Preliminary Design Review. Cyclone Student Launch Initiative

Size: px
Start display at page:

Download "Preliminary Design Review. Cyclone Student Launch Initiative"

Transcription

1 Preliminary Design Review Cyclone Student Launch Initiative

2 Overview Team Overview Mission Statement Vehicle Overview Avionics Overview Safety Overview Payload Overview Requirements Compliance Plan

3 Team Structure

4 Team Organization

5 Website & Social Facebook: ISUcysli Instagram: cyclonestudentlaunchinitiative

6 Mission Statement Cyclone Student Launch Initiative s mission is to successfully design, build, test, launch, and recover a reusable high-powered model rocket while meeting and exceeding the safety standard set by the competition. The rocket will reach an apogee of 4750 feet and, upon landing, will deploy an autonomous rover which will travel a minimum of ten feet and collect a minimum of 10 ml soil sample. Additionally, CySLI has set out to educate and inspire the engineers of tomorrow through demonstrations and hands on activities for all ages.

7 Vehicle Overview

8 Vehicle Mission Success Criteria Ability to launch again without modifications after recovery Retention of rover during flight Deployment of the rover safely upon RSO approval Ability to reach an apogee between 4650 feet and 4850 feet.

9 Vehicle Dimensions 11 feet 2 inches long lbs with motor (20.7 lbs without) 4 Outer Diameter

10 OpenRocket Diagram Main Parachute Bay Nose Cone & Fore Altimeter Bay Payload Bay Aft Altimeter Bay Drogue Bay Motor Mount Avionics Bay

11 Stability CG: 90.4 from nose cone CP: 102 from nose cone Stability Margin: 2.8 cal

12 Mass Statement Independent Sections under Drogue: Independent Sections under Main: Motor Mount: 8.47 lbs Motor Mount: 8.47 lbs Rest of Rocket: lbs Nose Cone and Main: 4.74 lbs Rest of Rocket: 7.45 lbs Section: (without motor) Nose Cone Main Bay Payload Bay Aft Altimeter Bay Drogue Bay Avionics Bay Motor Mount Mass: (lb)

13 Performance Predictions Rail exit velocity 99.6 fps Maximum velocity 756 fps Maximum acceleration 614 ft/s^2 Apogee: 5641 ft

14 Minimum Diameter Reduces weight, cost, and build time significantly Decreases strength of fins Airframe experiences higher temperatures Motor Retention: Internal Less cross-sectional area 75mm vs 98mm 75 is too small for rover 98 has less motor selections

15 Fin Strengthening Tip-to-tip fiberglassing Fin Can Greatly increases strength without additional drag Low heat resistance Removable High Heat resistance Heavy Complex to manufacture More drag Using TTTF for strength Moving fins forward 2 to reduce thermal load

16 Material Selections Carbon Fiber Airframe Blue Tube Coupler Strong and light Will need antenna openings Easy to work with Light and thin Fiberglass Reinforced Motor Mount Heat resistant Strong

17 Nose Cone 5.5:1 Filament Wound Von Karman Nose Cone 22 long Aluminum tip Von Karman vs Ogive vs Parabolic Ogive has a smaller fineness ratio Parabolic manufacturing difficulty

18 Motor Selection AeroTech K1999N-P Average Thrust: lb Total Impulse: 571 lb-s Launch Mass: 6.59 lb Empty Mass: 3.96 lb Thrust to Weight: 17.7 Burn Time: 1.38 seconds

19 Recovery Subsystem Drogueless 55 inch annular main parachute Separation at apogee Main event at 600 feet Piston Ejection System Starting with 60 inch, resize two gores Less black powder Eliminates parachute protection More complex build Drift Calculations Descent time: 86 seconds Section Kinetic Energy (ft*lb) Nose Cone 40.7 Payload and Drogue 63.4 Motor Mount 72.1 Wind Speed Drift Distance (ft) 5 mph mph mph mph 2495

20 Recovery Subsystem Two altimeter bays inside vehicle Four altimeters, two per bay Shielded by carbon fiber, copper tape Altimeters: Stratologger and AIM USB Each powered independently by 9V batteries Activated by external key switches Two in-flight separation points Apogee separation between airbrake bay and drogue bay Main parachute deployment between nose cone and main parachute bay

21 Airbrake Subsystem External Internal 2 bars, 4 panels, & 2 hinges each Mostly straight to Diamond shape Straight would not open Panels held on w/ screw Servo w/ cage and wire Strong Simple Bar Splits into internal and external Parts screw together Wire connected by wire collar

22 Airbrake analysis through CFD Four models analyzed during retraction and deployment Two with wind-redirectors Two without wind-redirectors Four without wind-redirectors Two with a covering plate

23 Avionics Overview

24 Avionics: Apogee Control Method Systems considered: Ballasting, PID Controller, Apogee Prediction Dynamically Deployable Air Brake System (DDABS) Less maintenance and assumption on launch day Reduced error Microcontroller predicts apogee continuously during flight Computer controls brakes through servo motor Brakes increase drag of the vehicle during coast phase Process repeats until desired apogee is predicted Brake actuation restricted using software

25 DDABS: Electrical Hardware

26 DDABS: Flight Computer Comparison Results Teensy Raspberry Pi 3 B Arduino Mega Criteria Processor Speed Physical Size Ease of Use All Consistency Indices are below the.1 standard

27 DDABS: Flight Computer Hardware Teensy Mhz ARM Processor 192KB of RAM Runs Arduino-compatible software 2.5 x 0.7 x 0.2 inches Integrated SD card slot for data logging Acceleration, altitude, launch events, brake action

28 DDABS: Hardware Configuration

29 DDABS: Battery and Requirements Component Maximum Current Draw (ma) Current Draw after 4 hours (mah) Teensy BMP BNO Micro SD Card (onboard Teensy) Total Battery: Lithium-Ion Polymer More compact and dense compared to NiMH Rated capacity: 1200 mah

30 DDABS: Software

31 DDABS: Interior Bay Rail-Sled system will be implemented instead of metal rods Avionics sled will hold all electronic components and batteries for DDABS Materials: plywood, aluminum rails, assorted Ease of access plastics, epoxy glue Batteries mounted on bottom, flight computer mounted on top Total Dimensions of sled: 1.47 inches tall, 3.37 inches wide, and a depth of 5 inches

32 Safety Overview

33 Safety Team Safety Officer Alex Sommers Responsibilities Compilation and maintenance of records of material safety data sheets hazard analysis risk mitigation methods Ensuring completion of safety and lab trainings Compliance with laws, policies, regulations

34 Personnel Hazard Analysis Analyzes the all possible risks to personnel Includes severity ranking and planned mitigation

35 Environmental Hazard Analysis Examines How the rocket can affect the environment How the environment can affect the rocket. Same format as PHA

36 Failure Modes and Effects Analyses Analyses to recognize and evaluate possible failures in order to mitigate all possible risks to acceptable probability levels. Conducted FMEA for rocket, payload, and avionics subsystems

37 Safety Manual Separate document containing: Build procedures Safety Guidelines NRA/TRA, FAA, and EPA regulations Local, state, and federal laws for high-powered rocketry Launch procedures Lab safety manual MSDS

38 Payload Overview

39 Payload Mission Success Criteria Handle in-flight forces during launch Handle landing impact forces with no damage to mechanical or electronic components Deploy from payload bay upon the receipt of manual trigger from base Drive ten feet (or more) from landing site Collect ten milliliters (or more) of soil after driving ten feet from landing site

40 Payload Deployment Subsystem Servo w/ disk and pins Minimum of six 4-40 Nylon Shear Pins as backup retention Black Powder Piston Ejection System Stiff, flexible material

41 Preliminary Payload Design Unique, side-oriented design Expanding drive train that doubles as orientation mechanism Aluminum chassis design that conforms to existing mechanism No component exists beyond a 1.75 in radius of the center of the rover Tentative weight: 2.16 lb

42 Soil Collection Mechanism consists of an scoop attached to a Servo Scoop made of aluminum Micro Servo MG90S Servo will lower scoop into ground Soil will be collected via driving forward Scoop will also double also double as the soil container Scoop will be raised into a cap within the chassis Tentative weight estimate:.107 lbs or 1.71 oz

43 Drivetrain Small rocket diameter limits drivetrain size Treads fold out to support rover and orient Two sided timing belt used for grip Powered by HiTEC HS - 485HB servos and 12V DC Motor Electronic components protected by triangular aluminum support Tentative weight: 1.32 lb

44 Drivetrain Rigid support system for servos and treads Pulleys attached to treads are free spinning on shaft Motors are free spinning as well; attached to pulleys Supports only attached to servo Solves problem of stationary treads and moving motor on same shaft

45 Chassis The chassis will be made of 6061 aluminum The chassis will hold all the electrical components of the rover The pieces of the chassis will be machined and then fastened together Triangular design Tentative weight: 0.51 lb

46 Payload Electronics Pixhawk 4 GPS Rangefinder Transmitter and receiver Motor Servo Power rail Battery

47 Pixhawk 4 Open-hardware controller Contains enough ports for all electronic connections Capable of providing autopilot to the rover Utilizes the ArduRover software User-friendly interface Reliable results Open source

48 GPS Pixhawk 4 GPS Module Specifically designed for compatibility with the Pixhawk 4 Combined GPS and compass Embedded safety switch

49 Rangefinder TFMini - Micro LiDAR Module 12in to 39ft range detection Wide angle of view Time of Flight LiDAR

50 Transmitter and Receiver Micro Transceiver Telemetry Radio Set Used to start the rover after the rocket lands Ground control transmitter and rover receiver Configurable through ArduRover Mission Planner

51 Motor Brushless DC Motor with Encoder Used to move the treads Build-in motor driver Directional control, pulse-width modulation speed control and speed feedback output Small in size

52 Servo Drivetrain HiTEC HS-485HB Capable of supplying enough torque to control the folding tread system Soil Collection Micro Servo - MG90S High Torque Metal Gear Capable of supplying enough torque to control the scoop

53 Power Rail HobbyKing Matek Micro PDB w/bec (5V and 12V) Used to distribute power from the battery to the motors and servos Contains four ESC

54 Payload: Deployment Adafruit Feather M0 with RFM95 Radio Adafruit Ultimate GPS selected for our design. Used to communicate to ground station Receive commands for rover deployment License free signal (920MHz): does not require amateur radio certification. Small size: Will report the current coordinates at a rate of 1Hz Stacks with Feather Dual radio deployment for rover Deactivate failsafe servo for payload housing Deploy rover using controlled charge?

55 Payload Battery Budget Rover Battery Budget Estimation Mission Stage Component Pixhawk 4 Standby Max Current Draw (ma) Run Time (hr) Quantity Power Density (mah) GPS Rangefinder Motor Servo Power Rail Receiver

56 Payload Battery Budget (cont.) Rover Battery Budget Estimation Mission Stage Component Pixhawk 4 System Boot Max Current Draw (ma) Run Time (hr) Quantity Power Density (mah) GPS Rangefinder Motor Servo Power Rail Receiver

57 Payload Battery Budget (cont.) Rover Battery Budget Estimation Mission Stage Component Pixhawk 4 Mission Execution Max Current Draw (ma) Run Time (hr) Quantity Power Density (mah) GPS Rangefinder Motor Servo Power Rail Total 1, Receiver

58 Battery Blomiky 11.1V 3S 2200mAh LiPo Battery Easily capable of powering all the electronics in case of launch delays Pixhawk recommends LiPo batteries for power Rechargeable

59 Payload Preliminary Weight Buildup

60 Requirements Compliance Plan

61 Requirements Compliance Plan List of all NASA requirements for SLI competition and how we plan to achieve them. Table is included in PDR and each verification plan Is classified with a verification method.

62 Requirements Compliance Plan (cont.) List of team derived requirement List for each sub-team

63 Questions?

CRITICAL DESIGN REVIEW. University of South Florida Society of Aeronautics and Rocketry

CRITICAL DESIGN REVIEW. University of South Florida Society of Aeronautics and Rocketry CRITICAL DESIGN REVIEW University of South Florida Society of Aeronautics and Rocketry 2017-2018 AGENDA 1. Launch Vehicle 2. Recovery 3. Testing 4. Subscale Vehicle 5. Payload 6. Educational Outreach 7.

More information

NASA SL - NU FRONTIERS. PDR presentation to the NASA Student Launch Review Panel

NASA SL - NU FRONTIERS. PDR presentation to the NASA Student Launch Review Panel NASA SL - NU FRONTIERS PDR presentation to the NASA Student Launch Review Panel 1 Agenda Launch Vehicle Overview Nose Cone Section Payload Section Lower Avionic Bay Section Booster Section Motor Selection

More information

Critical Design Review

Critical Design Review Critical Design Review University of Illinois at Urbana-Champaign NASA Student Launch 2017-2018 Illinois Space Society 1 Overview Illinois Space Society 2 Launch Vehicle Summary Javier Brown Illinois Space

More information

FLIGHT READINESS REVIEW TEAM OPTICS

FLIGHT READINESS REVIEW TEAM OPTICS FLIGHT READINESS REVIEW TEAM OPTICS LAUNCH VEHICLE AND PAYLOAD DESIGN AND DIMENSIONS Vehicle Diameter 4 Upper Airframe Length 40 Lower Airframe Length 46 Coupler Band Length 1.5 Coupler Length 12 Nose

More information

Auburn University. Project Wall-Eagle FRR

Auburn University. Project Wall-Eagle FRR Auburn University Project Wall-Eagle FRR Rocket Design Rocket Model Mass Estimates Booster Section Mass(lb.) Estimated Upper Section Mass(lb.) Actual Component Mass(lb.) Estimated Mass(lb.) Actual Component

More information

Illinois Space Society Flight Readiness Review. University of Illinois Urbana-Champaign NASA Student Launch March 30, 2016

Illinois Space Society Flight Readiness Review. University of Illinois Urbana-Champaign NASA Student Launch March 30, 2016 Illinois Space Society Flight Readiness Review University of Illinois Urbana-Champaign NASA Student Launch 2015-2016 March 30, 2016 Team Managers Project Manager: Ian Charter Structures and Recovery Manager:

More information

Auburn University Student Launch. PDR Presentation November 16, 2015

Auburn University Student Launch. PDR Presentation November 16, 2015 Auburn University Student Launch PDR Presentation November 16, 2015 Project Aquila Vehicle Dimensions Total Length of 69.125 inches Inner Diameter of 5 inches Outer Diameter of 5.25 inches Estimated mass

More information

CRITICAL DESIGN PRESENTATION

CRITICAL DESIGN PRESENTATION CRITICAL DESIGN PRESENTATION UNIVERSITY OF SOUTH ALABAMA LAUNCH SOCIETY BILL BROWN, BEECHER FAUST, ROCKWELL GARRIDO, CARSON SCHAFF, MICHAEL WIESNETH, MATTHEW WOJCIECHOWSKI ADVISOR: CARLOS MONTALVO MENTOR:

More information

Presentation Outline. # Title

Presentation Outline. # Title FRR Presentation 1 Presentation Outline # Title 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Team Introduction Mission Summary Vehicle Overview Vehicle Dimensions Upper Body Section Elliptical

More information

Jordan High School Rocketry Team. A Roll Stabilized Video Platform and Inflatable Location Device

Jordan High School Rocketry Team. A Roll Stabilized Video Platform and Inflatable Location Device Jordan High School Rocketry Team A Roll Stabilized Video Platform and Inflatable Location Device Mission Success Criteria No damage done to any person or property. The recovery system deploys as expected.

More information

NASA - USLI Presentation 1/23/2013. University of Minnesota: USLI CDR 1

NASA - USLI Presentation 1/23/2013. University of Minnesota: USLI CDR 1 NASA - USLI Presentation 1/23/2013 2013 USLI CDR 1 Final design Key features Final motor choice Flight profile Stability Mass Drift Parachute Kinetic Energy Staged recovery Payload Integration Interface

More information

Preliminary Design Review. California State University, Long Beach USLI November 13th, 2017

Preliminary Design Review. California State University, Long Beach USLI November 13th, 2017 Preliminary Design Review California State University, Long Beach USLI November 13th, 2017 System Overview Launch Vehicle Dimensions Total Length 108in Airframe OD 6.17in. ID 6.00in. Couplers OD 5.998in.

More information

Flight Readiness Review

Flight Readiness Review Flight Readiness Review University of Illinois at Urbana-Champaign NASA Student Launch 2017-2018 Illinois Space Society 1 Overview Illinois Space Society 2 Launch Vehicle Summary Javier Brown Illinois

More information

GIT LIT NASA STUDENT LAUNCH PRELIMINARY DESIGN REVIEW NOVEMBER 13TH, 2017

GIT LIT NASA STUDENT LAUNCH PRELIMINARY DESIGN REVIEW NOVEMBER 13TH, 2017 GIT LIT 07-08 NASA STUDENT LAUNCH PRELIMINARY DESIGN REVIEW NOVEMBER TH, 07 AGENDA. Team Overview (5 Min). Educational Outreach ( Min). Safety ( Min) 4. Project Budget ( Min) 5. Launch Vehicle (0 min)

More information

UC Berkeley Space Technologies and Rocketry Preliminary Design Review Presentation. Access Control: CalSTAR Public Access

UC Berkeley Space Technologies and Rocketry Preliminary Design Review Presentation. Access Control: CalSTAR Public Access UC Berkeley Space Technologies and Rocketry Preliminary Design Review Presentation Access Control: CalSTAR Public Access Agenda Airframe Propulsion Payload Recovery Safety Outreach Project Plan Airframe

More information

Georgia Tech NASA Critical Design Review Teleconference Presented By: Georgia Tech Team ARES

Georgia Tech NASA Critical Design Review Teleconference Presented By: Georgia Tech Team ARES Georgia Tech NASA Critical Design Review Teleconference Presented By: Georgia Tech Team ARES 1 Agenda 1. Team Overview (1 Min) 2. 3. 4. 5. 6. 7. Changes Since Proposal (1 Min) Educational Outreach (1 Min)

More information

NASA USLI PRELIMINARY DESIGN REVIEW. University of California, Davis SpaceED Rockets Team

NASA USLI PRELIMINARY DESIGN REVIEW. University of California, Davis SpaceED Rockets Team NASA USLI 2012-13 PRELIMINARY DESIGN REVIEW University of California, Davis SpaceED Rockets Team OUTLINE School Information Launch Vehicle Summary Motor Selection Mission Performance and Predictions Structures

More information

PRELIMINARY DESIGN REVIEW

PRELIMINARY DESIGN REVIEW PRELIMINARY DESIGN REVIEW 1 1 Team Structure - Team Leader: Michael Blackwood NAR #101098L2 Certified - Safety Officer: Jay Nagy - Team Mentor: Art Upton NAR #26255L3 Certified - NAR Section: Jackson Model

More information

Notre Dame Rocketry Team. Flight Readiness Review March 8, :00 PM CST

Notre Dame Rocketry Team. Flight Readiness Review March 8, :00 PM CST Notre Dame Rocketry Team Flight Readiness Review March 8, 2018 2:00 PM CST Contents Overview Vehicle Design Recovery Subsystem Experimental Payloads Deployable Rover Payload Air Braking System Safety and

More information

Project NOVA

Project NOVA Project NOVA 2017-2018 Our Mission Design a Rocket Capable of: Apogee of 5280 ft Deploying an autonomous Rover Vehicle REILLY B. Vehicle Dimensions Total Length of 108 inches Inner Diameter of 6 inches

More information

Overview. Mission Overview Payload and Subsystems Rocket and Subsystems Management

Overview. Mission Overview Payload and Subsystems Rocket and Subsystems Management MIT ROCKET TEAM Overview Mission Overview Payload and Subsystems Rocket and Subsystems Management Purpose and Mission Statement Our Mission: Use a rocket to rapidly deploy a UAV capable of completing search

More information

Presentation Outline. # Title # Title

Presentation Outline. # Title # Title CDR Presentation 1 Presentation Outline # Title # Title 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 Team Introduction Vehicle Overview Vehicle Dimensions Upper Body Section Payload

More information

Wichita State Launch Project K.I.S.S.

Wichita State Launch Project K.I.S.S. Wichita State Launch Project K.I.S.S. Benjamin Russell Jublain Wohler Mohamed Moustafa Tarun Bandemagala Outline 1. 2. 3. 4. 5. 6. 7. Introduction Vehicle Overview Mission Predictions Payload Design Requirement

More information

Flight Readiness Review March 16, Agenda. California State Polytechnic University, Pomona W. Temple Ave, Pomona, CA 91768

Flight Readiness Review March 16, Agenda. California State Polytechnic University, Pomona W. Temple Ave, Pomona, CA 91768 Flight Readiness Review March 16, 2018 Agenda California State Polytechnic University, Pomona 3801 W. Temple Ave, Pomona, CA 91768 Agenda 1.0 Changes made Since CDR 2.0 Launch Vehicle Criteria 3.0 Mission

More information

NASA SL Critical Design Review

NASA SL Critical Design Review NASA SL Critical Design Review University of Alabama in Huntsville 1 LAUNCH VEHICLE 2 Vehicle Summary Launch Vehicle Dimensions Fairing Diameter: 6 in. Body Tube Diameter: 4 in. Mass at lift off: 43.8

More information

Statement of Work Requirements Verification Table - Addendum

Statement of Work Requirements Verification Table - Addendum Statement of Work Requirements Verification Table - Addendum Vehicle Requirements Requirement Success Criteria Verification 1.1 No specific design requirement exists for the altitude. The altitude is a

More information

Tacho Lycos 2017 NASA Student Launch Critical Design Review

Tacho Lycos 2017 NASA Student Launch Critical Design Review Tacho Lycos 2017 NASA Student Launch Critical Design Review High-Powered Rocketry Team 911 Oval Drive Raleigh NC, 27695 January 13, 2017 Table of Contents Table of Figures:... 8 Table of Appendices:...

More information

University of Illinois at Urbana-Champaign Illinois Space Society Student Launch Preliminary Design Review November 3, 2017

University of Illinois at Urbana-Champaign Illinois Space Society Student Launch Preliminary Design Review November 3, 2017 University of Illinois at Urbana-Champaign Illinois Space Society Student Launch 2017-2018 Preliminary Design Review November 3, 2017 Illinois Space Society 104 S. Wright Street Room 18C Urbana, Illinois

More information

The University of Toledo

The University of Toledo The University of Toledo Project Kronos Preliminary Design Review 11/03/2017 University of Toledo UT Rocketry Club 2801 W Bancroft St. MS 105 Toledo, OH 43606 Contents 1 Summary of Proposal... 6 1.1 Team

More information

Tacho Lycos 2017 NASA Student Launch Flight Readiness Review

Tacho Lycos 2017 NASA Student Launch Flight Readiness Review Tacho Lycos 2017 NASA Student Launch Flight Readiness Review High-Powered Rocketry Team 911 Oval Drive Raleigh NC, 27695 March 6, 2017 Table of Contents Table of Figures... 9 Table of Appendices... 11

More information

NASA s Student Launch Initiative :

NASA s Student Launch Initiative : NASA s Student Launch Initiative : Critical Design Review Payload: Fragile Material Protection 1 Agenda 1. Design Overview 2. Payload 3. Recovery 4. 5. I. Sub-Scale Predictions II. Sub-Scale Test III.

More information

PROJECT AQUILA 211 ENGINEERING DRIVE AUBURN, AL POST LAUNCH ASSESSMENT REVIEW

PROJECT AQUILA 211 ENGINEERING DRIVE AUBURN, AL POST LAUNCH ASSESSMENT REVIEW PROJECT AQUILA 211 ENGINEERING DRIVE AUBURN, AL 36849 POST LAUNCH ASSESSMENT REVIEW APRIL 29, 2016 Motor Specifications The team originally planned to use an Aerotech L-1520T motor and attempted four full

More information

Flight Readiness Review Addendum: Full-Scale Re-Flight. Roll Induction and Counter Roll NASA University Student Launch.

Flight Readiness Review Addendum: Full-Scale Re-Flight. Roll Induction and Counter Roll NASA University Student Launch. Flight Readiness Review Addendum: Full-Scale Re-Flight Roll Induction and Counter Roll 2016-2017 NASA University Student Launch 27 March 2017 Propulsion Research Center, 301 Sparkman Dr. NW, Huntsville

More information

University Student Launch Initiative

University Student Launch Initiative University Student Launch Initiative HARDING UNIVERSITY Flight Readiness Review March 31, 2008 Launch Vehicle Summary Size: 97.7 (2.5 meters long), 3.1 diameter Motor: Contrail Rockets 54mm J-234 Recovery

More information

NASA SL Flight Readiness Review

NASA SL Flight Readiness Review NASA SL Flight Readiness Review University of Alabama in Huntsville 1 LAUNCH VEHICLE 2 Vehicle Overview Vehicle Dimensions Diameter: 6 fairing/4 aft Length: 106 inches Wet Mass: 41.1 lbs. Center of Pressure:

More information

University of Notre Dame

University of Notre Dame University of Notre Dame 2016-2017 Notre Dame Rocketry Team Critical Design Review NASA Student Launch Competition Roll Control and Fragile Object Protection Payloads Submitted January 13, 2017 365 Fitzpatrick

More information

Critical Design Review Report

Critical Design Review Report Critical Design Review Report I) Summary of PDR report Team Name: The Rocket Men Mailing Address: Spring Grove Area High School 1490 Roth s Church Road Spring Grove, PA 17362 Mentor: Tom Aument NAR Number

More information

Team Air Mail Preliminary Design Review

Team Air Mail Preliminary Design Review Team Air Mail Preliminary Design Review 2014-2015 Space Grant Midwest High-Power Rocket Competition UAH Space Hardware Club Huntsville, AL Top: Will Hill, Davis Hunter, Beth Dutour, Bradley Henderson,

More information

NUMAV. AIAA at Northeastern University

NUMAV. AIAA at Northeastern University NUMAV AIAA at Northeastern University Team Officials Andrew Buggee, President, Northeastern AIAA chapter Dr. Andrew Goldstone, Faculty Advisor John Hume, Safety Officer Rob DeHate, Team Mentor Team Roster

More information

AUBURN UNIVERSITY STUDENT LAUNCH. Project Nova. 211 Davis Hall AUBURN, AL Post Launch Assessment Review

AUBURN UNIVERSITY STUDENT LAUNCH. Project Nova. 211 Davis Hall AUBURN, AL Post Launch Assessment Review AUBURN UNIVERSITY STUDENT LAUNCH Project Nova 211 Davis Hall AUBURN, AL 36849 Post Launch Assessment Review April 19, 2018 Table of Contents Table of Contents...2 List of Tables...3 Section 1: Launch Vehicle

More information

University Student Launch Initiative

University Student Launch Initiative University Student Launch Initiative HARDING UNIVERSITY Critical Design Review February 4, 2008 The Team Dr. Edmond Wilson Brett Keller Team Official Project Leader, Safety Officer Professor of Chemistry

More information

Illinois Space Society University of Illinois Urbana Champaign Student Launch Maxi-MAV Preliminary Design Review November 5, 2014

Illinois Space Society University of Illinois Urbana Champaign Student Launch Maxi-MAV Preliminary Design Review November 5, 2014 Illinois Space Society University of Illinois Urbana Champaign Student Launch 2014-2015 Maxi-MAV Preliminary Design Review November 5, 2014 Illinois Space Society 104 S. Wright Street Room 321D Urbana,

More information

Rocketry Projects Conducted at the University of Cincinnati

Rocketry Projects Conducted at the University of Cincinnati Rocketry Projects Conducted at the University of Cincinnati 2009-2010 Grant Schaffner, Ph.D. (Advisor) Rob Charvat (Student) 17 September 2010 1 Spacecraft Design Course Objectives Students gain experience

More information

Critical Design Review

Critical Design Review Critical Design Review 1/27/2017 NASA Student Launch Competition 2016-2017 California State Polytechnic University, Pomona 3801 W Temple Ave, Pomona, CA 91768 1/27/2017 California State Polytechnic University,

More information

AUBURN UNIVERSITY STUDENT LAUNCH PROJECT NOVA II. 211 Davis Hall AUBURN, AL CDR

AUBURN UNIVERSITY STUDENT LAUNCH PROJECT NOVA II. 211 Davis Hall AUBURN, AL CDR AUBURN UNIVERSITY STUDENT LAUNCH PROJECT NOVA II 211 Davis Hall AUBURN, AL 36849 CDR January 10, 2019 Contents List of Tables...7 List of Figures...9 1 CDR Report Summary...12 1.1 Payload Deployable Rover...12

More information

NASA Student Launch College and University. Preliminary Design Review

NASA Student Launch College and University. Preliminary Design Review 2017-2018 NASA Student Launch College and University Preliminary Design Review Institution: United States Naval Academy Mailing Address: Aerospace Engineering Department United States Naval Academy ATTN:

More information

Tripoli Rocketry Association Level 3 Certification Attempt

Tripoli Rocketry Association Level 3 Certification Attempt Tripoli Rocketry Association Level 3 Certification Attempt Kevin O Classen 1101 Dutton Brook Road Goshen, VT 05733 (802) 247-4205 kevin@back2bed.com Doctor Fill Doctor Fill General Specifications Airframe:

More information

CYCLONE STUDENT LAUNCH INITIATIVE

CYCLONE STUDENT LAUNCH INITIATIVE NSL PROPOSAL September 19, 2018 CYCLONE STUDENT LAUNCH INITIATIVE 2018-19 Iowa State University 537 Bissell Rd. 1200 Howe Hall Ames, IA 50011 Table of Contents Table of Contents... 2 Table of Figures...

More information

Preliminary Design Review

Preliminary Design Review Preliminary Design Review November 16, 2016 11/2016 California State Polytechnic University, Pomona 3801 W Temple Ave, Pomona, CA 91768 Student Launch Competition 2016-2017 1 Agenda 1.0 General Information

More information

NASA Student Launch W. Foothill Blvd. Glendora, CA Artemis. Deployable Rover. November 3rd, Preliminary Design Review

NASA Student Launch W. Foothill Blvd. Glendora, CA Artemis. Deployable Rover. November 3rd, Preliminary Design Review 2017 2018 NASA Student Launch Preliminary Design Review 1000 W. Foothill Blvd. Glendora, CA 91741 Artemis Deployable Rover November 3rd, 2017 Table of Contents General Information... 9 1. School Information...

More information

Critical Design Review

Critical Design Review AIAA Orange County Section Student Launch Initiative 2011-2012 Critical Design Review Rocket Deployment of a Bendable Wing Micro-UAV for Data Collection Submitted by: AIAA Orange County Section NASA Student

More information

Preliminary Design Review November 15, Agenda. California State Polytechnic University, Pomona W. Temple Ave, Pomona, CA 91768

Preliminary Design Review November 15, Agenda. California State Polytechnic University, Pomona W. Temple Ave, Pomona, CA 91768 Preliminary Design Review November 15, 2017 Agenda California State Polytechnic University, Pomona 3801 W. Temple Ave, Pomona, CA 91768 Agenda 1.0 General Information 2.0 Launch Vehicle System Overview

More information

NASA University Student Launch Initiative (Sensor Payload) Final Design Review. Payload Name: G.A.M.B.L.S.

NASA University Student Launch Initiative (Sensor Payload) Final Design Review. Payload Name: G.A.M.B.L.S. NASA University Student Launch Initiative (Sensor Payload) Final Design Review Payload Name: G.A.M.B.L.S. CPE496-01 Computer Engineering Design II Electrical and Computer Engineering The University of

More information

Student Launch. Enclosed: Preliminary Design Review. Submitted by: Rocket Team Project Lead: David Eilken

Student Launch. Enclosed: Preliminary Design Review. Submitted by: Rocket Team Project Lead: David Eilken University of Evansville Student Launch Enclosed: Preliminary Design Review Submitted by: 2016 2017 Rocket Team Project Lead: David Eilken Submission Date: November 04, 2016 Payload: Fragile Material Protection

More information

NASA SL Preliminary Design Review

NASA SL Preliminary Design Review NASA SL Preliminary Design Review University of Alabama in Huntsville 1 Mission Summary Design, fabricate, test and fly a rocket and payload to 1 mile in altitude Deploy a rover upon landing to autonomously

More information

NASA USLI Flight Readiness Review (FRR) Rensselaer Rocket Society (RRS)

NASA USLI Flight Readiness Review (FRR) Rensselaer Rocket Society (RRS) 2016-2017 NASA USLI Flight Readiness Review (FRR) Rensselaer Rocket Society (RRS) Rensselaer Polytechnic Institute 110 8th St Troy, NY 12180 Project Name: Andromeda Task 3.3: Roll Induction and Counter

More information

The University of Toledo

The University of Toledo The University of Toledo Project Cairo Preliminary Design Review 10/08/2016 University of Toledo UT Rocketry Club 2801 W Bancroft St. MS 105 Toledo, OH 43606 Contents 1 Summary of Preliminary Design Review...

More information

Tuskegee University Rocketry Club

Tuskegee University Rocketry Club Tuskegee University Rocketry Club National Aeronautics and Space Administration Student Launch Initiative Preliminary Design Review Atmospheric Measurement and Aerodynamic Analysis TURC 2015-2016 NASA

More information

USLI Critical Design Report

USLI Critical Design Report UNIVERSITY OF MINNESOTA TWIN CITIES 2011 2012 USLI Critical Design Report University Of Minnesota Team Artemis 1/23/2012 Critical Design Report by University of Minnesota Team Artemis for 2011-2012 NASA

More information

Critical Design Review Report NASA Student Launch Florida International University American Society of Mechanical Engineers (FIU-ASME)

Critical Design Review Report NASA Student Launch Florida International University American Society of Mechanical Engineers (FIU-ASME) Critical Design Review Report 2014-2015 NASA Student Launch Florida International University American Society of Mechanical Engineers (FIU-ASME) Florida International University Engineering Center College

More information

LEVEL 3 BUILD YELLOW BIRD. Dan Schwartz

LEVEL 3 BUILD YELLOW BIRD. Dan Schwartz LEVEL 3 BUILD YELLOW BIRD Dan Schwartz This entire rocket is built using the same techniques I use for my nose cones, a central airframe tube for compression strength and rings of high compression styrofoam

More information

Project WALL-Eagle Maxi-Mav Flight Readiness Review

Project WALL-Eagle Maxi-Mav Flight Readiness Review S A M U E L G I N N C O L L E G E O F E N G I N E E R I N G Auburn University Project WALL-Eagle Maxi-Mav Flight Readiness Review 2 Engineering Dr. Auburn, AL 36849 March 6th, 205 Table of Contents Section

More information

Palos Verdes High School 1

Palos Verdes High School 1 Abstract: The Palos Verdes High School Institute of Technology (PVIT) Unmanned Aerial Vehicle team is proud to present Condor. Condor is a hexacopter weighing in at 1664g including the 4 cell 11.1 volt,

More information

Mercury VTOL suas Testing and Measurement Plan

Mercury VTOL suas Testing and Measurement Plan Mercury VTOL suas Testing and Measurement Plan Introduction Mercury is a small VTOL (Vertical Take-Off and Landing) aircraft that is building off of a quadrotor design. The end goal of the project is for

More information

Northwest Indian College Space Center USLI Critical Design Review

Northwest Indian College Space Center USLI Critical Design Review 2012-2013 Northwest Indian College Space Center USLI Critical Design Review Table of Contents, Tables, and Figures I.0 CDR Report Summary... 1 I.1 Team Summary... 1 I.2 Launch Vehicle Summary... 1 I.2a

More information

Florida A & M University. Flight Readiness Review. 11/19/2010 Preliminary Design Review

Florida A & M University. Flight Readiness Review. 11/19/2010 Preliminary Design Review Florida A & M University Flight Readiness Review 11/19/2010 Preliminary Design Review 1 Overview Team Summary ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~ Vehicle Criteria ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~

More information

Cal Poly Pomona Rocketry NASA Student Launch Competition POST LAUNCH ASSESMENT REVIEW April 24, 2017

Cal Poly Pomona Rocketry NASA Student Launch Competition POST LAUNCH ASSESMENT REVIEW April 24, 2017 Cal Poly Pomona Rocketry NASA Student Launch Competition 2016-2017 POST LAUNCH ASSESMENT REVIEW April 24, 2017 California State Polytechnic University, Pomona 3801 W Temple Ave, Pomona, CA 91768 Department

More information

Post Launch Assessment Review

Post Launch Assessment Review AIAA Orange County Section Student Launch Initiative 2011-2012 Post Launch Assessment Review Rocket Deployment of a Bendable Wing Micro-UAV for Data Collection Submitted by: AIAA Orange County Section

More information

First Nations Launch Rocket Competition 2016

First Nations Launch Rocket Competition 2016 First Nations Launch Rocket Competition 2016 Competition Date April 21-22, 2016 Carthage College Kenosha, WI April 23, 2016 Richard Bong Recreational Park Kansasville, WI Meet the Team Wisconsin Space

More information

Pegasus II. Tripoli Level 3 Project Documentation. Brian Wheeler

Pegasus II. Tripoli Level 3 Project Documentation. Brian Wheeler Pegasus II Tripoli Level 3 Project Documentation Brian Wheeler Contents: A. Design Overview B. Booster Construction C. Electronics Bay (Mechanical) Construction D. Nose Cone Construction E. Recovery System

More information

Rocket Design. Tripoli Minnesota Gary Stroick. February 2010

Rocket Design. Tripoli Minnesota Gary Stroick. February 2010 Rocket Design Tripoli Minnesota Gary Stroick February 2010 Purpose Focus is on designing aerodynamically stable rockets not drag optimization nor construction techniques! Copyright 2010 by Gary Stroick

More information

NORTHEASTERN UNIVERSITY

NORTHEASTERN UNIVERSITY NORTHEASTERN UNIVERSITY POST-LAUNCH ASSESSMENT REVIEW NORTHEASTERN UNIVERSITY USLI TEAM APRIL 27TH 2018 Table of Contents 1. Summary 2 1.1 Team Summary 2 1.2 Launch Summary 2 2. Launch Vehicle Assessment

More information

Innovating the future of disaster relief

Innovating the future of disaster relief Innovating the future of disaster relief American Helicopter Society International 33rd Annual Student Design Competition Graduate Student Team Submission VEHICLE OVERVIEW FOUR VIEW DRAWING INTERNAL COMPONENTS

More information

CNY Rocket Team Challenge. Basics of Using RockSim 9 to Predict Altitude for the Central New York Rocket Team Challenge

CNY Rocket Team Challenge. Basics of Using RockSim 9 to Predict Altitude for the Central New York Rocket Team Challenge CNY Rocket Team Challenge Basics of Using RockSim 9 to Predict Altitude for the Central New York Rocket Team Challenge RockSim 9 Basics 2 Table of Contents A. Introduction.p. 3 B. Designing Your Rocket.p.

More information

Northwest Indian College Space Center USLI Post Launch Assessment Review

Northwest Indian College Space Center USLI Post Launch Assessment Review Northwest Indian College Space Center USLI Post Launch Assessment Review 2012-2013 Table of Contents I. Team Summary... 1 Team Name: Northwest Indian College RPGs... 1 II. Launch Vehicle Summary... 1

More information

Project WALL-Eagle Maxi-Mav Critical Design Review

Project WALL-Eagle Maxi-Mav Critical Design Review S A M U E L G I N N C O L L E G E O F E N G I N E E R I N G Auburn University Project WALL-Eagle Maxi-Mav Critical Design Review 2 Engineering Dr. Auburn, AL 36849 January 6th, 205 Table of Contents SECTION

More information

HPR Staging & Air Starting By Gary Stroick

HPR Staging & Air Starting By Gary Stroick Complex Rocket Design Considerations HPR Staging & Air Starting By Gary Stroick 1. Tripoli Safety Code 2. Technical Considerations 3. Clusters/Air Starts 4. Staging 5. Summary 2 1. Complex High Power Rocket.

More information

University Student Launch Initiative Preliminary Design Review

University Student Launch Initiative Preliminary Design Review UNIVERSITY OF MINNESOTA TWIN CITIES 2012 2013 University Student Launch Initiative Preliminary Design Review Department of Aerospace Engineering and Mechanics 3/18/2013 2012-2013 University of Minnesota

More information

Rover Delivery NASA University Student Launch Initiative Post-Launch Assessment Review. Charger Rocket Works.

Rover Delivery NASA University Student Launch Initiative Post-Launch Assessment Review. Charger Rocket Works. Rover Delivery 2017-2018 NASA University Student Launch Initiative Post-Launch Assessment Review Charger Rocket Works April 27 th, 2018 Propulsion Research Center 1030 John Wright Drive NW, Huntsville,

More information

USLI Flight Readiness Review

USLI Flight Readiness Review UNIVERSITY OF MINNESOTA TWIN CITIES 2011 2012 USLI Flight Readiness Review University Of Minnesota Team Artemis 3/26/2012 Flight Readiness Report prepared by University of Minnesota Team Artemis for 2011-2012

More information

Student Launch. Enclosed: Proposal. Submitted by: Rocket Team Project Lead: David Eilken. Submission Date: September 30, 2016

Student Launch. Enclosed: Proposal. Submitted by: Rocket Team Project Lead: David Eilken. Submission Date: September 30, 2016 University of Evansville Student Launch Enclosed: Proposal Submitted by: 2016 2017 Rocket Team Project Lead: David Eilken Submission Date: September 30, 2016 Payload: Fragile Material Protection Submitted

More information

Pre-Flight Checklist for SLIPSTICK III

Pre-Flight Checklist for SLIPSTICK III Advanced Planning 1 Schedule a Check that waivers are available at the intended launch site and date. b Check weather forecast for wind and temperature conditions at the site. c Have TAP members approved

More information

University of North Dakota Department of Physics Frozen Fury Rocketry Team

University of North Dakota Department of Physics Frozen Fury Rocketry Team University of North Dakota Department of Physics Frozen Fury Rocketry Team NASA Student Launch Initiative Flight Readiness Review - Report Submitted by: The University of North Dakota Frozen Fury Rocketry

More information

Flight Readiness Review Report NASA Student Launch Florida International University American Society of Mechanical Engineers (FIU-ASME)

Flight Readiness Review Report NASA Student Launch Florida International University American Society of Mechanical Engineers (FIU-ASME) Flight Readiness Review Report 2014-2015 NASA Student Launch Florida International University American Society of Mechanical Engineers (FIU-ASME) Florida International University Engineering Center College

More information

Table of Content 1) General Information ) Summary of PDR Report ) Changes Made Since Proposal ) Safety... 8

Table of Content 1) General Information ) Summary of PDR Report ) Changes Made Since Proposal ) Safety... 8 Table of Content 1) General Information... 3 1.1 Student Leader... 3 1.2 Safety Officer... 3 1.3 Team Structure... 3 1.4 NAR/TRA Sections... 4 2) Summary of PDR Report... 5 2.1 Team Summary... 5 2.2 Launch

More information

Presentation 3 Vehicle Systems - Phoenix

Presentation 3 Vehicle Systems - Phoenix Presentation 3 Vehicle Systems - Phoenix 1 Outline Structures Nosecone Body tubes Bulkheads Fins Tailcone Recovery System Layout Testing Propulsion Ox Tank Plumbing Injector Chamber Nozzle Testing Hydrostatic

More information

Post Launch Assessment Review

Post Launch Assessment Review Post Launch Assessment Review University of South Alabama Launch Society Conner Denton, John Faulk, Nghia Huynh, Kent Lino, Phillip Ruschmyer, Andrew Tindell Department of Mechanical Engineering 150 Jaguar

More information

SpaceLoft XL Sub-Orbital Launch Vehicle

SpaceLoft XL Sub-Orbital Launch Vehicle SpaceLoft XL Sub-Orbital Launch Vehicle The SpaceLoft XL is UP Aerospace s workhorse space launch vehicle -- ideal for significant-size payloads and multiple, simultaneous-customer operations. SpaceLoft

More information

Formation Flying Experiments on the Orion-Emerald Mission. Introduction

Formation Flying Experiments on the Orion-Emerald Mission. Introduction Formation Flying Experiments on the Orion-Emerald Mission Philip Ferguson Jonathan P. How Space Systems Lab Massachusetts Institute of Technology Present updated Orion mission operations Goals & timelines

More information

Modified shock-cord mount and cables (cables are shown pushed into motor mount here)

Modified shock-cord mount and cables (cables are shown pushed into motor mount here) Building the Ariel Builder: Ray Wilkinson This is Ray Wilkinson's own rocket, but will mostly reside at UH, and will be used for display purposes as well as being flown. It's built from a kit made by PML

More information

Electric Penguin s philosophy:

Electric Penguin s philosophy: UNMANNED PLATFORMS AND SUBSYSTEMS Datasheet v 1.1 Penguin BE Electric Unmanned Platform Up to 110 minutes of endurance 2 with 2.8 kg payload 23 liters of payload volume Quick replaceable battery cartridge

More information

SSC Swedish Space Corporation

SSC Swedish Space Corporation SSC Swedish Space Corporation Platforms for in-flight tests Gunnar Florin, SSC Presentation outline SSC and Esrange Space Center Mission case: Sounding rocket platform, dedicated to drop tests Satellite

More information

Critical Design Review

Critical Design Review Harding University University Student Launch Initiative Team Critical Design Review January 29, 2007 The Flying Bison Sarah Christensen Project Leader Dr. Ed Wilson Faculty Supervisor Dr. James Mackey

More information

Super Squadron technical paper for. International Aerial Robotics Competition Team Reconnaissance. C. Aasish (M.

Super Squadron technical paper for. International Aerial Robotics Competition Team Reconnaissance. C. Aasish (M. Super Squadron technical paper for International Aerial Robotics Competition 2017 Team Reconnaissance C. Aasish (M.Tech Avionics) S. Jayadeep (B.Tech Avionics) N. Gowri (B.Tech Aerospace) ABSTRACT The

More information

UHABS-5 Mission Zeppelin

UHABS-5 Mission Zeppelin UHABS-5 Mission Zeppelin Team Members: Likeke Aipa, Drex Arine, Andrew Bui, Karen Calaro, Kanekahekilinuinanaueikalani Clark, Ka Chon Liu, Cyrus Noveloso, Reagan Paz, Yun Feng Tan, Jake Torigoe, Emanuel

More information

Deployment and Flight Test of Inflatable Membrane Aeroshell using Large Scientific Balloon

Deployment and Flight Test of Inflatable Membrane Aeroshell using Large Scientific Balloon 1 Deployment and Flight Test of Inflatable Membrane Aeroshell using Large Scientific Balloon Kazuhiko Yamada, Takashi Abe (JAXA/ISAS) Kojiro Suzuki, Naohiko Honma, Yasunori Nagata, Masashi Koyama (The

More information

First Nation Launch Competition Handbook

First Nation Launch Competition Handbook 2018 First Nation Launch Competition Handbook Funded through National Space Grant Foundation Cooperative Agreement 2017 HESS-05 NASA Grant #NNX13E43A 9-11-17 1 Table of Contents Contents 2 Competition

More information

This Week. Next Week 4/7/15

This Week. Next Week 4/7/15 E80 Spring 2015 This Week! Transfer breadboard circuit to PC board.! Verify everything still works.! Get data logger working.! Pass off consists of: " Power PC board with data logger & start logging. "

More information

Lecture 1: Basic Ideas, Safety and Administration.

Lecture 1: Basic Ideas, Safety and Administration. Lecture 1: Basic Ideas, Safety and Administration Lecture 1 Page: 1 Basic Ideas Safety Administration colintan@nus.edu.sg Lecture 1: Basic Ideas, Safety and Administration Page: 2 WELCOME TO SINGAPORE

More information

First Nation Launch Competition Handbook

First Nation Launch Competition Handbook 2018 First Nation Launch Competition Handbook Funded through National Space Grant Foundation Cooperative Agreement 2017 HESS-05 NASA Grant #NNX13E43A 9-11-17 Table of Contents 1 Competition Objectives...

More information