Special Report. Bio-isobutanol: The next-generation biofuel

Size: px
Start display at page:

Download "Special Report. Bio-isobutanol: The next-generation biofuel"

Transcription

1 Originally appeared in: September 2012, pgs Used with permission. Special Report Refining Developments R. Kolodziej, Wood Group Mustang, Houston, Texas; and J. Scheib, Gevo Inc., Englewood, Colorado Bio-isobutanol: The next-generation biofuel The success of any new industry lies in its ability to innovate and grow. Future growth in renewable fuels may require an evolution from first-generation products, such as ethanol and biodiesel, to next-generation products, such as isobutanol., a form of biobutanol, has many outstanding characteristics that allow it to be used in a variety of ways: As is i.e., as a solvent or as a gasoline blendstock Converted, through known processes, to a variety of hydrocarbons for use in the petrochemical and/or refining industries In existing production, distribution, marketing and enduser assets. This article highlights the technology, feedstocks and market growth opportunities for isobutanol, with a focus on potential new market offerings in Technology pathway for bio-isobutanol. The specialized production process for bio-isobutanol is fermentation paired with an integrated separation technology. This approach, developed over the past seven years, has been successfully proven at bench scale, at a pilot plant, and at a 1 milliongallon-per-year (MMgpy) demonstration plant. In May 2012, the world s first commercial, bio-based isobutanol production plant was started up in Luverne, Minnesota, with a capacity of 18 MMgpy. Bio-isobutanol fermentation is very similar to the existing ethanol process. Ethanol plants can be repurposed to make isobutanol relatively easily and cost-effectively, with two key modifications: 1. Modified biocatalyst. is a naturally occurring product of the fermentation process, found in many items such as bread and scotch whiskey; however, its commercial use to date has been limited. However, through innovations in microbiology and biochemistry, traditional yeasts have been modified, making possible a much higher selectivity in producing isobutanol i.e., turning up the yeast s ability to make isobutanol while also limiting the ethanol production pathway. 2. Unique proprietary separation. As the isobutanol is produced, a stream is taken from the fermentation broth where the isobutanol is removed, and the remaining broth is returned for further conversion. This has the effect of keeping the isobutanol concentration below the biocatalyst toxicity level, but it allows for improved conversion. With these two additions to existing facilities, it is clear how the project completion time and CAPEX to make bio-isobutanol can be significantly lower than those for the construction of a greenfield plant. A plant conversion can nominally be 20% 40% of the CAPEX of a greenfield bio-isobutanol plant. As fermentation ethanol plants have been shut down or underutilized due to recent poor economics (e.g., the US ethanol subsidy has been repealed, and the regulation blend wall has effectively been reached), the ability to repurpose these plants to isobutanol becomes an attractive opportunity. Fig. 1. Conversion of a fermentation ethanol plant to an isobutanol plant in Luverne, Minnesota.

2 Upon fermentation plant conversion, the plant capacity will be approximately 80% on a volumetric product-yield basis (compared to ethanol), but comparable on an energyequivalent basis (isobutanol contains more energy than ethanol). Therefore, the utility requirements and OPEX are comparable to ethanol production (which, again, limits CAPEX requirements). There is over 20 billion gpy (Bgpy) of existing fermentation ethanol capacity in the world, located mostly in North and South America. A leading company in bio-isobutanol is converting some of these ethanol plants to isobutanol production. That company s business model is based on the flexibility to buy ethanol plant assets, form a joint venture with the current plant owner for the conversion, or to license the isobutanol production technology to ethanol plant owners. Fig. 1 illustrates an isobutanol plant conversion. The before photo shows a facility in Luverne, Minnesota as a 22-MMgpy ethanol plant. The after photo depicts the plant as it was repurposed to produce up to 18 MMgpy of isobutanol. Feedstock. One company s proprietary fermentation process is designed to convert feedstocks of all types: grain, sugarcane, cellulose and/or nonfood-based materials. Almost anything that can be converted into a fermentable sugar can be used, whether it is a traditional C 6 sugar, such as glucose, or a C 5 sugar, such as pentose. The issue of feedstock selection is one of economics, but technology can be put into yeasts to allow them to digest C 6 or C 5 sugars. In fact, at bench scale, these yeasts have produced cellulosic isobutanol using a mixed stream of C 5 and C 6 sugars. Bio-isobutanol has versatility. One of the main reasons that converted plants have such good projected economics is that bio-isobutanol is versatile as a platform molecule. In the chemicals arena, it can be sold as a solvent product (e.g., paints) Table 1. Gasoline blendstock comparison: Ethanol vs. isobutanol Ethanol Alkylate Blend octane (R + M) Blend RVP (psi) O 2 content Net energy (% of gasoline) Fungible in infrastructure No Yes Yes Table 2. Gasoline blend RIN generation summary Volume in gasoline O 2 content RIN-gal per 100 gal of finished product E10 10% 3.5% 10 E15 15% 5.2% 15 (substantially similar to gasoline) (EPA waivers allowing O 2 content of 3.5 wt%) 12.5% 2.7% % 3.5% and/or converted into materials such as butyl rubber, paraxylene (PX) and other derivatives for use in market applications such as tires, plastic bottles, carpets and clothing. (This conversion is accomplished through dehydration to isobutylene.) For fuels applications, isobutanol can be blended as a low-vapor-pressure gasoline component and/or used as feedstock to make other transportation fuels (e.g., iso-paraffinic kerosine for use as biojet) or other renewable products (e.g., renewable heating oil). Bio-isobutanol as a gasoline blendstock. Bio-isobutanol s properties as a gasoline blendstock can best be understood by comparing some of the blending properties to ethanol and alkylate. Table 1 summarizes some key aspects in the comparison. Compared to ethanol, isobutanol has a much lower Reid vapor pressure (RVP) and about a 30% higher energy content. The blend octane of isobutanol is high as well (although slightly lower than ethanol). also has a lower oxygen (O 2 ) content than ethanol, so more isobutanol can be blended into gasoline for a given O 2 content. Greater blend volume, plus higher energy content, means more renewable identification number (RIN) generation. See Table 2 for a RIN comparison summary. Unlike ethanol, which is fully miscible in water, isobutanol has limited water solubility (about 8.5%). also does not cause stress corrosion cracking in pipelines. These factors result in major advantages in terms of blending logistics. can be blended as a drop-in renewable fuel at the refinery and shipped in pipelines to fuel terminals via existing infrastructure, which prospectively eliminates the need for segregated tankage or pipelines. This also affords refiners the opportunity to once again produce a finished-specification gasoline vs. a sub-octane blendstock for oxygenate blending. overcomes the regulation blend wall limitation of ethanol blending. blended into gasoline up to 12.5 vol% produces a substantially similar gasoline at a 2.7% O 2 content. For refiners, this is a conservative first step for blending, and it generates RINs per gallon of finished product. E10 has 3.5 vol% O 2, which is the currently accepted limit of O 2 content by automobile engine manufacturers. For this same 3.5 vol% O 2, a US Environmental Protection Agency (EPA) waiver (211b) exists that would potentially allow isobutanol blending of up to 16.1 vol%, yielding RINs, or more than twice the number of RINs as E10 for an equivalent O 2 content. Million barrels per day Domestic ethanol Brazilian ethanol Biodiesel Pyrolysis oil, FT liquids, green diesel EISA renewable EISA advanced Year Fig. 2. Projected RIN-gallons vs. EISA targets.

3 Bio-isobutanol can be an advanced biofuel. To account for the relative amounts of renewable energy benefit, each biofuel generates a RIN based on its energy content. There are basically four types of RINs: renewable (e.g., first-generation, corn-based ethanol), biomass-based diesel, cellulosic and advanced. Advanced RINs are generated with the production of advanced biofuels with an approved US EPA pathway (i.e., rated as having at least a 50% reduction in greenhouse gas footprint vs. baseline hydrocarbon fuel). Since bio-isobutanol has a higher energy content than ethanol, bio-isobutanol generates 1.3 RINs per gallon, vs. first-generation ethanol s 1.0 RINs per gallon. In addition, whereas today s corn ethanol is precluded from qualifying as an advanced biofuel, bio-isobutanol produced with a green energy source (e.g., biomass-fired combined heat and power) has the potential to qualify for advanced RIN status. Fig. 2 summarizes the US Renewable Fuel Standard (RFS) projected gallons for implemented renewable and advanced biofuels, as compared to the requirements stated by the US Energy Independence and Security Act (EISA) of As can be seen, there is a projected shortfall of advanced biofuels. Bio-isobutanol offers some flexibility for meeting the RFS2 targets with domestically produced renewable fuels, as opposed to relying on sugarcane ethanol imports from Brazil, which is the main biofuel pathway currently approved by the EPA for advanced status. Bio-isobutanol as renewable feedstock for biojet. Taking the bio-isobutanol and processing it further to isoparaffinic kerosine (IPK) biojet has been demonstrated at a hydrocarbon plant in Silsbee, Texas. The process is outlined in Fig. 3. Producing IPK biojet from bio-isobutanol involves three sequential steps: 1. Dehydration of the renewable isobutanol to isobutylene 2. Oligomerization of the isobutylene to mostly trimers/ tetramers to produce C 12 and C 16 molecules 3. Hydrogenation of olefins to IPK biojet. These processes present opportunities for retrofits of existing, underutilized refining/petrochemical assets, in some cases. Commercialization and integration into an existing process plant should be straightforward. Depending upon economics, the overall process also has the flexibility to make more or less isooctene and/or isooctane product streams, which make good renewable gasoline blending components. It should be noted that both renewable gasoline blendstocks (isobutanol and isooctene) are not tied to crude oil processing, so these are not likely to have crude oil volatility effects. Again, isobutylene, isooctene and isooctane can also be drawn off for the production of other renewable petrochemical products (e.g., PX). This biojet process has been demonstrated in a small (10,000-gallon-per-month-capacity) unit for several months. The alcohol-to-jet (ATJ) product has been sold to the US Air Force as part of the Alternative Fuels Certification Office (AFCO) process. Fig. 4 shows a picture of the demonstration plant in Silsbee, Texas. IPK process steps. There are three steps in the IPK production process. Dehydration. Step 1 is the dehydration of isobutanol to isobutylene and water. The reaction is endothermic, with a relatively low operating pressure (< 200 psig) and temperatures of around 550 F 650 F. The operating requirements are similar to semi-regenerative catalytic reforming older technology that has since been upgraded in refineries and petrochemical plants. Therefore, idled semi-regenerative reformers are possibilities for retrofits to develop the dehydration step. The catalyst for the dehydration has been fully commercialized in similar applications. The dehydration reaction can be efficiently designed to almost complete conversion, minimizing the downstream complexities of the separation of the butylene and water, and the effluence of the water. It should be noted that isobutylene can be a hydrocarbon feedstock for other refining and petrochemical processes. Since the isobutylene is renewable, any resulting RINs would carry forward to any hydrocarbon product covered by RFS2. Oligomerization. Step 2 is the oligomerization of the isobutylene to dimers (isooctene), trimers (C 12 olefins) and tetramers. There is some measure of flexibility in the amount of each olefin produced. Since IPK jet fuel primarily requires C 12 C 16 olefins, dimers are recycled to yield more trimer/ tetramer product. Oligomerization is an exothermic reaction, with operating conditions, heats of reaction, and catalysts that closely resemble MTBE production units and/or catalytic polymerization units; these units are possible retrofit candidates for this oligomerization step. In fact, after MTBE was banned in the US, many MTBE units were converted to make isooctene Dehydration Isobutylene Oligomerization Isooctene (if desired) Hydrogenation Hydrogen Fig. 3. -to-ipk jet fuel process flow diagram. Fig. 4. IPK biojet demonstration plant. Isooctane (if desired) IPK

4 Return on investment, % rate of return $2.60 jet $2.80 jet $3.00 jet $3.20 jet $3.40 jet advanced RIN value, $ Fig. 5. Biojet plant financial summary analysis. Source: Mustang Engineering Corn Sugarcane Agricultural residue Wood retrofitted ethanol plant Isooctene or C 12 Fuels markets Low-carbon gasoline, jet or diesel Paraxylene Chemicals markets Fig. 6. Bio-isobutanol to paraxylene, gasoline blendstock and/or biojet. (dimer). These units could be used with a minor retrofit. Depending upon economics, the dimer could be used for gasoline blending and/or further processing options. Hydrogenation. Step 3 is the saturation of the olefin product from the oligomerization section. This is also a wellknown and practiced operation in refineries and petrochemical plants. The main reaction is the conversion of the trimers/ tetramers to IPK. The operating conditions are mild, and they have relatively low operating pressure and temperature, and modest space velocity requirements. The hydrogenation reaction is exothermic and occurs with hydrogen consumption in the process, so some recycle and cooling design details are correlated with the reactor bed design to ensure proper heat removal and control of the reaction. Olefin hydrogenation is well-known and practiced, so there may be an opportunity to retrofit existing assets, since lowerpressure hydrogenation units have been idled as hydrogenation requirements have become more severe. The operations learning curve is somewhat established already, as per catalyst preparation, unit startup, normal plant operations, etc. Biojet properties. IPK biojet has some properties that enhance its value. The freeze point is low ( 80 C), while oxidation stability is high. Starting from isobutanol, a renewable IPK would also generate RINs at the rate of 1.6 per gallon, based on the process. The current specification limit for a jet fuel blend with synthetic blending components is a maximum of 50%. For a 1:1 blend with petroleum jet fuel, 80 RINs are generated for every 50 gallons of IPK that are used to produce 100 gallons of blended jet product. Scoping economics of biojet. One important aspect of understanding how bio-isobutanol can be a versatile alternative biofuel is the nominal economic incentive for its conversion to jet fuel. Preliminary scoping economics were developed for making biojet from renewable isobutanol feedstock. Although a retrofit of existing units would help the economics, retrofits are not possible in all cases. Therefore, a new unit was used as the basis for this scoping evaluation. In addition to CAPEX and efficiencies associated with the possible retrofit of some existing assets, the other sensitivity in scoping economics is the value and use of established RIN and other tax credit incentives, as allowed. The CAPEX throughput basis was a nominal 3,000-barrelsper-stream-day (bpsd) grassroots plant. The unit was assumed with all new equipment (no retrofit or surplus or idled equipment). All inside-battery-limit (ISBL) equipment was sized, specified and budget-estimated. The CAPEX was determined by applying factors to the equipment pricing to account for commodity materials and labor. Allowances were also made for engineering, escalation and contingency. A 30% allowance for offsites was assumed and added. For the jet fuel price basis, a relatively conservative $2.60 $3.40-per-gallon price range was assumed, although the price could be higher. Sensitivities for this price range were included in the scoping economic study. With the advent of the jet fuel carbon tax on international flights landing in the EU, the airline industry and fuel suppliers have been looking for cost-effective, renewable alternatives to petroleum jet fuel. A scoping sensitivity examining this tax credit is shown in Fig. 5. As can be seen, the EU tax credit has a significant effect on the scoping economics. As one might expect, the RIN value also has a considerable impact. In summary, this nominal 3,000-bpsd biojet plant study illustrated some positive scoping economics, even at conservative jet fuel prices. Bio-isobutanol for renewable PX for PET. Once the renewable hydrocarbon is made, there is the chance to make renewable hydrocarbon products via traditional or even newer processes. One new process uses isooctene to make PX, which then can be made into purified terephthalic acid (PTA), and then into renewable polyethylene terephthalate (PET) via traditional methods. A pilot plant is being designed for this new process, which yields PX at a very high selectivity vs. other xylenes. High selectivity eliminates the need for xylene isomerization, separation and recycle steps. Additionally, the PX can be integrated with the rest of the biofuel plant, as shown in Fig. 6. Depending on the relative amounts of each renewable product, even the hydrogen made in the PX plant can be used in the biojet hydrogenation unit. Takeaway. has gasoline blending, chemical and usage advantages vs. ethanol, which result in positive economics for the conversion of existing ethanol facilities to

5 bio-isobutanol production. Compared to other transportation fuel blendstocks, bio-isobutanol is a better environmental alternative (e.g., low vapor pressure, meaning lower volatility in finished fuel). Also, being made by fermentation of sugars (via normal or cellulosic biomass), these renewable fuels are not tied to crude oil prices or to petroleum supply fluctuations. The process configuration for bio-isobutanol to IPK biojet fuel involves three sequential, straightforward steps. The process operates at moderate operating conditions, and it is similar to some existing refinery and petrochemical units that have been idled or underutilized. Revamps are possible, and they would reduce the CAPEX and construction time. Projected RIN values and EU carbon tax incentives would provide additional upside on the project economics. This three-step process has been demonstrated at a 10,000-gallonper-month-capacity hydrocarbon plant in Silsbee, Texas. Onspec product is being made and sold to the US Air Force for the military certification process. Bio-isobutanol has numerous process and product platforms that can be employed as economics dictate. These include, but are not limited to, solvent sales, use as a gasoline blendstock, conversion to biojet or use as a feedstock for renewable PX. Bio-isobutanol has the versatility to allow multiple options at the same time. For example, marine and small-engine fuels are niche options that can be addressed. Renewable diesel is another option. The pathway for bio-isobutanol via fermentation has been established, and the business model makes economic sense to revamp idled or underutilized fermentation ethanol plants. One company s production of bio-isobutanol at demonstration scale was proven in More recently, a commercial-scale, 18-MMgpy plant was started up. Furthermore, bio-isobutanol has versatility and environmental and economic advantages when compared to ethanol. Bio-isobutanol has the capability to provide significant impact as an advanced gasoline blendstock, or as a feedstock to make other advanced fuels or products; therefore, it should be considered a high-potential, next-generation biofuel. Rick Kolodziej is a process technology manager at Wood Group Mustang. He has over 30 years of experience in process and project engineering and development in the refining, petrochemicals, chemicals, polymers and gas processing industries. Mr. Kolodziej has been involved with several new technology development projects, including several bio-related projects. Most recently, Mr. Kolodziej was involved with Gevo s projects in renewable isobutanol and various petrochemicals. He is also responsible for process plant project development for Wood Group Mustang in the Far East. Mr. Kolodziej has US and international patents in hydrotreatment technology. He holds a BS degree in chemical engineering from the University of Illinois (Chicago) and an MBA degree in finance from DePaul University, and is a registered professional engineer in the state of Illinois. Jeff Scheib is vice president for fuels at Gevo Inc., overseeing sales, marketing and business development activities for isobutanol-into-fuels markets, including refining, biojet, gasoline distributors and marketers, marine and small-engine applications. He has over 20 years of fuels and biofuels leadership expertise, having worked 17 years within the petroleum sector with ARCO and BP, followed by four years in the renewable energy arena with Cilion and Chromatin, prior to joining Gevo in Jeff holds an MBA degree from the University of California (Los Angeles) and a BS degree in industrial engineering from Northwestern University. Article copyright 2012 by Gulf Publishing Company. All rights reserved. Printed in U.S.A. Not to be distributed in electronic or printed form, or posted on a website, without express written permission of copyright holder. Wood Group Mustang Park Ten Place Houston, Texas

An Overview of Gevo s Biobased Isobutanol Production Process Chris Ryan, Gevo, Inc

An Overview of Gevo s Biobased Isobutanol Production Process Chris Ryan, Gevo, Inc An Overview of Gevo s Biobased Isobutanol Production Process Chris Ryan, Gevo, Inc As the ethanol industry evolves, more production plants are seeking ways to add additional products to their production

More information

Production of Transportation Fuels by Co-processing Biomass-Derived Pyrolysis Oils in a Petroleum Refinery Fluid Catalytic Cracking Unit

Production of Transportation Fuels by Co-processing Biomass-Derived Pyrolysis Oils in a Petroleum Refinery Fluid Catalytic Cracking Unit Stanley J. Frey R&D Fellow November 5, 2015 Production of Transportation Fuels by Co-processing Biomass-Derived Pyrolysis Oils in a Petroleum Refinery Fluid Catalytic Cracking Unit TCBiomass2015 Chicago,

More information

Department of Energy Analyses in Support of the EPA Evaluation of Waivers of the Renewable Fuel Standard November 2012

Department of Energy Analyses in Support of the EPA Evaluation of Waivers of the Renewable Fuel Standard November 2012 Department of Energy Analyses in Support of the EPA Evaluation of Waivers of the Renewable Fuel Standard November 2012 Ethanol Demand Curve for 2012 and 2013 In support of EPA analyses of the 2012 RFS

More information

Alcohols to Hydrocarbons (ATH)

Alcohols to Hydrocarbons (ATH) Alcohols to Hydrocarbons (ATH) Advanced Bioeconomy Leadership Conference 6 th Annual Aviation & Military Biofuels Summit Washington, D.C. Friday March 13th 2015 Forward-Looking Statements Certain statements

More information

Energy Independence. tcbiomass 2013 The Path to Commercialization of Drop-in Cellulosic Transportation Fuels. Rural America Revitalization

Energy Independence. tcbiomass 2013 The Path to Commercialization of Drop-in Cellulosic Transportation Fuels. Rural America Revitalization Energy Independence The Path to Commercialization of Drop-in Cellulosic Transportation Fuels Rural America Revitalization Forward Looking Statements These slides and the accompanying oral presentation

More information

ABLC! Advancing Renewable Chemicals! November 10, 2014! Copyright 2014 Renewable Energy Group, Inc.

ABLC! Advancing Renewable Chemicals! November 10, 2014! Copyright 2014 Renewable Energy Group, Inc. ABLC! Advancing Renewable Chemicals! November 10, 2014! Safe Harbor Statement! This presentation contains certain forward-looking statements within the meaning of the Private Securities Litigation Reform

More information

Understanding Biobased Aromatics Platts 2 nd Aromatics Asia Conference. Kieran Furlong, Virent Inc.

Understanding Biobased Aromatics Platts 2 nd Aromatics Asia Conference. Kieran Furlong, Virent Inc. Understanding Biobased Aromatics Platts 2 nd Aromatics Asia Conference Kieran Furlong, Virent Inc. Virent 2014 Virent 2014 2 Virent 2014 3 Case study Bio-based PET Virent 2014 4 What is PET? A B A B A

More information

Replacing the Volume & Octane Loss of Removing MTBE From Reformulated Gasoline Ethanol RFG vs. All Hydrocarbon RFG. May 2004

Replacing the Volume & Octane Loss of Removing MTBE From Reformulated Gasoline Ethanol RFG vs. All Hydrocarbon RFG. May 2004 Replacing the Volume & Octane Loss of Removing MTBE From Reformulated Gasoline Ethanol RFG vs. All Hydrocarbon RFG May 2004 Prepared and Submitted by: Robert E. Reynolds President Downstream Alternatives

More information

CHEMSYSTEMS. Report Abstract. Petrochemical Market Dynamics Feedstocks

CHEMSYSTEMS. Report Abstract. Petrochemical Market Dynamics Feedstocks CHEMSYSTEMS PPE PROGRAM Report Abstract Petrochemical Market Dynamics Feedstocks Petrochemical feedstocks industry overview, crude oil, natural gas, coal, biological hydrocarbons, olefins, aromatics, methane

More information

Getting to Chemicals and Advanced Biofuels from Cellulosic Feedstocks

Getting to Chemicals and Advanced Biofuels from Cellulosic Feedstocks Getting to Chemicals and Advanced Biofuels from Cellulosic Feedstocks 2013 BIO World Congress on Industrial Biotechnology June 17, 2013 2013 Gevo, Inc. 1 Forward-Looking Statements Certain statements within

More information

REFINING SOLUTIONS IN A CHANGING WORLD RFG, RFS, SULFUR, BENZENE, TIER 3 AND BEYOND

REFINING SOLUTIONS IN A CHANGING WORLD RFG, RFS, SULFUR, BENZENE, TIER 3 AND BEYOND REFINING SOLUTIONS IN A CHANGING WORLD RFG, RFS, SULFUR, BENZENE, TIER 3 AND BEYOND Thomas R. Hogan, P.E. Senior Vice President January 22, 2015 Turner, Mason & Company Privately held established 1971

More information

Process Production of Conventional Liquid Fuels from Sugar

Process Production of Conventional Liquid Fuels from Sugar BioForming Process Production of Conventional Liquid Fuels from Sugar Dr. Randy D. Cortright CTO/Founder Virent Energy Systems www.virent.com ACS/EPA Green Chemistry Conference June 23, 2009 Virent s BioForming

More information

GTC TECHNOLOGY WHITE PAPER

GTC TECHNOLOGY WHITE PAPER GTC TECHNOLOGY WHITE PAPER Refining/Petrochemical Integration FCC Gasoline to Petrochemicals Refining/Petrochemical Integration - FCC Gasoline to Petrochemicals Introduction The global trend in motor fuel

More information

On-Line Process Analyzers: Potential Uses and Applications

On-Line Process Analyzers: Potential Uses and Applications On-Line Process Analyzers: Potential Uses and Applications INTRODUCTION The purpose of this report is to provide ideas for application of Precision Scientific process analyzers in petroleum refineries.

More information

Bio-Renewable Fuels: Green Diesel

Bio-Renewable Fuels: Green Diesel Bio-Renewable Fuels: Green California Biomass Collaborative 4th Annual Forum Amar Anumakonda, PhD Renewable Energy and Chemicals Business Unit UOP LLC, A Honeywell Company Des Plaines, IL 2007 UOP LLC.

More information

Presenter: Bryan Sherbacow

Presenter: Bryan Sherbacow Presenter: Bryan Sherbacow Mr. Sherbacow brings over 15 years of senior leadership experience in corporate development of both industrial process and financial services businesses with expertise in organizational

More information

We re Going Global ETHANOL

We re Going Global ETHANOL Technical Notes #38 We re Going Global ETHANOL What is Ethanol? Ethanol is clean-burning, high-octane alcohol-based fuel made by fermenting and distilling starch crops, such as corn or sugar cane. It can

More information

PROCESS ECONOMICS PROGRAM

PROCESS ECONOMICS PROGRAM PROCESS ECONOMICS PROGRAM Abstract Process Economics Program Report No. 158 SRI INTERNATIONAL Menlo Park, California 94025 OCTANE IMPROVERS FOR GASOLINE (November 1983) There la currently worldwide interest

More information

Co-Processing of Green Crude in Existing Petroleum Refineries. Algae Biomass Summit 1 October

Co-Processing of Green Crude in Existing Petroleum Refineries. Algae Biomass Summit 1 October Co-Processing of Green Crude in Existing Petroleum Refineries Algae Biomass Summit 1 October - 2014 1 Overview of Sapphire s process for making algae-derived fuel 1 Strain development 2 Cultivation module

More information

Abstract Process Economics Program Report No. 158A OCTANE IMPROVERS FOR GASOLINE (February 1992)

Abstract Process Economics Program Report No. 158A OCTANE IMPROVERS FOR GASOLINE (February 1992) Abstract Process Economics Program Report No. 158A OCTANE IMPROVERS FOR GASOLINE (February 1992) Lead phaseout in the United States has brought about a strong interest in oxygenated octane improvers for

More information

William Piel

William Piel Fuel Options Exist for Expanding Gasoline Supplies without processing additional Crude Oil? E1? E2? E8? ETBE? Which use of in Fuel Provides the Highest Market Value? Which use of results in the Most Non-Petroleum

More information

Refining/Petrochemical Integration-A New Paradigm Joseph C. Gentry, Director - Global Licensing Engineered to Innovate

Refining/Petrochemical Integration-A New Paradigm Joseph C. Gentry, Director - Global Licensing Engineered to Innovate Refining/Petrochemical Integration-A New Paradigm Introduction The global trend in motor fuel consumption favors diesel over gasoline. There is a simultaneous increase in demand for various petrochemicals

More information

Drop-in biofuels production from forest residues: Technology and policy The potential role of existing refineries

Drop-in biofuels production from forest residues: Technology and policy The potential role of existing refineries Drop-in biofuels production from forest residues: Technology and policy The potential role of existing refineries Susan van Dyk and Jack Saddler Forest Products Biotechnology/Bioenergy Group International

More information

Readiness of aviation biofuels. Misha Valk Head of Business Development SkyNRG

Readiness of aviation biofuels. Misha Valk Head of Business Development SkyNRG Readiness of aviation biofuels Misha Valk Head of Business Development SkyNRG Outline Rationale biojet fuel Introducing SkyNRG Market developments What do we need to scale this industry Activities Goal

More information

Operating Refineries in a High Cost Environment. Options for RFS Compliance. March 20, Baker & O Brien, Inc. All rights reserved.

Operating Refineries in a High Cost Environment. Options for RFS Compliance. March 20, Baker & O Brien, Inc. All rights reserved. Operating Refineries in a High Cost Environment Options for RFS Compliance March 2, 217 Baker & O Brien, Inc. All rights reserved. Discussion Points Introduction Renewable Fuels Standard (RFS) Overview

More information

Overhauling Renewable Energy Markets

Overhauling Renewable Energy Markets Overhauling Renewable Energy Markets Bruce Babcock Iowa State University Presented at Recognizing Risk in Global Agriculture, Ag Symposium, Federal Reserve Bank of Kansas City. July 19, 2011. Kansas City,

More information

Algae is a superior renewable feedstock

Algae is a superior renewable feedstock Tim Zenk VP of Corporate Affairs, Sapphire Energy Inc. October 11, 2012 Cost of production ($ per barrel) Algae is a superior renewable feedstock Superior attributes of algae Scalable to millions of barrels

More information

Refining/Petrochemical Integration-A New Paradigm

Refining/Petrochemical Integration-A New Paradigm Refining/Petrochemical Integration-A New Paradigm Introduction The global trend in motor fuel consumption favors diesel over gasoline. There is a simultaneous increase in demand for various petrochemicals

More information

Future of Biofuel Use in the United States: An Examination of the Renewable Fuel Standard

Future of Biofuel Use in the United States: An Examination of the Renewable Fuel Standard Future of Biofuel Use in the United States: An Examination of the Renewable Fuel Standard Emily Beagle WISE Intern - American Society of Mechanical Engineers University of Wyoming Summer 2013 Introduction

More information

Impacts of Options for Modifying the Renewable Fuel Standard. Wallace E. Tyner Farzad Taheripour. Purdue University

Impacts of Options for Modifying the Renewable Fuel Standard. Wallace E. Tyner Farzad Taheripour. Purdue University Impacts of Options for Modifying the Renewable Fuel Standard Wallace E. Tyner Farzad Taheripour Purdue University The Renewable Fuel Standard (RFS) was created in 2005 and modified in 2007 with the objective

More information

GTC TECHNOLOGY. GT-BTX PluS Reduce Sulfur Preserve Octane Value - Produce Petrochemicals. Engineered to Innovate WHITE PAPER

GTC TECHNOLOGY. GT-BTX PluS Reduce Sulfur Preserve Octane Value - Produce Petrochemicals. Engineered to Innovate WHITE PAPER GTC TECHNOLOGY GT-BTX PluS Reduce Sulfur Preserve Octane Value - WHITE PAPER Engineered to Innovate FCC Naphtha Sulfur, Octane, and Petrochemicals Introduction Sulfur reduction in fluid catalytic cracking

More information

Abstract Process Economics Program Report No. 203 ALKANE DEHYDROGENATION AND AROMATIZATION (September 1992)

Abstract Process Economics Program Report No. 203 ALKANE DEHYDROGENATION AND AROMATIZATION (September 1992) Abstract Process Economics Program Report No. 203 ALKANE DEHYDROGENATION AND AROMATIZATION (September 1992) Propylene, isobutene, and BTX (benzene, toluene, and xylenes) have traditionally been recovered

More information

Technology Development within Alternative Fuels. Yves Scharff

Technology Development within Alternative Fuels. Yves Scharff Technology Development within Alternative Fuels Yves Scharff 1 Agenda Introduction Axens and Alternative Fuels Axens Renewable Iso-paraffins Route 2 Why Alternative Fuels? Environmental Regulation By 2020,

More information

Gevo. Investor Presentation Patrick Gruber, CEO. January 2019

Gevo. Investor Presentation Patrick Gruber, CEO. January 2019 Gevo Investor Presentation Patrick Gruber, CEO January 2019 FORWARD LOOKING STATEMENTS Any statements in this presentation about our future expectations, plans, outlook and prospects, and other statements

More information

Conversion of Hydrolyzed Douglas fir Biomass into Isobutanol and Biojet

Conversion of Hydrolyzed Douglas fir Biomass into Isobutanol and Biojet Conversion of Hydrolyzed Douglas fir Biomass into Isobutanol and Biojet Grant Balzer (gbalzer@gevo.com) Gevo, Inc. and NARA April 29, 2014 2014 Gevo, Inc. 1 Forward-Looking Statements Certain statements

More information

Renewable Liquids as Steam Cracker Feedstocks

Renewable Liquids as Steam Cracker Feedstocks PERP/PERP ABSTRACTS 2010 Renewable Liquids as Steam Cracker Feedstocks PERP 09/10S12 Report Abstract October 2010 Report Abstract Renewable Liquids as Steam Cracker Feedstocks PERP 09/10S12 October 2010

More information

Integrating Biofuels into the Energy Industry

Integrating Biofuels into the Energy Industry Integrating Biofuels into the Energy Industry California Biomass Collaborative 4 th Annual Forum Rick Zalesky Vice President, Biofuels and Hydrogen Business March 27, 2007 Global Energy Perspectives Grow

More information

Sustainable Biofuels For Aviation

Sustainable Biofuels For Aviation Sustainable Biofuels For Aviation Royal Aeronautical Society Wellington, New Zealand March 28, 2008 The statements contained herein are based on good faith assumptions and provided for general information

More information

Petroleum Refining Fourth Year Dr.Aysar T. Jarullah

Petroleum Refining Fourth Year Dr.Aysar T. Jarullah Catalytic Reforming Catalytic reforming is the process of transforming C 7 C 10 hydrocarbons with low octane numbers to aromatics and iso-paraffins which have high octane numbers. It is a highly endothermic

More information

Proven process. Proven plants. Proven performance.

Proven process. Proven plants. Proven performance. Methanol to gasoline technology Proven process. Proven plants. Proven performance. Background High crude oil prices beginning in the mid-2000s spurred worldwide interest in finding and developing additional

More information

GROWING YOUR BUSINESS WITH BIODIESEL. Copyright 2016 Renewable Energy Group, Inc.

GROWING YOUR BUSINESS WITH BIODIESEL. Copyright 2016 Renewable Energy Group, Inc. GROWING YOUR BUSINESS WITH BIODIESEL BIODIESEL DEMAND DRIVERS 2 WHAT S DRIVING BIODIESEL DEMAND? RVO Federal and state tax incentives Sustainability 3 WHAT S DRIVING BIODIESEL DEMAND? RVO Revised RVO offers

More information

CONFERENCE ON AVIATION AND ALTERNATIVE FUELS

CONFERENCE ON AVIATION AND ALTERNATIVE FUELS International Civil Aviation Organization CAAF/2-WP/17 7/09/2017 WORKING PAPER CONFERENCE ON AVIATION AND ALTERNATIVE FUELS Mexico City, Mexico, 11 to 13 October 2017 Agenda Item 1: Developments in research

More information

RFS2: Where Are We Now And Where Are We Heading? Paul N. Argyropoulos

RFS2: Where Are We Now And Where Are We Heading? Paul N. Argyropoulos Agricultural Outlook Forum Presented: February 24-25, 2011 U.S. Department of Agriculture RFS2: Where Are We Now And Where Are We Heading? Paul N. Argyropoulos Office of Transportation and Air Quality

More information

Make High Octane Gasoline from Naphtha Feeds at 1/3 of CapEx, OpEx and Emission Levels. Process and Economics. Now a commercial reality

Make High Octane Gasoline from Naphtha Feeds at 1/3 of CapEx, OpEx and Emission Levels. Process and Economics. Now a commercial reality Make High Octane Gasoline from Naphtha Feeds at 1/3 of CapEx, OpEx and Emission Levels Process and Economics 2017 Now a commercial reality Synthesis Contents Summary...1 Process Description...2 Scalability

More information

Pathways and companies involved in drop-in biofuels for marine and aviation biofuels

Pathways and companies involved in drop-in biofuels for marine and aviation biofuels Pathways and companies involved in drop-in biofuels for marine and aviation biofuels OH H HO H OH H O H OH H H H H - O 2 H C C C C H H H H H H OH Carbohydrate Hydrocarbon Petroleum-like biofuel Jack Saddler,

More information

Neville Hargreaves Gastech, April 2017, Tokyo. Roll out of smaller scale GTL technology at ENVIA Energy s plant in Oklahoma City, USA

Neville Hargreaves Gastech, April 2017, Tokyo. Roll out of smaller scale GTL technology at ENVIA Energy s plant in Oklahoma City, USA Neville Hargreaves Gastech, April 2017, Tokyo Roll out of smaller scale GTL technology at ENVIA Energy s plant in Oklahoma City, USA Gas-to-liquids (GTL) and biomass-to-liquids (BTL) process Chemical conversion

More information

Using Pyrolysis Tar to meet Fuel Specifications in Coal-to-Liquids Plants

Using Pyrolysis Tar to meet Fuel Specifications in Coal-to-Liquids Plants Using Pyrolysis Tar to meet Fuel Specifications in Coal-to-Liquids Plants Jaco Schieke, Principal Process Engineer, Foster Wheeler Business Solutions Group, Reading, UK email: Jaco_Schieke@fwuk.fwc.com

More information

Mr. Steve Jenkins Head Global PX and Derivatives PCI X&P Malaysia

Mr. Steve Jenkins Head Global PX and Derivatives PCI X&P Malaysia Mr. Steve Jenkins Head Global PX and Derivatives PCI X&P Malaysia Recognized as a leading global authority in the commercial analysis of the paraxylene and derivatives industry sector, Mr. Steve Jenkins,

More information

Bioenergy Qualifications

Bioenergy Qualifications Bioenergy Qualifications Bioenergy Project Evaluation and Due Diligence Services Authors: Jake Jacobi Mark Warren Contact: Chris Vlahoplus ScottMadden and Ascendant Partners Have Recent, Relevant, and

More information

Sapphire Energy. Creating the Potential for Fuels from Algae. Presented by Cynthia J Warner, President

Sapphire Energy. Creating the Potential for Fuels from Algae. Presented by Cynthia J Warner, President Sapphire Energy Creating the Potential for Fuels from Algae Presented by Cynthia J Warner, President 0 Liquid transportation fuels are a major source of energy use, though renewables make up a tiny fraction

More information

Available Global Feedstock No Biology Proven Petro/Chem. Process Full Replacement Fuel No Blending Highest CO2

Available Global Feedstock No Biology Proven Petro/Chem. Process Full Replacement Fuel No Blending Highest CO2 March 11, 2015 About Byogy Renewables, Inc. Byogy has developed a unique process using proven petrochemical equipment that converts any source of ethanol or butanol into premium grade, full replacement

More information

Investment Planning of an Integrated Petrochemicals Complex & Refinery A Best Practice Approach

Investment Planning of an Integrated Petrochemicals Complex & Refinery A Best Practice Approach Investment Planning of an Integrated Petrochemicals Complex & Refinery A Best Practice Approach RPTC, Moscow, 19 September 2012 David Gibbons Principal Process Consultant Foster Wheeler. All rights reserved.

More information

Impact of Sustainability and Environmental Factors on Technology Obsolescence

Impact of Sustainability and Environmental Factors on Technology Obsolescence Impact of Sustainability and Environmental Factors on Technology Obsolescence Jeffery C. Bricker Senior Director of Research - Honeywell UOP Outline of the talk Introduction Technology Obsolescence Non

More information

PROCESS ECONOMICS PROGRAM SRI INTERNATIONAL Menlo Park, California

PROCESS ECONOMICS PROGRAM SRI INTERNATIONAL Menlo Park, California PROCESS ECONOMICS PROGRAM SRI INTERNATIONAL Menlo Park, California Abstract Process Economics Program Report No. 169 REFINERY/CHEMICALS INTERFACE (January 1985) Demand for most major refinery products

More information

Methaforming Production of gasoline from naphtha and methanol at 1/3 the cost. NGTS customer presentation for ERTC 8Oct17 metric 1

Methaforming Production of gasoline from naphtha and methanol at 1/3 the cost. NGTS customer presentation for ERTC 8Oct17 metric 1 Methaforming Production of gasoline from naphtha and methanol at 1/3 the cost NGTS customer presentation for ERTC 8Oct17 metric 1 Stabilizer Methaforming: One Step Conversion of Naphtha with Methanol into

More information

Products Renewable F-76 and JP-5 Renewable Jet, Diesel, Gasoline and Propane

Products Renewable F-76 and JP-5 Renewable Jet, Diesel, Gasoline and Propane UC Davis ANE Symposium Long Beach, CA February 26, 2018 Location Paramount, California Process Technology Catalytic Hydrotreating (Honeywell-UOP) Design Capacity 2,500 bbls/day Feedstock Inedible agricultural

More information

Biofuel Market Factors

Biofuel Market Factors Biofuel Market Factors Michael Cooper Ultra Green Energy Corporation, Executive Vice President Biofuel Brokers, LLC, President/Director 866-E-MY-FUEL (369-3835) info@ultragreenenergy.com emyfuel@biofuelbrokers.com

More information

Abstract Process Economics Program Report 222 PETROLEUM INDUSTRY OUTLOOK (July 1999)

Abstract Process Economics Program Report 222 PETROLEUM INDUSTRY OUTLOOK (July 1999) Abstract Process Economics Program Report 222 PETROLEUM INDUSTRY OUTLOOK (July 1999) Global energy demand is rising, with fossil fuels oil, natural gas, and coal continuing to provide more than 90% of

More information

Renewable Fuels: Overview of market developments in the US and a focus on California

Renewable Fuels: Overview of market developments in the US and a focus on California Renewable Fuels: Overview of market developments in the US and a focus on California Cynthia Obadia Cynthia Obadia Consulting Renewable fuel s growth driven by incentives from RFS and LCFS RFS - Federal

More information

SCANFINING TECHNOLOGY: A PROVEN OPTION FOR PRODUCING ULTRA-LOW SULFUR CLEAN GASOLINE

SCANFINING TECHNOLOGY: A PROVEN OPTION FOR PRODUCING ULTRA-LOW SULFUR CLEAN GASOLINE SCANFINING TECHNOLOGY: A PROVEN OPTION FOR PRODUCING ULTRA-LOW SULFUR CLEAN GASOLINE Mohan Kalyanaraman Sean Smyth John Greeley Monica Pena LARTC 3rd Annual Meeting 9-10 April 2014 Cancun, Mexico Agenda

More information

Challenges to Ethanol Blending in the Southeast

Challenges to Ethanol Blending in the Southeast Challenges to Ethanol Blending in the Southeast Agricultural Outlook Forum 2008 Arlington Virginia February 22, 2008 Daniel H. Moenter Manager, State Government Affairs Marathon Oil Corporation Upstream

More information

Study on Relative CO2 Savings Comparing Ethanol and TAEE as a Gasoline Component

Study on Relative CO2 Savings Comparing Ethanol and TAEE as a Gasoline Component Study on Relative CO2 Savings Comparing Ethanol and TAEE as a Gasoline Component Submitted by: Hart Energy Consulting Hart Energy Consulting 1616 S. Voss, Suite 1000 Houston, Texas 77057, USA Terrence

More information

Commercial Aviation and Sustainable Fuels The Path to Viability

Commercial Aviation and Sustainable Fuels The Path to Viability Commercial Aviation and Sustainable Fuels The Path to Viability Michael Lakeman Director, Biofuel Technology Strategy Boeing Commercial Airplanes May 3, 2016 Typical jet fuel chemistry Ideal Carbon Length

More information

An overview of national, international and state low carbon fuel policies

An overview of national, international and state low carbon fuel policies An overview of national, international and state low carbon fuel policies Dr. Chris Malins Packard grantees meeting, June 2015 Context: The market for liquid fuels World Energy Council, 2013 2050 symphony

More information

Where We Are. Today: Finish up Chapter 4, hopefully! Discussion: Alternative fuels, the benefits of conservation Where to go next?

Where We Are. Today: Finish up Chapter 4, hopefully! Discussion: Alternative fuels, the benefits of conservation Where to go next? Where We Are Today: Finish up Chapter 4, hopefully! Discussion: Alternative fuels, the benefits of conservation Where to go next? Thursday: Start in on Chapter 5, The Water We Drink. Quiz! NEXT Thursday:

More information

The Energy Independence and Security Act (EISA): Proposed Changes to the Renewable Fuel Standard Program (RFS2)

The Energy Independence and Security Act (EISA): Proposed Changes to the Renewable Fuel Standard Program (RFS2) The Energy Independence and Security Act (EISA): Proposed Changes to the Renewable Fuel Standard Program (RFS2) Presentation to the NAS Biofuels Workshop Madison, WI. June 23-24, 2009 1 Agenda Background

More information

Overview Air Qualit ir Qualit Impacts of

Overview Air Qualit ir Qualit Impacts of Air Quality Impacts of Expanded Use of Ethanol National Association of Clean Air Agencies Fall Membership Meeting October 28, 2007 Bob Fletcher, Chief Stationary Source Division California Environmental

More information

As the global energy sector

As the global energy sector Improved distillation efficiency Dividing wall technology applied to a xylenes separation project delivered superior energy efficiency compared to a two- arrangement MANISH BHARGAVA, ROOMI KALITA and JOSEPH

More information

Acombination. winning

Acombination. winning winning Acombination Gary M. Sieli, Lummus Technology, USA, and Nash Gupta, Chevron Lummus Global LLC, USA, discuss delayed coking and the LC-FINING ebullated bed hydrocracker technology. Refinery operations

More information

Downstream & Chemicals

Downstream & Chemicals Downstream & Chemicals Mark Nelson Executive Vice President Downstream & chemicals portfolio Fuels refining & marketing Focused, regional optimization Petrochemicals Advantaged feed, scale and technology

More information

Results Certified by Core Labs for Conoco Canada Ltd. Executive summary. Introduction

Results Certified by Core Labs for Conoco Canada Ltd. Executive summary. Introduction THE REPORT BELOW WAS GENERATED WITH FEEDSTOCK AND PRODUCT SAMPLES TAKEN BY CONOCO CANADA LTD, WHO USED CORE LABORATORIES, ONE OF THE LARGEST SERVICE PROVIDERS OF CORE AND FLUID ANALYSIS IN THE PETROLEUM

More information

Author: Vincenzo Piemonte, Associate Professor, University UCBM Rome (Italy)

Author: Vincenzo Piemonte, Associate Professor, University UCBM Rome (Italy) Green Diesel Author: Vincenzo Piemonte, Associate Professor, University UCBM Rome (Italy) 1. Theme description Around 50% of the produced crude petroleum in the world is refined into transportation fuels

More information

Biofuels: crime against humanity!?

Biofuels: crime against humanity!? Biofuels: crime against humanity!? Trade and sustainability issues Sadeq Z. Bigdeli World Trade Institute, Berne Model WTO 2008, University of St. Gallen 1 Outline What are biofuels? Why biofuels? Tariff

More information

Cellulosic Ethanol and Enzymatic Biodiesel Biofuels Plant Upgrades

Cellulosic Ethanol and Enzymatic Biodiesel Biofuels Plant Upgrades Renewable Energy Worldwide Cellulosic Ethanol and Enzymatic Biodiesel Biofuels Plant Upgrades Eric McAfee Chairman/CEO October 17, 2017 ABLC San Francisco Mission: Aemetis means One Prudent Wisdom One

More information

Challenges to Ethanol Blending in the Southeast

Challenges to Ethanol Blending in the Southeast Challenges to Ethanol Blending in the Southeast EPRINC EIA Roundtable Washington, D.C. April 15, 2008 Daniel H. Moenter Manager, State Government Affairs Marathon Oil Corporation Upstream In business since

More information

The company s sales have averaged $3-5 million since 2011, however, because of the doubling of the cost of product over the past 2 years, it is

The company s sales have averaged $3-5 million since 2011, however, because of the doubling of the cost of product over the past 2 years, it is Welcome To EXECUTIVE SUMMARY CW Petroleum Corp was founded as a Texas corporation by Christopher Williams and began operations in 2011. It reincorporated in Wyoming as a C corporation in April 2018. CW

More information

Biofuel Supply Chain Challenges and Analysis

Biofuel Supply Chain Challenges and Analysis Biofuel Supply Chain Challenges and Analysis Sooduck Chung Michael Farrey 1 Objectives of Research Identify current biofuel supply chain challenges. Ethanol can only be sustainable if it is cost competitive

More information

Biofuels - Opportunities and Challenges

Biofuels - Opportunities and Challenges Biofuels - Opportunities and Challenges Low Carbon Transport Investor Event Carbon Trust 11 th May 2009 Greg Archer Managing Director Low Carbon Vehicle Partnership Low Carbon Vehicle Partnership Accelerating

More information

The Biodiesel Leader. Renewable Energy Group, Inc. (888) REG /13_00k

The Biodiesel Leader. Renewable Energy Group, Inc. (888) REG /13_00k The Biodiesel Leader Renewable Energy Group, Inc. (888) REG-8686 www.regi.com Renewable Energy Group and REG are registered trademarks of Renewable Energy Group, Inc. BIOHEAT is a registered trademark

More information

RNG Production for Vehicle Fuel. April 4, 2018

RNG Production for Vehicle Fuel. April 4, 2018 RNG Production for Vehicle Fuel April 4, 2018 Forward-Looking Statements This presentation contains forward-looking statements within the meaning of Section 27A of the Securities Act of 1933 and Section

More information

RENEWABLE / ALTERNATIVE ENERGY RELATED SERVICES PRIMARY CONTACTS. Peter Bartlett. Gary N. Devenish

RENEWABLE / ALTERNATIVE ENERGY RELATED SERVICES PRIMARY CONTACTS. Peter Bartlett. Gary N. Devenish Baker & O Brien has advised the oil and gas industry on renewable energy sources including biomass, ethanol, wind power, and biodiesel projects. Our experience includes analyzing renewable fuel standards

More information

KBR Technology Business

KBR Technology Business KBR Technology Business Tanya Niu ------ Director, Chemicals 2013 Ethane to Ethylene Global Summit, Houston, TX Oct 30 th 2013 KBR, Inc. All Rights Reserved 1 KBR Technology Portfolio Refining ROSE Visbreaking

More information

Hybrid Biorefinery Biodiesel and Biogas Production Synergies

Hybrid Biorefinery Biodiesel and Biogas Production Synergies Hybrid Biorefinery and Biogas Production Synergies Joe Tesar, Quantalux, LLC Dana Kirk, MSU Department of Biosystems and Agricultural Engineering Dennis Pennington, Michigan State Extension Charles Gould,

More information

Downstream & Chemicals

Downstream & Chemicals Downstream & Chemicals Pierre Breber Executive Vice President 017 Chevron Corporation Downstream portfolio Fuels refining & marketing Integrated value chains Lubricants & additives Globally positioned

More information

BIODIESEL 2020: Global Market Survey, Case Studies and Forecasts. Multi-Client Study pages - Published October, 2006 by Emerging Markets Online

BIODIESEL 2020: Global Market Survey, Case Studies and Forecasts. Multi-Client Study pages - Published October, 2006 by Emerging Markets Online Global Market Survey, Case Studies and Forecasts Multi-Client Study - 405 pages - Published October, 2006 by Emerging Markets Online Global Market Survey, Case Studies and Forecasts Introduction and Executive

More information

May Feedstock Disruptions in Chemicals chains necessitate business model innovation

May Feedstock Disruptions in Chemicals chains necessitate business model innovation May 2014 Feedstock Disruptions in Chemicals chains necessitate business model innovation Strategy& has based findings on its proprietary feedstock model Strategy& global feedstock model Feedstock developments

More information

California Environmental Protection Agency. Air Resources Board. Low Carbon Fuel Standard (LCFS) Update 2015 CRC LCA of Transportation Fuels Workshop

California Environmental Protection Agency. Air Resources Board. Low Carbon Fuel Standard (LCFS) Update 2015 CRC LCA of Transportation Fuels Workshop California Environmental Protection Agency Air Resources Board Low Carbon Fuel Standard (LCFS) Update 2015 CRC LCA of Transportation Fuels Workshop Anil Prabhu October 27-28, 2015 Overview of Presentation

More information

AFRICAN REFINERS ASSOCIATION BIOFUELS CONFERENCE th June 2012 ARA Biofuels Conference Luanda

AFRICAN REFINERS ASSOCIATION BIOFUELS CONFERENCE th June 2012 ARA Biofuels Conference Luanda AFRICAN REFINERS ASSOCIATION BIOFUELS CONFERENCE 2012 1 What are biofuels? Biofuels are a biodegradable energy source produced from renewable sources Any fuel with a minimum of 80% content by volume of

More information

Challenges and Solutions for Shale Oil Upgrading

Challenges and Solutions for Shale Oil Upgrading Challenges and Solutions for Shale Oil Upgrading Don Ackelson UOP LLC, A Honeywell Company 32 nd Oil Shale Symposium Colorado School of Mines October 15-17, 2012 2012 UOP LLC. All rights reserved. UOP

More information

Refining/Petrochemical Integration A New Paradigm. Anil Khatri, GTC Technology Coking and CatCracking Conference New Delhi - October 2013

Refining/Petrochemical Integration A New Paradigm. Anil Khatri, GTC Technology Coking and CatCracking Conference New Delhi - October 2013 Refining/Petrochemical Integration A New Paradigm Anil Khatri, GTC Technology Coking and CatCracking Conference New Delhi - October 2013 Presentation Themes Present integration schemes focus on propylene,

More information

AlkyClean Solid Acid Alkylation

AlkyClean Solid Acid Alkylation Development of a Solid Acid Catalyst Alkylation Process AlkyClean Solid Acid Alkylation October 6, 2006-1 - AlkyClean solid acid alkylation Presentation Outline Introduction Process Development Demonstration

More information

Biobased jet fuel from wood residues REWOFUEL project. November 2018

Biobased jet fuel from wood residues REWOFUEL project. November 2018 Biobased jet fuel from wood residues REWOFUEL project November 2018 Synthetic biology at the heart of new value chains Sugar beet and cane Agro-industries Breakthrough innovation: - First artificial metabolic

More information

Cyril Suduwella Chairman Sugarcane Research Institute, Sri Lanka

Cyril Suduwella Chairman Sugarcane Research Institute, Sri Lanka Cyril Suduwella Chairman Sugarcane Research Institute, Sri Lanka 1 Ethanol is the same alcohol found in Alcoholic Beverages. There have been decades of motor fuel application experience. Most Ethanol used

More information

Solvent Deasphalting Conversion Enabler

Solvent Deasphalting Conversion Enabler Kevin Whitehead Solvent Deasphalting Conversion Enabler 5 th December 2017 Bottom of the Barrel Workshop NIORDC, Tehran 2017 UOP Limited Solvent Deasphalting (SDA) 1 Natural Gas Refinery Fuel Gas Hydrogen

More information

A Global Solution for Sustainable Biofuels

A Global Solution for Sustainable Biofuels A Global Solution for Sustainable Biofuels 1 Agrisoma Develops and Sells Carinata Seeds and More Expanding sales of Carinata seeds a non-food, sustainable crop for biofuels and high protein feed Commercial

More information

sunliquid process cellulosic sugars and ethanol from agricultural residues Bio World Congress Montreal, Canada July 20,2015

sunliquid process cellulosic sugars and ethanol from agricultural residues Bio World Congress Montreal, Canada July 20,2015 sunliquid process cellulosic sugars and ethanol from agricultural residues Bio World Congress Montreal, Canada July 20,2015 2 A globally leading company in specialty chemicals 6 116 235 4 Sales 2014 (CHF

More information

Methaforming: Novel Process for Producing High-Octane Gasoline from Naphtha and Methanol at Lower CAPEX and OPEX.

Methaforming: Novel Process for Producing High-Octane Gasoline from Naphtha and Methanol at Lower CAPEX and OPEX. Methaforming: Novel Process for Producing High-Octane Gasoline from Naphtha and Methanol at Lower CAPEX and OPEX. Stephen Sims, Adeniyi Adebayo, Elena Lobichenko, Iosif Lishchiner, Olga Malova New Gas

More information

Biofuels: Considerations and Potential

Biofuels: Considerations and Potential Biofuels: Considerations and Potential Clarks on Univ ersi ty 5 Sep tember 2007 Len a Han se n Rocky Mou ntain Ins titu te Understanding the Goal President Bush s goal Produce 35 billion gallons of alternative

More information

The European Union has set

The European Union has set Increasing refinery biofuels production The benefits of producing bio-ethers with catalytic distillation compared to blending bioethanol are addressed. Options such as the conversion of MTBE units to ETBE

More information

BDC Symposium Ottawa, September 29, 2015

BDC Symposium Ottawa, September 29, 2015 BDC Symposium Ottawa, September 29, 2015 Our Business Heating Oil Biomass Feedstock Conversion to Biofuel Fuel Oil Refinery Coprocessing 20-100 million litre/year RFO production facilities Refinery Feedstock

More information