Electrical Power System A Review

Size: px
Start display at page:

Download "Electrical Power System A Review"

Transcription

1 IJSTE - International Journal of Science Technology & Engineering Volume 3 Issue 01 July 2016 ISSN (online): X Electrical Power System A Review Mohan Kumar N B. Kantharaj M. Tech Scholar Associate Professor Poshitha B Manaswi K. J. Assistant Professor Assistant Professor Abstract This paper presents brief info s about Electrical Power System, i.e. Generation, Transmission and Distribution of Electrical Energy. Includes current Indian installed capacity, line to line and ground distance in transmission lines at different voltage levels. Vector groups of transformers, FACTS application in power system, HT, LT cable sizes and current carrying capacity available for the distribution of electrical power/energy. Also the names of company are manufacturing Electrical Power System (Switch Gear) equipment s. The contents of paper may help in industrial/non industrial sector for system reading and to the people, who are willing to start their career in electrical power system engineering. Keywords: RES, FACTS application, CEA I. INTRODUCTION Electrical power/energy, it is the most widely used generated source in the world today. Effects directly to the development of any country. As the standard of living can be related to the utilization of power, we can t imagine the life without electrical power. Electrical power is generated by means of, Hydro power Thermal power Nuclear power Hybrid power (combination of wind & solar)(res) Diesel power Gas power These are depending on various sources like water, coal, uranium, wind & solar energy (R.E) and petroleum products. Electrical power is generated at 11 KV & stepped up to 220 KV or 400 KV in step up transformer and transmitted to various parts of the country through transmission lines with the help of Grid. (Grid - interconnection of two or more transmission lines from the sources, to assure continuity power supply and stabilization). The power transmitted from EHV & HV overhead lines is stepped down to 33 or 11 KV in step down transformers for distribution purpose. And at the consumers end, it is again stepped down to 415 volts in distribution transformer for utilization purpose (power distribution is done through LT overhead lines). [2-3] Table 1 All India installed capacity (IN MW) of power stations (As on May 2016), 1 Total thermal 2,11, Nuclear 5, Hydro 42, RES 42, Total 3,03, Table 2 Total thermal 1 Coal 1,86, Gas 24, Diesel Total thermal 2,11, Most of the Power generation is done at 11 KV, generating energy at 100 % of installed capacity is not possible due to the limitation in sources/status of the plant etc. And the generated power/energy will not be the same at consumers or at distribution end, it is due to, All rights reserved by 63

2 Losses in transmission & distribution lines. Transmission & distribution losses are about 25% & power deficit is about 10% in India, Works are going on to reduce transmission and distribution losses, as per the utilization losses are concerned, that is fully dependent on the consumers. Present transmission voltage levels in India are, 66KV, 110/132 KV, 220KV and 400KV HVAC. Distribution is done in 33KV, 11KV and at 415 V (all voltage levels in 3 Phase only) respectively. With star-neutral configuration in distribution transformers, power is supplied to the consumers at 230 Volts (1 Phase). Transmission line clearance between line to ground and line to line (under worst sag conditions), these values offers minimum value which is to be maintained as per CEA rules, In general, for voltages up to 33KV min distance between lines to ground is Meters (12 Feet). For voltages above 33KV is Meters (12 Feet) plus Meters (1Feet) for every additional 33KV or part thereof. Horizontal clearance between lines or any part of abstractions up to 11 KV is min Meters (4 Feet), for 33KV is min Meters (6 Feet) and above 33 KV is Meters (6 Feet) plus Meters (1 Feet) for every additional 33KV or part thereof. Table 3 Minimum clearance between live parts and ground is as follows, Voltage (KV) (HVAC) Clearance Phase-earth Meters Clearance Phase-phase Meters Safety Clearance Meters / As we know that electrical power system consists of number of equipment s (from Generation to Distribution) includes, Generators, Transformers, Switch Gear Accessories, Transmission and distribution Towers and its accessories, System Automation controllers, Facts Devices, IT integration to monitor and control of system at each stage etc. All these equipment s are used in power system to control and operate the system, by maintaining its stability according to constraints. This is done to ensure quality power/energy and reliability to the consumers. In above said equipment s, transformers plays link role between each stages of power system to transfer the energy to consumers. Since power system in India is operating with one grid, entire system is operation is done in parallel mode. Table 4 Vector group info s for parallel operation is given below, Group 0 clock T C Group 1 0 o clock 0 delta/delta, star/star Group 2 6 o clock 180 delta/delta, star/star Group 3 1 o clock -30 star/delta, delta/star Group 4 11 o clock +30 star/delta, delta/star [7] Negative sign indicates LV is Lagging HV and Positive sign indicates LV is Leading HV. Transformers belonging to same group can be operated in parallel without any difficulty, parallel operation of transformers from Group 1 or 2 with Group 3 or 4 is not possible due to phase shift difference and if it is done, then results in circulating currents in local circuit. Leads to increased losses, unequal load sharing, over heating of transformers, further contributes to faults in power system etc. However parallel operation transformers in group 1 and 2 is possible by changing internal connection at the secondary winding of any one transformer. Similarly parallel operation of transformers of Group 3 and 4 is possible by modifying external connection of secondary winding of any one transformer to bring phase shift to Zero. Transformer vector Groups, Phase shift connection 0 Yy0 Dd0 Dz0 30 Lag Yd1 Dy1 Yz1 60 Lag -- Dd2 Dz2 120 Lag -- Dd4 Dz4 150 Lag Yd5 Dy5 Yz5 180 Lag Yy6 Dd6 Dz6 150 Lead Yd7 Dy7 Yz7 120 Lead -- Dd8 Dz8 60 Lead -- Dd10 Dz10 30 Lead Yd11 Dy11 Yz11 [7] Capital letter in vector group notation, always indicates primary winding of the transformer (usually represents HV winding). Example: Yd11 Means, transformer primary is in star connection, secondary is in delta connection and secondary voltage leads primary voltage by 30. Depending on system configurations and requirements vector group of transformer is selected for application. All rights reserved by 64

3 From past few decades, there is rapid development in power system to improve system stability (transient and steady state), this is done to improve system reliability and to assure quality power to the consumers. The development in power system is achieved/ing by the integration of FACTS Devices and IT integration in to it. In addition to this efficient equipment s implementation at each stage of power system is also a considerable factor in development in power system. Comparing to the efficient equipment s (to carry real power in the network). FACTS devices impact, has become more predominant. This is due to following advantages, 1) Smooth precision control of reactive power flow in the network. 2) Excellent voltage support at load buses. 3) Flexible in integration to IT for system automation and control. 4) Doesn t contribute to system faults. 5) Improves dynamic and steady state stability of the system. 6) Increases power flow capacity of the transmission and distribution network (at no load). 7) Reduction in negative phase sequence loading. 8) Reduces system losses and increases real power flow in the network (on load). 9) Improves system life and provision for real power exchange in the network. 10) Improved system efficiency, power quality and reliability. Some of the FACTS (Flexible Alternating Current Transmission System) Devices used in power system are, SVC Static Var Compensator. TCSC Thyristor Controlled Series Capacitor. UPFC Unified Power Flow Controller. STATCOM Static Synchronous Compensator. SPST Static Phase Shifting Transformers. SSSC Static Synchronous Series Capacitor. IPFC Interline Power Flow Controller. TCV L/R Thyristor Controlled Voltage Limiter/Regulator. TCBR Thyristor Controlled Braking Resistor TSC/TCC Thyristor Switched Capacitor/ Thyristor Controlled Capacitor, etc. Useful equations in three phase network are given by, Three phase power flow equations, P = 3 V I Cos Ф Q = 3 V I Sin Ф KVA = ( KW 2 + KVAR 2 ) KVA = KW / Cos Ф. V L-L = 3 Vph (Star network). I L-L = 3 Iph (Delta network). Power flow equations for transmission network under compensation are given by, Series compensation. P = Vs Vr sin Ȣ / Zn sin Ѳ (1 Kse). Kse = Xc / (2Zn tan Ѳ/2) Where, Vs = sending end voltage (KV). Vr = receiving end voltage (KV). Ȣ = power angle of transmission network (Lies between 0 90, optimum value ). Zn = surge impedance of the line = (L / C) ohms. Kse = degree of series compensation. Xc = reactance of series compensation. Ѳ = phase angle difference between line and injected voltage by the compensator (Lies between 0-30 ). Qse=(V 2 sinȣ/2/((zn 2 sin 2 Ѳ/2)(1 Kse 2 )))(Xc) Qse=reactive power flow after series compensation. Shunt compensation. P = Vs Vr sin Ȣ / Zn sin Ѳ (1 Ksh). Ksh = ((Bc Zn/2) tan Ѳ/2). Where, Vs = sending end voltage (KV). Vr = receiving end voltage (KV). All rights reserved by 65

4 Ȣ=power angle of transmission network (Lies between 0 90, optimum value ). Zn = surge impedance of the line = (L / C) ohms. Ksh = degree of shunt compensation. Bc=susceptance of shunt compensation. Ѳ = phase angle difference between line and injected voltage by the compensator (Lies between 0-30 ). Qsh = ((V 2 cos Ȣ/2)/ (Cos 2 Ѳ/2(1-Ksh 2 )) (Bc) Qsh=reactive power flow after shunt compensation. Power flow equations for distribution network under compensation are given by, KVAR req to improve power factor, KVAR new= KW (tan Ф1-tan Ф2). Where, tan Ф1= tan (cos -1 Ф1). tan Ф2= tan (cos -2 Ф2). cosф1= old power factor. cos Ф2= new power factor. % voltage raise = KVAR new / KVAsc. KVAsc= short circuit capacity of the network at compensating equipment. = KAsc* KV L-L*1.732 Or KVAsc Transformer KVA rating / Transformer per Unit Impedance. [4] Available power cable sizes (sq-mm) to carry current in the network (1, 2, 3, 3 1/2, 4 cores etc.), 1,1.5,2.5,4,6,10,16,25,35,50,70,95,120,150, 240,.300,400,500,630,800,1000 Operating voltage ranges available, 1.1 KV, 3.3 KV, 6.6 KV, 12 KV, 33 KV. Current capacity of the cable depends on various factors like, current density, type of laying, insulation quality, type of cooling, real and reactive power flow in the network, negative phase sequence loading, type of protection, system/network grounding etc. Current density of the cable decreases with the increase in cable size, so as the current carrying capacity of the cable. This is because, current density = I / area of the cable in sq-mm. In general, for cable sizes between 1.0 sq-mm to 120 sq-mm, current density value can be taken in the range 5.0 to 2.5 to find the current carrying capacity of the cable (for continuous loading). And for cables sized between 150 sq-mm to 1000 sq-mm, current density value can be taken between 2.0 to 075 to find the current carrying capacity of the cable. Protection schemes employed in power system to safeguard the equipment s and safety of the personal operating the system, Since electrical power system comprised of many switch gear equipment s, arranged and operating according to the requirements. System is to be protected against unpredictability s, i.e. System faults. Some of the protection schemes employed are (in general, open circuit and short circuit protection), Over current protection. Earth fault protection. Over/under voltage protection. Over/under frequency protection. Protection against negative phase sequence loading, over load, high winding temperature. Directional and non-directional power and current flow in the network. Generator and transformer differential current protection. Protection against loss of excitation in generators. Transformer buchholtz protection. Protection against feedback failure etc. Some of the Companies, producing electrical power system equipment s are, BHEL, SIEMENS,TDPS, Alternator/D G ABB, Kirloskar Electric, VA TECH, G E etc. Transformers ABB, KAVIKA, C G, EMCO,DELTA VOLTAMP, etc. ABB, SIEMENS, Motors Kirloskar Electric, G E, BBL, C G etc. Switch Gear Equipment s L&T,ABB, SIEMENS GE, BBL, AREVA, All rights reserved by 66

5 ( HT & LT breakers, Relays, CT s,pt s, Measuring instruments, power & control Contactors, Isolators, Connectors, Controllers etc. Power and control cables Variable Frequency Drives System software Developers Schneider Electric, HAVELLS, Toshiba, V-Guard etc. Polycab, Standards, V-Guard, Havells etc. ABB, Toshiba SIEMENS, Hirel, G E Schneider Electric etc. Honeywell,GE Yokogova, Forbes Marshall, ABB, SIEMENS, Allen Bradley, etc. [1 7] II. CONCLUSION Electrical power system is a complex network & one of the fast growing systems in the world today. This has become a mandatory aspect to lead life and due to the application severity, there is a need to recall system basics, which are useful in enhancing system knowledge and helps in adapting to new emerging technologies/innovations. In this paper, an attempt is made on electrical power system review. Hope the contents of the paper are useful to the people of power system in industrial / non industrial sector and helps at least to some extinct in their profession. [1] [2] V K Mehta - Principles of power system (Latest edition 2014). [3] S S Rao Switch Gear and Protection (Latest edition 2014). [4] K R Padiyar FACTS controllers in power transmission and distribution. [5] Electrical power system Equipment s producing Company s. [6] [7] technology.org REFERENCES All rights reserved by 67

Voltage Sag Mitigation in IEEE 6 Bus System by using STATCOM and UPFC

Voltage Sag Mitigation in IEEE 6 Bus System by using STATCOM and UPFC IJSTE - International Journal of Science Technology & Engineering Volume 2 Issue 01 July 2015 ISSN (online): 2349-784X Voltage Sag Mitigation in IEEE 6 Bus System by using STATCOM and UPFC Ravindra Mohana

More information

Overview of Flexible AC Transmission Systems

Overview of Flexible AC Transmission Systems Overview of Flexible AC Transmission Systems What is FACTS? Flexible AC Transmission System (FACTS): Alternating current transmission systems incorporating power electronic-based and other static controllers

More information

ELG4125: Flexible AC Transmission Systems (FACTS)

ELG4125: Flexible AC Transmission Systems (FACTS) ELG4125: Flexible AC Transmission Systems (FACTS) The philosophy of FACTS is to use power electronics for controlling power flow in a transmission network, thus allowing the transmission line to be loaded

More information

A Review on Reactive Power Compensation Technologies

A Review on Reactive Power Compensation Technologies IJSRD - International Journal for Scientific Research & Development Vol. 4, Issue 11, 2017 ISSN (online): 2321-0613 A Review on Reactive Power Compensation Technologies Minal Dilip Sathe 1 Gopal Chaudhari

More information

Performance Analysis of Transmission Line system under Unsymmetrical Faults with UPFC

Performance Analysis of Transmission Line system under Unsymmetrical Faults with UPFC Int. J. of P. & Life Sci. (Special Issue Engg. Tech.) Performance Analysis of Transmission Line system under Unsymmetrical Faults with UPFC Durgesh Kumar and Sonora ME Scholar Department of Electrical

More information

Implementation of FC-TCR for Reactive Power Control

Implementation of FC-TCR for Reactive Power Control IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 5, Issue 5 (May. - Jun. 2013), PP 01-05 Implementation of FC-TCR for Reactive Power Control

More information

A Transient Free Novel Control Technique for Reactive Power Compensation using Thyristor Switched Capacitor

A Transient Free Novel Control Technique for Reactive Power Compensation using Thyristor Switched Capacitor A Transient Free Novel Control Technique for Reactive Power Compensation using Thyristor Switched Capacitor 1 Chaudhari Krunal R, 2 Prof. Rajesh Prasad 1 PG Student, 2 Assistant Professor, Electrical Engineering

More information

Benefits of HVDC and FACTS Devices Applied in Power Systems

Benefits of HVDC and FACTS Devices Applied in Power Systems Benefits of HVDC and FACTS Devices Applied in Power Systems 1 P. SURESH KUMAR, 2 G. RAVI KUMAR 1 M.Tech Research Scholar, Priyadarshini Institute of Technology & Management 2 Associate Professor, Priyadarshini

More information

PSNH INTERCONNECTION REQUEST

PSNH INTERCONNECTION REQUEST PSNH INTERCONNECTION REQUEST Send the completed Interconnection Request and required attachments to: Public Service of New Hampshire Attn: Michael Motta, Senior Engineer Supplemental Energy Sources P.

More information

CHAPER 5 POWER FLOW STUDY IN THE INTEGRATED GRID NETWORK

CHAPER 5 POWER FLOW STUDY IN THE INTEGRATED GRID NETWORK 91 CHAPER 5 POWER FLOW STUDY IN THE INTEGRATED GRID NETWORK CHAPTER CONTENTS: 5.1 INTRODUCTION 5.2 CONDUCTION OF VARIOUS POWER FLOW STUDIES ON THE MODEL 5.3 EXPERIMENTS CONDUCTED FOR VARIOUS POWER FLOW

More information

Fuzzy based STATCOM Controller for Grid connected wind Farms with Fixed Speed Induction Generators

Fuzzy based STATCOM Controller for Grid connected wind Farms with Fixed Speed Induction Generators Fuzzy based STATCOM Controller for Grid connected wind Farms with Fixed Speed Induction Generators Abstract: G. Thrisandhya M.Tech Student, (Electrical Power systems), Electrical and Electronics Department,

More information

An Overview of Facts Devices used for Reactive Power Compensation Techniques

An Overview of Facts Devices used for Reactive Power Compensation Techniques An Overview of Facts Devices used for Reactive Power Compensation Techniques Aishvarya Narain M.Tech Research Scholar Department of Electrical Engineering Madan Mohan Malviya University of Technology Gorakhpur,

More information

Dynamic Control of Grid Assets

Dynamic Control of Grid Assets Dynamic Control of Grid Assets ISGT Panel on Power Electronics in the Smart Grid Prof Deepak Divan Associate Director, Strategic Energy Institute Director, Intelligent Power Infrastructure Consortium School

More information

Paper ID: EE19 SIMULATION OF REAL AND REACTIVE POWER FLOW ASSESSMENT WITH FACTS CONNECTED TO A SINGLE TRANSMISSION LINE

Paper ID: EE19 SIMULATION OF REAL AND REACTIVE POWER FLOW ASSESSMENT WITH FACTS CONNECTED TO A SINGLE TRANSMISSION LINE SIMULATION OF REAL AND REACTIVE POWER FLOW ASSESSMENT WITH FACTS CONNECTED TO A SINGLE TRANSMISSION LINE Prof. Mrs. Shrunkhala G. Khadilkar Department of Electrical Engineering Gokhale Education Society.

More information

Dynamic Reactive Power Control. By V. R. Kanetkar Full Time Consultant Technical Services at Veretiv Energy Private Limited Thane (West)

Dynamic Reactive Power Control. By V. R. Kanetkar Full Time Consultant Technical Services at Veretiv Energy Private Limited Thane (West) Dynamic Reactive Power Control By V. R. Kanetkar Full Time Consultant Technical Services at Veretiv Energy Private Limited Thane (West) Acknowledgement The author acknowledges with deep gratitude the experience

More information

TRANSMISSION LOSS MINIMIZATION USING ADVANCED UNIFIED POWER FLOW CONTROLLER (UPFC)

TRANSMISSION LOSS MINIMIZATION USING ADVANCED UNIFIED POWER FLOW CONTROLLER (UPFC) TRANSMISSION LOSS MINIMIZATION USING ADVANCED UNIFIED POWER FLOW CONTROLLER (UPFC) Nazneen Choudhari Department of Electrical Engineering, Solapur University, Solapur Nida N Shaikh Department of Electrical

More information

POSSIBILITIES OF POWER FLOWS CONTROL

POSSIBILITIES OF POWER FLOWS CONTROL Intensive Programme Renewable Energy Sources June 2012, Železná Ruda-Špičák, University of West Bohemia, Czech Republic POSSIBILITIES OF POWER FLOWS CONTROL Stanislav Kušnír, Roman Jakubčák, Pavol Hocko

More information

ISO Rules Part 500 Facilities Division 502 Technical Requirements Section Interconnected Electric System Protection Requirements

ISO Rules Part 500 Facilities Division 502 Technical Requirements Section Interconnected Electric System Protection Requirements Applicability 1 Section 502.3 applies to: the legal owner of a generating unit directly connected to the transmission system with a maximum authorized real power rating greater than 18 MW; the legal owner

More information

SUBSTATION DESIGN TRAINING

SUBSTATION DESIGN TRAINING 2017 SUBSTATION DESIGN TRAINING ADVANCE ELECTRICAL DESIGN & ENGINEERING INSITUTE (Registered under MSME& An ISO 9001:2008 CERTIFIED) Training Centre: Advance Group of Institutions C-1, Second Floor Near

More information

EPRLAB FAQ v1.0 Page 1 / 8 Copyright EPRLAB December 2015

EPRLAB FAQ v1.0 Page 1 / 8 Copyright EPRLAB December 2015 e EPRLAB FAQ v1.0 Page 1 / 8 e EPRLAB Electric Power Research Laboratory, EPRLAB is a high-tech power electronics company that has been specialized on design, manufacturing and implementation of industrial

More information

Concepts And Application Of Flexible Alternating Current Transmission System (FACTS) In Electric Power Network

Concepts And Application Of Flexible Alternating Current Transmission System (FACTS) In Electric Power Network Concepts And Application Of Flexible Alternating Current Transmission System (FACTS) In Electric Power Network Nwozor Obinna Eugene Department of Electrical and Computer Engineering, Federal University

More information

INSTALLATION OF CAPACITOR BANK IN 132/11 KV SUBSTATION FOR PARING DOWN OF LOAD CURRENT

INSTALLATION OF CAPACITOR BANK IN 132/11 KV SUBSTATION FOR PARING DOWN OF LOAD CURRENT INSTALLATION OF CAPACITOR BANK IN 132/11 KV SUBSTATION FOR PARING DOWN OF LOAD CURRENT Prof. Chandrashekhar Sakode 1, Vicky R. Khode 2, Harshal R. Malokar 3, Sanket S. Hate 4, Vinay H. Nasre 5, Ashish

More information

R07 SET - 1

R07 SET - 1 R07 SET - 1 II B. Tech II Semester Supplementary Examinations April/May 2013 ELECTRICAL MACHINES - II (Electrical and Electronics Engineering) Time: 3 hours Max. Marks: 80 Answer any FIVE Questions All

More information

Enhancement of Power Quality in Transmission Line Using Flexible Ac Transmission System

Enhancement of Power Quality in Transmission Line Using Flexible Ac Transmission System Enhancement of Power Quality in Transmission Line Using Flexible Ac Transmission System Raju Pandey, A. K. Kori Abstract FACTS devices can be added to power transmission and distribution systems at appropriate

More information

Enhancement of Power System Stability Using Thyristor Controlled Series Compensator (TCSC)

Enhancement of Power System Stability Using Thyristor Controlled Series Compensator (TCSC) Enhancement of Power System Stability Using Thyristor Controlled Series Compensator (TCSC) Pooja Rani P.G. Research Scholar in Department of Electrical Engg. MITM, Hisar, Haryana, India Mamta Singh Assistant

More information

INTRODUCTION. In today s highly complex and interconnected power systems, mostly made up of thousands of buses and hundreds of generators,

INTRODUCTION. In today s highly complex and interconnected power systems, mostly made up of thousands of buses and hundreds of generators, 1 INTRODUCTION 1.1 GENERAL INTRODUCTION In today s highly complex and interconnected power systems, mostly made up of thousands of buses and hundreds of generators, there is a great need to improve electric

More information

Power Quality Improvement Using Statcom in Ieee 30 Bus System

Power Quality Improvement Using Statcom in Ieee 30 Bus System Advance in Electronic and Electric Engineering. ISSN 2231-1297, Volume 3, Number 6 (2013), pp. 727-732 Research India Publications http://www.ripublication.com/aeee.htm Power Quality Improvement Using

More information

DESIGN CONSIDERATIONS FOR APPLICATION OF SHUNT CAPACITORS IN HEAVY HATER PLANT (TUTICORIN)

DESIGN CONSIDERATIONS FOR APPLICATION OF SHUNT CAPACITORS IN HEAVY HATER PLANT (TUTICORIN) DESIGN CONSIDERATIONS FOR APPLICATION OF SHUNT CAPACITORS IN HEAVY HATER PLANT (TUTICORIN) -A.R. Subraaanian -R.A.A. Palani -J. Thomson A new 3.3 K.V. 4200 KVAR auto switching capacitor bank has been installed

More information

ABB Wind Power Solution

ABB Wind Power Solution Feng Li, Wind ISI, CNABB, November, 2016 ABB Wind Power Solution November 13, 2016 Slide 1 ABB deliveries from A to Z into the wind industry Wind power generation, transmission and integration, control

More information

Legal Name of the Customer (or, if an individual, individual's name): Name: Contact Person: Mailing Address: Physical Address: City: State: Zip Code:

Legal Name of the Customer (or, if an individual, individual's name): Name: Contact Person: Mailing Address: Physical Address: City: State: Zip Code: Generating Facility Level 2 or 3 Interconnection Review (For Generating Facilities with Electric Nameplate Capacities no Larger than 20 MW) Instructions An Interconnection Customer who requests a Utah

More information

ELECTRICAL POWER SYSTEMS 2016 PROJECTS

ELECTRICAL POWER SYSTEMS 2016 PROJECTS ELECTRICAL POWER SYSTEMS 2016 PROJECTS DRIVES 1 A dual inverter for an open end winding induction motor drive without an isolation transformer 2 A Robust V/f Based Sensorless MTPA Control Strategy for

More information

Tiruchengode, Tamil Nadu, India

Tiruchengode, Tamil Nadu, India A Review on Facts Devices in Power System for Stability Analysis 1 T. Tamilarasi and 2 Dr. M. K. Elango, 1 PG Student, 3 Professor, 1,2 Department of Electrical and Electronics Engineering, K.S.Rangasamy

More information

Reactive Power Management Using TSC-TCR

Reactive Power Management Using TSC-TCR Reactive Power Management Using TSC-TCR Kumarshanu Chaurasiya 1, Sagar Rajput 1, Sachin Parmar 1, Prof. Abhishek Patel 2 1 Student, Department of Electrical Engineering, Vadodara institute of engineering,

More information

Power Systems Trainer

Power Systems Trainer Electrical Power Systems PSS A self-contained unit that simulates all parts of electrical power systems and their protection, from generation to utilisation Key Features Simulates generation, transmission,

More information

Power Flow Control through Transmission Line with UPFC to Mitigate Contingency

Power Flow Control through Transmission Line with UPFC to Mitigate Contingency Power Flow Control through Transmission Line with UPFC to Mitigate Contingency Amit Shiwalkar & N. D. Ghawghawe G.C.O.E. Amravati E-mail : amitashiwalkar@gmail.com, g_nit@rediffmail.com Abstract This paper

More information

A SIMPLE CONTROL TECHNIQUE FOR UNIFIED POWER FLOW CONTROLLER (UPFC)

A SIMPLE CONTROL TECHNIQUE FOR UNIFIED POWER FLOW CONTROLLER (UPFC) Volume 116 No. 21 2017, 469-477 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu ijpam.eu A SIMPLE CONTROL TECHNIQUE FOR UNIFIED POWER FLOW CONTROLLER (UPFC)

More information

International Journal of Advance Engineering and Research Development. Automatic Power Factor Correction in EHV System

International Journal of Advance Engineering and Research Development. Automatic Power Factor Correction in EHV System Scientific Journal of Impact Factor(SJIF): 3.134 e-issn(o): 2348-4470 p-issn(p): 2348-6406 International Journal of Advance Engineering and Research Development Volume 2,Issue 5, May -2015 Automatic Power

More information

Magnetically Controlled Reactors Enhance Transmission Capability & Save Energy Especially in Compact Increased Surge-Impedance- Loading Power Lines

Magnetically Controlled Reactors Enhance Transmission Capability & Save Energy Especially in Compact Increased Surge-Impedance- Loading Power Lines Magnetically Controlled Reactors Enhance Transmission Capability & Save Energy Especially in Compact Increased Surge-Impedance- Loading Power Lines Prof. Alexander M. Bryantsev, Moscow Power Institute,

More information

Power System Stability Analysis on System Connected to Wind Power Generation with Solid State Fault Current Limiter

Power System Stability Analysis on System Connected to Wind Power Generation with Solid State Fault Current Limiter IJSTE - International Journal of Science Technology & Engineering Volume 2 Issue 2 August 2015 ISSN (online): 2349-784X Power System Stability Analysis on System Connected to Wind Power Generation with

More information

NORTH CAROLINA INTERCONNECTION REQUEST APPLICATION FORM. Utility: Duke Energy Progress

NORTH CAROLINA INTERCONNECTION REQUEST APPLICATION FORM. Utility: Duke Energy Progress NORTH CAROLINA INTERCONNECTION REQUEST APPLICATION FORM ATTACHMENT 2 Utility: Duke Energy Progress Designated Utility Contact: Attention: Customer Owned Generation Mail Code ST13A E-Mail Address: Customerownedgeneration@duke-energy.com

More information

Maintaining Voltage Stability in Power System using FACTS Devices

Maintaining Voltage Stability in Power System using FACTS Devices International Journal of Engineering Science Invention Volume 2 Issue 2 ǁ February. 2013 Maintaining Voltage Stability in Power System using FACTS Devices Asha Vijayan 1, S.Padma 2 1 (P.G Research Scholar,

More information

USING FACTS STABILITY ANALYSIS OF AC TRANSMISSION LINE

USING FACTS STABILITY ANALYSIS OF AC TRANSMISSION LINE USING FACTS STABILITY ANALYSIS OF AC TRANSMISSION LINE Pardeep Kumar 1, Manjeet 2 1 M.Tech Student, IIET Kinana, Jind 2 Asst. Professor, GNIOT, Greater Noida ABSTRACT Due to the rapid technological progress,

More information

Grid Stability Analysis for High Penetration Solar Photovoltaics

Grid Stability Analysis for High Penetration Solar Photovoltaics Grid Stability Analysis for High Penetration Solar Photovoltaics Ajit Kumar K Asst. Manager Solar Business Unit Larsen & Toubro Construction, Chennai Co Authors Dr. M. P. Selvan Asst. Professor Department

More information

Enabling the power of wind. Competence and expertise for wind power customers

Enabling the power of wind. Competence and expertise for wind power customers Enabling the power of wind Competence and expertise for wind power customers This is Rising demand for energy and its impact on the environment are the defining challenges of this century. is tackling

More information

NTRODUCTIONTO FACTS CONTROLLERS Theory, Modeling, and Applications

NTRODUCTIONTO FACTS CONTROLLERS Theory, Modeling, and Applications NTRODUCTIONTO FACTS CONTROLLERS Theory, Modeling, and Applications Kalyan K. Sen Mey Ling Sen ON POWER ENGINEERING 4NEEE IEEE Press WILEY A JOHN WILEY & SONS, INC., PUBLICATION CONTENTS Foreword Preface

More information

Advanced Protective Relay Training

Advanced Protective Relay Training Advanced Protective Relay Training Contact us Today for a FREE quotation to deliver this course at your company?s location. https://www.electricityforum.com/onsite-training-rfq A properly designed protection

More information

Standards, Procedures and Policies for Grid Connection

Standards, Procedures and Policies for Grid Connection Standards, Procedures and Policies for Grid Connection CONTENTS 1 INTRODUCTION 1 2 EMBEDDED GENERATION 1 2.1.1 OUTLINE OF EMBEDDED GENERATION 1 2.1.2 CHANGES IN EMBEDDED GENERATION 1 2.1.3 ASPECTS OF EMBEDDED

More information

CUSTOMER / ACCOUNT INFORMATION Electric Utility Customer Information (As shown on utility bill)

CUSTOMER / ACCOUNT INFORMATION Electric Utility Customer Information (As shown on utility bill) GENERATOR INTERCONNECTION APPLICATION Category 2 (Combined) For All Projects with Aggregate Generator Output of More Than 20 kw but Less Than or Equal to 150 kw Also Serves as Application for Category

More information

ABSTRACT I. INTRODUCTION. Nimish Suchak, VinodKumar Chavada, Bhaveshkumar Shah, Sandip Parmar, Vishal Harsoda

ABSTRACT I. INTRODUCTION. Nimish Suchak, VinodKumar Chavada, Bhaveshkumar Shah, Sandip Parmar, Vishal Harsoda International Journal of Scientific Research in Computer Science, Engineering and Information Technology 2017 IJSRCSEIT Volume 2 Issue 3 ISSN : 2456-3307 Application of Flexible AC Transmission System

More information

Renewable and Distributed Energy Resource Technologies

Renewable and Distributed Energy Resource Technologies OCIECE EACJ5300/ELG7114i - 2013 Winter Term Renewable and Distributed Energy Resource Technologies Chapter 1 Power System Basics Instructor: Xiaoyu Wang, Assistant Professor Department of Electronics,

More information

High Voltage Direct Current and Alternating Current Transmission Systems Conference. August Nari Hingorani

High Voltage Direct Current and Alternating Current Transmission Systems Conference. August Nari Hingorani High Voltage Direct Current and Alternating Current Transmission Systems Conference at EPRI Palo Alto CA August 30 31 2011 Scope of VSC Based Technology in HVDC and FACTS Nari Hingorani HVDC and FACTS:

More information

PQC-STATCON. PPHVC-Power Quality Solutions. Instantaneous and stepless power quality compensation for dynamic reactive power and unbalanced loads

PQC-STATCON. PPHVC-Power Quality Solutions. Instantaneous and stepless power quality compensation for dynamic reactive power and unbalanced loads PQC-STATCON PPHVC-Power Quality Solutions Instantaneous and stepless power quality compensation for dynamic reactive power and unbalanced loads Contents What is poor power quality? Reasons for investing

More information

APPLICATION OF STATCOM FOR STABILITY ENHANCEMENT OF FSIG BASED GRID CONNECTED WIND FARM

APPLICATION OF STATCOM FOR STABILITY ENHANCEMENT OF FSIG BASED GRID CONNECTED WIND FARM APPLICATION OF STATCOM FOR STABILITY ENHANCEMENT OF FSIG BASED GRID CONNECTED WIND FARM 1 Rohit Kumar Sahu*, 2 Ashutosh Mishra 1 M.Tech Student, Department of E.E.E, RSR-RCET, Bhilai, Chhattisgarh, INDIA,

More information

International Journal of Advance Research in Engineering, Science & Technology

International Journal of Advance Research in Engineering, Science & Technology Impact Factor (SJIF): 3.632 International Journal of Advance Research in Engineering, Science & Technology e-issn: 2393-9877, p-issn: 2394-2444 Volume 3, Issue 4, April-2016 AUTOMATIC POWER FACTOR CORRECTION

More information

DC CIRCUITS ELECTROMAGNETISM

DC CIRCUITS ELECTROMAGNETISM DC CIRCUITS 1. State and Explain Ohm s Law. Write in brief about the limitations of Ohm s Law. 2. State and explain Kirchhoff s laws. 3. Write in brief about disadvantages of series circuit and advantages

More information

Medium Voltage. Power Factor Correction Reactive Compensation Harmonic Filters. Electrical Power Quality Management at its best.

Medium Voltage. Power Factor Correction Reactive Compensation Harmonic Filters. Electrical Power Quality Management at its best. Medium Voltage Power Factor Correction Reactive Compensation Harmonic Filters POWER QUALITY Electrical Power Quality Management at its best. From electricity generation, transmission, thru its distribution

More information

Optimal placement of SVCs & IPFCs in an Electrical Power System

Optimal placement of SVCs & IPFCs in an Electrical Power System IOSR Journal of Engineering (IOSRJEN) e-issn: 2250-3021, p-issn: 2278-8719 Vol. 3, Issue 5 (May. 2013), V3 PP 26-30 Optimal placement of SVCs & IPFCs in an Electrical Power System M.V.Ramesh, Dr. V.C.

More information

The Application of Power Electronics to the Alberta Grid

The Application of Power Electronics to the Alberta Grid The Application of Power Electronics to the Alberta Grid Peter Kuffel, Michael Paradis ATCO Electric APIC May 5, 2016 Power Electronics Semiconductor devices used in power transmission systems Types: Thyristor

More information

POWER QUALITY IMPROVEMENT BASED UPQC FOR WIND POWER GENERATION

POWER QUALITY IMPROVEMENT BASED UPQC FOR WIND POWER GENERATION International Journal of Latest Research in Science and Technology Volume 3, Issue 1: Page No.68-74,January-February 2014 http://www.mnkjournals.com/ijlrst.htm ISSN (Online):2278-5299 POWER QUALITY IMPROVEMENT

More information

Enhancing the U.S. Bulk Power System

Enhancing the U.S. Bulk Power System Enhancing the U.S. Bulk Power System Clark W. Gellings EPRI Fellow National Academies U.S.-China Power Systems Workshop May 30, 2013 Generation by Fuel Source in 2030 Coal 6% 7% Coal CCS Petroleum Natural

More information

Surabaya Seminar Ferdinand Sibarani, Surabaya, 30 th October Power Quality

Surabaya Seminar Ferdinand Sibarani, Surabaya, 30 th October Power Quality Surabaya Seminar 2014 Ferdinand Sibarani, Surabaya, 30 th October 2014 Power Quality Content 1. Power quality problems 2. ABB s low voltage (LV) solution PCS100 AVC (Active Voltage Conditioner) PCS100

More information

PQC - STATCON The ultra fast Power Quality Compensator

PQC - STATCON The ultra fast Power Quality Compensator PQC - STATCON The ultra fast Power Quality Compensator PQC - STATCON The ultra fast power quality compensator PQC - STATCON is based on IGBT voltage source inverter technology. It is a shunt connected

More information

FACTS Device a Remedy for Power Quality and Power System Stability Problem: A Review

FACTS Device a Remedy for Power Quality and Power System Stability Problem: A Review FACTS Device a Remedy for Power Quality and Power System Stability Problem: A Review Vinit T. Kullarkar, B. Ajay Krishna, Rahul Lekurwale Assistant Professor, Department of Electrical Engineering, KITS

More information

OPTIMAL Placement of FACTS Devices by Genetic Algorithm for the Increased Load Ability of a Power System

OPTIMAL Placement of FACTS Devices by Genetic Algorithm for the Increased Load Ability of a Power System OPTIMAL Placement of FACTS Devices by Genetic Algorithm for the Increased Load Ability of a Power System A. B.Bhattacharyya, B. S.K.Goswami International Science Index, Electrical and Computer Engineering

More information

Mikael Dahlgren, ABB Corporate Research, 02 December 2011 ABB Technology providers perspective Energidagen Chalmers Energyinitiative

Mikael Dahlgren, ABB Corporate Research, 02 December 2011 ABB Technology providers perspective Energidagen Chalmers Energyinitiative Mikael Dahlgren, ABB Corporate Research, 02 December 2011 ABB Technology providers perspective Energidagen Chalmers Energyinitiative ABB HVDC Slide 1 ABB Five global divisions Power Products Power Systems

More information

Simulation of real and reactive power flow Assessment with UPFC connected to a Single/double transmission line

Simulation of real and reactive power flow Assessment with UPFC connected to a Single/double transmission line Simulation of real and reactive power flow Assessment with UPFC connected to a Single/double transmission line Nitin goel 1, Shilpa 2, Shashi yadav 3 Assistant Professor, Dept. of E.E, YMCA University

More information

Transient Stability Assessment and Enhancement in Power System

Transient Stability Assessment and Enhancement in Power System International OPEN ACCESS Journal Of Modern Engineering Research (IJMER) Transient Stability Assessment and Enhancement in Power System Aysha P. A 1, Anna Baby 2 1,2 Department of Electrical and Electronics,

More information

Synchronous motor with fluid coupling drive arrangement for a preheater ID Fan. presenter Nathan Schachter CIMENTEC Engineering Ltd

Synchronous motor with fluid coupling drive arrangement for a preheater ID Fan. presenter Nathan Schachter CIMENTEC Engineering Ltd Synchronous motor with fluid coupling drive arrangement for a preheater ID Fan presenter Nathan Schachter SLC PLC Lubrication units Cooling Water DCS SUB BD Breaker SR469 GE STAT-XTOR PLC Field Application

More information

Transmission Problem Areas. Bulk power transfer over long distances Transmission Limitations/Bottlenecks have one or more of the following:

Transmission Problem Areas. Bulk power transfer over long distances Transmission Limitations/Bottlenecks have one or more of the following: Transmission Problem Areas Bulk power transfer over long distances Transmission Limitations/Bottlenecks have one or more of the following:» Steady-state stability limits» Transient stability limits» Power

More information

Power Solutions Manager Generac Power Systems, Inc.

Power Solutions Manager Generac Power Systems, Inc. Engine Generator Paralleling Concepts Gen. #1 Gen. #2 Gen. #3 Gen. #4 Gen. #5 Presenter: Daniel Barbersek Power Solutions Manager Generac Power Systems, Inc. RUNNING HEADLINE What Topics Will Be Covered

More information

RULE 21 GENERATING FACILITY INTERCONNECTION APPLICATION SMUD s Distribution System - (SMUD FORM 2655)

RULE 21 GENERATING FACILITY INTERCONNECTION APPLICATION SMUD s Distribution System - (SMUD FORM 2655) - (SMUD FORM 2655) A. Applicability: This Generating Facility Interconnection Application (Application) shall be used to request the interconnection of a Generating Facility to Sacramento Municipal Utility

More information

GENERATOR INTERCONNECTION APPLICATION

GENERATOR INTERCONNECTION APPLICATION GENERATOR INTERCONNECTION APPLICATION FOR ALL PROJECTS WITH AGGREGATE GENERATOR OUTPUT OF MORE THAN 150 KW BUT LESS THAN OR EQUAL TO 550 KW Also Serves as Application for Category 3 Net Metering (Note:

More information

Offshore Wind: Grid Connection & Technology Options. Dietmar Retzmann Focus on. CO 2 Reduction Green Energy Megacities Security of Supply

Offshore Wind: Grid Connection & Technology Options. Dietmar Retzmann Focus on. CO 2 Reduction Green Energy Megacities Security of Supply Offshore Wind: Grid Connection & Technology Options Dietmar Retzmann 1 10-2011 E T PS S/Re Focus on CO 2 Reduction Green Energy Megacities Security of Supply 2 10-2011 E T PS S/Re 1 EWEA s 2030 Offshore

More information

Analysis of Grid Connected Solar Farm in ETAP Software

Analysis of Grid Connected Solar Farm in ETAP Software ABSTRACT 2017 IJSRSET Volume 3 Issue 3 Print ISSN: 2395-1990 Online ISSN : 2394-4099 Themed Section: Engineering and Technology Analysis of Grid Connected Solar Farm in ETAP Software Komal B. Patil, Prof.

More information

Date Issued: 10 August 2009 Status: ISSUED Review Date: 10 August 2011 Ref: NS5.3 DISTRIBUTED GENERATION TECHNICAL REQUIREMENTS TABLE OF CONTENTS

Date Issued: 10 August 2009 Status: ISSUED Review Date: 10 August 2011 Ref: NS5.3 DISTRIBUTED GENERATION TECHNICAL REQUIREMENTS TABLE OF CONTENTS Date Issued: 10 August 2009 Status: ISSUED Review Date: 10 August 2011 Ref: NS5.3 DISTRIBUTED GENERATION TECHNICAL REQUIREMENTS TABLE OF CONTENTS 1. PURPOSE AND SCOPE OF THIS DOCUMENT... 3 2. DEFINITIONS...

More information

Regulation: R16 Course & Branch: B.Tech EEE

Regulation: R16 Course & Branch: B.Tech EEE SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (Descriptive) Subject with Code : Electrical Machines-II (16EE215) Regulation: R16 Course & Branch: B.Tech

More information

Recent Trends in Real and Reactive Power flow Control with SVC and STATCOM Controller for transmission line

Recent Trends in Real and Reactive Power flow Control with SVC and STATCOM Controller for transmission line Recent Trends in Real and Reactive Power flow Control with SVC and STATCOM Controller for transmission line Prof.R.M. Malkar 1, Prof.V.B.Magdum 2 D.K.T.E. S. TEI,Ichalkaranji Maharashtra, India 416115

More information

Final Written Examination.

Final Written Examination. Benha University Semester (3 th year Power &Control) Faculty of Engineering Electrical Power Systems (E1331) Electrical Engineering Department Semester 2015-2016 Final Written Examination. 10/1/2016 Time

More information

CONNECTION OF NEW GENERATORS IN THE ELECTRICAL POWER SYSTEM OF KOSOVO. Rexhep Shaqiri 1, Bogdanov Dimitar 2.

CONNECTION OF NEW GENERATORS IN THE ELECTRICAL POWER SYSTEM OF KOSOVO. Rexhep Shaqiri 1, Bogdanov Dimitar 2. CONNECTION OF NEW GENERATORS IN THE ELECTRICAL POWER SYSTEM OF KOSOVO Rexhep Shaqiri 1, Bogdanov Dimitar 2 1 Technical University - Sofia, E-mail: rexhep_shaqiri@hotmail.com). 2 Technical University -

More information

Reactive power support of smart distribution grids using optimal management of charging parking of PHEV

Reactive power support of smart distribution grids using optimal management of charging parking of PHEV Journal of Scientific Research and Development 2 (3): 210-215, 2015 Available online at www.jsrad.org ISSN 1115-7569 2015 JSRAD Reactive power support of smart distribution grids using optimal management

More information

CATEGORY 2 GENERATOR INTERCONNECTION APPLICATION

CATEGORY 2 GENERATOR INTERCONNECTION APPLICATION CATEGORY 2 GENERATOR INTERCONNECTION APPLICATION FOR ALL PROJECTS WITH AGGREGATE GENERATOR OUTPUT OF MORE THAN 20 KW BUT LESS THAN OR EQUAL TO 150 KW Also Serves as Application for Category 2 Net Metering

More information

Modular Standardized Electrical and Control Solutions for Fast Track Projects

Modular Standardized Electrical and Control Solutions for Fast Track Projects Modular Standardized Electrical and Control Solutions for Supporting fast track projects ABB is the leading supplier of electrical and control equipment for power plants. The company offers a comprehensive

More information

Solutions for Smart Transmission Panel Session

Solutions for Smart Transmission Panel Session October 22, 2013 CIGRE Grid of The Future Symposium Solutions for Smart Transmission Panel Session Gary Rackliffe, VP Smart Grids North America Smarter Grids Integration of OT and IT Distribution Analytics

More information

Electric Utility Contact Information Indiana Michigan Power

Electric Utility Contact Information Indiana Michigan Power CATEGORY 2 GENERATOR INTERCONNECTION APPLICATION FOR ALL PROJECTS WITH AGGREGATE GENERATOR OUTPUT OF MORE THAN 20 KW BUT LESS THAN OR EQUAL TO 150 KW Also Serves as Application for Category 2 Net Metering

More information

Improvement In Reliability Of Composite Power System Using Tcsc, Upfc Of 6 Bus Rbts A Comparison

Improvement In Reliability Of Composite Power System Using Tcsc, Upfc Of 6 Bus Rbts A Comparison IOSR Journal of Electrical and Electronics Engineering (IOSRJEEE) ISSN: 2278-1676 Volume 1, Issue 4 (July-Aug. 2012), PP 46-53 www.iosrournals.org Improvement In Reliability Of Composite Power System Using

More information

Synchronous motor control. 8/15/2007 Powerflow Technologies Inc 1

Synchronous motor control. 8/15/2007 Powerflow Technologies Inc 1 Synchronous motor control 8/15/2007 Powerflow Technologies Inc 1 PLC Lubrication units Cooling Water DCS PLC Dampers SUB BD Breaker Protection relay Field Application Kiln System Fan Hydraulic Unit Instrumentation

More information

ABB n.v Power Quality in LV installations

ABB n.v Power Quality in LV installations ABB n.v. - 1 - Power Quality in LV installations PQ problems in LV installations 750 500 250 Volts 0-250 -500 Amps -750 3000 2000 1000 0-1000 -2000-3000 10:25:43.72 10:25:43.73 10:25:43.74 10:25:43.75

More information

Power Flow Simulation of a 6-Bus Wind Connected System and Voltage Stability Analysis by Using STATCOM

Power Flow Simulation of a 6-Bus Wind Connected System and Voltage Stability Analysis by Using STATCOM Power Flow Simulation of a 6-Bus Wind Connected System and Voltage Stability Analysis by Using STATCOM Shaila Arif 1 Lecturer, Dept. of EEE, Ahsanullah University of Science & Technology, Tejgaon, Dhaka,

More information

Influence of Unified Power Flow Controller on Flexible Alternating Current Transmission System Devices in 500 kv Transmission Line

Influence of Unified Power Flow Controller on Flexible Alternating Current Transmission System Devices in 500 kv Transmission Line Journal of Electrical and Electronic Engineering 2018; 6(1): 22-29 http://www.sciencepublishinggroup.com/j/jeee doi: 10.11648/j.jeee.20180601.13 ISSN: 2329-1613 (Print); ISSN: 2329-1605 (Online) Influence

More information

CHAPTER 5 FAULT AND HARMONIC ANALYSIS USING PV ARRAY BASED STATCOM

CHAPTER 5 FAULT AND HARMONIC ANALYSIS USING PV ARRAY BASED STATCOM 106 CHAPTER 5 FAULT AND HARMONIC ANALYSIS USING PV ARRAY BASED STATCOM 5.1 INTRODUCTION Inherent characteristics of renewable energy resources cause technical issues not encountered with conventional thermal,

More information

IJRASET 2013: All Rights are Reserved

IJRASET 2013: All Rights are Reserved Power Factor Correction by Implementation of Reactive Power Compensation Methods of 220 KV Substation MPPTCL Narsinghpur Ria Banerjee 1, Prof. Ashish Kumar Couksey 2 1 Department of Energy Technology,

More information

Integration of Large Wind Farms into Electric Grids

Integration of Large Wind Farms into Electric Grids Integration of Large Wind Farms into Electric Grids Dr Mohammad AlZoubi Introduction Development WHAT IS NEXT!! Over the next 12 years, Europe must build new power capacity equal to half the current total.

More information

Performance Analysis of Transient Stability on a Power System Network

Performance Analysis of Transient Stability on a Power System Network Performance Analysis of Transient Stability on a Power System Network Ramesh B Epili 1, Dr.K.Vadirajacharya 2 Department of Electrical Engineering Dr. Babasaheb Ambedkar Technological University, Lonere

More information

BHARAT ALUMINIUM COMPANY LTD. SPECIFICATIONS FOR SYNCHRONOUS GENERATOR GENERAL Make : Jinan Power Equipment Factory Type : WX2

BHARAT ALUMINIUM COMPANY LTD. SPECIFICATIONS FOR SYNCHRONOUS GENERATOR GENERAL Make : Jinan Power Equipment Factory Type : WX2 BHARAT ALUMINIUM COMPANY LTD. SPECIFICATIONS FOR SYNCHRONOUS GENERATOR 1.00.00 GENERAL 1.01.00 Make : Jinan Power Equipment Factory 1.02.00 Type : WX21Z-073LLT 1.03.00 Reference Standard : GB/T7064-2002

More information

WESTERN INTERCONNECTION TRANSMISSION TECHNOLGOY FORUM

WESTERN INTERCONNECTION TRANSMISSION TECHNOLGOY FORUM 1 1 The Latest in the MIT Future of Studies Recognizing the growing importance of energy issues and MIT s role as an honest broker, MIT faculty have undertaken a series of in-depth multidisciplinary studies.

More information

ABB November 16, 2016 Slide 1

ABB November 16, 2016 Slide 1 Xuemei Wang, Power Quality Center, Xi an ABB Capacitor Company Ltd, November, 2016 ABB Power World 2016 Power Quality Solution in Distribution Net Work ABB November 16, 2016 Slide 1 Power Quality Basic

More information

POWER TRANSMISSION OF LOW FREQUENCY WIND FIRMS

POWER TRANSMISSION OF LOW FREQUENCY WIND FIRMS Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 3, Issue. 10, October 2014,

More information

COMPARISON OF STATCOM AND TCSC ON VOLTAGE STABILITY USING MLP INDEX

COMPARISON OF STATCOM AND TCSC ON VOLTAGE STABILITY USING MLP INDEX COMPARISON OF AND TCSC ON STABILITY USING MLP INDEX Dr.G.MadhusudhanaRao 1. Professor, EEE Department, TKRCET Abstract: Traditionally shunt and series compensation is used to maximize the transfer capability

More information

Chapter 3.1: Electrical System

Chapter 3.1: Electrical System Part-I: Objective type Questions and Answers Chapter 3.1: Electrical System 1. The heat input required for generating one kilo watt-hour of electrical output is called as. a) Efficiency b) Heat Rate c)

More information

International Journal of Emerging Technology and Innovative Engineering Volume 2, Issue 4, April 2016 (ISSN: )

International Journal of Emerging Technology and Innovative Engineering Volume 2, Issue 4, April 2016 (ISSN: ) International Journal of Emerging Technology and Innovative Engineering Volume 2, Issue 4, April 2016 (ISSN: 2394 6598) Date of Publication: 25.04.2016 TRANSIENT FREE TSC COMPENSATOR FOR REACTIVE LOAD

More information