties of electromagnetic inductive effects

More information

Pre-lab Questions: Please review chapters 19 and 20 of your textbook

Pre-lab Questions: Please review chapters 19 and 20 of your textbook Introduction Magnetism and electricity are closely related. Moving charges make magnetic fields. Wires carrying electrical current in a part of space where there is a magnetic field experience a force.

More information

SHOCK DYNAMOMETER: WHERE THE GRAPHS COME FROM

SHOCK DYNAMOMETER: WHERE THE GRAPHS COME FROM SHOCK DYNAMOMETER: WHERE THE GRAPHS COME FROM Dampers are the hot race car component of the 90s. The two racing topics that were hot in the 80s, suspension geometry and data acquisition, have been absorbed

More information

Pre-lab Questions: Please review chapters 19 and 20 of your textbook

Pre-lab Questions: Please review chapters 19 and 20 of your textbook Introduction Magnetism and electricity are closely related. Moving charges make magnetic fields. Wires carrying electrical current in a part of space where there is a magnetic field experience a force.

More information

Vernier Motion Encoder System (Order Code: VDS-EC)

Vernier Motion Encoder System (Order Code: VDS-EC) Vernier Motion Encoder System (Order Code: VDS-EC) The Vernier Motion Encoder System * is a Vernier Dynamics System outfitted for the precise study of dynamics cart motion without the use of ultrasonic

More information

WindLab TM Wind Turbine Power System Sample Laboratory Procedure Manual

WindLab TM Wind Turbine Power System Sample Laboratory Procedure Manual WindLab TM Wind Turbine Power System Sample Laboratory Procedure Manual WindLab TM is a scaled Wind Turbine Electrical Generation System, designed to function like a full-sized wind turbine system. It

More information

Vernier Dynamics Cart and Track System (Order Code DTS)

Vernier Dynamics Cart and Track System (Order Code DTS) Vernier Dynamics Cart and Track System (Order Code DTS) The Vernier Dynamics Cart and Track System consists of a 1.2 m track, two carts, and related accessories. The system is designed for use in physics

More information

Experiment 6: Induction

Experiment 6: Induction Experiment 6: Induction Part 1. Faraday s Law. You will send a current which changes at a known rate through a solenoid. From this and the solenoid s dimensions you can determine the rate the flux through

More information

4.1 Flow Rate Verification and Adjustment

4.1 Flow Rate Verification and Adjustment 4.1 Flow Rate Verification and Adjustment Once the pressure verification is complete (see Chapter 3), the gas flow rate should be verified. Accurate gas flow through the nozzle is critical for achieving

More information

Velocity vs Time. Velocity vs Time

Velocity vs Time. Velocity vs Time Chapter : One Dimensional Motion Graphical Interpretation of Instantaneous and Average Acceleration Explain what happens in each of these graphs. Make sure to record the change in displacement, change

More information

1-3 RAMP AND TORQUE BOOST EXERCISE OBJECTIVE

1-3 RAMP AND TORQUE BOOST EXERCISE OBJECTIVE 1-3 RAMP AND TORQUE BOOST EXERCISE OBJECTIVE Understand the acceleration and deceleration time settings. Introduce the linear and S-shape acceleration and deceleration patterns. Introduce the Torque boost

More information

Dynamics Cart Accessory Track Set (2.2m version)

Dynamics Cart Accessory Track Set (2.2m version) Includes Teacher's Notes and Typical Experiment Results Instruction Manual and Experiment Guide for the PASCO scientific Model ME-9458 and ME-9452 012-05024E 6/94 Dynamics Cart Accessory Track Set (2.2m

More information

Dynamics Cart Accessory Track Set (1.2m version)

Dynamics Cart Accessory Track Set (1.2m version) Includes Teacher's Notes and Typical Experiment Results Instruction Manual and Experiment Guide for the PASCO scientific Model ME-9435A and ME-9429A 012-05035E 7/94 Dynamics Cart Accessory Track Set (1.2m

More information

d / cm t 2 / s 2 Fig. 3.1

d / cm t 2 / s 2 Fig. 3.1 7 5 A student has been asked to determine the linear acceleration of a toy car as it moves down a slope. He sets up the apparatus as shown in Fig. 3.1. d Fig. 3.1 The time t to move from rest through a

More information

1. Measure the length of the track (already set up by your teacher) in meters and record in table 1. Use a meter stick for this.

1. Measure the length of the track (already set up by your teacher) in meters and record in table 1. Use a meter stick for this. Hot Wheels Speed Lab Name: Purpose : To calculate the speed of different hot-wheels cars. Procedure: 1. Measure the length of the track (already set up by your teacher) in meters and record in table 1.

More information

How to Build with the Mindstorm Kit

How to Build with the Mindstorm Kit How to Build with the Mindstorm Kit There are many resources available Constructopedias Example Robots YouTube Etc. The best way to learn, is to do Remember rule #1: don't be afraid to fail New Rule: don't

More information

Heat Engines Lab 12 SAFETY

Heat Engines Lab 12 SAFETY HB 1-05-09 Heat Engines 1 Lab 12 1 i Heat Engines Lab 12 Equipment SWS, 600 ml pyrex beaker with handle for ice water, 350 ml pyrex beaker with handle for boiling water, 11x14x3 in tray, pressure sensor,

More information

Mini-Lab Gas Turbine Power System TM Sample Lab Experiment Manual

Mini-Lab Gas Turbine Power System TM Sample Lab Experiment Manual Mini-Lab Gas Turbine Power System TM Sample Lab Experiment Manual Lab Session #1: System Overview and Operation Purpose: To gain an understanding of the Mini-Lab TM Gas Turbine Power System as a whole

More information

Crash Cart Barrier Project Teacher Guide

Crash Cart Barrier Project Teacher Guide Crash Cart Barrier Project Teacher Guide Set up We recommend setting the ramp at an angle of 15 and releasing the cart 40 cm away from the barrier. While crashing the cart into a wall works, if this is

More information

ELECTRIC MOTOR DYNO. Quick Start Guide V2.0

ELECTRIC MOTOR DYNO. Quick Start Guide V2.0 ELECTRIC MOTOR DYNO Quick Start Guide V2.0 USING THIS GUIDE Before Using the Dyno The dyno is a high-quality motor analyzing tool intended for persons aged 18 years and older with previous experience

More information

POWER and ELECTRIC CIRCUITS

POWER and ELECTRIC CIRCUITS POWER and ELECTRIC CIRCUITS Name For many of us, our most familiar experience with the word POWER (units of measure: WATTS) is when we think about electricity. Most of us know that when we change a light

More information

Vernier Dynamics Cart and Track System with Motion Encoder (Order Code DTS-EC)

Vernier Dynamics Cart and Track System with Motion Encoder (Order Code DTS-EC) Vernier Dynamics Cart and Track System with Motion Encoder (Order Code DTS-EC) The Dynamics Cart and Track System with Motion Encoder is outfitted for the precise study of dynamics cart motion without

More information

Lab 4 Heat Engine. Objective The objective of this lab is to build a heat engine, to operate it, and to measure its efficiency.

Lab 4 Heat Engine. Objective The objective of this lab is to build a heat engine, to operate it, and to measure its efficiency. Lab 4 Heat Engine Objective The objective of this lab is to build a heat engine, to operate it, and to measure its efficiency. ackground Here is the heat engine we are building. rotary motion sensor to

More information

Working Model 2D Tutorial 2

Working Model 2D Tutorial 2 Working Model 2D: Tutorial 2 Example 11-10: A wheel with Diameter of 1.2m, mounted in a vertical plane, accelerates uniformly from rest at 3 rad/s 2 for five seconds, and then maintains uniform velocity

More information

Thinking distance in metres. Draw a ring around the correct answer to complete each sentence. One of the values of stopping distance is incorrect.

Thinking distance in metres. Draw a ring around the correct answer to complete each sentence. One of the values of stopping distance is incorrect. Q1.An investigation was carried out to show how thinking distance, braking distance and stopping distance are affected by the speed of a car. The results are shown in the table. Speed in metres per second

More information

meters Time Trials, seconds Time Trials, seconds 1 2 AVG. 1 2 AVG

meters Time Trials, seconds Time Trials, seconds 1 2 AVG. 1 2 AVG Constan t Velocity (Speed) Objective: Measure distance and time during constant velocity (speed) movement. Determine average velocity (speed) as the slope of a Distance vs. Time graph. Equipment: battery

More information

UNIVERSITY OF MINNESOTA DULUTH DEPARTMENT OF CHEMICAL ENGINEERING ChE Centrifugal Pump(Armfield)

UNIVERSITY OF MINNESOTA DULUTH DEPARTMENT OF CHEMICAL ENGINEERING ChE Centrifugal Pump(Armfield) UNIVERSITY OF MINNESOTA DULUTH DEPARTMENT OF CHEMICAL ENGINEERING ChE 3211-4211 Centrifugal Pump(Armfield) OBJECTIVE The objective of this experiment is to investigate the operating characteristics of

More information

Introduction. Figure 1: Labeled picture of the Instron 3367 load frame.

Introduction. Figure 1: Labeled picture of the Instron 3367 load frame. Operation of the Instron Tensile Test Machine With an Existing Method in Bluehill 3 Software Introduction by Andrew E. Frerichs, 3/25/11 Michelle Grawe; 10/6/14 Introduction The Instron device is a displacement

More information

Theory of Machines II EngM323 Laboratory User's manual Version I

Theory of Machines II EngM323 Laboratory User's manual Version I Theory of Machines II EngM323 Laboratory User's manual Version I Table of Contents Experiment /Test No.(1)... 2 Experiment /Test No.(2)... 6 Experiment /Test No.(3)... 12 EngM323 Theory of Machines II

More information

Experiment 13: Engines and Thermodynamics

Experiment 13: Engines and Thermodynamics Experiment 13: Engines and Thermodynamics YOU NEED TO OBTAIN THE FOLLOWING DATA FOR PART 1 BEFORE COMING TO THE LABORATORY. If you don't, (without a legitimate excuse) the instructor will provide some

More information

Physics 2048 Test 2 Dr. Jeff Saul Fall 2001

Physics 2048 Test 2 Dr. Jeff Saul Fall 2001 Physics 2048 Test 2 Dr. Jeff Saul Fall 2001 Name: Group: Date: READ THESE INSTRUCTIONS BEFORE YOU BEGIN Before you start the test, WRITE YOUR NAME ON EVERY PAGE OF THE EXAM. Calculators are permitted,

More information

Electrostatics Revision 4.0b

Electrostatics Revision 4.0b Electrostatics Revision 4.0b Objective: This experiment allows you to investigate the production of static charge, charging by: induction and contact, the measurement of charge, grounding techniques and

More information

Rotary Motion Sensor

Rotary Motion Sensor Instruction Manual Manual No. 012-06053B Rotary Motion Sensor Table of Contents Equipment List... 3 Optional Accessories... 4-5 Mini-Rotational Accessory...4 Linear Motion Accessory...4 Chaos Accessory...4

More information

AP Lab 22.3 Faraday s Law

AP Lab 22.3 Faraday s Law Name School Date AP Lab 22.3 Faraday s Law Objectives To investigate and measure the field along the axis of a solenoid carrying a constant or changing current. To investigate and measure the emf induced

More information

1. What are some everyday examples (that are NOT listed above) in which you use torque to complete a task?

1. What are some everyday examples (that are NOT listed above) in which you use torque to complete a task? ID: NAME: DATE: CLASS: Chapter 11: Torque Notes POGIL #1 REMEMBER: Throughout this paper, you will see some symbols. The stop sign means STOP and check with a teacher before continuing. The key means THIS

More information

MAX-FIRE AND E-FIRE ELECTRONIC DISTRIBUTORS

MAX-FIRE AND E-FIRE ELECTRONIC DISTRIBUTORS INSTALLATION INSTRUCTIONS MAX-FIRE AND E-FIRE ELECTRONIC DISTRIBUTORS NOTE: This product is applicable to pre-1966 California and pre-1968 federally certified passenger cars. It is also applicable to non-emission

More information

The kit comes with a 100 psi sensor, solenoids and harness.

The kit comes with a 100 psi sensor, solenoids and harness. AMS-500 V2 Boost Controller Overview The AMS-500 V2 Boost Controller is a time based graph style controller. It has a launch input which is used by transbrake input or clutch input. Both the activation

More information

Union College Winter 2016 Name Partner s Name

Union College Winter 2016 Name Partner s Name Union College Winter 2016 Name Partner s Name Physics 121 Lab 8: Electromagnetic Induction By Faraday s Law, a change in the magnetic flux through a coil of wire results in a current flowing in the wire.

More information

Weigh Station All Trucks Stop!

Weigh Station All Trucks Stop! Weigh Station All Truck Stop! Computer 26 Do you ever wonder if truck would roll down a hill fater when they have a full load or when they are empty? Thi activity will help you tet a truck on a downhill

More information

Stress/Strain Apparatus AP-8214

Stress/Strain Apparatus AP-8214 Instruction Manual 012-09424B Stress/Strain Apparatus AP-8214 C D E F G B ( 7) H A I Included Equipment Part Number A. Stress/Strain Apparatus AP-8214 B. Test Coupons, 10 pieces each sample (sample containers

More information

Resistivity. Equipment

Resistivity. Equipment Resistivity Equipment Qty Item Parts Number 1 Voltage Source 850 Interface 1 Resistance Apparatus EM-8812 1 Sample Wire Set EM-8813 1 Voltage Sensor UI-5100 2 Patch Cords rev 05/2018 Purpose The purpose

More information

Experiment P-16 Basic Electromagnetism

Experiment P-16 Basic Electromagnetism 1 Experiment P-16 Basic Electromagnetism Objectives To learn about electromagnets. To build an electromagnet with a nail, a wire and additional electrical elements. To investigate how the number of winds

More information

Objectives. Materials TI-73 CBL 2

Objectives. Materials TI-73 CBL 2 . Objectives To understand the relationship between dry cell size and voltage Activity 4 Materials TI-73 Unit-to-unit cable Voltage from Dry Cells CBL 2 Voltage sensor New AAA, AA, C, and D dry cells Battery

More information

University of Jordan School of Engineering Mechatronics Engineering Department. Fluid Power Engineering Lab

University of Jordan School of Engineering Mechatronics Engineering Department. Fluid Power Engineering Lab University of Jordan School of Engineering Mechatronics Engineering Department 0908464 09 The University of Jordan School of Engineering MECHATRONICS ENGINEERING DEPARTMENT EXPERIMENT N0. 1 Introduction

More information

Warning! Before continuing further, please ensure that you have NOT mounted the propellers on the MultiRotor.

Warning! Before continuing further, please ensure that you have NOT mounted the propellers on the MultiRotor. Mission Planner Setup ( optional, do not use if you have already completed the Dashboard set-up ) Warning! Before continuing further, please ensure that you have NOT mounted the propellers on the MultiRotor.

More information

Unit 8 ~ Learning Guide Name:

Unit 8 ~ Learning Guide Name: Unit 8 ~ Learning Guide Name: Instructions: Using a pencil, complete the following notes as you work through the related lessons. Show ALL work as is explained in the lessons. You are required to have

More information

6. Pre-print checks. 3D Touch

6. Pre-print checks. 3D Touch Page 1 1. 6. Pre-print checks........................................................................................... 1.1 a. Clearing the print bed..................................................................................

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Aeronautics and Astronautics

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Aeronautics and Astronautics MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Aeronautics and Astronautics 16.00 Introduction to Aerospace and Design Problem Set #4 Issued: February 28, 2002 Due: March 19, 2002 ROCKET PERFORMANCE

More information

34.5 Electric Current: Ohm s Law OHM, OHM ON THE RANGE. Purpose. Required Equipment and Supplies. Discussion. Procedure

34.5 Electric Current: Ohm s Law OHM, OHM ON THE RANGE. Purpose. Required Equipment and Supplies. Discussion. Procedure Name Period Date CONCEPTUAL PHYSICS Experiment 34.5 Electric : Ohm s Law OHM, OHM ON THE RANGE Thanx to Dean Baird Purpose In this experiment, you will arrange a simple circuit involving a power source

More information

V PicoScope NVH Diagnostics Overview

V PicoScope NVH Diagnostics Overview 13042.13V PicoScope NVH Diagnostics Overview The CH-51450 PicoScope is a computer software-based Noise, Vibration and Harshness, or N-V-H tool. This tool has several important components for NVH diagnosis:

More information

Compact Linear Stage

Compact Linear Stage Compact Linear Stage For Loads to 10 kg L-406 Travel ranges from 26 mm to 102 mm (1" to 4") Stepper motor or DC servo motor with and without gearhead Direction-sensing reference point switch Integrated

More information

Redox Potentials and the Lead Acid Cell Minneapolis Community and Tech. College v I. Introduction. Part I

Redox Potentials and the Lead Acid Cell Minneapolis Community and Tech. College v I. Introduction. Part I Redox Potentials and the Lead Acid Cell Minneapolis Community and Tech. College v.11.10 I. Introduction Part I In these experiments you will first determine the reduction potentials of a series of five

More information

Welcome and enjoy tuning your Manitou ABS+ Compression Damping System! Purposefully engineered to raise your expectations.

Welcome and enjoy tuning your Manitou ABS+ Compression Damping System! Purposefully engineered to raise your expectations. Welcome and enjoy tuning your Manitou ABS+ Compression Damping System! Purposefully engineered to raise your expectations. PLEASE READ SERVICE INSTRUCTIONS PRIOR TO BEGINNING WORK. While revalving your

More information

GCSE Physics: Required practical Student Sheets

GCSE Physics: Required practical Student Sheets GCSE Physics: Required practical Student Sheets Contents Introduction... 2 Apparatus and techniques... 2 Lab equipment... 3 Required Practicals Paper 1... 5 Specific heat capacity... 5 Thermal insulation

More information

Level 1 Science, 2016

Level 1 Science, 2016 90940 909400 1SUPERVISOR S Level 1 Science, 2016 90940 Demonstrate understanding of aspects of mechanics 9.30 a.m. Monday 14 November 2016 Credits: Four Achievement Achievement with Merit Achievement with

More information

Motor Tuning Instructions

Motor Tuning Instructions 6/20/12 Motor Tuning Instructions Before you begin tuning: 1. Make sure Pro-Motion is installed. 2. Hook up motor drive, motor, and computer. - Connect motor drive to computer using a USB to Serial Com

More information

AR2000 Rheometer: Instructions

AR2000 Rheometer: Instructions AR2000 Rheometer: Instructions Instrument Setup Note: The order in which the things are powered on is very important! 1. Check to make sure the Smart Swap cable is connected to the machine. 2. Make sure

More information

Using Advanced Limit Line Features

Using Advanced Limit Line Features Application Note Using Advanced Limit Line Features MS2717B, MS2718B, MS2719B, MS2723B, MS2724B, MS2034A, MS2036A, and MT8222A Economy Microwave Spectrum Analyzer, Spectrum Master, and BTS Master The limit

More information

Cane Creek Double Barrel Instructions

Cane Creek Double Barrel Instructions Cane Creek Double Barrel Instructions Congratulations on your purchase of the Cane Creek Double Barrel rear shock. Developed in partnership with Öhlins Racing, the Double Barrel brings revolutionary suspension

More information

Plug Uino Kit for Dynamics and the Speed of Sound

Plug Uino Kit for Dynamics and the Speed of Sound Plug Uino Kit for Dynamics and the Speed of Sound Rails Ref. 002 159 Cart Ref. 002 158 Loads for Cart Ref. 002 164 Propulsion Unit/Impact Recorder Ref. 002 162 Support with Valve for balloon propulsion

More information

Distance: ±2000mm 1 Eden Court, Leighton Buzzard,

Distance: ±2000mm 1 Eden Court, Leighton Buzzard, Smart Rotary Motion (Product No 3280) Ranges: Angular position: 0-360 degrees Resolution: 0.1 degree Angular velocity (revs.): ±4 revolutions per second Resolution: 0.01 rev. Angular velocity (rads.):

More information

PocketLab Sensor Front Side. Back Side. Protective Case

PocketLab Sensor Front Side. Back Side. Protective Case For the specific guide for our operating sstem and more detailed instructions, visit the User s Guide page at thepocketlab.com Attachment loop Back Side Remove back cover to replace batter when needed

More information

Experimental Investigation of Effects of Shock Absorber Mounting Angle on Damping Characterstics

Experimental Investigation of Effects of Shock Absorber Mounting Angle on Damping Characterstics Experimental Investigation of Effects of Shock Absorber Mounting Angle on Damping Characterstics Tanmay P. Dobhada Tushar S. Dhaspatil Prof. S S Hirmukhe Mauli P. Khapale Abstract: A shock absorber is

More information

Angular Momentum Problems Challenge Problems

Angular Momentum Problems Challenge Problems Angular Momentum Problems Challenge Problems Problem 1: Toy Locomotive A toy locomotive of mass m L runs on a horizontal circular track of radius R and total mass m T. The track forms the rim of an otherwise

More information

Dual Axis Magnetic Field (Axial and Radial) Sensor

Dual Axis Magnetic Field (Axial and Radial) Sensor Dual Axis Magnetic Field (Axial and Radial) Sensor DT036 Introduction The Dual Axis Magnetic Sensor facile the measurements of the components of the magnetic field, and demonstrating to the students the

More information

Introduction to 3D Printing

Introduction to 3D Printing TAKE HOME LABS OKLAHOMA STATE UNIVERSITY Introduction to 3D Printing by Sean Hendrix 1 OBJECTIVE The objective of this experiment is to introduce you to 3D printing, by having you print some simple parts

More information

1) Introduction to wind power

1) Introduction to wind power 1) Introduction to wind power Introduction With this first experiment you should get in touch to the experiment equipment and learn how to use it. The sound level of the buzzer will show you how much power

More information

DISSECTION OF AN INTERNAL COMBUSTION ENGINE

DISSECTION OF AN INTERNAL COMBUSTION ENGINE DISSECTION OF AN INTERNAL COMBUSTION ENGINE Purpose: The purpose of this dissection is to familiarize you with the construction and operation of a Briggs & Stratton model 80232 one cylinder, four-stroke,

More information

Redox Potentials and the Lead Acid Cell Minneapolis Community and Tech. College v I. Introduction. Part I

Redox Potentials and the Lead Acid Cell Minneapolis Community and Tech. College v I. Introduction. Part I Redox Potentials and the Lead Acid Cell Minneapolis Community and Tech. College v.11.12 I. Introduction Part I In these experiments you will first determine the reduction potentials of a series of five

More information

Exam Review. 1. The graph below represents the relationship between velocity and time of travel for a toy car moving in a straight line.

Exam Review. 1. The graph below represents the relationship between velocity and time of travel for a toy car moving in a straight line. Graphing Motion Exam Review 1. The graph below represents the relationship between velocity and time of travel for a toy car moving in a straight line. Student 4. The graph represents the motion of a cart.

More information

Voltage and Current in Simple Circuits (Voltage Sensor, Current Sensor)

Voltage and Current in Simple Circuits (Voltage Sensor, Current Sensor) 68 Voltage and Current in Simple Circuits (Voltage Sensor, Current Sensor) E&M: Voltage and current Equipment List DataStudio file: 68 Simple Circuits.ds Qty Items Part Numbers 1 PASCO interface (for two

More information

Electric Drives Experiment 3 Experimental Characterization of a DC Motor s Mechanical Parameters and its Torque-Speed Behavior

Electric Drives Experiment 3 Experimental Characterization of a DC Motor s Mechanical Parameters and its Torque-Speed Behavior Electric Drives Experiment 3 Experimental Characterization of a DC Motor s Mechanical Parameters and its Torque-Speed Behavior 3.1 Objective The objective of this activity is to experimentally measure

More information