Departement of Chemical Engineering, Sebelas Maret University, Indonesia.

Size: px
Start display at page:

Download "Departement of Chemical Engineering, Sebelas Maret University, Indonesia."

Transcription

1 Effect of LiFePO4 Cathode Thickness on Lithium Battery Performance Ariska Rinda Adityarini 1, a, Eka Yoga Ramadhan 1, b, Endah Retno Dyartanti 3, c and Agus Purwanto 4,d Departement of Chemical Engineering, Sebelas Maret University, Indonesia * aguspurw@gmail.com, Keywords: LiFePO 4, Lithium battery, X-Ray Diffraction Abstract: Lithium ion battery is composed of three main parts, i.e. cathode, anode and electrolyte. In this work, we investigated the effect of LiFePO4 cathode composite s thickness on performances of lithium battery. LiFePO4 cathode was prepared in a slurry that consisted of lithium iron phosphate (LiFePO4) powder as active material, acetylene black as conductive additive, poly(vinylidene fluoride) (PVDF) as binder, and N-methyl-2-pyrrolidone (NMP) as solvent. The slurry was then deposited on the aluminum substrate using doctor blade method in different thickness. The cathode layers were deposited with the thickness of 150, 200, 250 & 300 µm. The structure characterization of the material was analyzed with XRD, while the material s morphology was analyzed with Scanning Electron Microscope (SEM). Performances of lithium ion battery with LiFePO4 cathode were evaluated using charge-discharge cycle test. It is found that battery made of cathode layer with 250 µm thickness shows the best performances. Introduction Battery is the most common source of energy used by people. The type of battery, which is being developed, is secondary lithium ion battery. Lithium ion battery composed of three main parts, i.e. cathode, anode and electrolyte. For cathode material, lithium compounds that were well developed are lithium cobalt oxide (LiCoO2) [1,2,3], lithium manganese oxide (LiMn2O4) [4,5,6], lithium ferri phospate (LiFePO4) [7,8,9], etc. As reported in 1997, LiFePO4 could be used as positive electrode of secondary lithium battery [10]. LiFePO4 had many advantages, for example, it has cheap materials, good cycle, stability, and it is also environmentally friendly [11,12]. Since the publication of the report in 1997, there have been many works that study how to enhance the quality of LiFePO4 material for secondary lithium battery cathode. Different polymer as binders affects LiFePO4 cathode s electrochemical performance [13]. Currently, poly (vinylidene fluoride) (PVDF) is the most used binder in commercial secondary lithium battery because it has great electrochemical stability [14]. Another study found that zinc-doping improved the performance of LiFePO4 including discharge capacity and rate capability [15]. Polythiopene coating could also increase reversible capacity and enhance the cycling ability of LiFePO4 electrodes [16]. Jin et. al. reported that LiFePO4 with multiwalled carbon nanotubes structure not only enhanced lithium-ion diffusion coefficient and electronic conductivity but also decreased the size of crystallite and charge transfer resistance of LiFePO4 composite[17]. Xiao et. al [18] demonstrated that an additional layer of acetylene black film on the surface of an active material could be applied to make a novel sandwich-like three-layer electrodes. LiFePO4/C in the three-layer electrodes shows a much better rate capability. The aforementioned publications focused on the half-cell of Lithium battery. Meanwhile, this study would report the effect of LiFePO4 cathode thickness on performances of cylindrical type lithium battery which is usually produced industrially.

2 Experimental The materials used in this research are lithium ferri-phosphate (LiFePO4), polyvinylidene fluoride (PVDF), and acetylene black (AB). The solvent was N-methyl-2-pyrollidone (NMP) (MTI corp., USA). LiFePO4 powder, PVDF and AB were weighed with the mass ratio 8.6:1:0.4 and placed inside the oven in a 100 o C temperature for 5 minutes. LiFePO4 and AB were milled using ball mill for 5 minutes, while PVDF and NMP were mixed inside a vacuum mixer for 60 minutes. Both were then mixed in the vacuum mixer until became homogenous. The slurry was coated on an aluminium sheet using doctor blade method in varied thickness. The cathode film was placed inside the vacuum oven with 120 o C temperature to dry it. The dried cathode film was pressed using hot rolling press machine at 100 o C. The cathode film was made with four thickness variations (150, 200, 250 & 300 µm ).The structure characterization from the sample was analyzed with XRD, while the material s morphology was analyzed with Scanning Electron Microscope (SEM). The fabrication of lithium battery was done by rolling LiFePO4 cathode film, separator, and Carbon-based anode film using Winding Machine. LiPF6 as electrolyte was filled into the cell case inside the argon-filled glove box. Electrochemical performances of secondary lithium battery were analyzed using the eight channel battery analyzer (MTI corp, USA). Results and Discussion Before conducting a detail investigation, the as-received LiFePO4 was characterized using XRD technique. The XRD Pattern of LiFePO4 is shown in Figure 1.The XRD pattern matched very well with the LiFePO4 reference indicated by the purity of their crystal phase [19]. The crystal structure is orthorhombic. Intensity 2θ ( ) Fig.1 XRD Patterns of LiFePO4 To determine the particle morphology of LiFePO4, scanning electron spectroscopy (SEM) characterization was conducted. The SEM image of LiFePO4 particles is shown in figure 2. The SEM observation shows that LiFePO4 powder has irregular shape. The particles size is varied from

3 100 to 600 nm. Using the as-received materials, a type battery lithium was fabricated to evaluate the effect cathode thickness on the battery performance. Fig.2 SEM Image of LiFePO4 Powder Surface (a) (b) (c) (d) Fig. 3 The Charging-Discharge curve of battery with cathode composite in (a) 150 µm, (b) 200 µm, (c) 250 µm (d) 300 µm

4 The electrochemical performances of the prepared battery were analyzed using Eight Channel Battery Analyzer. The thickness variation of cathode film caused the difference of electrochemical performances. This was reflecyed on the overview of charge/discharge capacities versus voltage that were done in 10 cycles as shown in Figure 3. Fig.3 (a, b, c, d) shows the effect of cathode film thickness variation on charge/discharge capacity for first ten cyclic. X axis shows battery capacity (mah), meanwhile Y axis shows battery voltage (V). Battery capacity reduction / degradation level was shown by the gap between the curves. Smaller gap between curves means lower degradation level. By observing cathode whose thickness ranges from 150 to 250 µm, it could be stated that the thicker the film, the smaller the degradation level. The minimal degradation is shown by cathode which has thickness of 250 µm. Cathode thickness of 300 µm shows the worst degradation level. This happened because the film was broken at that thickness. Fig. 4 The initial discharge capacity of secondary lithium battery in a variation of thickness Discharge capacity at the first cycle from fig. 3 was shown in fig.4. The first discharge capacity of the lithium ion battery cathode thickness of 150, 200, 250, 300 µm is respectively , , , mah/g. The highest capacity was obtained from battery constructed from the 250 µm cathode thickness. The capacity of battery constructed from 300 µm cathode composite s thickness decreased because the layer was broken in that thickness. Conclusion The effect of cathode thickness on the electrochemical performance of the cylindrical type lithium battery was investigated. The battery was made from LiFePO4 material. The XRD characterization showed that the material is pure LiFePO4 without any crystal impurities. Using SEM analysis, this study found that LiFePO4 powder had size ranging from100nm to 600 nm. The electrochemical performance of the prepared battery indicated that battery having 250 µm thickness of cathode produced the highest discharge capacity of 116,67 mah g -1. Acknowledgments This work was financially supported by RISPRO-LPDP (contract no PRJ-906/LPDP/2013) References [1] C.H. Chen, Fabrication of LiCoO2, Thin Film Cathodes for Rechargeable Lithium. Solid State Ionics, 80 (1995) 1-4.

5 [2] M. Yoshio, Synthesis of LiCoO2, from cobalt-organic acid complexes and its electrode behaviour in a lithium secondary battery. Journal of Power Sources, 40 (1992) [3] R. Ruffo, C. Wessells, R.A. Huggins, Y. Cui, Electrochemical behavior of LiCoO2 as aqueous lithium-ion battery electrodes. Electrochemistry Communications, 11 (2009) [4] M.S. Zhao, X.P. Song, Synthesizing kinetics and characteristics for spinel LiMn2O4 with the precursor using as lithium-ion battery cathode material. Journal of Power Sources, 164 (2007) [5] N. Kitamura, H. Iwatsuki, Y. Idemoto, Improvement of cathode performance of LiMn2O4 as a cathode active material for Li ion battery by step-by-step supersonic-wave treatments. Journal of Power Sources, 189 (2009) [6] H.W. Chan, J.G. Duh, J.F. Lee, Valence change by in situ XAS in surface modified LiMn2O4 for Li-ion battery, Electrochemistry Communications, 8 (2006) [7] L. Zhang, G. Peng, X. Yang, P. Zhang, High performance LiFePO4/C cathode for lithium ion battery prepared under vacuum conditions, Vacuum 84 (2010) [8] J. Liua, J. Wanga, X. Yana, X. Zhanga, G. Yanga, A.F. Jalbout, R. Wanga, Long-term cyclability of LiFePO4/carbon composite cathode material for lithium-ion battery applications, Electrochimica Acta 54 (2009) [9] A. Yamada, S.C. Chung, K. Hinokuma, Optimized LiFePO4 for Lithium Battery Cathodes, J. Electrochem. Soc., 148 (2001) [10] A. K. Padhi, K. S. Nanjundaswamy, J. B. Goodenough. Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries. The Electrochemical Society, 144 (1997) [11] Y.D. Li, S.X. Zhao, C.W. Nan, B.H. Li, Electrochemical performance of SiO2-coated LiFePO4 cathode materials for lithium ion battery. J. Of Alloys and Compounds. 509 (2011) [12] J. Kim, H. Kim, I. Park, Y.U. Park, J.K. Yoo, K.Y. Park. LiFePO4 with an alluaudite crystal structure for lithium ion batteries. J. Energy and Environmental Sciences. 6 (2013) [13] V.H. Nguyen, W.L. Wang, E.M. Jin, H.B. Gu. Impacts of different polymer binders on electrochemical properties of LiFePO4 cathode. Applied Surface Science. 282 (2013) [14] S.S. Zhang, K. Xu, T.R. Jow, Evaluation on a water-based binder for the graphite anode of Liion batteries. Journal of Power Sources 138 (2004) [15] H. Liu, Q. Cao, L.J. Fu, C. Li, Y.P. Wu, H.Q. Wu, Doping effects of zinc on LiFePO4 cathode material for lithium ion batteries. Electrochemistry Communications 8 (2006) [16] Y. Bai, P. Qiu, Z. Wen, S. Hans, Improvement of electrochemical performances of LiFePO4 cathode materials by coating of polythiophene. Journal of Alloys and Compounds 508 (2010) 1 4. [17] B. Jin, E.M. Jin, K.H. Park, H.B. Gu, Electrochemical properties of LiFePO4-multiwalled carbon nanotubes composite cathode materials for lithium polymer battery, Electrochemistry Communications, 10 (2008) [18] Z. Xiao, G. Hu, K. Du, Z. Peng, Improving electrochemical performances of LiFePO4/C cathode material via a novel three-layer electrode, Trans. Nonferrous Met. Soc. China 23(2013) [19] Y. Janssen, D. Santhanagopalan, D. Qian, M. Chi, X. Wang, C. Hoffmann, Y. S. Meng; P. G. Khalifah, Reciprocal Salt Flux Growth of LiFePO4 Single Crystals with Controlled Defect Concentrations. Chemistry of Materials 25 (2013)

16 1 Vol. 16 No ELECTROCHEMISTRY Feb. 2010

16 1 Vol. 16 No ELECTROCHEMISTRY Feb. 2010 16 1 Vol 16 No 1 2010 2 ELECTROCHEMISTRY Feb 2010 1006-3471 2010 01-0006-05 Ⅰ * 430072 O646 21 TM911 A 1 3-4 1 120 SEI 1 2 3 2009-11-10 2009-12-14 Tel 86-27 68754526 E-mail xpai@ whu edu cn 973 No 2009CB220103

More information

Survey of Commercial Small Lithium Polymer Batteries

Survey of Commercial Small Lithium Polymer Batteries Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6110--07-9073 Survey of Commercial Small Lithium Polymer Batteries Arnold M. Stux Karen Swider-Lyons Chemical Dynamics and Diagnostics Branch

More information

Journal of Energy Chemistry 23(2014)PPP PPP

Journal of Energy Chemistry 23(2014)PPP PPP Journal of Energy Chemistry 23(2014)PPP PPP Enhanced high temperature cycling performance of LiMn 2 O 4 /graphite cells with methylene methanedisulfonate (MMDS) as electrolyte additive and its acting mechanism

More information

A Structure of Cylindrical Lithium-ion Batteries

A Structure of Cylindrical Lithium-ion Batteries Introduction A Structure of Cylindrical Lithium-ion Batteries A lithium-ion battery is an energy storage device providing electrical energy by using chemical reactions. A few types of lithium-ion battery

More information

A Positive-Temperature-Coefficient Layer Based on Ni-Mixed Poly(Vinylidene Fluoride) Composites for LiFePO 4 Electrode

A Positive-Temperature-Coefficient Layer Based on Ni-Mixed Poly(Vinylidene Fluoride) Composites for LiFePO 4 Electrode Int. J. Electrochem. Sci., 8 (2013) 5223-5231 International Journal of ELECTROCHEMICAL SCIENCE www.electrochemsci.org A Positive-Temperature-Coefficient Layer Based on Ni-Mixed Poly(Vinylidene Fluoride)

More information

Fiber-shaped lithium-ion batteries with metallic electrodes

Fiber-shaped lithium-ion batteries with metallic electrodes Project title: Advanced fibers and textiles for energy conversion and storage File Number: STPGP 447326-13 Principal Investigators: Dr. M. A. Skorobogatiy, Polytechnique Montréal, Québec, Canada Dr. O.

More information

Batteries. and Zhaoyin Wen a,* a. CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics,

Batteries. and Zhaoyin Wen a,* a. CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Supporting Information High-strength Internal Crosslinking Bacterial Cellulose Network Based Gel Polymer Electrolyte for Dendrite-suppressing and High-rate Lithium Batteries Dong Xu a,b, Bangrun Wang a,b,

More information

Development of battery materials with world s highest performance

Development of battery materials with world s highest performance Tokyo University of Agriculture and Technology Nippon Chemi-Con Corporation May 6, 2010 Applying nano-hybrid technology to the next generation lithium-ion battery Development of battery materials with

More information

Battery Power for All-Electric Road Vehicles John B. Goodenough and M. Helena Braga The University of Texas at Austin, and of Porto, Portugal

Battery Power for All-Electric Road Vehicles John B. Goodenough and M. Helena Braga The University of Texas at Austin, and of Porto, Portugal Battery Power for All-Electric Road Vehicles John B. Goodenough and M. Helena Braga The University of Texas at Austin, and of Porto, Portugal Modern Society runs on the energy stored in fossil fuels. This

More information

Studies on Capacity Fade of Spinel-Based Li-Ion Batteries

Studies on Capacity Fade of Spinel-Based Li-Ion Batteries A54 0013-4651/2001/149 1 /A54/7/$7.00 The Electrochemical Society, Inc. Studies on Capacity Fade of Spinel-Based Li-Ion Batteries Ramadass Premanand, Anand Durairajan,* Bala Haran,** Ralph White,*** and

More information

STUDY OF HIGH ENERGY CATHODE MATERIALS : LI-RICH MATERIALS

STUDY OF HIGH ENERGY CATHODE MATERIALS : LI-RICH MATERIALS STUDY OF HIGH ENERGY CATHODE MATERIALS : LI-RICH MATERIALS Jean-François Colin, A. Boulineau, L. Simonin, D. Peralta, C. Bourbon, F. Fabre CEA LITEN DEHT October 28 th, 2014 MATERIALS FOR POSITIVE ELECTRODE

More information

Understanding Lithium-Ion Technology Jim McDowall (updated from Battcon 2008)

Understanding Lithium-Ion Technology Jim McDowall (updated from Battcon 2008) Understanding Lithium-Ion Technology Jim McDowall (updated from Battcon 2008) PE/SB Winter Meeting 2015, New Orleans Background History Started with primary batteries with metallic lithium negatives True

More information

Canadian Journal of Chemistry. Thin Flexible Lithium Ion Battery Featuring Graphite Paper Based Current Collectors with Enhanced Conductivity

Canadian Journal of Chemistry. Thin Flexible Lithium Ion Battery Featuring Graphite Paper Based Current Collectors with Enhanced Conductivity Thin Flexible Lithium Ion Battery Featuring Graphite Paper Based Current Collectors with Enhanced Conductivity Journal: Canadian Journal of Chemistry Manuscript ID cjc-2015-0593.r1 Manuscript Type: Article

More information

Introduction. Analysis

Introduction. Analysis 10/21/2017 Memorandum To: Mike Kozicki, CTO, Second Solar, Inc. From: Athena Combs-Hurtado and Marc Hensel Re: Using Lithium Iron Phosphate Batteries for Utility Scale Storage Applications Introduction

More information

Li-ion Technology Overview NTSB Hearing Washington, D.C. July 12-13, 2006

Li-ion Technology Overview NTSB Hearing Washington, D.C. July 12-13, 2006 Li-ion Technology Overview NTSB Hearing Washington, D.C. July 12-13, 2006 Jason Howard, Ph.D. Distinguished Member of the Technical Staff, Motorola, Inc. Board of Directors, Portable Rechargeable Battery

More information

Composite carbon-based ionic liquid supercapacitor for high-current micro devices

Composite carbon-based ionic liquid supercapacitor for high-current micro devices Composite carbon-based ionic liquid supercapacitor for high-current micro devices MCowell 1,RWinslow 1, Q Zhang 2,JJu 1, J Evans 2 and P Wright 1 1 Department of Mechanical Engineering, University of California

More information

Segmented rechargeable micro battery for wearable applications based on printed separator and LTO/NMC electrodes

Segmented rechargeable micro battery for wearable applications based on printed separator and LTO/NMC electrodes Segmented rechargeable micro battery for wearable applications based on printed separator and LTO/NMC electrodes Robert Hahn 1 M. Ferch 2, M. Hubl 3, M. Molnar 1, K. Marquardt 2, K. Hoeppner 2, M. Luecking

More information

Study of Thermal and Electrochemical Characteristics of Li-ion Battery

Study of Thermal and Electrochemical Characteristics of Li-ion Battery Study of Thermal and Electrochemical Characteristics of Li-ion Battery 1 Anand R. Savandkar, 2 D. S. Watvisave 1 P.G. Student, 2 Assistant Professor (Dept. of Mechanical Engineering, SCoE, Pune University,

More information

FRAUNHOFER INSTITUTE FOR CHEMICAL TECHNOLOGY ICT REDOX-FLOW BATTERY

FRAUNHOFER INSTITUTE FOR CHEMICAL TECHNOLOGY ICT REDOX-FLOW BATTERY FRAUNHOFER INSTITUTE FOR CHEMICAL TECHNOLOGY ICT REDOX-FLOW BATTERY REDOX-FLOW BATTERY REDOX-FLOW BATTERY Redox-flow batteries are efficient and have a longer service life than conventional batteries.

More information

Rechargeable Batteries

Rechargeable Batteries Nanomaterial approaches to enhance lithium ion batteries Potential Environmental Benefits of Nanotechnology: Fostering Safe Innovation-Led Growth July 17 th, 2009 Brian J. Landi Assistant Professor of

More information

Study on the Performance of Lithium-Ion Batteries at Different Temperatures Shanshan Guo1,a*,Yun Liu1,b and Lin Li2,c 1

Study on the Performance of Lithium-Ion Batteries at Different Temperatures Shanshan Guo1,a*,Yun Liu1,b and Lin Li2,c 1 7th International Conference on Mechatronics, Computer and Education Informationization (MCEI 217) Study on the Performance of Lithium-Ion Batteries at Different Temperatures Shanshan Guo1,a*,Yun Liu1,b

More information

Lithium Ion Batteries - for vehicles and other applications

Lithium Ion Batteries - for vehicles and other applications Lithium Ion Batteries - for vehicles and other applications Tekes 2008-12-03 Kai Vuorilehto / European Batteries What do we need? High energy (Wh/kg) driving a car for 5 hours High power (W/kg) accelerating

More information

Metal-air batteries. Joan Gómez Chabrera Alejandro Andreu Nácher Pablo Bou Pérez

Metal-air batteries. Joan Gómez Chabrera Alejandro Andreu Nácher Pablo Bou Pérez Metal-air batteries Joan Gómez Chabrera Alejandro Andreu Nácher Pablo Bou Pérez Index 1. Introduction 2. Principle of operation of metal-air batteries 3. Air cathodes 4. Types 5. General aplications 6.

More information

Thin film coatings on lithium metal for Li-S batteries AIMCAL 2016 Memphis, TN

Thin film coatings on lithium metal for Li-S batteries AIMCAL 2016 Memphis, TN Thin film coatings on lithium metal for Li-S batteries AIMCAL 2016 Memphis, TN Stephen Lawes, Research Scientist OXIS Company Background OXIS have been working on Li-S since 2005 at Culham Science Centre

More information

BATTERIES & SUPERCAPS POST MORTEM ANALYSIS PLATFORM EXTERNAL SERVICES

BATTERIES & SUPERCAPS POST MORTEM ANALYSIS PLATFORM EXTERNAL SERVICES BATTERIES & SUPERCAPS POST MORTEM ANALYSIS PLATFORM EXTERNAL SERVICES CONTEXT Over the last years a remarkable evolution has taken place by the introduction of new batteries & supercapacitors technologies

More information

Flexible integrated micro sensor to internal real-time microscopic diagnosis of vanadium redox flow battery

Flexible integrated micro sensor to internal real-time microscopic diagnosis of vanadium redox flow battery Flexible integrated micro sensor to internal real-time microscopic diagnosis of vanadium redox flow battery *Chi-Yuan Lee 1), Chin-Lung Hsieh 2), Chia-Hung Chen 3), Kin-Fu Lin 2), Shyong Lee 3), Yen-Pu

More information

Antimony/Graphitic Carbon Composite Anode for High- Performance Sodium-Ion Batteries

Antimony/Graphitic Carbon Composite Anode for High- Performance Sodium-Ion Batteries Supporting Information Antimony/Graphitic Carbon Composite Anode for High- Performance Sodium-Ion Batteries Xin Zhao, Sean A. Vail, Yuhao Lu *, Jie Song, Wei Pan, David R. Evans, Jong-Jan Lee Sharp Laboratories

More information

Research Progress of Advanced Lithium Ion Polymer Battery Technology

Research Progress of Advanced Lithium Ion Polymer Battery Technology The 34 th Florida International Battery Seminar Research Progress of Advanced Lithium Ion Polymer Battery Technology Peter Cheng Highpower Research Institute ----------------------------------------------------March

More information

PERFORMANCE CHARACTERIZATION OF NICD BATTERY BY ARBIN BT2000 ANALYZER IN BATAN

PERFORMANCE CHARACTERIZATION OF NICD BATTERY BY ARBIN BT2000 ANALYZER IN BATAN MATERIALS SCIENCE and TECHNOLOGY Edited by Evvy Kartini et.al. PERFORMANCE CHARACTERIZATION OF NICD BATTERY BY ARBIN BT2000 ANALYZER IN BATAN H. Jodi, E. Kartini, T. Nugraha Center for Technology of Nuclear

More information

Review of status of the main chemistries for the EV market

Review of status of the main chemistries for the EV market Review of status of the main chemistries for the EV market EMIRI Energy Materials Industrial Research Initiative Dr. Marcel Meeus Consultant Sustesco www.emiri.eu 1 Agenda 1. Review of status of current

More information

Short Communication In-situ Monitoring of Temperature and Voltage in Lithium-Ion Battery by Embedded Flexible Micro Temperature and Voltage Sensor

Short Communication In-situ Monitoring of Temperature and Voltage in Lithium-Ion Battery by Embedded Flexible Micro Temperature and Voltage Sensor Int. J. Electrochem. Sci., 8 (2013) 2968-2976 International Journal of ELECTROCHEMICAL SCIENCE www.electrochemsci.org Short Communication In-situ Monitoring of Temperature and Voltage in Lithium-Ion Battery

More information

DOE OVT Energy Storage R&D Overview

DOE OVT Energy Storage R&D Overview DOE OVT Energy Storage R&D Overview David Howell Hybrid and electric vehicles, energy storage technologies and control systems National and international R&D-projects, research institutions and funding

More information

2nd Annual International Conference on Advanced Material Engineering (AME 2016)

2nd Annual International Conference on Advanced Material Engineering (AME 2016) 2nd Annual International Conference on Advanced Material Engineering (AME 2016) Design of Novel Energy Recovery Damper Based on EAP Zhen-Tao WANG1,a, Jian-Bo CAO1,b*, Shi-Ju E1,b, Tian-Feng ZHAO2,a, Can

More information

Available online at ScienceDirect. 21st CIRP Conference on Life Cycle Engineering

Available online at   ScienceDirect. 21st CIRP Conference on Life Cycle Engineering Available online at www.sciencedirect.com ScienceDirect Procedia CIRP 15 ( 2014 ) 218 222 21st CIRP Conference on Life Cycle Engineering A method for pre-determining the optimal remanufacturing point of

More information

Storage: the state of the technology

Storage: the state of the technology Storage: the state of the technology Torbjörn Gustafsson Ångström Advanced Battery Centre Department of Materials Chemistry Uppsala University 1 Acknowledgements Ångström Advanced Battery Centre 2 Over

More information

Wildcat Discovery Technologies 2016 NAATBatt ET Summit Dr. Dee Strand, Chief Scientific Officer

Wildcat Discovery Technologies 2016 NAATBatt ET Summit Dr. Dee Strand, Chief Scientific Officer Accelerating Breakthrough Discoveries www.wildcatdiscovery.com Wildcat Discovery Technologies 2016 NAATBatt ET Summit Dr. Dee Strand, Chief Scientific Officer NAATBatt ET Summit 1 Wildcat s Value Proposition

More information

Electrochemical Energy Storage Devices

Electrochemical Energy Storage Devices Electrochemical Energy Storage Devices Rajeswari Chandrasekaran, Ph.D. from Energy Storage, Materials & Strategy Research and Advanced Engineering, Ford Motor Company, Dearborn, MI-48124. presented at

More information

Role of phase change materials in creating uniform surface temperature on a lithium battery cell applicable in electric vehicles

Role of phase change materials in creating uniform surface temperature on a lithium battery cell applicable in electric vehicles International Journal of Automotive Research, Vol. 8, No. 4, (2018), 2848-2853 International Journal of Automotive Engineering Journal Homepage: ijae.iust.ac.ir ISSN: 2008-9899 Role of phase change materials

More information

UN/SCETDG/52/INF.11. Sodium-Ion Batteries. Introduction

UN/SCETDG/52/INF.11. Sodium-Ion Batteries. Introduction Committee of Experts on the Transport of Dangerous Goods and on the Globally Harmonized System of Classification and Labelling of Chemicals UN/SCETDG/52/INF.11 Sub-Committee of Experts on the Transport

More information

Development of High Power Li-ion Cell "LIM25H" for Industrial Applications

Development of High Power Li-ion Cell LIM25H for Industrial Applications Technical Report 報文 Development of High Power Li-ion Cell "" for Industrial Applications Yasushi Uebo * Keiji Shimomura * Katsushi Nishie * Katsuya Nanamoto * Takehito Matsubara ** Haruo Seike ** Minoru

More information

Energy Storage Advancement

Energy Storage Advancement Energy Storage Advancement LiFeYPO4 as replacement for Lead-Acid Lithium Iron Yttrium Phosphate (LiFeYPO4) February 2016 Summary & Conclusion For the same Price today; retailing @ $550/kWh (daily useable)

More information

Aqueous Rechargeable Lithium Batteries (ARLBs) of High Energy Density. Prof. Dr. Yuping Wu

Aqueous Rechargeable Lithium Batteries (ARLBs) of High Energy Density. Prof. Dr. Yuping Wu Aqueous Rechargeable Lithium Batteries (ARLBs) of High Energy Density Prof. Dr. Yuping Wu New Energy and Materials Laboratory (NEML), Department of Chemistry, Fudan University, Shanghai 200433 Tel/Fax:

More information

Lithium-ion Batteries Material Strategy and Positioning. Energy Storage HARDWARE

Lithium-ion Batteries Material Strategy and Positioning. Energy Storage HARDWARE HARDWARE Energy Storage Lithium-ion Batteries Material Strategy and Positioning Lithium-ion batteries are to replace the nickel-metal hydride batteries that are currently being used in hybrid motor vehicles

More information

Requirement, Design, and Challenges in Inorganic Solid State Batteries

Requirement, Design, and Challenges in Inorganic Solid State Batteries Requirement, Design, and Challenges in Inorganic Solid State Batteries Venkat Anandan Energy Storage Research Department 1 Ford s Electrified Vehicle Line-up HEV Hybrid Electric Vehicle C-Max Hybrid Fusion

More information

10 MINUTE LTO ULTRAFAST CHARGE PUBLIC TRANSIT EV BUS FLEET OPERATIONAL DATA - ANALYSIS OF 240,000 KM, 6 BUS FLEET SHOWS VIABLE SOLUTION"

10 MINUTE LTO ULTRAFAST CHARGE PUBLIC TRANSIT EV BUS FLEET OPERATIONAL DATA - ANALYSIS OF 240,000 KM, 6 BUS FLEET SHOWS VIABLE SOLUTION World Electric Vehicle Journal Vol. 5 - ISSN 2032-6653 - 2012 WEVA Page 0261 EVS26 Los Angeles, California, May 6-9, 2012 10 MINUTE LTO ULTRAFAST CHARGE PUBLIC TRANSIT EV BUS FLEET OPERATIONAL DATA - ANALYSIS

More information

UN/SCETDG/47/INF.13/Rev.1

UN/SCETDG/47/INF.13/Rev.1 Committee of Experts on the Transport of Dangerous Goods and on the Globally Harmonized System of Classification and Labelling of Chemicals New proper shipping name for rechargeable lithium metal batteries

More information

Advances in Direct Recycling for Lithium-ion Batteries

Advances in Direct Recycling for Lithium-ion Batteries Advances in Direct Recycling for Lithium-ion Batteries Steve Sloop NDIA Event #7670 Joint Service Power Expo Virgina Beach, VA May 1-4, 2017 Location OnTo Technology is in Bend, Oregon, which has flights

More information

Triboelectrification-Enabled Self-Charging Lithium-Ion Batteries

Triboelectrification-Enabled Self-Charging Lithium-Ion Batteries Communication Lithium-Ion Batteries Triboelectrification-Enabled Self-Charging Lithium-Ion Batteries Kun Zhao, Ya Yang,* Xi Liu, and Zhong Lin Wang* Li-ion batteries as energy storage devices need to be

More information

Vehicle Battery R&D Progress and Future Plans

Vehicle Battery R&D Progress and Future Plans Vehicle Battery R&D Progress and Future Plans Tien Q. Duong Office of Vehicle Technologies U.S. Department of Energy KSAE and IEA IA-HEV International Symposium on Electric Mobility and IA-HEV Task 1 Information

More information

SPECIALTY CARBON BLACKS HIGH PERFORMANCE MATERIALS FOR ADVANCED LITHIUM-ION BATTERIES

SPECIALTY CARBON BLACKS HIGH PERFORMANCE MATERIALS FOR ADVANCED LITHIUM-ION BATTERIES SPECIALTY CARBON BLACKS HIGH PERFORMANCE MATERIALS FOR ADVANCED LITHIUM-ION BATTERIES Introduction Cabot Corporation is a global performance materials company and we strive to be our customers commercial

More information

Ultra-thin Flexible Primary Film Battery Manufacturing Technology

Ultra-thin Flexible Primary Film Battery Manufacturing Technology Core Part of Subminiature Flexible Device Power Ultra-thin Flexible Primary Film Battery Manufacturing Technology Contact: Heejin Choi Email: hjchoi2@etri.re.kr Phone: +82. 42. 860. 4946 2 TECHNOLOGY BRIEF

More information

Li-Ion battery Model. Octavio Salazar. Octavio Salazar

Li-Ion battery Model. Octavio Salazar. Octavio Salazar Li-Ion battery Model 1 Energy Storage- Lithium Ion Batteries C-PCS: Control and Power Conditioning System Energy Storage- Lithium Ion Batteries Nature [0028-0836] Tarascon (2001) volume: 414 issue: 6861

More information

Towards competitive European batteries

Towards competitive European batteries Towards competitive European batteries GC.NMP.2013-1 Grant. 608936 Lecture I: Materials improvement and cells manufacturing Leclanché GmbH External Workshop Brussels, 23.05.2016 1 Plan About Leclanché

More information

Enhancing the Reliability & Safety of Lithium Ion Batteries

Enhancing the Reliability & Safety of Lithium Ion Batteries Enhancing the Reliability & Safety of Lithium Ion Batteries Over the past 20 years, significant advances have been made in rechargeable lithium-ion (Li-Ion) battery technologies. Li-Ion batteries now offer

More information

Large Format Lithium Power Cells for Demanding Hybrid Applications

Large Format Lithium Power Cells for Demanding Hybrid Applications Large Format Lithium Power Cells for Demanding Hybrid Applications Adam J. Hunt Manager of Government Programs 2011 Joint Service Power Expo Power to Sustain Warfighter Dominance Myrtle Beach, SC May 4,

More information

Numerical Simulation on Erosion of Drain Valve Liangliang Xu1,a, Zhengdong Wang2,b, Xinhai Yu3,c, Cong Zeng4,d

Numerical Simulation on Erosion of Drain Valve Liangliang Xu1,a, Zhengdong Wang2,b, Xinhai Yu3,c, Cong Zeng4,d 3rd International Conference on Mechatronics and Information Technology (ICMIT 2016) Numerical Simulation on Erosion of Drain Valve Liangliang Xu1,a, Zhengdong Wang2,b, Xinhai Yu3,c, Cong Zeng4,d 1 2 3

More information

Model Comparison with Experiments. 341 N. Science Park Road State College, PA U.S.A.

Model Comparison with Experiments. 341 N. Science Park Road State College, PA U.S.A. Model Comparison with Experiments 41 N. Science Park Road State College, PA 168 U.S.A. www.ecpowergroup.com AutoLion TM : Unprecedented Accuracy in Capturing Liion Battery Performance Voltage (V) Temperature

More information

FINAL REPORT For Japan-Korea Joint Research Project

FINAL REPORT For Japan-Korea Joint Research Project FINAL REPORT For Japan-Korea Joint Research Project AREA 1. Mathematics & Physics 2. Chemistry & Material Science 3. Biology 4. Informatics & Mechatronics 5. Geo-Science & Space Science 6. Medical Science

More information

CHAPTER 2 LITERATURE REVIEW AND SCOPE OF THE PRESENT STUDY

CHAPTER 2 LITERATURE REVIEW AND SCOPE OF THE PRESENT STUDY 57 CHAPTER 2 LITERATURE REVIEW AND SCOPE OF THE PRESENT STUDY 2.1 LITERATURE REVIEW Biodiesel have been processed from various plant derived oil sources including both Edible and Non-Edible oils. But,

More information

THINERGY MEC220. Solid-State, Flexible, Rechargeable Thin-Film Micro-Energy Cell

THINERGY MEC220. Solid-State, Flexible, Rechargeable Thin-Film Micro-Energy Cell THINERGY MEC220 Solid-State, Flexible, Rechargeable Thin-Film Micro-Energy Cell DS1013 v1.1 Preliminary Product Data Sheet Features Thin Form Factor 170 µm Thick Capacity options up to 400 µah All Solid-State

More information

EU-Commission JRC Contribution to EVE IWG

EU-Commission JRC Contribution to EVE IWG EU-Commission JRC Contribution to EVE IWG M. De Gennaro, E. Paffumi European Commission, Joint Research Centre Directorate C, Energy, Transport and Climate Sustainable Transport Unit June 6 th 2017, Geneva

More information

Stefan van Sterkenburg Stefan.van.sterken

Stefan van Sterkenburg Stefan.van.sterken Stefan van Sterkenburg Stefan.vansterkenburg@han.nl Stefan.van.sterken burgr@han.nl Contents Introduction of Lithium batteries Development of measurement equipment Electric / thermal battery model Aging

More information

Supercaps Fields of Application and Limits

Supercaps Fields of Application and Limits Supercaps Fields of Application and Limits Dietmar Rahner TU Dresden Institut für Physikalische Chemie und Elektrochemie D-01062 Dresden Steffen Rahner Battery-Lab Rahner GmbH Dresden D-01217 Dresden www.battery-lab.de

More information

Batteries for electric commercial vehicles and mobile machinery

Batteries for electric commercial vehicles and mobile machinery Batteries for electric commercial vehicles and mobile machinery Tekes EVE annual seminar, Dipoli 6.11.2012 Dr. Mikko Pihlatie VTT Technical Research Centre of Finland 2 Outline 1. Battery technology for

More information

New proper shipping name for rechargeable lithium metal batteries

New proper shipping name for rechargeable lithium metal batteries Committee of Experts on the Transport of Dangerous Goods and on the Globally Harmonized System of Classification and Labelling of Chemicals New proper shipping name for rechargeable lithium metal batteries

More information

Business Model for Recycling Traction Battery

Business Model for Recycling Traction Battery International Conference on Materials Engineering and Information Technology Applications (MEITA 2015) Business Model for Recycling Traction Ying-hao XIE 1,2,a,*, Hai-jun YU 1,2,b, Yan-nan OU 1,3,c and

More information

Keeping up with the increasing demands for electrochemical energy storage

Keeping up with the increasing demands for electrochemical energy storage Keeping up with the increasing demands for electrochemical energy storage Jeff Sakamoto 2015 Top of the learning curve: optimize current technology 2020 Frontiers of Li-ion technology: new materials 2030

More information

BATTERIES SODIUM, POTASSIUM, SILICON

BATTERIES SODIUM, POTASSIUM, SILICON BATTERIES SODIUM, POTASSIUM, SILICON Introduction Energy is a key for scientists, business, and policy makers. Energy storage is a need. This need is due to the non-continuous working hours of rising energy

More information

THE BUSINESS CASE FOR INDUSTRIAL-SCALE BATTERIES

THE BUSINESS CASE FOR INDUSTRIAL-SCALE BATTERIES 11 THE BUSINESS CASE FOR INDUSTRIAL-SCALE BATTERIES TECHNOLOGY OVERVIEW Batteries store electricity as chemical energy so that it can be recovered for later use. There are many different battery types;

More information

Our Solutions for Automotive.

Our Solutions for Automotive. Our Solutions for Automotive www.horiba.com info.sci@horiba.com Solutions for Automotive Your Lab Partner Analytical examples of all vehicle parts We support new material developments required for next-generation

More information

ANSYS for Hybrid Electrical Vehicles- Case Studies Xiao Hu Lead Technical Services Engineer ANSYS Inc

ANSYS for Hybrid Electrical Vehicles- Case Studies Xiao Hu Lead Technical Services Engineer ANSYS Inc ANSYS for Hybrid Electrical Vehicles- Case Studies Xiao Hu Lead Technical Services Engineer ANSYS Inc 1 ANSYS, Inc. September 14, Introdcution Battery Inverter Electric Machine Mechanic Load Controls HEV/EV

More information

State of Health Estimation for Lithium Ion Batteries NSERC Report for the UBC/JTT Engage Project

State of Health Estimation for Lithium Ion Batteries NSERC Report for the UBC/JTT Engage Project State of Health Estimation for Lithium Ion Batteries NSERC Report for the UBC/JTT Engage Project Arman Bonakapour Wei Dong James Garry Bhushan Gopaluni XiangRong Kong Alex Pui Daniel Wang Brian Wetton

More information

Congratulations, Dorothy!

Congratulations, Dorothy! Congratulations, Dorothy! Battery Overview Steve Garland Kyle Jamieson Outline Why is this important? Brief history of batteries Basic chemistry Battery types and characteristics Case study: ThinkPad battery

More information

RSC Advances.

RSC Advances. This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication. Accepted Manuscripts are published online shortly after

More information

innovation at work The NanoSafe Battery Alan J. Gotcher, PhD President & CEO Altair Nanotechnologies, Inc. November 29 th, 2006 Research Manufacturing

innovation at work The NanoSafe Battery Alan J. Gotcher, PhD President & CEO Altair Nanotechnologies, Inc. November 29 th, 2006 Research Manufacturing Research The NanoSafe Battery Manufacturing Alan J. Gotcher, PhD President & CEO Altair Nanotechnologies, Inc. November 29 th, 2006 Products Partners With the exception of historical information, matters

More information

Dr. Pierrot S. Attidekou RA Newcastle University

Dr. Pierrot S. Attidekou RA Newcastle University Dr. Pierrot S. Attidekou RA Newcastle University Research collaboration between 2 schools: CEAM & EEE School of Chemical Engineering and Advance Materials School of Electrical and Electronic Engineering

More information

ELiTE Battery Information

ELiTE Battery Information ELiTE Battery Information History of Li- Ion Batteries What is a Lithium-ion Battery? Two or more electrochemical cells, electrically interconnected. Each cell contains two electrodes and an electrolyte.

More information

Abstract: Current lithium ion battery technology is ready to revolutionize hybrid vehicles. Lithium iron phosphate batteries produced by A123 offer

Abstract: Current lithium ion battery technology is ready to revolutionize hybrid vehicles. Lithium iron phosphate batteries produced by A123 offer Abstract: Current lithium ion battery technology is ready to revolutionize hybrid vehicles. Lithium iron phosphate batteries produced by A123 offer almost twice the specific energy than that of nickel

More information

APPLIED ELECTROCHEMISTRY Technion s Chemical Power Sources Research

APPLIED ELECTROCHEMISTRY Technion s Chemical Power Sources Research ה ט כ נ י ו ן מ כ ו ן ט כ נ ו ל ו ג י ל י ש ר א ל TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY הפקולטה למדע והנדסה של חומרים DEPARTMENT OF MATERIALS SCIENCE & ENGINEERING - APPLIED ELECTROCHEMISTRY Technion

More information

Biodiesel Resistance of Thin Resin Cr-Free Steel Sheets for Fuel Tank

Biodiesel Resistance of Thin Resin Cr-Free Steel Sheets for Fuel Tank Engineering, 2011, 3, 491-499 doi:10.4236/eng.2011.35057 Published Online May 2011 (http://www.scirp.org/journal/eng) Biodiesel Resistance of Thin Resin Cr-Free Steel Sheets for Fuel Tank Abstract Kyung-Hwan

More information

List of contributors Woodhead Publishing Series in Energy

List of contributors Woodhead Publishing Series in Energy Contents List of contributors Woodhead Publishing Series in Energy Preface ix xiii xix 1 Rechargeable lithium batteries: key scientific and technological challenges 1 M. Bini, D. Capsoni, S. Ferrari, E.

More information

Energy Storage (Battery) Systems

Energy Storage (Battery) Systems Energy Storage (Battery) Systems Overview of performance metrics Introduction to Li Ion battery cell technology Electrochemistry Fabrication Battery cell electrical circuit model Battery systems: construction

More information

U.S. Department of Energy s Materials Research for Advanced Lithium Ion Batteries

U.S. Department of Energy s Materials Research for Advanced Lithium Ion Batteries Page 1 of 6 Page 1 of 6 Return to Web Version U.S. Department of Energy s Materials Research for Advanced Lithium Ion Batteries By: David Howell, Tien Duong, John B. Deppe, Irwin Weinstock, Material Matters

More information

Lithium Ion Batteries: Current Status and Future Needs for Electric Vehicles and Fast Charging. A review

Lithium Ion Batteries: Current Status and Future Needs for Electric Vehicles and Fast Charging. A review Lithium Ion Batteries: Current Status and Future Needs for Electric Vehicles and Fast Charging A review Claus Daniel, PhD danielc@ornl.gov 865-241-9521 ORNL is managed by UT-Battelle for the US Department

More information

Charging and Discharging Method of Lead Acid Batteries Based on Internal Voltage Control

Charging and Discharging Method of Lead Acid Batteries Based on Internal Voltage Control Charging and Discharging Method of Lead Acid Batteries Based on Internal Voltage Control Song Jie Hou 1, Yoichiro Onishi 2, Shigeyuki Minami 3, Hajimu Ikeda 4, Michio Sugawara 5, and Akiya Kozawa 6 1 Graduate

More information

Li-ION BATTERY DEVELOPMENT IN SOUTH AFRICA

Li-ION BATTERY DEVELOPMENT IN SOUTH AFRICA Li-ION BATTERY DEVELOPMENT IN SOUTH AFRICA BJ BLADERGROEN 2017 -Nov- 28 Li-ION BATTERY DEVELOPMENT IN SA (2011-2017) VISION NATION LI-ION BATTERY PROGRAMME Navigant Research forecasts that global revenue

More information

Customcells. Tailormade Energystorage Solutions.

Customcells. Tailormade Energystorage Solutions. Customcells Tailormade Energystorage Solutions www.customcells.de 02 // Company Company // 03 Customcells Multi-option Lithium-Ion Cells Europe s most versatile manufacturer in the Lithium-Ion cell industry.

More information

Thermal Analysis of Laptop Battery Using Composite Material

Thermal Analysis of Laptop Battery Using Composite Material IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 12, Issue 3 Ver. IV (May June 2017), PP 01-08 www.iosrjournals.org Thermal Analysis of Laptop

More information

Energy Storage Yi Cui

Energy Storage Yi Cui Energy Storage Yi Cui Department of Materials Science and Engineering Stanford University Stanford Institute for Materials and Energy Sciences SLAC National Accelerator Laboratory CA, ~60 GWh World ~10

More information

UNIVERSITY OF MICHIGAN BATTERY MANUFACTURING COURSE OUTLINE

UNIVERSITY OF MICHIGAN BATTERY MANUFACTURING COURSE OUTLINE UNIVERSITY OF MICHIGAN BATTERY MANUFACTURING COURSE OUTLINE An instructional team composed of battery experts from industry and the University of Michigan teach this 4-day course. The program outline is

More information

Printed Energy Storage

Printed Energy Storage Printed Energy Storage Prof. James W. Evans 1,Jay Keist 1, Christine Ho 1, Ba Quan 1 & Prof. Paul K. Wright 2 1 Material Science and Engineering, University of California Berkeley, Berkeley, CA 2 Mechanical

More information

FACETS OF GRAPHITE. June 2017

FACETS OF GRAPHITE. June 2017 FACETS OF GRAPHITE June 2017 1. INTRODUCTION What is Graphite? Why is Graphite Important? Current Demand & Prices for Selected High Purity Graphite Applications Contents 2. SELECTED APPLICATIONS Lithium

More information

Reliability of Thermal Batteries Melissa Keener

Reliability of Thermal Batteries Melissa Keener Reliability of Thermal Batteries Melissa Keener Reliability of Thermal Batteries Thermal batteries are known by different names: molten salt batteries, or liquid sodium batteries. All these refer to the

More information

Improving Performance and Safety of Lithium-Ion Batteries: Characterizing Materials and Interfaces

Improving Performance and Safety of Lithium-Ion Batteries: Characterizing Materials and Interfaces MATERIALS SCIENCES A CIRCUIT MODEL? HOW DO YOU MAKE AN LED BRIGHTER OR MORE AFFORDABLE? HOW DO YOU VALIDATE SUPPLY CHAIN Q OMPOSITE IS SAFE? HOW DO YOU INCREASE WIRELESS SIGNAL S REACH? HOW DO YOU BUILT

More information

Research of Driving Performance for Heavy Duty Vehicle Running on Long Downhill Road Based on Engine Brake

Research of Driving Performance for Heavy Duty Vehicle Running on Long Downhill Road Based on Engine Brake Send Orders for Reprints to reprints@benthamscience.ae The Open Mechanical Engineering Journal, 2014, 8, 475-479 475 Open Access Research of Driving Performance for Heavy Duty Vehicle Running on Long Downhill

More information

A Flexible Three-in-One Microsensor for Real-Time Monitoring of Internal Temperature, Voltage and Current of Lithium Batteries

A Flexible Three-in-One Microsensor for Real-Time Monitoring of Internal Temperature, Voltage and Current of Lithium Batteries Sensors 2015, 15, 11485-11498; doi:10.3390/s150511485 Article OPEN ACCESS sensors ISSN 1424-8220 www.mdpi.com/journal/sensors A Flexible Three-in-One Microsensor for Real-Time Monitoring of Internal Temperature,

More information

DC internal resistance during charge: analysis and study on LiFePO 4 batteries

DC internal resistance during charge: analysis and study on LiFePO 4 batteries EVS7 Barcelona, Spain, November 7-, DC internal resistance during charge: analysis and study on LiFePO batteries D. Anseán, V.M. García, M. González, J.C. Viera, C. Blanco, J.L. Antuña University of Oviedo,

More information

Materials Design and Diagnosis for Rechargeable Battery Energy Storage

Materials Design and Diagnosis for Rechargeable Battery Energy Storage Materials Design and Diagnosis for Rechargeable Battery Energy Storage Shirley Meng Department of NanoEngineering University of California San Diego The Challenge of Power vs. Energy Power& 1& 1& W& 10

More information

Wearable Textile Battery Rechargeable by Solar Energy

Wearable Textile Battery Rechargeable by Solar Energy Supporting Information Wearable Textile Battery Rechargeable by Solar Energy Yong-Hee Lee,, Joo-Seong Kim,, Jonghyeon Noh,, Inhwa Lee, Hyeong Jun Kim, Sunghun Choi, Jeongmin Seo, Seokwoo Jeon,, Taek-Soo

More information

High Performance Lithium-Ion Hybrid Capacitors Employing

High Performance Lithium-Ion Hybrid Capacitors Employing Supporting Information High Performance Lithium-Ion Hybrid Capacitors Employing Fe 3 O 4 -Graphene Composite Anode and Activated Carbon Cathode Shijia Zhang a,b,1, Chen Li a,b,1, Xiong Zhang a,b*, Xianzhong

More information