Theory of Machines II EngM323 Laboratory User's manual Version I

Size: px
Start display at page:

Download "Theory of Machines II EngM323 Laboratory User's manual Version I"

Transcription

1 Theory of Machines II EngM323 Laboratory User's manual Version I Table of Contents Experiment /Test No.(1)... 2 Experiment /Test No.(2)... 6 Experiment /Test No.(3) EngM323 Theory of Machines II Instructor: Dr. Nada A. A. Page 1

2 Title: Gear Train Test Description: Experiment /Test No.(1) Experiment/Test Description In the following experiments the speed ratio is the subject being studied. Nevertheless some account will be taken of the direction of rotation as this can be changed independently of the speed ratio. Test Objectives: There are two main purposes for using a train of gears. The most important is to establish a speed ratio between two rotating shafts: the other is to transfer rotation from one axis to another with or without a change in the direction of rotation (that is clockwise or anticlockwise) Only simple spur gears will be used, although an introduction to the principles of epicyclic gear trains is included in an, elementary form. Hence there are several aspects of the application of gears and gear trains to be learned by doing this experiment.. Theoretical Background: - Gear train (Lecture) - Compound gears (Lecture) - Epicyclic gear train (Lecture) Equipment and tools: Experiment/Test Activities - The unit comes fully assembled with the spares (spare pin for compound gears and spare spacer on rear gear pin) situated onto the unit itself. No further assembly work is required other than preparing the unit for the first experiment. Gear train apparatus EngM323 Theory of Machines II Instructor: Dr. Nada A. A. Page 2

3 - A pivoted arm mounted on a horizontal base carries three movable gear pins on which four interchangeable spur gears can be arranged. All gears can be pinned together in order to assemble a compound gear train using the small pins supplied. - The pivoting arm can be locked in position for gear train work using the locking device at the non rotating end of the arm. Alternatively it can be rotated about its pivot to simulate the planet arm of an epicyclic gear system. The spur gears have 40, 60, 80 and 100 teeth and a module of 1. - The arm has a series of threaded holes into which each gear pin mounts. The series of holes allows many ratios to be made up from the gears supplied. All gears and gear pins have been checked for free running when fixed to the arm, but a light drop of oil from time to time will ensure continuous free running. - 3 spacer blocks are provided to ensure all gears mesh at the correct height when running in a compound gear train arrangement. A spare spacer and joining pin are supplied. At the rear of the base is a locating pin with wing nut for securing any spare gears and spacers when not being used. Test Procedure: There are two separate experiments to be performed on this apparatus, one on gear trains and the other an introduction to epicyclic gears. 1. Simple gear trains Simple gear trains - Assemble a two wheel gear train with the 80 tooth wheel as the driver: on the fixed pivot as shown in the image above. - Ensure the arm is in its locked position. Add the 40 tooth gear as the 'driven follower' so that it meshes with the driver gear. - A spacer will be required on top of both gears as shown. Mark the teeth of both gears at the point where they mesh using a pencil. - Turn the driver through one revolution clockwise (+ve) and note how many full revolutions (and parts of a revolution) the driven follower wheel completes. - As an alternative keep turning the driver through enough complete revolutions for the two marks to come together again, and note the corresponding number of complete turns of the driven wheel. - Record the direction in which the driven follower wheel rotates. EngM323 Theory of Machines II Instructor: Dr. Nada A. A. Page 3

4 - Repeat the above procedure using the 60 and 100 tooth gear wheels, in turn, as the driven followers. Three wheel gear train - Next assemble a three wheel gear train as in the image above with the 80 tooth as the driver and the 60 tooth wheel at the end of the train and the 40 tooth in the middle of the two (idler). Spacers will be required on top of all" gears as shown above. - Note the initial positions of marks on the driver and final wheel of the train, and then determine the turns ratio by rotating the driver 1 revolution clockwise (+ve). Also note the direction of rotation of the final wheel when the driver turns clockwise. Repeat the above procedure with the 100 tooth gear as the 'final'. 2. Compound gear trains Compound gear trains - Position the 100 tooth gear as the driver with a spacer on top of it. Join the 40 and 60 tooth gears using the small pins supplied, to create a compound gear, with the 40 tooth gear uppermost and the 6Otooth gear lowermost and meshing with the 100tooth driver. - Add the 80 tooth gear so that it meshes with the 4Otooth gear. A spacer underneath the 80 tooth gear will be required. EngM323 Theory of Machines II Instructor: Dr. Nada A. A. Page 4

5 Test Results: Compare the experimental results with the theoretical predictions For the three gears train, The compound gear train is resolved in a similar manner. Let the first driver and follower be designated A and B, and the second set C and D. Then Conclusion: - Comments:. EngM323 Theory of Machines II Instructor: Dr. Nada A. A. Page 5

6 Experiment /Test No.(2) Title: CAM AND FOLLOWER SPECIFICATIONS Test Description: Experiment/Test Description A vertical stem attached to an aluminum base plate has a fixed spigot on which the reamed hole in each cam is mounted while the cam is turned by hand. The fixed spigot for the cams is at the centre of a circular protractor numbered 0 to 360 both clockwise and anti-clockwise. Above the cam is a guided push rod at the bottom of which the various designs of follower are attached. At the top of the push rod a 50 mm travel dial gauge is located into the side of the grooved extrusion so that the initial reading of the dial gauge can be pre-set. To the left of the vertical stem is a mounting containing a protractor bracket with a 100 mm long lever to hold the roller follower on the cam. Each cam has a second hole, which enables a pointer assembly to be temporarily attached to it. The assembly carries a pointer to indicate the cam rotation on the circular protractor. Test Objectives: - Determine the follower displacement against angular rotation of a cam. - Drive the velocity and acceleration diagrams - Study of uniform motion cam with a roller follower. - Comparison of a roller follower and lever roller follower on a tangent cam - Comparison of a range of followers on an eccentric circular cam - Comparison of SHM and constant acceleration cams with a roller follower Theoretical Background: - CAM design, UA, (Lecture) - CAM design, SHM, (Lecture) - CAM design, UV, (Lecture) Experiment/Test Activities Equipment and tools: Equipment of the experiment: - Extruded base and vertical pillar - SHM, UV, UA cams - followers include roller, knife edge, offset - Angular protractor graduated from 0 to 360 deg. in 1deg increments - Dial gauge with 50 mm travel, 0.01 mm resolution EngM323 Theory of Machines II Instructor: Dr. Nada A. A. Page 6

7 Test Procedure: Experiment set-up 1. Mount the pointer on the tangent cam at the small end and fit the two parts on the fixed spigot while lifting the roller follower out of the way. Set the pointer to zero on the protractor. Adjust the position of the dial gauge to give a reading of 1.00 (for a final fine adjustment use the movable scale of the dial gauge). 2. Rotate the cam clockwise by 150 increments up to 1200 taking readings of the push rod displacement at each position. Then take readings every 5 of rotation up to 240. Finally revert to 15 increments to complete one revolution of the cam. 3. Remove the roller follower :from the push rod and lift the rod up to lodge it on the bottom guide. Fix the lever follower in position and attach the roller to the threaded hole at the end of the lever. With the cam stationed at 0 rest the roller on the edge of the cam and zero the pointer on the lever rotation scale. Note whether the roller is exactly in line with 0 o on the cam or not as this will affect the symmetry of the readings. 4. Rotate the cam for one revolution by 15 increments, reading the angular displacement of the lever at each step. Test Results: - Plot the push rod displacement against the cam rotation on a full scale graph. If the lever roller follower was used plot the angular displacement on the same graph (the scale used for mm can be used for degrees). - Draw what appear to be good curves through the points. Bear in mind that the lever rotation is a crude measurement (perhaps to 0.25 o ) compared with the dial gauge readings. EngM323 Theory of Machines II Instructor: Dr. Nada A. A. Page 7

8 Recording the displacement of the follower EngM323 Theory of Machines II Instructor: Dr. Nada A. A. Page 8

9 SHM - CAM - If it is required to study the velocity and acceleration of the push rod there are two methods both entailing a lot of calculation. Assuming the cam was being driven at a constant speed then it follows that the cam rotation scale is also time to some scale. Hence the velocity of the push rod is the gradient of the plotted graph. A crude estimate might be made by drawing tangents to the graph curve at various points to permit a velocity against rotation (time) graph to be constructed. The exercise would then have to be repeated to obtain an acceleration graph which would obviously be very approximate. Alternatively use could be made of first differences between the displacement readings whereby EngM323 Theory of Machines II Instructor: Dr. Nada A. A. Page 9

10 Uniform Velocity CAM EngM323 Theory of Machines II Instructor: Dr. Nada A. A. Page 10

11 Conclusion: Uniform Acceleration CAM - CAM profiles can be experimentally verified, more accurate profiles can be obtained using fine recording resolution. Comments: One disadvantage experimentally is that friction in bearings may affect displacement, force and energy measurements. The other is that large changes in dimension (geometry) of models must be accommodated if possible. Results can be improved by using stiffer models and larger loads, but this reduces visual effects such as curvature of beams and may make the experiment less manageable. EngM323 Theory of Machines II Instructor: Dr. Nada A. A. Page 11

12 Title: Dynamic Balancing Test Description: Experiment /Test No.(3) Experiment/Test Description The experiment model enables to reproduce, visualize, analyze and measure vibration phenomena linked to unbalanced wheels, all whilst simulating the functioning of a balancing machine. Test Objectives: - Training the students to calculate the unbalancing of rotating masses. - Practice the students to record the measured strain data, in order to identify the vibration resulting from rotating masses. - Balance unbalanced system of rotating masses in different planes. Theoretical Background: - Balancing of rotating masses in single plane (Lecture) - Balancing of rotating masses in multi-plane (Lecture) - calculating the force and moment balance (Lecture) Equipment and tools: Experiment/Test Activities A rotor assembly, made up of a shaft and four platforms, mounted on a flexible connection with the support manually rotated. One-off loads can be fixed on these platforms in order to unbalance or rebalance the system. More other different non-balanced parts can be fixed on the rotor in place of the first platform. Principal diagram of the model EngM323 Theory of Machines II Instructor: Dr. Nada A. A. Page 12

13 Shaft : length between shaft bearings: L = 180 mm weight = 0.65 kg Platforms: Experiment set-up Platforms : PI and P4 are identical, so are P2 and P3. The platforms P2 and P3 consist of an interior rim on which balanced weights can be stuck on. Diameter : 180 mm Thickness: 10 mm Weight : PI and P4 : 660 g P2 and P3 : 780 g Platform position (data by their y-axes marked (O,X,Y,Z) : PI : YI = -240 mm P2 : Y2 = -160 mm P3 : Y3 = 160 mm P4 : Y4 = 240 mm Position of weight fastening holes : r = 80 mm r' = 40mm Sticking radius for weights on P2 and P3 : R = 90 mm Test Procedure: - The base plate of the experimental bench has 4 drilled holes so it can be fixed onto a support or on the ground. This support can be a wooden housing filled with sand or with another material to give it a substantial weight. If the experimental bench is not withheld by a fixed and very rigid support, it is possible that the sensors will measure the deplacements (interfering vibrations) not caused by the system studied. Wrong measurements lead to false calculations and no reasoning can then be applied to the experiments carried out. EngM323 Theory of Machines II Instructor: Dr. Nada A. A. Page 13

14 - install the software "Instacal" by running the setup.exe file situate in the folder 'Acquisition card.' It is possible that at the end of the software installation you have to reboot your computer. - To run the program Instacal program from the menu Start / Program / Measurement Computing - Connect the flex linked to the bench at the subd15 terminal 'SENSOR IN' on the EX175 unit. - Connect the EX175 unit (sub D9 terminal 'ANALOG OUT') to the PCI-DAS08 card, in the PC, using the subd9- subd37 cable. - Use the 2 remaining subd9-subd9 and subd15-subd15 cables to connect to the EX175 unit at the EI616 strain gauge testing drive. - Place a bob weight on the same platform and in the same position as for the simulation using the VIBROTOR software: Platform P3 Weight 30g, Position: r = 80cm, a =0 - Click on 'Excitation of the resultant type -Weaken the spring blades by exerting a force equally spaced on the two shaft bearings. -Allow the rotor and shaft assembly to vibrate Test Results: The software interface should like as, SIMULATION FROM VIBROTOR SOFTWARE -Start the acquisition (Button 'start acquisition'), The movement of the shaft bearings is shown in actual time on the screen. EngM323 Theory of Machines II Instructor: Dr. Nada A. A. Page 14

15 Measured vibration Also the rotation speed is shown in the momentary zone. Stabilization must be carried out at a speed higher than about 100 t/min at the measuring speed in order to obtain a good measurement. the Speed at which the measurement is released is given in the measurement zone. Once the measurement has been done (during the measurement around 180 ms), the screen shows the maximum amplitude measured in Newtons for each channel (load on the shaft bearing A and B), as well as the phase difference associated with 'zero' platforms. Conclusion: The graph shows the variation of the horizontal load component for the shaft bearing A and B, as well as the curve 'toptour', the corresponding peak from zero of the platform. The phase difference shown for the shaft bearings A and B is calculated from the 'blip', phase difference 0, the value from the signal period is equal to the time passed between the two blips. Comments: EngM323 Theory of Machines II Instructor: Dr. Nada A. A. Page 15

IIJIID~(i1lJ INSTRUCTION MANUAL ~~ [~ ~ ~.1. [~ Gear Trains Apparatus HTM.25

IIJIID~(i1lJ INSTRUCTION MANUAL ~~ [~ ~ ~.1. [~ Gear Trains Apparatus HTM.25 IIJIID~(i1lJ ~~ [~ ~ ~.1. [~ INSTRUCTION MANUAL HTM.25 Gear Trains Apparatus Gear Trains INTRODUCTION There are two main purposes for using a train of gears. The most important is to establish a speed

More information

DYNAMICS LABORATORY. AIM: To apply the knowledge gained in kinematics and dynamics of machines to real system.

DYNAMICS LABORATORY. AIM: To apply the knowledge gained in kinematics and dynamics of machines to real system. DYNAMICS LABORATORY AIM: To apply the knowledge gained in kinematics and dynamics of machines to real system. OBJECTIVES: To supplement the principles learnt in kinematics and Dynamics of Machinery. To

More information

St.MARTIN S ENGINEERING COLLEGE Dhulapally, Secunderabad

St.MARTIN S ENGINEERING COLLEGE Dhulapally, Secunderabad St.MARTIN S ENGINEERING COLLEGE Dhulapally, Secunderabad-500 014 Subject: Kinematics of Machines Class : MECH-II Group A (Short Answer Questions) UNIT-I 1 Define link, kinematic pair. 2 Define mechanism

More information

1. (a) Discuss various types of Kinematic links with examples. (b) Explain different types of constrained motions with examples.

1. (a) Discuss various types of Kinematic links with examples. (b) Explain different types of constrained motions with examples. Code No: RR310304 Set No. 1 III B.Tech I Semester Supplementary Examinations, February 2007 KINEMATICS OF MACHINERY ( Common to Mechanical Engineering, Mechatronics and Production Engineering) Time: 3

More information

ME6401 KINEMATICS OF MACHINERY UNIT- I (Basics of Mechanism)

ME6401 KINEMATICS OF MACHINERY UNIT- I (Basics of Mechanism) ME6401 KINEMATICS OF MACHINERY UNIT- I (Basics of Mechanism) 1) Define resistant body. 2) Define Link or Element 3) Differentiate Machine and Structure 4) Define Kinematic Pair. 5) Define Kinematic Chain.

More information

Moments. It doesn t fall because of the presence of a counter balance weight on the right-hand side. The boom is therefore balanced.

Moments. It doesn t fall because of the presence of a counter balance weight on the right-hand side. The boom is therefore balanced. Moments The crane in the image below looks unstable, as though it should topple over. There appears to be too much of the boom on the left-hand side of the tower. It doesn t fall because of the presence

More information

Vibration Fundamentals Training System Hands-On Turnkey System for Teaching Vibration Fundamentals

Vibration Fundamentals Training System Hands-On Turnkey System for Teaching Vibration Fundamentals Vibration Fundamentals Training System Hands-On Turnkey System for Teaching Vibration Fundamentals www.haopute.com email:info@haopute.com phone:02884625157 mobile:18982185717 An Ideal Tool for Optimizing

More information

Code No: R Set No. 1

Code No: R Set No. 1 Code No: R05310304 Set No. 1 III B.Tech I Semester Regular Examinations, November 2007 KINEMATICS OF MACHINERY ( Common to Mechanical Engineering, Mechatronics, Production Engineering and Automobile Engineering)

More information

Code No: R Set No. 1

Code No: R Set No. 1 Code No: R05222106 Set No. 1 II B.Tech II Semester Supplimentary Examinations, Aug/Sep 2007 MECHANISMS AND MECHANICAL DESIGN (Aeronautical Engineering) Time: 3 hours Max Marks: 80 Answer any FIVE Questions

More information

FIRSTRANKER. 2. (a) Distinguish (by neat sketches) betweenpeaucellier mechanism and Hart mechanism.

FIRSTRANKER. 2. (a) Distinguish (by neat sketches) betweenpeaucellier mechanism and Hart mechanism. Code No: 07A51404 R07 Set No. 2 IIIB.Tech I Semester Examinations,May 2011 KINEMATICS OF MACHINERY Mechatronics Time: 3 hours Max Marks: 80 Answer any FIVE Questions All Questions carry equal marks 1.

More information

Department of Mechanical Engineering University of Engineering & Technology Lahore(KSK Campus).

Department of Mechanical Engineering University of Engineering & Technology Lahore(KSK Campus). Department of Mechanical Engineering University of Engineering & Technology Lahore(KSK Campus). LAB DATA Lab Incharge: Engr. Muhammad Amjad Lab Assistant: Abbas Ali Lay-Out of Mechanics of Machines Lab

More information

12/25/2015. Chapter 20. Cams. Mohammad Suliman Abuhiba, Ph.D., PE

12/25/2015. Chapter 20. Cams. Mohammad Suliman Abuhiba, Ph.D., PE Chapter 20 Cams 1 2 Introduction A cam: a rotating machine element which gives reciprocating or oscillating motion to another element (follower) Cam & follower have a line constitute a higher pair. of

More information

KINEMATICS OF MACHINARY UBMC302 QUESTION BANK UNIT-I BASICS OF MECHANISMS PART-A

KINEMATICS OF MACHINARY UBMC302 QUESTION BANK UNIT-I BASICS OF MECHANISMS PART-A KINEMATICS OF MACHINARY UBMC302 QUESTION BANK UNIT-I BASICS OF MECHANISMS PART-A 1. Define the term Kinematic link. 2. Classify kinematic links. 3. What is Mechanism? 4. Define the terms Kinematic pair.

More information

11/23/2013. Chapter 13. Gear Trains. Dr. Mohammad Suliman Abuhiba, PE

11/23/2013. Chapter 13. Gear Trains. Dr. Mohammad Suliman Abuhiba, PE Chapter 13 Gear Trains 1 2 13.2. Types of Gear Trains 1. Simple gear train 2. Compound gear train 3. Reverted gear train 4. Epicyclic gear train: axes of shafts on which the gears are mounted may move

More information

didactecsanderson Mechanical & Automotive mechanisms MAM Mechanical Engineering Laboratory Apparatus Mechanical Engineering Laboratory Apparatus

didactecsanderson Mechanical & Automotive mechanisms MAM Mechanical Engineering Laboratory Apparatus Mechanical Engineering Laboratory Apparatus 2-YRWARRANTYONALLARMFIELDPRODUCTS DISCOVER WITH didactec Sanderson Mechanical Engineering Laboratory Apparatus Mechanical & Automotive mechanisms MAM Mechanical Mechanisms Automotive Mechanisms Theory

More information

STATIC AND DYNAMICS. Two Year Warranty

STATIC AND DYNAMICS. Two Year Warranty FORCES HI-TECH Education is a market leader in the manufacture and provision of teaching equipment for Universities and Technical Colleges worldwide for both degree and vocational level. It has been designing

More information

VALLIAMMAI ENGINEERING COLLEGE DEPARTMENT OF MECHANICAL ENGINEERING ME6401- KINEMATICS OF MACHINERY QUESTION BANK PART-A Unit 1-BASICS OF MECHANISMS 1. Define degrees of freedom. BT1 2. Describe spatial

More information

Lesson 8: A Compound Spur Gear Train

Lesson 8: A Compound Spur Gear Train Lesson 8: A Compound Spur Gear Train Goal: -Create Assembly -Create Proper Gear Mates -Create Motion Study -Graph Angular velocity of Output Gear MAKE SURE YOU ARE IN MILLIMETERS FOR THIS EXERCISE Creating

More information

TE 73 TWO ROLLER MACHINE

TE 73 TWO ROLLER MACHINE TE 73 TWO ROLLER MACHINE Background The TE 73 family of machines dates back to original Plint and Partners Ltd designs from the 1960s. These machines are all to the overhung roller design in which test

More information

DEPARTMENT OF MECHANICAL ENGINEERING ME6401- KINEMATICS OF MACHINERY QUESTION BANK Part-A Unit 1-BASICS OF MECHANISMS 1. Define degrees of freedom. 2. What is meant by spatial mechanism? 3. Classify the

More information

MAGNETIC EFFECTS ON AND DUE TO CURRENT-CARRYING WIRES

MAGNETIC EFFECTS ON AND DUE TO CURRENT-CARRYING WIRES 22 January 2013 1 2013_phys230_expt3.doc MAGNETIC EFFECTS ON AND DUE TO CURRENT-CARRYING WIRES OBJECTS To study the force exerted on a current-carrying wire in a magnetic field; To measure the magnetic

More information

Faraday's Law of Induction

Faraday's Law of Induction Induction EX-9914 Page 1 of 6 EQUIPMENT Faraday's Law of Induction INCLUDED: 1 Induction Wand EM-8099 1 Variable Gap Lab Magnet EM-8641 1 Large Rod Stand ME-8735 2 45 cm Long Steel Rod ME-8736 1 Multi

More information

CHAP: MACHINES Q: 1. Q: 1(Numerical) Answer Total length of crowbar =120 cm Load arm =20 cm Effort arm = =100 cm Q: 2

CHAP: MACHINES Q: 1. Q: 1(Numerical) Answer Total length of crowbar =120 cm Load arm =20 cm Effort arm = =100 cm Q: 2 CHAP: MACHINES Ex: 3A Q: 1 A machine is a device by which we can either overcome a large resistive force at some point by applying a small force at a convenient point and in a desired direction or by which

More information

Faraday's Law of Induction

Faraday's Law of Induction Purpose Theory Faraday's Law of Induction a. To investigate the emf induced in a coil that is swinging through a magnetic field; b. To investigate the energy conversion from mechanical energy to electrical

More information

Lab #3 - Slider-Crank Lab

Lab #3 - Slider-Crank Lab Lab #3 - Slider-Crank Lab Revised March 19, 2012 INTRODUCTION In this lab we look at the kinematics of some mechanisms which convert rotary motion into oscillating linear motion and vice-versa. In kinematics

More information

CHENDU COLLEGE OF ENGINEERING & TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK IV SEMESTER

CHENDU COLLEGE OF ENGINEERING & TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK IV SEMESTER CHENDU COLLEGE OF ENGINEERING & TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK IV SEMESTER Sub Code: ME 6401 KINEMATICS OF MACHINERY UNIT-I PART-A 1. Sketch and define Transmission angle

More information

Theory of Machines. CH-1: Fundamentals and type of Mechanisms

Theory of Machines. CH-1: Fundamentals and type of Mechanisms CH-1: Fundamentals and type of Mechanisms 1. Define kinematic link and kinematic chain. 2. Enlist the types of constrained motion. Draw a label sketch of any one. 3. Define (1) Mechanism (2) Inversion

More information

Instantaneous Centre Method

Instantaneous Centre Method Instantaneous Centre Method The combined motion of rotation and translation of the link AB may be assumed to be a motion of pure rotation about some centre I, known as the instantaneous centre of rotation.

More information

Universal Vibration Apparatus

Universal Vibration Apparatus Universal Vibration Apparatus HVT12 Modular design means additional options can be acquired as and when budgets permit Uses non-contacting devices - LVDT and a proximity sensor to minimise unnecessary

More information

Dynamics of Machines. Prof. Amitabha Ghosh. Department of Mechanical Engineering. Indian Institute of Technology, Kanpur. Module No.

Dynamics of Machines. Prof. Amitabha Ghosh. Department of Mechanical Engineering. Indian Institute of Technology, Kanpur. Module No. Dynamics of Machines Prof. Amitabha Ghosh Department of Mechanical Engineering Indian Institute of Technology, Kanpur Module No. # 05 Lecture No. # 01 V & Radial Engine Balancing In the last session, you

More information

R10 Set No: 1 ''' ' '' '' '' Code No: R31033

R10 Set No: 1 ''' ' '' '' '' Code No: R31033 R10 Set No: 1 III B.Tech. I Semester Regular and Supplementary Examinations, December - 2013 DYNAMICS OF MACHINERY (Common to Mechanical Engineering and Automobile Engineering) Time: 3 Hours Max Marks:

More information

What are the functions of gears? What is gear?

What are the functions of gears? What is gear? 8//0 hapter seven Laith atarseh are very important in power transmission between a drive rotor and driven rotor What are the functions of gears? - Transmit motion and torque (power) between shafts - Maintain

More information

L15 Dynamics & Vibration Laboratory

L15 Dynamics & Vibration Laboratory LABORATORY PLANNING GUIDE L15 Dynamics & Vibration Laboratory Content Covered subjects according to the curriculum... 2 Main concept... 3 Initial training provided for laboratory personnel... 3 Requirements

More information

Hours / 100 Marks Seat No.

Hours / 100 Marks Seat No. 17412 16117 3 Hours / 100 Seat No. Instructions (1) All Questions are Compulsory. (2) Answer each next main Question on a new page. (3) Illustrate your answers with neat sketches wherever necessary. (4)

More information

INSTRUCTION MANUAL HFN.15. Slipping Friction Apparatus

INSTRUCTION MANUAL HFN.15. Slipping Friction Apparatus INSTRUCTION MANUAL HFN.15 Slipping Friction Apparatus INTRODUCTION The study of friction has to take account of two different circumstances, namely the static case and the sliding or slipping situation.

More information

Driven Damped Harmonic Oscillations

Driven Damped Harmonic Oscillations Driven Damped Harmonic Oscillations Page 1 of 8 EQUIPMENT Driven Damped Harmonic Oscillations 2 Rotary Motion Sensors CI-6538 1 Mechanical Oscillator/Driver ME-8750 1 Chaos Accessory CI-6689A 1 Large Rod

More information

2. a) What is pantograph? What are its uses? b) Prove that the peaucellier mechanism generates a straight-line motion. (5M+10M)

2. a) What is pantograph? What are its uses? b) Prove that the peaucellier mechanism generates a straight-line motion. (5M+10M) Code No: R22032 R10 SET - 1 1. a) Define the following terms? i) Link ii) Kinematic pair iii) Degrees of freedom b) What are the inversions of double slider crank chain? Describe any two with neat sketches.

More information

TYPICAL EXPERIMENTS Centers of gravity. Force triangle. Force polygon and Bow s Notation. Non- concurrent forces.

TYPICAL EXPERIMENTS Centers of gravity. Force triangle. Force polygon and Bow s Notation. Non- concurrent forces. MM 500-001 BASIC PANEL The panel is made from a perforated stainless steel sheet mounted on two supports with adjustable footings. The panel can be tilted, put in portrait or landscape position. Accessories

More information

CONTRIBUTION TO THE CINEMATIC AND DYNAMIC STUDIES OF HYDRAULIC RADIAL PISTON MOTORS.

CONTRIBUTION TO THE CINEMATIC AND DYNAMIC STUDIES OF HYDRAULIC RADIAL PISTON MOTORS. Ing. MIRCEA-TRAIAN CHIMA CONTRIBUTION TO THE CINEMATIC AND DYNAMIC STUDIES OF HYDRAULIC RADIAL PISTON MOTORS. PhD Thesis Abstract Advisor, Prof. dr. ing. matem. Nicolae URSU-FISCHER D.H.C. Cluj-Napoca

More information

QuickStick Repeatability Analysis

QuickStick Repeatability Analysis QuickStick Repeatability Analysis Purpose This application note presents the variables that can affect the repeatability of positioning using a QuickStick system. Introduction Repeatability and accuracy

More information

Part VII: Gear Systems: Analysis

Part VII: Gear Systems: Analysis Part VII: Gear Systems: Analysis This section will review standard gear systems and will provide the basic tools to perform analysis on these systems. The areas covered in this section are: 1) Gears 101:

More information

DEPARTMENT OF MECHANICAL ENGINEERING Subject code: ME6601 Subject Name: DESIGN OF TRANSMISSION SYSTEMS UNIT-I DESIGN OF TRANSMISSION SYSTEMS FOR FLEXIBLE ELEMENTS 1. What is the effect of centre distance

More information

Mechanics and Mechanisms. What is do you think about when you hear the word mechanics? Mechanics. Is this a mechanism? 2/17/2011

Mechanics and Mechanisms. What is do you think about when you hear the word mechanics? Mechanics. Is this a mechanism? 2/17/2011 Mechanics and Mechanisms What is do you think about when you hear the word mechanics? Mechanics Mechanics is the study of how things move Is this a mechanism? Concerned with creating useful movement through

More information

Introduction. Kinematics and Dynamics of Machines. Involute profile. 7. Gears

Introduction. Kinematics and Dynamics of Machines. Involute profile. 7. Gears Introduction The kinematic function of gears is to transfer rotational motion from one shaft to another Kinematics and Dynamics of Machines 7. Gears Since these shafts may be parallel, perpendicular, or

More information

Small Tool Instruments and Data Management

Small Tool Instruments and Data Management Small Tool Instruments and Data Management Digital Micrometers Pages 28 34 Analogue Micrometers Pages 35 42 Special Version Micrometers Pages 43 63 External screw type micrometers accessories Pages 65

More information

Q1. Figure 1 shows a straight wire passing through a piece of card.

Q1. Figure 1 shows a straight wire passing through a piece of card. THE MOTOR EFFECT Q1. Figure 1 shows a straight wire passing through a piece of card. A current (I) is passing down through the wire. Figure 1 (a) Describe how you could show that a magnetic field has been

More information

(POWER TRANSMISSION Methods)

(POWER TRANSMISSION Methods) UNIT-5 (POWER TRANSMISSION Methods) It is a method by which you can transfer cyclic motion from one place to another or one pulley to another pulley. The ways by which we can transfer cyclic motion are:-

More information

Angular Momentum Problems Challenge Problems

Angular Momentum Problems Challenge Problems Angular Momentum Problems Challenge Problems Problem 1: Toy Locomotive A toy locomotive of mass m L runs on a horizontal circular track of radius R and total mass m T. The track forms the rim of an otherwise

More information

Transmission Error in Screw Compressor Rotors

Transmission Error in Screw Compressor Rotors Purdue University Purdue e-pubs International Compressor Engineering Conference School of Mechanical Engineering 2008 Transmission Error in Screw Compressor Rotors Jack Sauls Trane Follow this and additional

More information

Newton s 2 nd Law Activity

Newton s 2 nd Law Activity Newton s 2 nd Law Activity Purpose Students will begin exploring the reason the tension of a string connecting a hanging mass to an object will be different depending on whether the object is stationary

More information

Analysis and control of vehicle steering wheel angular vibrations

Analysis and control of vehicle steering wheel angular vibrations Analysis and control of vehicle steering wheel angular vibrations T. LANDREAU - V. GILLET Auto Chassis International Chassis Engineering Department Summary : The steering wheel vibration is analyzed through

More information

CH#13 Gears-General. Drive and Driven Gears 3/13/2018

CH#13 Gears-General. Drive and Driven Gears 3/13/2018 CH#13 Gears-General A toothed wheel that engages another toothed mechanism in order to change the speed or direction of transmitted motion The gear set transmits rotary motion and force. Gears are used

More information

ANTI-BACKLASH GEAR TRAIN INVESTIGATION. Zengxin Gao, Jani Tähtinen

ANTI-BACKLASH GEAR TRAIN INVESTIGATION. Zengxin Gao, Jani Tähtinen Zengxin Gao, Jani Tähtinen Wärtsilä Finland Oy Järvikatu 2-4, P.O. Box 244 FI-65101 Vaasa zengxin.gao@wartsila.com jani.tahtinen@wartsila.com 1 INTRODUCTION This paper is a continuation of study on Wärtsilä

More information

Hopkinsons Fig 9051 VALVE ACTUATOR

Hopkinsons Fig 9051 VALVE ACTUATOR Excellent Power & Industrial Solutions Standard Operating & Maintenance Instructions Hopkinsons Fig 9051 VALVE ACTUATOR TERMINAL BOX TERMINAL BOX COVER SPINDLE COVER SEAL BEARING HOUSING MOTOR TAPERED

More information

B.TECH III Year I Semester (R09) Regular & Supplementary Examinations November 2012 DYNAMICS OF MACHINERY

B.TECH III Year I Semester (R09) Regular & Supplementary Examinations November 2012 DYNAMICS OF MACHINERY 1 B.TECH III Year I Semester (R09) Regular & Supplementary Examinations November 2012 DYNAMICS OF MACHINERY (Mechanical Engineering) Time: 3 hours Max. Marks: 70 Answer any FIVE questions All questions

More information

PHYS 2212L - Principles of Physics Laboratory II

PHYS 2212L - Principles of Physics Laboratory II PHYS 2212L - Principles of Physics Laboratory II Laboratory Advanced Sheet Faraday's Law 1. Objectives. The objectives of this laboratory are a. to verify the dependence of the induced emf in a coil on

More information

LABORATORY MANUAL DYNAMICS OF MACHINE LAB

LABORATORY MANUAL DYNAMICS OF MACHINE LAB LABORATORY MANUAL DYNAMICS OF MACHINE LAB Sr. No Experiment Title 1 To Perform Experiment On Watt And Porter Governors To Prepare Performance Characteristic Curves, And To Find Stability & Sensitivity

More information

Chapter seven. Gears. Laith Batarseh

Chapter seven. Gears. Laith Batarseh Chapter seven Gears Laith Batarseh Gears are very important in power transmission between a drive rotor and driven rotor What are the functions of gears? - Transmit motion and torque (power) between shafts

More information

Working Model 2D Tutorial 2

Working Model 2D Tutorial 2 Working Model 2D: Tutorial 2 Example 11-10: A wheel with Diameter of 1.2m, mounted in a vertical plane, accelerates uniformly from rest at 3 rad/s 2 for five seconds, and then maintains uniform velocity

More information

Development and validation of a vibration model for a complete vehicle

Development and validation of a vibration model for a complete vehicle Development and validation of a vibration for a complete vehicle J.W.L.H. Maas DCT 27.131 External Traineeship (MW Group) Supervisors: M.Sc. O. Handrick (MW Group) Dipl.-Ing. H. Schneeweiss (MW Group)

More information

25 B43 B43.1 THE MEASUREMENT OF e/m BY THE BAINBRIDGE METHOD

25 B43 B43.1 THE MEASUREMENT OF e/m BY THE BAINBRIDGE METHOD 25 B43 B43.1 THE MEASUREMENT OF e/m BY THE BAINBRIDGE METHOD OBJECT The object of this experiment is to use the Bainbridge method to determine the electron chargeto-mass ratio. DESCRIPTION OF APPARATUS

More information

CHAPTER 6 GEARS CHAPTER LEARNING OBJECTIVES

CHAPTER 6 GEARS CHAPTER LEARNING OBJECTIVES CHAPTER 6 GEARS CHAPTER LEARNING OBJECTIVES Upon completion of this chapter, you should be able to do the following: Compare the types of gears and their advantages. Did you ever take a clock apart to

More information

Geared Systems. theory of machines TM1018. A set of products for dynamic and static experiments on geared and other drive systems

Geared Systems. theory of machines TM1018. A set of products for dynamic and static experiments on geared and other drive systems theory of machines TM1018 A set of products for dynamic and static experiments on geared and other drive systems Screenshot of the optional VDAS software For studies of velocity ratios and efficiencies

More information

MODULE- 5 : INTRODUCTION TO HYDROSTATIC UNITS (PUMPS AND MOTORS)

MODULE- 5 : INTRODUCTION TO HYDROSTATIC UNITS (PUMPS AND MOTORS) MODULE- 5 : INTRODUCTION TO HYDROSTATIC UNITS (PUMPS AND MOTORS) LECTURE- 18 : BASIC FEATURES OF SOME Hydraulic Pumps & Motors Introduction In this section we shall discuss the working principles and fundamental

More information

1) Introduction to wind power

1) Introduction to wind power 1) Introduction to wind power Introduction With this first experiment you should get in touch to the experiment equipment and learn how to use it. The sound level of the buzzer will show you how much power

More information

Heat Engines Lab 12 SAFETY

Heat Engines Lab 12 SAFETY HB 1-05-09 Heat Engines 1 Lab 12 1 i Heat Engines Lab 12 Equipment SWS, 600 ml pyrex beaker with handle for ice water, 350 ml pyrex beaker with handle for boiling water, 11x14x3 in tray, pressure sensor,

More information

Driver Driven. InputSpeed. Gears

Driver Driven. InputSpeed. Gears Gears Gears are toothed wheels designed to transmit rotary motion and power from one part of a mechanism to another. They are fitted to shafts with special devices called keys (or splines) that ensure

More information

Driving Characteristics of Cylindrical Linear Synchronous Motor. Motor. 1. Introduction. 2. Configuration of Cylindrical Linear Synchronous 1 / 5

Driving Characteristics of Cylindrical Linear Synchronous Motor. Motor. 1. Introduction. 2. Configuration of Cylindrical Linear Synchronous 1 / 5 1 / 5 SANYO DENKI TECHNICAL REPORT No.8 November-1999 General Theses Driving Characteristics of Cylindrical Linear Synchronous Motor Kazuhiro Makiuchi Satoshi Sugita Kenichi Fujisawa Yoshitomo Murayama

More information

Evaluation copy. The Magnetic Field in a Slinky. computer OBJECTIVES MATERIALS INITIAL SETUP

Evaluation copy. The Magnetic Field in a Slinky. computer OBJECTIVES MATERIALS INITIAL SETUP The Magnetic Field in a Slinky Computer 26 A solenoid is made by taking a tube and wrapping it with many turns of wire. A metal Slinky is the same shape and will serve as our solenoid. When a current passes

More information

Linear Flexible Joint Cart Plus Single Inverted Pendulum (LFJC+SIP)

Linear Flexible Joint Cart Plus Single Inverted Pendulum (LFJC+SIP) Linear Motion Servo Plants: IP01 and IP02 Linear Flexible Joint Cart Plus Single Inverted Pendulum (LFJC+SIP) User Manual Table of Contents 1. Linear Flexible Joint Cart Plus Single Inverted Pendulum System

More information

III B.Tech I Semester Supplementary Examinations, May/June

III B.Tech I Semester Supplementary Examinations, May/June Set No. 1 III B.Tech I Semester Supplementary Examinations, May/June - 2015 1 a) Derive the expression for Gyroscopic Couple? b) A disc with radius of gyration of 60mm and a mass of 4kg is mounted centrally

More information

BRCM COLLEGE OF ENGINEERING & TECHNOLOGY BAHAL, BHIWANI Practical Experiment Instructions Sheet

BRCM COLLEGE OF ENGINEERING & TECHNOLOGY BAHAL, BHIWANI Practical Experiment Instructions Sheet BRCM COLLEGE OF KOM ME- 212 F KINEMATICS OF MACHINES LAB BRANCH-ME List of Experiments : 1. To study various types of Kinematic links, pairs, chains and Mechanisms. 2. To study inversions of 4 Bar Mechanisms,

More information

Analysis of Torsional Vibration in Elliptical Gears

Analysis of Torsional Vibration in Elliptical Gears The The rd rd International Conference on on Design Engineering and Science, ICDES Pilsen, Czech Pilsen, Republic, Czech August Republic, September -, Analysis of Torsional Vibration in Elliptical Gears

More information

MODIFICATION OF SLIDER CRANK MECHANISM AND STUDY OF THE CURVES ASSOCIATED WITH IT

MODIFICATION OF SLIDER CRANK MECHANISM AND STUDY OF THE CURVES ASSOCIATED WITH IT MODIFICATION OF SLIDER CRANK MECHANISM AND STUDY OF THE CURVES ASSOCIATED WITH IT Samiron Neog 1, Deep Singh 2, Prajnyan Ballav Goswami 3 1,2,3 Student,B. Tech.,Mechanical, Dibrugarh University Institute

More information

Technology Exploration-I Curriculum Development Unit

Technology Exploration-I Curriculum Development Unit Technology Exploration-I Modu le 4: Pulleys and Gears PREPARED BY Curriculum Development Unit August 2013 Applied Technology High Schools, 2013 Module 4: Pulleys and Gears Module Objectives After the completion

More information

A dream? Dr. Jürgen Bredenbeck Tire Technology Expo, February 2012 Cologne

A dream? Dr. Jürgen Bredenbeck Tire Technology Expo, February 2012 Cologne Rolling resistance measurement on the road: A dream? Dr. Jürgen Bredenbeck Tire Technology Expo, 14.-16. February 2012 Cologne Content Motivation Introduction of the used Measurement Equipment Introduction

More information

Roehrig Engineering, Inc.

Roehrig Engineering, Inc. Roehrig Engineering, Inc. Home Contact Us Roehrig News New Products Products Software Downloads Technical Info Forums What Is a Shock Dynamometer? by Paul Haney, Sept. 9, 2004 Racers are beginning to realize

More information

NORTHERN ILLINOIS UNIVERSITY PHYSICS DEPARTMENT. Physics 211 E&M and Quantum Physics Spring Lab #6: Magnetic Fields

NORTHERN ILLINOIS UNIVERSITY PHYSICS DEPARTMENT. Physics 211 E&M and Quantum Physics Spring Lab #6: Magnetic Fields NORTHERN ILLINOIS UNIVERSITY PHYSICS DEPARTMENT Physics 211 E&M and Quantum Physics Spring 2018 Lab #6: Magnetic Fields Lab Writeup Due: Mon/Wed/Thu/Fri, March 5/7/8/9, 2018 Background Magnetic fields

More information

Simple Gears and Transmission

Simple Gears and Transmission Simple Gears and Transmission Simple Gears and Transmission page: of 4 How can transmissions be designed so that they provide the force, speed and direction required and how efficient will the design be?

More information

TM1018. Geared Systems THEORY OF MACHINES. A set of products for dynamic and static experiments on geared and other drive systems

TM1018. Geared Systems THEORY OF MACHINES. A set of products for dynamic and static experiments on geared and other drive systems Page 1 of 5 A set of products for dynamic and static experiments on geared and other drive systems Screenshot of the optional VDAS software For studies of velocity ratios and efficiencies of various geared

More information

Lab 6: Wind Turbine Generators

Lab 6: Wind Turbine Generators Lab 6: Wind Turbine Generators Name: Pre Lab Tip speed ratio: Tip speed ratio (TSR) is defined as: Ω, where Ω=angular velocity of wind, and R=radius of rotor (blade length). If the rotational speed of

More information

Sheet 1 Variable loading

Sheet 1 Variable loading Sheet 1 Variable loading 1. Estimate S e for the following materials: a. AISI 1020 CD steel. b. AISI 1080 HR steel. c. 2024 T3 aluminum. d. AISI 4340 steel heat-treated to a tensile strength of 1700 MPa.

More information

NPTEL. Mechanics of Textile Machinery - Web course. Textile Engineering. COURSE OUTLINE. Machine elements and drives

NPTEL. Mechanics of Textile Machinery - Web course. Textile Engineering.   COURSE OUTLINE. Machine elements and drives NPTEL Syllabus Mechanics of Textile Machinery - Web course COURSE OUTLINE Machine elements and drives Introduction to drives, selection of drives, primary machine elements, special purpose drives and devices

More information

Vibration Measurement and Noise Control in Planetary Gear Train

Vibration Measurement and Noise Control in Planetary Gear Train Vibration Measurement and Noise Control in Planetary Gear Train A.R.Mokate 1, R.R.Navthar 2 P.G. Student, Department of Mechanical Engineering, PDVVP COE, A. Nagar, Maharashtra, India 1 Assistance Professor,

More information

FRICTION DEVICES: DYNAMOMETER. Presented by: RONAK D. SONI Assistant Professor Parul Institute of Technology, Parul University

FRICTION DEVICES: DYNAMOMETER. Presented by: RONAK D. SONI Assistant Professor Parul Institute of Technology, Parul University FRICTION DEVICES: DYNAMOMETER Presented by: RONAK D. SONI Assistant Professor Parul Institute of Technology, Parul University DYNAMOMETER A dynamometer is a brake but in addition it has a device to measure

More information

University of TN Chattanooga Physics 1040L 8/28/2012

University of TN Chattanooga Physics 1040L 8/28/2012 PHYSICS 1040L LAB 5: MAGNETIC FIELD Objectives: 1. Determine the relationship between magnetic field and the current in a solenoid. 2. Determine the relationship between magnetic field and the number of

More information

MOTORS. Part 2: The Stepping Motor July 8, 2015 ELEC This lab must be handed in at the end of the lab period

MOTORS. Part 2: The Stepping Motor July 8, 2015 ELEC This lab must be handed in at the end of the lab period MOTORS Part 2: The Stepping Motor July 8, 2015 ELEC 3105 This lab must be handed in at the end of the lab period 1.0 Introduction The objective of this lab is to examine the operation of a typical stepping

More information

Ball Rail Systems RE / The Drive & Control Company

Ball Rail Systems RE / The Drive & Control Company Ball Rail Systems RE 82 202/2002-12 The Drive & Control Company Rexroth Linear Motion Technology Ball Rail Systems Roller Rail Systems Standard Ball Rail Systems Super Ball Rail Systems Ball Rail Systems

More information

DHANALAKSHMI COLLEGE OF ENGINEERING

DHANALAKSHMI COLLEGE OF ENGINEERING DHANALAKSHMI COLLEGE OF ENGINEERING (Dr.VPR Nagar, Manimangalam, Tambaram) Chennai - 601 301 DEPARTMENT OF MECHANICAL ENGINEERING III YEAR MECHANICAL - VI SEMESTER ME 6601 DESIGN OF TRANSMISSION SYSTEMS

More information

Subject with Code: Kinematic of Machinery (16ME304)Course & Branch: B. Tech - ME Year &Sem : II-B. Tech &I-Sem Regulation: R16

Subject with Code: Kinematic of Machinery (16ME304)Course & Branch: B. Tech - ME Year &Sem : II-B. Tech &I-Sem Regulation: R16 SIDDHARTH INSTITUTE OF ENGINEERING &TECHNOLOGY:: PUTTUR (Approved by AICTE, New Delhi & Affiliated to JNTUA, Anantapuramu) (Accredited by NBA & Accredited by NAAC with A Grade) (An ISO 9001:2008 Certified

More information

SHOCK DYNAMOMETER: WHERE THE GRAPHS COME FROM

SHOCK DYNAMOMETER: WHERE THE GRAPHS COME FROM SHOCK DYNAMOMETER: WHERE THE GRAPHS COME FROM Dampers are the hot race car component of the 90s. The two racing topics that were hot in the 80s, suspension geometry and data acquisition, have been absorbed

More information

INFLUENCE OF TEMPERATURE ON THE PERFORMANCE TOOTHED BELTS BINDER MAGNETIC

INFLUENCE OF TEMPERATURE ON THE PERFORMANCE TOOTHED BELTS BINDER MAGNETIC INFLUENCE OF TEMPERATURE ON THE PERFORMANCE TOOTHED BELTS BINDER MAGNETIC Merghache Sidi Mohammed, Phd Student Ghernaout Med El-Amine, Doctor in industrial automation University of Tlemcen, ETAP laboratory,

More information

DIY balancing. Tony Foale 2008

DIY balancing. Tony Foale 2008 DIY balancing. Tony Foale 2008 I hope that the main articles on the theory behind engine balance have removed the mystic which often surrounds this subject. In fact there is no reason why anyone, with

More information

Study on Flow Characteristic of Gear Pumps by Gear Tooth Shapes

Study on Flow Characteristic of Gear Pumps by Gear Tooth Shapes Journal of Applied Science and Engineering, Vol. 20, No. 3, pp. 367 372 (2017) DOI: 10.6180/jase.2017.20.3.11 Study on Flow Characteristic of Gear Pumps by Gear Tooth Shapes Wen Wang 1, Yan-Mei Yin 1,

More information

Hydraulic Pumps Classification of Pumps

Hydraulic Pumps Classification of Pumps Fluidsys Training Centre, Bangalore offers an extensive range of skill-based and industry-relevant courses in the field of Pneumatics and Hydraulics. For more details, please visit the website: https://fluidsys.org

More information

Work done and Moment. When using the equipment, John wants to do 300J of work in each lift.

Work done and Moment. When using the equipment, John wants to do 300J of work in each lift. Yr 11 Physics worksheet Paper 2 Work done and Moment Q1) The diagram shows weightlifting equipment found in most gyms. When using the equipment, John wants to do 300J of work in each lift. He can vary

More information

METHOD FOR TESTING STEERABILITY AND STABILITY OF MILITARY VEHICLES MOTION USING SR60E STEERING ROBOT

METHOD FOR TESTING STEERABILITY AND STABILITY OF MILITARY VEHICLES MOTION USING SR60E STEERING ROBOT Journal of KONES Powertrain and Transport, Vol. 18, No. 1 11 METHOD FOR TESTING STEERABILITY AND STABILITY OF MILITARY VEHICLES MOTION USING SR6E STEERING ROBOT Wodzimierz Kupicz, Stanisaw Niziski Military

More information

OVERSIZED DERAILLEUR PULLEY EFFICIENCY TEST

OVERSIZED DERAILLEUR PULLEY EFFICIENCY TEST OVERSIZED DERAILLEUR PULLEY EFFICIENCY TEST SUMMARY 0.49 watts efficiency difference was measured between a 10T-10T pulley combination and a 15T-15T pulley combination, with chain tension and bearing variables

More information

Simple Gears and Transmission

Simple Gears and Transmission Simple Gears and Transmission Contents How can transmissions be designed so that they provide the force, speed and direction required and how efficient will the design be? Initial Problem Statement 2 Narrative

More information

Bistable Rotary Solenoid

Bistable Rotary Solenoid Bistable Rotary Solenoid The bistable rotary solenoid changes state with the application of a momentary pulse of electricity, and then remains in the changed state without power applied until a further

More information