ENGG1015: lab 5. A Taste of the Project

Size: px
Start display at page:

Download "ENGG1015: lab 5. A Taste of the Project"

Transcription

1 ENGG1015: lab 5 A Taste of the Project 1 st Semester The goal of this lab is further understand the relationship between the input and output (driving) stage of a circuit. You will gain hands-on experience with the project components. 1 Finding your lab partner You will be working with a randomly assigned partner for this lab. To find your assigned lab partner and the assigned table, 1. Log in to Moodle. 2. Select the assignment Lab 5 Partner Please proceed to your assigned table. 2 Basic Rube Goldberg Machine Step Your final Rube Goldberg machine project will consist of a number of interconnected electronic steps. Each step itself can be represented as an electronic system as we covered in class shown in Figure 1. Each of them is consist of 3 stages: input, output, and an optional processing stage. Figure 1: A generic model of an electronic system with input, process and output. This part of the lab is to help you begin constructing circuits for your project. Along the way, you will also learn the importance of isolating the input and output stages to avoid loading effect. 2.1 The Power Need Instead of relying on the FPGA board to supply 3.3V power as Vcc, you will use a power supply to supply power for your project. The power supply you are using for in this class is shown in Figure 2(a). It has 3 output channels, labeled CH1, CH2 and CH3. In this lab, use the left-most channel labeled CH2. A few notes about how the power supply operates: Connect the ground of your circuit to the BLACK terminal, and Vcc to the RED terminal. Ignore the green terminal marked GND in the power supply. Voltage and current output at the terminals are controlled by the 2 knobs in the LEFT. The display shows the live voltage and current output at the terminals. The signal light marked C.V./C.C. (Figure 2(b)) indicates if the output terminal is controlled by current or voltage. In this class, always make sure the light is green, i.e.

2 ENGG1015 lab 5 your output should be controlled by voltage. If it turns to red, then turn up the dial for CURRENT until it turns back to green. The terminal outputs are active only if the OUTPUT button on the top left is depressed. Use this button often. Whenever you are experimenting with the settings on the power supply, make sure OUTPUT is off. Then you can reenable it once the setting is done. (a) Photo (b) C.V./C.C. Indicator Figure 2: Power Supply Do the following: 1. Depress the OUTPUT button so it is OFF. 2. Turn the VOLTAGE dial so the output of the power supply is at 12 V. 3. Turn the CURRENT dial so the output of the power supply is at 1.5 A. Use a digital multimeter (DMM) to measure the output voltage (turn the dial of the DMM to 20). What is the output voltage? Now press the OUTPUT button, what is the reading on the power supply? What is the value you are measuring using the DMM? WARNING: Turn off the power supply output immediately after testing your circuit. In general, always turn off the output of the power supply when you are constructing or debugging your circuit. Only enable output when you are testing the circuit. It helps to avoid causing damage on the lab equipments. 2.2 Switch Solenoid There are many different input and output stages you may utilize in your project. We will start with a simple one here. We will use a mechanical switch (Figure 3(a)) as an input. The output stage we will use is a solenoid (Figure 3(b). The solenoid provides a source of lateral pull force When there is no power, the shaft is extended by default; when turned on, the shaft is pulled into the solenoid via the internal magnetic coil, and hence the shape of a magnetic coil in the symbol. Page 2 of 7

3 ENGG1015 lab 5 switch (a) Switch (b) Solenoid Figure 3: Schematic symbols of a switch and solenoid. Now, take a solenoid, without connecting to anything else, measure the resistance between the two terminals. Record this resistance below. R solenoid = 2.3 Construct the circuit in Figure 4(a). Instead of breadboard, we will use a high-density foam board to provide mechanical support for the circuit and to use heavy-duty terminal blocks for connecting to the power supply. Your circuit should look like Figure 4(b). Figure 4: Simple step with switch and solenoid Now, turn on the power supply OUTPUT. Press and depress the switch to turn on/off the solenoid. When the solenoid is on, record the following from the power supply reading: CURRENT = VOLTAGE = Page 3 of 7

4 ENGG1015 lab 5 WARNING: Never keep the solenoid turned on continuously for more than 30 seconds. 2.4 Turn on Voltage We want to find the voltage at which the solenoid turns on. 1. Turn the VOLTAGE dial on the power supply so it shows 0V 2. Turn on the OUTPUT of the terminals 3. Keep the switch pressed, gradually turn up the voltage supply from 0V to 12V until the switch turns on. Record the voltage (V T,solenoid ). 4. Release the switch 5. Turn off the OUTPUT V T,solenoid = Turn off the power supply when you have completed this part. The solenoid will be damaged if you keep it turned on for a long time. So whenever you are working with it, make sure you DO NOT turn it on for a long time. 2.5 Checkoff 1 Show your complete circuit to your TA and answer the following questions: What is the threshold voltage for turning on/off the solenoid? How do you measure the current running through the solenoid? What is the resistance of the solenoid? 3 Different Input, Different Story Instead of using a switch, most input stages rely on component that changes its resistance according to physical phenomenon. For example in last week, you have used a photodetector that changes its resistance according to the amount of light shining on it. For these kinds of input, we ll use a potential divider circuit similar to last week. To emulate the effect of such potential divider circuit, we ll again be using a potentiometer this week. However, unlike last week, a heavy-duty potentiometer is used. Despite the different size, the function of this potentiometer is the same as the one from last week. 3.1 Connect the circuit shown in Figure 5(a). You should be able to build this circuit by reusing the same foam board from the previous step. Make sure you disconnect the solenoid from the circuit board. Page 4 of 7

5 ENGG1015 lab kω 12V Vout Figure 5: A simple potential divider circuit Measure the voltage Vout. Verify the function of the potential divider circuit by turning the dial on the potentiometer. What is the range of Vout? 3.2 Turn the pot until Vout = VT,solenoid 1 where VT,solenoid is the value you measured above. At this voltage, the solenoid should turn on when connected. Keep the dial of the potentiometer untouched. Construct the following circuit by attaching the solenoid to your circuit. Your result should look like Figure 6(b). 4.7 kω 12V Vout Figure 6: Potential divider input connected directly to solenoid output. Now, turn on the power supply, is the solenoid turned on? What is the value of Vout? Vout = Turn the dial of the potentiometer up and down to see if it has any effect on the solenoid. Page 5 of 7

6 ENGG1015 lab Checkoff 2 Show to your TA your implementation as in Figure 6(b) and answer the following question: Are you able to turn on the solenoid? Why and why not? How does the output voltage change as you turn the dial? 4 Isolating Stages One way to ensure the input output abstraction is not violated as we construct circuit is to isolate the stages. There are many ways to isolate stages. Here, we will use a solid-state relay for that purpose. IN OUT (a) Photo SS-RELAY (b) Symbol IN- OUT- Figure 7: Solid State Relay A sold-state relay is shown in Figure 7(a). We will use the schematic symbol in Figure 7(b) in this class. The function of a SS-RELAY is very simple: When the voltage around the two input terminals (in and in-) is higher than a threshold value(v T,ssrelay ), the output terminals (out and out-) are connected like switch. It is called a solid-state switch because the switching action is implemented electronically. No mechanical part is presented inside the SS-RELAY. As a side note, similar components you may use in the project include magnetic reed switch and relay. These components behave similarly to the SS-RELAY except mechanical switches are used internally. Using a SS-RELAY, extend your circuit from previous step to become the circuit in Figure 8(a). Your final circuit should look similar to that in Figure 8(b). Page 6 of 7

7 ENGG1015 lab 5 OUT IN 12V SS-RELAY OUT- - solenoid IN- V pot V sol - Figure 8: A potential divider input stage connecting to solenoid output stage via a solid-state relay. 4.1 Turn your dial on your potentiometer from one end to another end. Does it turn on/off the solenoid? Now, turn your potentiometer until the solenoid is off. Measure Vpot and Vsol. Then, gradually turn the dial up until the solenoid is just turned on. Measure Vpot and Vsol again. Define the voltage value of Vpot at this point as VT,relay. Solenoid State Vpot Vsol off on VT,ssrelay = 4.2 Checkoff 3 Show to your TA your completed circuit with the SS-RELAY acting as an isolating buffer and answer the following question: Is VT,relay = VT,solenoid? Why or why not? When the solenoid is on, what is the voltage across the two terminals of the solenoid? When the solenoid is on, what is the current drawing from the power supply?... 5 Optional Steps Congratulation! You now possess the basic framework to construct complex Rube Goldberg machine. You may mix and match many different input and output stages as you design your project. Using the circuit above with the SS-RELAY, you will be able to replace the VR with any input stage, and replace the solenoid with other output stages. You may ask your TA to give you the Ball Counter from last week as an input stage. You may also take a motor or a fan to replace the solenoid as an output. Page 7 of 7

ENGR1202 Computer Engineering Assignment Robotics and Control Fall Assignment 2 Motor Control/Power Lab Exercise

ENGR1202 Computer Engineering Assignment Robotics and Control Fall Assignment 2 Motor Control/Power Lab Exercise ENGR1202 Computer Engineering Assignment Robotics and Control Fall 2013 Assignment 2 Motor Control/Power Lab Exercise You will follow the Motor control/power lab exercise procedure below. Once you have

More information

Lab 1: DC Motors Tuesday, Feb 8 / Wednesday, Feb 9

Lab 1: DC Motors Tuesday, Feb 8 / Wednesday, Feb 9 Introduction MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science 6.007 Electromagnetic Energy: From Motors to Lasers Spring 2011 Do the pre-lab before you come

More information

Lab 4. DC Circuits II

Lab 4. DC Circuits II Physics 2020, Spring 2005 Lab 4 page 1 of 7 Lab 4. DC Circuits II INTRODUCTION: This week we will continue with DC circuits, but now with an emphasis on current rather than voltage. Of course, in order

More information

PHY222 Lab 4 Ohm s Law and Electric Circuits Ohm s Law; Series Resistors; Circuits Inside Three- and Four-Terminal Black Boxes

PHY222 Lab 4 Ohm s Law and Electric Circuits Ohm s Law; Series Resistors; Circuits Inside Three- and Four-Terminal Black Boxes PHY222 Lab 4 Ohm s Law and Electric Circuits Ohm s Law; Series Resistors; Circuits Inside Three- and Four-Terminal Black Boxes Print Your Name Print Your Partners' Names Instructions February 8, 2017 Before

More information

Digital Multimeter: This handheld device is used by this course to measure voltage and resistance we will not use this to measure current or capacitan

Digital Multimeter: This handheld device is used by this course to measure voltage and resistance we will not use this to measure current or capacitan Digital Multimeter: This handheld device is used by this course to measure voltage and resistance we will not use this to measure current or capacitance. For current you will use an analog ammeter and

More information

Lab 4. DC Circuits II

Lab 4. DC Circuits II Physics 2020, Spring 2005 Lab 4 page 1 of 7 Lab 4. DC Circuits II INTRODUCTION: This week we will continue with DC circuits, but now with an emphasis on current rather than voltage. Of course, in order

More information

Lab #1: Electrical Measurements I Resistance

Lab #1: Electrical Measurements I Resistance Lab #: Electrical Measurements I esistance Goal: Learn to measure basic electrical quantities; study the effect of measurement apparatus on the quantities being measured by investigating the internal resistances

More information

Happy Friday! Do this now:

Happy Friday! Do this now: Happy Friday! Do this now: Take all three AA batteries out of your kit, and put (only!) two of them in the holder. (Keep the third one handy.) Take your digital multimeter out of its packaging, as well

More information

The Discussion of this exercise covers the following points:

The Discussion of this exercise covers the following points: Exercise 2 Float Switch EXERCISE OBJECTIVE Learn the working principle of float switches and how to use the float switch, Model 46935. DISCUSSION OUTLINE The Discussion of this exercise covers the following

More information

Series and Parallel Networks

Series and Parallel Networks Series and Parallel Networks Department of Physics & Astronomy Texas Christian University, Fort Worth, TX January 17, 2014 1 Introduction In this experiment you will examine the brightness of light bulbs

More information

Lab 2 Electrical Measurements and Ohm s Law

Lab 2 Electrical Measurements and Ohm s Law Lab 2 Electrical Measurements and Ohm s Law Safety and Equipment No special safety precautions are necessary for this lab. Computer with PASCO Capstone, PASCO 850 Universal Interface Double banana/alligator

More information

EGG 101L INTRODUCTION TO ENGINEERING EXPERIENCE

EGG 101L INTRODUCTION TO ENGINEERING EXPERIENCE EGG 101L INTRODUCTION TO ENGINEERING EXPERIENCE LABORATORY 8: DC MOTOR CONTROL DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING UNIVERSITY OF NEVADA, LAS VEGAS GOAL: This section will introduce DC motors

More information

Physics Work with your neighbor. Ask me for help if you re stuck. Don t hesistate to compare notes with nearby groups.

Physics Work with your neighbor. Ask me for help if you re stuck. Don t hesistate to compare notes with nearby groups. Physics 9 2016-04-13 Work with your neighbor. Ask me for help if you re stuck. Don t hesistate to compare notes with nearby groups. Today we ll build on what we did Monday with batteries and light bulbs.

More information

HOW TO USE A MULTIMETER, PART 4: MEASURING CURRENT (AMPERAGE)

HOW TO USE A MULTIMETER, PART 4: MEASURING CURRENT (AMPERAGE) HOW TO USE A MULTIMETER, PART 4: MEASURING CURRENT (AMPERAGE) By: Rob Siegel First, we discussed how to use a multimeter for measuring voltage, or simply verifying that voltage is present. Last week, we

More information

Batteries n Bulbs: Voltage, Current and Resistance (8/6/15) (approx. 2h)

Batteries n Bulbs: Voltage, Current and Resistance (8/6/15) (approx. 2h) Batteries n Bulbs: Voltage, Current and Resistance (8/6/15) (approx. 2h) Introduction A simple electric circuit can be made from a voltage source (batteries), wires through which current flows and a resistance,

More information

MANUAL VALVES VS. AUTOMATIC FLOW LIMITING VALVES

MANUAL VALVES VS. AUTOMATIC FLOW LIMITING VALVES MANUAL VALVES VS. AUTOMATIC FLOW LIMITING VALVES Automatic & Pressure Independent Valves the cost effective option over Manual Balance Valves H ydronic system balancing is an important part of the HVAC

More information

Chapter 3. ECE Tools and Concepts

Chapter 3. ECE Tools and Concepts Chapter 3 ECE Tools and Concepts 31 CHAPTER 3. ECE TOOLS AND CONCEPTS 3.1 Section Overview This section has four exercises. Each exercise uses a prototyping board for building the circuits. Understanding

More information

PHY132 Practicals Week 5 Student Guide

PHY132 Practicals Week 5 Student Guide PHY132 Practicals Week 5 Student Guide Concepts of this Module Introducing current and voltage Simple circuits Circuit diagrams Background When water flows through a garden hose, we can characterize the

More information

Electric Circuits Lab

Electric Circuits Lab Electric Circuits Lab Purpose: To construct series and parallel circuits To compare the current, voltage, and resistance in series and parallel circuits To draw schematic (circuit) diagrams of various

More information

Union College Winter 2016 Name Partner s Name

Union College Winter 2016 Name Partner s Name Union College Winter 2016 Name Partner s Name Physics 121 Lab 8: Electromagnetic Induction By Faraday s Law, a change in the magnetic flux through a coil of wire results in a current flowing in the wire.

More information

Troubleshooting Bosch Proportional Valves

Troubleshooting Bosch Proportional Valves Troubleshooting Bosch Proportional Valves An Informative Webinar Developed by GPM Hydraulic Consulting, Inc. Instructed By Copyright, 2009 GPM Hydraulic Consulting, Inc. TABLE OF CONTENTS Bosch Valves

More information

DPS Telecom Your Partners in Network Alarm Management

DPS Telecom Your Partners in Network Alarm Management DPS Telecom Your Partners in Network Alarm Management Using the Thermalogic Temp Sensor Instructions for Using the Thermalogic Temperature Sensor with a NetGuardian This document is to be used for installation

More information

Physics - Chapters Task List

Physics - Chapters Task List Name Hour Physics - Chapters 34-35 Task List Task In Class? (Yes/No) Date Due Grade Lab 33.1 - Wet Cell Battery Yes */15 * Vodcast #1 Electric Circuits & Ohm s Law /21 Worksheet Concept Review #1-12, Ch

More information

Engineers in Training Day 2. Developed by Shodor and Michael Woody

Engineers in Training Day 2. Developed by Shodor and Michael Woody Engineers in Training Day 2 Developed by Shodor and Michael Woody What uses electricity? Name some things that use electricity Try to name something you like to do that doesn t use electricity. Everything

More information

Reading on meter (set to ohms) when the leads are NOT touching

Reading on meter (set to ohms) when the leads are NOT touching Industrial Electricity Name Due next week (your lab time) Lab 1: Continuity, Resistance Voltage and Measurements Objectives: Become familiar with the terminology used with the DMM Be able to identify the

More information

Electrical Control System Components Basics of Magnetic Control :

Electrical Control System Components Basics of Magnetic Control : Electrical Control System Components Basics of Magnetic Control : Dr.M.S.Narkhede, LEE, GP Mumbai 1 Contact Types : Contacts are classified into different ways as follows. According to applications contacts

More information

GraspIT AQA GCSE Magnetism and Electromagnetism - Questions

GraspIT AQA GCSE Magnetism and Electromagnetism - Questions A. Permanent and Induced Magnetism, Magnetic Forces and Fields 1. The following question is about magnets. a. Iron is a magnetic material. Name two other magnetic elements. (2) b. Describe the effect a

More information

Exercise 5-1. Primary Resistor Starters EXERCISE OBJECTIVE DISCUSSION. Understand how primary resistor starters operate.

Exercise 5-1. Primary Resistor Starters EXERCISE OBJECTIVE DISCUSSION. Understand how primary resistor starters operate. Exercise 5-1 Primary Resistor Starters EXERCISE OBJECTIVE Understand how primary resistor starters operate. DISCUSSION High starting torque can result in sudden acceleration and damage to the driven machinery.

More information

Worksheet 1 - Simple digital sensors 3. Worksheet 2 - Lamps and simple actuators 6. Worksheet 3 - Using transistors 8. Worksheet 4 - Relays 10

Worksheet 1 - Simple digital sensors 3. Worksheet 2 - Lamps and simple actuators 6. Worksheet 3 - Using transistors 8. Worksheet 4 - Relays 10 Contents Worksheet 1 - Simple digital sensors 3 Worksheet 2 - Lamps and simple actuators 6 Worksheet 3 - Using transistors 8 Worksheet 4 - Relays 10 Worksheet 5 - Analogue inputs 12 Worksheet 6 - Fault

More information

Figure 1: (a) cables with alligator clips and (b) cables with banana plugs.

Figure 1: (a) cables with alligator clips and (b) cables with banana plugs. Ohm s Law Safety and Equipment Computer with PASCO Capstone, PASCO 850 Universal Interface Double banana/alligator Cable, 2 Alligator Wires PASCO Voltage Sensor Cable Multimeter with probes. Rheostat Ruler

More information

Edelbrock QwikData 2 Harness Installation

Edelbrock QwikData 2 Harness Installation Harness Installation These QwikData 2 Harness Installation notes provide all the information you need to install your harness and make necessary terminations. For more detailed information, please refer

More information

A Practical Exercise Name: Section:

A Practical Exercise Name: Section: Introduction to s Updated 7 AUG 06 A Practical Exercise Name: Section: I. Purpose.. Introduce the Hampden DC machine. Introduce the Hampden laboratory bench electrical power supplies 3. Introduce basic

More information

Prototyping Walk through for PIC24HJ32GP202 Startup Schematic

Prototyping Walk through for PIC24HJ32GP202 Startup Schematic Prototyping Walk through for PIC24HJ32GP202 Startup Schematic This prototyping walk through is meant to supplement the material in Experiment #6, the PIC24HJ32GP202 system startup. Figure 1 shows the pinout

More information

Cabrillo College Physics 10L. LAB 7 Circuits. Read Hewitt Chapter 23

Cabrillo College Physics 10L. LAB 7 Circuits. Read Hewitt Chapter 23 Cabrillo College Physics 10L Name LAB 7 Circuits Read Hewitt Chapter 23 What to learn and explore Every electrical circuit must have at least one source (which supplies electrical energy to the circuit)

More information

Direct-Current Circuits

Direct-Current Circuits Chapter 26 Direct-Current Circuits PowerPoint Lectures for University Physics, 14th Edition Hugh D. Young and Roger A. Freedman Lectures by Jason Harlow Learning Goals for Chapter 26 Looking forward at

More information

CBC-300 Series & CBC-300C Series Dual Channel Adjust Clutch/Brake Controls

CBC-300 Series & CBC-300C Series Dual Channel Adjust Clutch/Brake Controls CBC-300 Series & CBC-300C Series Dual Channel Adjust Clutch/Brake Controls P-269-89-0408 Installation Installation & Operating Instructions Contents Introduction........................... 2 Specifications.........................

More information

Laboratory 2 Electronics Engineering 1270

Laboratory 2 Electronics Engineering 1270 Laboratory 2 Electronics Engineering 1270 DC Test Equipment Purpose: This lab will introduce many of the fundamental test equipment and procedures used for verifying the operations of electrical circuits.

More information

SJSU ENGR 10 Wind Turbine Power Measurement Procedure

SJSU ENGR 10 Wind Turbine Power Measurement Procedure SJSU ENGR 10 Wind Turbine Power Measurement Procedure In this lab, we determine the maximum electrical power that your wind turbine can generate. This involves the use of two key components: a power meter

More information

Application Notes. -DM01 Linear Shape Memory Alloy Actuator with Basic Stamp Microcontroller Kit

Application Notes. -DM01 Linear Shape Memory Alloy Actuator with Basic Stamp Microcontroller Kit Application Notes -DM01 Linear Shape Memory Alloy Actuator with Basic Stamp Microcontroller Kit MIGA Motor Company Strawberry Creek Design Center 1250 Addison St., Studio 208 Ph: (510) 486-8301 Fax: (510)

More information

Basic Electrically-Controlled Hydraulic System

Basic Electrically-Controlled Hydraulic System Exercise 2-3 EXERCISE OBJECIVE o describe the function and operation of a magnetic proximity switch; o describe the purpose of a holding relay contact; o assemble and test a one-cycle reciprocation system.

More information

University of TN Chattanooga Physics 1040L 8/28/2012

University of TN Chattanooga Physics 1040L 8/28/2012 PHYSICS 1040L LAB 5: MAGNETIC FIELD Objectives: 1. Determine the relationship between magnetic field and the current in a solenoid. 2. Determine the relationship between magnetic field and the number of

More information

Building an Electric Circuit to Convert the Sensor Resistance into a Usable Voltage INSTRUCTIONS

Building an Electric Circuit to Convert the Sensor Resistance into a Usable Voltage INSTRUCTIONS Building an Electric Circuit to Convert the Sensor Resistance into a Usable Voltage INSTRUCTIONS Use this instruction manual to help you build an electric circuit to convert the sensor resistance into

More information

Lamborghini Huracan Kit

Lamborghini Huracan Kit Lamborghini Huracan Kit Thank you for choosing the Syvecs Huracan kit The kit comes with the following: 1 x Syvecs S12 Ecu 1 x GDI12 Driver 1 x Wiring Loom Installation 1.) Remove the Negative Terminal

More information

The Discussion of this exercise covers the following points:

The Discussion of this exercise covers the following points: Exercise 3-2 Hydraulic Brakes EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with the hydraulic circuits of the yaw and the rotor brakes. You will control brakes by changing

More information

Technical Workshop: Electrical December 3, 2016

Technical Workshop: Electrical December 3, 2016 Technical Workshop: Electrical December 3, 2016 ELECTRICAL: CIRCUITS Key terms we will be using today: Voltage (V): The difference in electrical potential at one point in a circuit in relation to another.

More information

NORTHERN ILLINOIS UNIVERSITY PHYSICS DEPARTMENT. Physics 211 E&M and Quantum Physics Spring Lab #6: Magnetic Fields

NORTHERN ILLINOIS UNIVERSITY PHYSICS DEPARTMENT. Physics 211 E&M and Quantum Physics Spring Lab #6: Magnetic Fields NORTHERN ILLINOIS UNIVERSITY PHYSICS DEPARTMENT Physics 211 E&M and Quantum Physics Spring 2018 Lab #6: Magnetic Fields Lab Writeup Due: Mon/Wed/Thu/Fri, March 5/7/8/9, 2018 Background Magnetic fields

More information

Electromagnetic Induction (approx. 1.5 h) (11/9/15)

Electromagnetic Induction (approx. 1.5 h) (11/9/15) (approx. 1.5 h) (11/9/15) Introduction In 1819, during a lecture demonstration, the Danish scientist Hans Christian Oersted noticed that the needle of a compass was deflected when placed near a current-carrying

More information

reflect energy: the ability to do work

reflect energy: the ability to do work reflect Have you ever thought about how much we depend on electricity? Electricity is a form of energy that runs computers, appliances, and radios. Electricity lights our homes, schools, and office buildings.

More information

Phase 1 Workshop Home Study Guide

Phase 1 Workshop Home Study Guide Phase 1 Workshop Home Study Guide Vehicle Electrical-Electronics Troubleshooting Training Written and Developed by Vince Fischelli Director of Training Veejer Enterprises Inc. / Garland, Texas U.S.A. Phone:

More information

EGG 101L INTRODUCTION TO ENGINEERING EXPERIENCE

EGG 101L INTRODUCTION TO ENGINEERING EXPERIENCE EGG 101L INTRODUCTION TO ENGINEERING EXPERIENCE LABORATORY 11: AUTOMATED CAR PROJECT DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING UNIVERSITY OF NEVADA, LAS VEGAS GOAL: This section combines the motor

More information

I Ish. Figure 2 Ammeter made from galvanometer and shunt resistor.

I Ish. Figure 2 Ammeter made from galvanometer and shunt resistor. Page 1/6 Revision 2 1-Jun-10 OBJECTIVES Understand the galvanometer and its limitations. Use circuit laws to build a suitable ammeter and voltmeter from the galvanometer. Understand the loading effect

More information

UNI EN ISO EN

UNI EN ISO EN Airplus Safeline eneral Upon implementation of the AIRPLUS T series, air-treatment units, PNEUMAX develops a supply and discharge valve, with an electropneumatic control and spring-return, fitted with

More information

Sorting Line with Detection 24V

Sorting Line with Detection 24V 536633 Sorting Line with Detection 24V I2 Q2 I4 I3 I1 Coupling to multi processing station I5 I6 I7 Not in the picture: Q1, Q3, Q4, Q5 Circuit layout for Sorting Line with Detection Terminal no. Function

More information

Exercise 4-1. Friction Brakes EXERCISE OBJECTIVE DISCUSSION. Understand the construction and operation of friction brakes.

Exercise 4-1. Friction Brakes EXERCISE OBJECTIVE DISCUSSION. Understand the construction and operation of friction brakes. Exercise 4-1 Friction Brakes EXERCISE OBJECTIVE Understand the construction and operation of friction brakes. DISCUSSION Friction brakes, or magnetic brakes, are used to secure (hold) the position of a

More information

(d) The magnetic field lines, produced around a straight current-carrying conductor, are concentric circles. Their centres lie on the wire.

(d) The magnetic field lines, produced around a straight current-carrying conductor, are concentric circles. Their centres lie on the wire. Page 240»Exercise» Question 1: Which of the following correctly describes the magnetic field near a long straight wire? (a) The field consists of straight lines perpendicular to the wire (b) The field

More information

Product Manual MNX10010 / REV B MODEL PS03

Product Manual MNX10010 / REV B MODEL PS03 Product Manual MNX10010 / REV B MODEL PS03 3-Channel Power Supply Contents Section I Overview Introduction.... 2 Description... 2 Section II Installation Installation... 5 Section III Operation Operating

More information

Basic voltmeter use. Resources and methods for learning about these subjects (list a few here, in preparation for your research):

Basic voltmeter use. Resources and methods for learning about these subjects (list a few here, in preparation for your research): Basic voltmeter use This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

More information

Basic Characteristics Data

Basic Characteristics Data Basic Characteristics Data Basic Characteristics Data Model Circuit method Switching frequency [khz] (reference) Input current [A] Inrush current protection PCB/Pattern *3 Material Single sided Double

More information

Section 3 Electric Circuits

Section 3 Electric Circuits Section 3 Electric Circuits As You Read What You'll Learn Explain how voltage, current, and resistance are related in an electric circuit. Investigate the difference between series and parallel circuits.

More information

PHY152H1S Practical 3: Introduction to Circuits

PHY152H1S Practical 3: Introduction to Circuits PHY152H1S Practical 3: Introduction to Circuits Don t forget: List the NAMES of all participants on the first page of each day s write-up. Note if any participants arrived late or left early. Put the DATE

More information

Goals. Introduction (4.1) R = V I

Goals. Introduction (4.1) R = V I Lab 4. Ohm s Law Goals To understand Ohm s law, used to describe behavior of electrical conduction in many materials and circuits. To calculate electrical power dissipated as heat. To understand and use

More information

Lesson Plan: Electricity and Magnetism (~100 minutes)

Lesson Plan: Electricity and Magnetism (~100 minutes) Lesson Plan: Electricity and Magnetism (~100 minutes) Concepts 1. Electricity and magnetism are fundamentally related. 2. Just as electric charge produced an electric field, electric current produces a

More information

ELECTROPNEUMATIC POSITIONING SYSTEM CONTROL WITH THE LEGENDARY LOGO! PLC

ELECTROPNEUMATIC POSITIONING SYSTEM CONTROL WITH THE LEGENDARY LOGO! PLC ELECTROPNEUMATIC POSITIONING SYSTEM CONTROL WITH THE LEGENDARY LOGO! PLC G. Kozoris Dept. of Automation Engineering, PUAS, Athens, Greece M. Papoutsidakis Dept. of Automation Engineering, PUAS, Athens,

More information

CHAPTER 2. Current and Voltage

CHAPTER 2. Current and Voltage CHAPTER 2 Current and Voltage The primary objective of this laboratory exercise is to familiarize the reader with two common laboratory instruments that will be used throughout the rest of this text. In

More information

A device that measures the current in a circuit. It is always connected in SERIES to the device through which it is measuring current.

A device that measures the current in a circuit. It is always connected in SERIES to the device through which it is measuring current. Goals of this second circuit lab packet: 1 to learn to use voltmeters an ammeters, the basic devices for analyzing a circuit. 2 to learn to use two devices which make circuit building far more simple:

More information

THE UNIQUE FLOW BATTERY SYSTEM DESIGNED FOR YOUR HOME OR OFFICE

THE UNIQUE FLOW BATTERY SYSTEM DESIGNED FOR YOUR HOME OR OFFICE THE UNIQUE FLOW BATTERY SYSTEM DESIGNED FOR YOUR HOME OR OFFICE FREQUENTLY ASKED QUESTIONS ALL YOU NEED TO KNOW FOR CONSUMERS How does a ZCell work? ZCell is a flow battery, a new type of energy storage

More information

Ch 4 Motor Control Devices

Ch 4 Motor Control Devices Ch 4 Motor Control Devices Part 1 Manually Operated Switches 1. List three examples of primary motor control devices. (P 66) Answer: Motor contactor, starter, and controller or anything that control the

More information

Projectile Impact Tester

Projectile Impact Tester Projectile Impact Tester Design Team Neil Cameron, Laura Paradis, Tristan Whiting Betsy Huse, James Leithauser Design Advisor Prof. Mohammad Taslim Abstract The purpose of this project was to design a

More information

EBP Sensor (Exhaust Back Pressure)

EBP Sensor (Exhaust Back Pressure) Page 1 of 8 EBP Sensor (Exhaust Back Pressure) DTC SPN FMI Condition 3341 1209 4 EBP signal out-of-range LOW 3342 1209 3 EBP signal out-of-range HIGH Page 2 of 8 Function diagram for the EBP sensor The

More information

Flying Electron Inc. Bipolar Stepper Motor Driver Datasheet

Flying Electron Inc. Bipolar Stepper Motor Driver Datasheet Bipolar Stepper Motor Driver Datasheet Part Number: FE_STEPPER_BP rev. d Notice: To the best of our knowledge the information contained in this datasheet is accurate and is represented in good faith, however,

More information

Fincor Series 2230 MKII/2240

Fincor Series 2230 MKII/2240 Fincor Series 2230 MKII/ Fincor Series 2200 regenerative drives are ideal for your more demanding applications. They feature flexibility with ratings up to 5 horsepower. The Series 2230 MKII offers new

More information

Servo and Proportional Valves

Servo and Proportional Valves Servo and Proportional Valves Servo and proportional valves are used to precisely control the position or speed of an actuator. The valves are different internally but perform the same function. A servo

More information

RL Circuits Challenge Problems

RL Circuits Challenge Problems RL Circuits Challenge Problems Problem : RL Circuits Consider the circuit at left, consisting of a battery (emf ε), an inductor L, resistor R and switch S. For times t< the switch is open and there is

More information

ECSE-2100 Fields and Waves I Spring Project 1 Beakman s Motor

ECSE-2100 Fields and Waves I Spring Project 1 Beakman s Motor Names _ and _ Project 1 Beakman s Motor For this project, students should work in groups of two. It is permitted for groups to collaborate, but each group of two must submit a report and build the motor

More information

Work done and Moment. When using the equipment, John wants to do 300J of work in each lift.

Work done and Moment. When using the equipment, John wants to do 300J of work in each lift. Yr 11 Physics worksheet Paper 2 Work done and Moment Q1) The diagram shows weightlifting equipment found in most gyms. When using the equipment, John wants to do 300J of work in each lift. He can vary

More information

How is lightning similar to getting an electric shock when you reach for a metal door knob?

How is lightning similar to getting an electric shock when you reach for a metal door knob? How is lightning similar to getting an electric shock when you reach for a metal door knob? Electricity Electric charges are from protons, which are positive (+) and electrons, which are negative (-).

More information

Exercise 1-3. Manual Starters EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. Direct-on-line (DOL) starters. Reversing starters

Exercise 1-3. Manual Starters EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. Direct-on-line (DOL) starters. Reversing starters Exercise 1-3 Manual Starters EXERCISE OBJECTIVE Examine and describe the operation of manual motor starters. DISCUSSION OUTLINE The Discussion of this exercise covers the following points: Direct-on-line

More information

11.1 CURRENT ELECTRICITY. Electrochemical Cells (the energy source) pg Wet Cell. Dry Cell. Positive. Terminal. Negative.

11.1 CURRENT ELECTRICITY. Electrochemical Cells (the energy source) pg Wet Cell. Dry Cell. Positive. Terminal. Negative. Date: SNC1D: Electricity 11.1 CURRENT ELECTRICITY Define: CIRCUIT: path that electrons follow. CURRENT ELECTRICITY: continuous flow of electrons in a circuit LOAD: device that converts electrical energy

More information

ECE 5671/6671 Lab 5 Squirrel-Cage Induction Generator (SCIG)

ECE 5671/6671 Lab 5 Squirrel-Cage Induction Generator (SCIG) ECE 5671/6671 Lab 5 Squirrel-Cage Induction Generator (SCIG) 1. Introduction 1.1 Objectives The objective of this lab is to connect a SCIG generator directly to the grid and measure the power produced

More information

LABORATORY 2 MEASUREMENTS IN RESISTIVE NETWORKS AND CIRCUIT LAWS

LABORATORY 2 MEASUREMENTS IN RESISTIVE NETWORKS AND CIRCUIT LAWS LABORATORY 2 MEASUREMENTS IN RESISTIVE NETWORKS AND CIRCUIT LAWS The objective of this experiment is to provide working knowledge of the ammeter, voltmeter, and ohmmeter as well as their limitations in

More information

Magnetism and Electricity ASSIGNMENT EDULABZ. the mere presence of magnet, is called...

Magnetism and Electricity ASSIGNMENT EDULABZ. the mere presence of magnet, is called... Magnetism and Electricity ASSIGNMENT 1. Fill in the blank spaces by choosing the correct words from the list given below. List : magnetic field, magnetic keepers, electric bell, stop, magnetic induction,

More information

Single-Phase Meter Components

Single-Phase Meter Components Single-Phase Meter Components S T U D E N T M A N U A L March 2, 2005 2 STUDENT TRAINING MANUAL Prerequisites: None Objectives: From memory, you will be able to explain the parts and function of a single-phase

More information

Explanation 1 Input External Switch 2 Input Hipot Safety Switch

Explanation 1 Input External Switch 2 Input Hipot Safety Switch on the 1100H+ The 1100H+ has capability, which allows you to set up the tester to control external devices with tester functions. You can also use an input on the tester to start a test. For example, the

More information

Lesson 5: Directional Control Valves

Lesson 5: Directional Control Valves : Directional Control Valves Basic Hydraulic Systems Hydraulic Fluids Hydraulic Tank Hydraulic Pumps and Motors Pressure Control Valves Directional Control Valves Flow Control Valves Cylinders : Directional

More information

1. Anti-lock Brake System (ABS)

1. Anti-lock Brake System (ABS) W1860BE.book Page 2 Tuesday, January 28, 2003 11:01 PM 1. Anti-lock Brake System () A: FEATURE The 5.3i type used in the Impreza has a hydraulic control unit, an control module, a valve relay and a motor

More information

Induction Power Supplies

Induction Power Supplies Induction Power Supplies 7.5kW; 135 400kHz 480V version (Integral Heat Station) User s Guide Model 7.5-135/400-3-480 SMD Control Brds Rev. D 5/08 Table of Contents 1. Specifications and features...3 2.

More information

VOX AC4tv Mercury Studio-Pro Upgrade Kit 21. Detail of the 15KΩ resistor in series with. as they appear in the Upgraded amp in location R23.

VOX AC4tv Mercury Studio-Pro Upgrade Kit 21. Detail of the 15KΩ resistor in series with. as they appear in the Upgraded amp in location R23. Detail of the 5KΩ resistor in series with the.kω resistor as they appear in the Upgraded amp in location R. Detail of the.7ηf in series with the 0KΩ carbon comp resistor as they appear in the Upgraded

More information

1. Why does a compass needle get deflected when brought near a bar magnet?

1. Why does a compass needle get deflected when brought near a bar magnet? 1. Why does a compass needle get deflected when brought near a bar magnet? The needle of a compass is a small magnet. That s why when a compass needle is brought near a bar magnet, its magnetic field lines

More information

Building Operator Certification Level I

Building Operator Certification Level I Building Operator Certification Level I A Partnership of the CUNY Institute for Urban Systems Building Performance Lab, the CUNY School of Professional Studies, and the New York State Energy Research &

More information

Electronic control system

Electronic control system Electronic control system Date 28 March 2013 Vico de Bres Customer Service Department Yanmar Europe B.V. Content 1. Overview 2. ECU connections 3. Sensors Page1 Overview Page2 Engine sensors and actuators

More information

Semiconductors. Use a solar panel to generate electricity from light Understand how semiconductors in the solar panel change light to electricity

Semiconductors. Use a solar panel to generate electricity from light Understand how semiconductors in the solar panel change light to electricity Goals ᄏᄏ ᄏᄏ Use a solar panel to generate electricity from light Understand how semiconductors in the solar panel change light to electricity Background Metalloids are strange elements. They exhibit characteristics

More information

4 Electric Circuits. TAKE A LOOK 2. Identify Below each switch, label the circuit as a closed circuit or an open circuit.

4 Electric Circuits. TAKE A LOOK 2. Identify Below each switch, label the circuit as a closed circuit or an open circuit. CHAPTER 17 4 Electric Circuits SECTION Introduction to Electricity BEFORE YOU READ After you read this section, you should be able to answer these questions: What are the three main parts of a circuit?

More information

Exercise 7. Thyristor Three-Phase Rectifier/Inverter EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. Thyristor three-phase rectifier/inverter

Exercise 7. Thyristor Three-Phase Rectifier/Inverter EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. Thyristor three-phase rectifier/inverter Exercise 7 Thyristor Three-Phase Rectifier/Inverter EXERCISE OBJECTIVE When you have completed this exercise, you will know what a thyristor threephase rectifier/limiter (thyristor three-phase bridge)

More information

Electronic Dynamo Regulator INSTRUCTION MANUAL. COPYRIGHT 2014 CLOVER SYSTEMS All Rights Reserved

Electronic Dynamo Regulator INSTRUCTION MANUAL. COPYRIGHT 2014 CLOVER SYSTEMS All Rights Reserved DRM TM DRM-HP TM Electronic Dynamo Regulator INSTRUCTION MANUAL COPYRIGHT 2014 CLOVER SYSTEMS All Rights Reserved INTRODUCTION The Clover Systems DRM is a state-of-the art all-electronic voltage and current

More information

Magnetic Effects of Electric Current

Magnetic Effects of Electric Current Magnetic Effects of Electric Current Question 1: Why does a compass needle get deflected when brought near a bar magnet? Answer: A compass needle is a small bar magnet. When it is brought near a bar magnet,

More information

2013 Systems Engineering GA 3: Examination

2013 Systems Engineering GA 3: Examination 2013 Systems Engineering GA 3: GENERAL COMMENTS In the 2013 Systems Engineering examination a number of students completed all of the questions involving formulas well, but had trouble with the design

More information

Reproduction or other use of this Manual, without the express written consent of Vulcan, is prohibited.

Reproduction or other use of this Manual, without the express written consent of Vulcan, is prohibited. SERVICE MANUAL ELECTRIC BRAISING PANS (30 & 40 GALLON) VE30 VE40 ML-126849 ML-126850 VE40 SHOWN - NOTICE - This Manual is prepared for the use of trained Vulcan Service Technicians and should not be used

More information

Simple Demonstration of the Seebeck Effect

Simple Demonstration of the Seebeck Effect Simple Demonstration of the Seebeck Effect Arman Molki The Petroleum Institute, Abu Dhabi, United Arab Emirates amolki@pi.ac.ae Abstract In this article we propose a simple and low-cost experimental set-up

More information

Today s lecture: Generators Eddy Currents Self Inductance Energy Stored in a Magnetic Field

Today s lecture: Generators Eddy Currents Self Inductance Energy Stored in a Magnetic Field PHYSICS 1B Today s lecture: Generators Eddy Currents Self Inductance Energy Stored in a Magnetic Field PHYSICS 1B Lenz's Law Generators Electric generators take in energy by work and transfer it out by

More information

The installation instructions for an intake manifold flap control motor (Inlet Port Shut Off Valve) testing device of Mercedes Benz OM642 engine

The installation instructions for an intake manifold flap control motor (Inlet Port Shut Off Valve) testing device of Mercedes Benz OM642 engine The installation instructions for an intake manifold flap control motor (Inlet Port Shut Off Valve) testing device of Mercedes Benz OM642 engine 1. A brief description of the testing device. The testing

More information