The Language of Physics

Size: px
Start display at page:

Download "The Language of Physics"

Transcription

1 SECTION 1 Plan and Prepare Preview Vocabulary Latin Word Origins The word schematic comes from the Latin word schema, meaning figure. This word is used in technology and science for a diagram or blueprint, especially of an electric circuit. Teach TEACH FROM VISUALS FIGURE 1.1 Students should be encouraged to create alternative representations of the circuit shown in the photo. Students should discuss what their symbols stand for, how convenient their symbols are for others to use, and in what way each symbol reflects relevant information. Ask Identify information about the group of elements that is not relevant to its function and is unnecessary in a schematic. Answer: The colors and sizes of the items shown and whether the wires are coiled, bent, or straight are irrelevant to the function of the group of elements. TEACH FROM VISUALS FIGURE 1.1 Students should recognize that the straight-line symbols connecting the battery symbol with the bulb symbol in (b) represent not only the wire but also all parts of the conducting connection between the bulb and battery. Ask Identify the parts of the photo symbolized by the black straight lines in the diagrams. Answer: The black lines symbolize the conducting path provided by the wires, clips, and socket. FIGURE 1.1 SECTION 1 Objectives Interpret and construct circuit diagrams. Identify circuits as open or closed. Deduce the potential difference across the circuit load, given the potential difference across the battery s terminals. schematic diagram a representation of a circuit that uses lines to represent wires and different symbols to represent components A Battery and Light Bulb (a) When this battery is connected to a light bulb, the potential difference across the battery generates a current that illuminates the bulb. (b) The connections between the light bulb and battery can be represented in a schematic diagram. 628 Chapter 18 Differentiated Instruction Schematic Diagrams and Circuits Key Terms schematic diagram Students may confuse schematic diagrams with other diagrams, such as geometric or architectural diagrams. Point out that schematic diagrams are diagrams in which the elements and components of a system, such as an electric circuit or an electric motor, are illustrated by previously defined symbols and icons rather than by their real pictures. Tell students that in an electric schematic diagram, Schematic Diagrams electric circuit Take a few minutes to examine the battery and light bulb in Figure 1.1(a); then draw a diagram of each element in the photograph and its connection. How easily could your diagram be interpreted by someone else? Could the elements in your diagram be used to depict a string of decorative lights, such as those draped over the trees of the San Antonio Riverwalk? A diagram that depicts the construction of an electrical apparatus is called a schematic diagram. The schematic diagram shown in Figure 1.1(b) uses symbols to represent the bulb, battery, and wire from Figure 1.1(a). Note that these same symbols can be used to describe these elements in any electrical apparatus. This way, schematic diagrams can be read by anyone familiar with the standard set of symbols. Reading schematic diagrams allows us to determine how the parts in an electrical device are arranged. In this chapter, you will see how the arrangement of resistors in an electrical device can affect the current in and potential difference across the other elements in the device. The ability to interpret schematic diagrams for complicated electrical equipment is an essential skill for solving problems involving electricity. As shown in Figure 1.2 on the next page, each element used in a piece of electrical equipment is represented by a symbol in schematic diagrams that reflects the element s construction or function. For example, the schematic-diagram symbol that represents an open switch resembles the open knife switch that is shown in the corresponding photograph. Note that Figure 1.2 also includes other forms of schematic-diagram symbols; these alternative symbols will not be used in this book. Untitled /26/2011 7:13:21 (a) for example, in this book, a capacitor is shown by two horizontal Ts positioned head to head and a resistor is shown by a squiggly wire. Point out or draw the schematic illustrations of a capacitor and a resistor. (b) 628 Chapter 18

2 FIGURE 1.2 SCHEMATIC DIAGRAM SYMBOLS TEACH FROM VISUALS Component Wire or conductor Resistor or circuit load Bulb or lamp Plug Battery Symbol used in this book Other forms of this symbol Multiple cells Explanation Wires that connect elements are conductors. Because wires offer negligible resistance, they are represented by straight lines Resistors are shown having multiple bends, illustrating resistance to the movement of charges. The multiple bends of the filament indicate that the light bulb behaves as a resistor. The symbol for the filament of the bulb is often enclosed in a circle to emphasize the enclosure of a resistor in a bulb. The plug symbol looks like a container for two prongs. The emf between the two prongs of a plug is symbolized by lines of unequal length. Differences in line length indicate a potential difference between positive and negative terminals of the battery. The longer line represents the positive terminal of the battery. FIGURE 1.2 Be sure students recognize that the different symbols represent devices with different functions. Ask Challenge students to identify which devices have the following functions: storing energy, transforming energy, and conducting current. Answer: Batteries and capacitors store energy; Resistors, bulbs, and batteries transform energy; Wires, resistors, bulbs, plugs, closed switches, and batteries conduct current. The Language of Physics Although Figure 1.2 contains several schematic-diagram symbols, several stylistic variations exist. For example, some other symbols for light bulbs are shown below. Switch Capacitor Open Closed Open (j) Closed (k) (l) The small circles indicate the two places where the switch makes contact with the wires. Most switches work by breaking only one of the contacts, not both. The two parallel plates of a capacitor are symbolized by two parallel lines of equal length. One curved line indicates that the capacitor can be used with only direct current sources with the polarity as shown. Because light bulbs behave as resistors for small changes in voltage, the symbols for resistors are often used for light bulbs. Circuits and Circuit Elements 629 titled Create schematic diagrams that students can mark up. Create your own or make copies of schematic diagrams shown in this chapter. As practice, have students place one of the following labels on each of the symbols shown in a diagram: W: wire or connection R: resistor or circuit load Bu: bulb or lamp P: plug Ba: battery S: switch C: capacitor 5/26/2011 7:13:22 AM Circuits and Circuit Elements 629

3 Teach continued Answers Conceptual Challenge 1. Because there is no potential difference between the bird s feet, there is no current in the bird s body. 2. At first there is no potential difference between the parachutist s hands, so there is no current in the parachutist s body. If the parachutist s feet touch the ground and the parachutist continues to hold onto the wire, however, there will be current in the parachutist s body because of the potential difference between the wire in the parachutist s hands and the ground. FIGURE 1.3 A Complete Circuit When all electrical components are connected, charges can move freely in a circuit. The movement of charges in a circuit can be halted by opening the switch. electric circuit a set of electrical components connected such that they provide one or more complete paths for the movement of charges Electric Circuits Think about how you get the bulb in Figure 1.3 to light up. Will the bulb stay lit if the switch is opened? Is there any way to light the bulb without connecting the wires to the battery? The filament of the light bulb acts as a resistor. When a wire connects the terminals of the battery to the light bulb, as shown in Figure 1.3, charges built up on one terminal of the battery have a path to follow to reach the opposite charges on the other terminal. Because there are charges moving through the wire, a current exists. This current causes the filament to heat up and glow. Together, the bulb, battery, switch, and wire form an electric circuit. An electric circuit is a path through which charges can flow. A schematic diagram for a circuit is sometimes called a circuit diagram. Any element or group of elements in a circuit that dissipates energy is called a load. A simple circuit consists of a source of potential difference and electrical energy, such as a battery, and a load, such as a bulb or group of bulbs. Because the connecting wire and switch have negligible resistance, we will not consider these elements as part of the load. In Figure 1.3, the path from one battery terminal to the other is complete, a potential difference exists, and electrons move from one terminal to the other. In other words, there is a closed-loop path for electrons to follow. This is called a closed circuit. The switch in the circuit in Figure 1.3 must be closed in order for a steady current to exist. Without a complete path, there is no charge flow and therefore no current. This situation is an open circuit. If the switch in Figure 1.3 were open, as shown in Figure 1.2, the circuit would be open, the current would be zero, and the bulb would not light up. Conceptual Challenge Bird on a Wire Why is it possible for a bird to be perched on a high-voltage wire without being electrocuted? (Hint: Consider the potential difference between the bird s two feet.) Parachutist on a Wire Suppose a parachutist lands on a high-voltage wire and grabs the wire in preparation to be rescued. Will the parachutist be electrocuted? If the wire breaks, why should the parachutist let go of the wire as it falls to the ground? (Hint: First consider the potential difference between the parachutist s two hands holding the wire. Then consider the potential difference between the wire and the ground.) (b) blickwinkel/alamy 630 Chapter 18 Differentiated Instruction Inclusion Students with kinesthetic learning styles may benefit from using a fluid model for electric current in a circuit. In this model, charges moving due to potential difference are analogous to water moving to a level of lower gravitational potential energy. Wires are analogous to horizontal pipes, and resistors are analogous to water wheels, which transform the energy to another form. Batteries and generators act like pumps in that they lift water up, increasing its potential energy. If possible, have kinesthetic learners build a fluid model of a basic circuit. Untitled /26/2011 7:13: Chapter 18

4 (br) Gustoimages/Photo Researchers, Inc.; (tr) GIPhotoStock/Photo Researchers, Inc. CFLs and LEDs T he most familiar of light bulbs, incandescent bulbs, may soon be a relic of the past. Thomas Edison first invented these bulbs in 1879 and they have been in use ever since. They work by heating a small metal filament that glows and produces light. Although incandescent bulbs give off very warm and pleasant light, they are extremely inefficient. Nearly 90% of the energy they use is converted into heat and only 10% is converted into light. New federal law requires that by 2014 all bulbs be at least 30% more efficient. Two new types of bulbs look to replace incandescent bulbs. The first type of light bulb is called compact fluorescent light (or CFL for short). CFLs work by running an electrical current through a tube that contains a mixture of gases. The atoms of gas absorb energy from the electricity and emit ultraviolet light. Humans, however, cannot see ultraviolet light. What happens next is that the ultraviolet light hits the surface of the tube that has been coated with a chemical that absorbs the ultraviolet light and emits visible light. The second type of light bulb is called light-emitting diode (or LED for short). LEDs work by moving electrons and protons in a solid piece of material called a semiconductor. As the electrons move through this material they lose energy and release light. The Short circuits can be hazardous. Without a load, such as a bulb or other resistor, the circuit contains little resistance to the movement of charges. This situation is called a short circuit. For example, a short circuit occurs when a wire is connected from one terminal of a battery to the other by a wire with little resistance. This commonly occurs when uninsulated wires connected to different terminals come into contact with each other. When short circuits occur in the wiring of your home, the increase in current can become unsafe. Most wires cannot withstand the increased current, and they begin to overheat. The wire s insulation may even melt or cause a fire. electrons here release no energy, so LEDs are more energy efficient than both incandescent and CFLs. In addition, because LEDs are made of solid material, they can be very small and are very durable so they last a long time. Although both CFLs and LEDS cost considerably more than incandescent bulbs, they use much less energy to produce the same amount of light. In addition, they have a much longer life span. When both of these factors are taken into account, replacing your incandescent bulbs with CFLs or LEDs may cost more up front, but they end up saving money over the life of the bulb. Why It Matters CFLs and LEDs Many electrical products, such as decorative lights, extension cords, and appliances, have a prominent tag labeled UL. This mark, from Underwriters Laboratories, indicates that the product has been tested by UL engineers for electrical, fire, and other hazards. Circuits and Circuit Elements 631 titled Because batteries are said to run down, many students believe that current is consumed by a circuit. To check for this misconception, ask students to draw arrows representing the current in a simple circuit. Some may believe that current is used up in the resistor. Their diagrams will show charges moving only from the battery to the bulb. Others may think that the current comes back to the battery but has decreased in magnitude. Arrows representing current in their diagrams may get smaller after the resistor. 5/26/2011 7:13:29 AM Point out that the number of charges entering a part of the circuit in some time interval equals the number of charges leaving it in the same time interval. Explain that the chemicals in the battery react to produce a potential difference. Eventually, most of these reacting chemicals are converted to other substances, and the battery no longer produces a potential difference. Circuits and Circuit Elements 631

5 Teach continued The Language of Physics The term emf originally stood for electromotive force. This term may be misleading because emf is not a force. Rather, it refers to a potential difference measured in volts. The voltage value on a battery label denotes its emf. In this text, internal resistance will be disregarded unless specifically noted. The value of the terminal voltage, ΔV, can be found from the emf (ε ), the total current (I ), and the internal resistance (r ) with the following equation: QuickLab ΔV = ε Ir Teacher s Notes To light the bulb, students should connect the bottom of the bulb to one terminal of the battery and the side of the bulb s base to the other terminal. The bulb can be lit with one wire by holding the base of the bulb to one of the battery s terminals and using the wire to connect the side of the bulb s base to the other terminal MATERIALS 1 miniature light bulb 1 D-cell battery wires rubber band or tape SAFETY Do not perform this lab with any batteries or electrical devices other than those listed here. Never work with electricity near water. Be sure the floor and all work surfaces are dry. SIMPLE CIRCUITS Connect the bulb to the battery using two wires, using a rubber band or tape to hold the wire to the battery. Once you have gotten the bulb to light, try different arrangements to see whether there is more than one way to get the bulb to light. Can you make the bulb light using just one wire? Diagram each arrangement that you try, and note whether it produces light. Explain exactly which parts of the bulb, battery, and wire must be connected for the light bulb to produce light. The source of potential difference and electrical energy is the circuit s emf. Will a bulb in a circuit light up if you remove the battery? Without a potential difference, there is no charge flow and no current. The battery is necessary because the battery is the source of potential difference and electrical energy for the circuit. So, the bulb must be connected to the battery to be lit. Any device that increases the potential energy of charges circulating in a circuit is a source of emf, or electromotive force. The emf is the energy per unit charge supplied by a source of electric current. Think of such a source as a charge pump that forces electrons to move in a certain direction. Batteries and generators are examples of emf sources. For conventional current, the terminal voltage is less than the emf. Look at the battery attached to the light bulb in the circuit shown in Figure 1.4. As shown in the inset, instead of behaving only like a source of emf, the battery behaves as if it contains both an emf source and a resistor. The battery s internal resistance to current is the result of moving charges colliding with atoms inside the battery while the charges are traveling from one terminal to the other. Thus, when charges move conventionally in a battery, the potential difference across the battery s terminals, the terminal voltage, is actually slightly less than the emf. Unless otherwise stated, any reference in this book to the potential difference across a battery should be thought of as the potential difference measured across the battery s terminals rather than as the emf of the battery. In other words, all examples and end-of-chapter problems will disregard the internal resistance of the battery. FIGURE 1.4 A Battery s Internal Resistance (a) A battery in a circuit behaves as if it contains both (b) an emf source and (c) an internal resistance. For simplicity s sake, in problem solving it will be assumed that this internal resistance is insignificant. (a) (b) (c) Small internal resistance 632 Chapter 18 Differentiated Instruction Comparing electromotive force with voltage drop from the electrons' perspective could provide students with a basis for understanding fluctuations in potential energy. Point out that raising the potential energy of electrons in a source yields electromotive force, while decreasing the potential energy of electrons in a load results in a voltage drop. Untitled /26/2011 7:13: Chapter 18

6 Potential difference across a load equals the terminal voltage. When charges move within a battery from one terminal to the other, the chemical energy of the battery is converted to the electrical potential energy of the charges. As charges move through the circuit, their electrical potential energy is converted to other forms of energy. For instance, when the load is a resistor, the electrical potential energy of the charges is converted to the internal energy of the resistor and dissipated as thermal energy and light energy. Because energy is conserved, the energy gained and the energy lost must be equal for one complete trip around the circuit (starting and ending at the same place). Thus, the electrical potential energy gained in the battery must equal the energy dissipated by the load. Because the potential difference is the meas urement of potential energy per amount of charge, the potential increase across the battery must equal the potential decrease across the load. SECTION 1 FORMATIVE ASSESSMENT Reviewing Main Ideas 1. Identify the types of elements in the schematic diagram illustrated in Figure 1.5 and the number of each type. 2. Using the symbols listed in Figure 1.2, draw a schematic diagram of a working circuit that contains two resistors, an emf source, and a closed switch. 3. In which of the circuits pictured below will there be no current? FIGURE 1.6 FIGURE 1.7 FIGURE 1.5 Key Models and Analogies From an energy-transformation perspective, think of batteries as electrical-energy-supply devices and of resistors and light bulbs as electricalenergy-consuming devices. The electric current conveys this energy from the battery to the resistor. Assess and Reteach Assess Use the Formative Assessment on this page to evaluate student mastery of the section. Reteach For students who need additional instruction, download the Section Study Guide. Response to Intervention To reassess students mastery, use the Section Quiz, available to print or to take directly online at HMDScience.com. FIGURE 1.8 FIGURE If the potential difference across the bulb in a certain flashlight is 3.0 V, what is the potential difference across the combination of batteries used to power it? Critical Thinking 5. In what forms is the electrical energy that is supplied to a string of decorative lights dissipated? Answers to Section Assessment Circuits and Circuit Elements 633 led one battery, one closed switch, two resistors, and three bulbs 2. Students' diagrams should include the circuit elements as they appear in Figure Figure 1.7 and Figure 1.9 will have no current in them V 5. It is converted to thermal energy and light energy. 5/26/2011 7:13:30 AM Circuits and Circuit Elements 633

Name Date Period. MATERIALS: Light bulb Battery Wires (2) Light socket Switch Penny

Name Date Period. MATERIALS: Light bulb Battery Wires (2) Light socket Switch Penny Name Date Period Lab: Electricity and Circuits CHAPTER 34: CURRENT ELECTRICITY BACKGROUND: Just as water is the flow of H 2 O molecules, electric current is the flow of charged particles. In circuits of

More information

Electricity and Magnetism

Electricity and Magnetism Electricity and Magnetism Electric Current and Electric Circuits What do you think? Read the statement below and decide whether you agree or disagree with it. Place an A in the Before column if you agree

More information

CHAPTER 19 DC Circuits Units

CHAPTER 19 DC Circuits Units CHAPTER 19 DC Circuits Units EMF and Terminal Voltage Resistors in Series and in Parallel Kirchhoff s Rules EMFs in Series and in Parallel; Charging a Battery Circuits Containing Capacitors in Series and

More information

11.1 CURRENT ELECTRICITY. Electrochemical Cells (the energy source) pg Wet Cell. Dry Cell. Positive. Terminal. Negative.

11.1 CURRENT ELECTRICITY. Electrochemical Cells (the energy source) pg Wet Cell. Dry Cell. Positive. Terminal. Negative. Date: SNC1D: Electricity 11.1 CURRENT ELECTRICITY Define: CIRCUIT: path that electrons follow. CURRENT ELECTRICITY: continuous flow of electrons in a circuit LOAD: device that converts electrical energy

More information

Chapter 26 DC Circuits

Chapter 26 DC Circuits Chapter 26 DC Circuits Electric circuit needs battery or generator to produce current these are called sources of emf. Battery is a nearly constant voltage source, but does have a small internal resistance,

More information

Chapter 26 DC Circuits. Copyright 2009 Pearson Education, Inc.

Chapter 26 DC Circuits. Copyright 2009 Pearson Education, Inc. Chapter 26 DC Circuits 26-1 EMF and Terminal Voltage Electric circuit needs battery or generator to produce current these are called sources of emf. Battery is a nearly constant voltage source, but does

More information

Physics 144 Chowdary How Things Work. Lab #5: Circuits

Physics 144 Chowdary How Things Work. Lab #5: Circuits Physics 144 Chowdary How Things Work Spring 2006 Name: Partners Name(s): Lab #5: Circuits Introduction In today s lab, we ll learn about simple electric circuits. All electrical and electronic appliances

More information

Electricity. Electric Charge. Before You Read. Read to Learn. Positive and Negative Charges. Picture This. section.

Electricity. Electric Charge. Before You Read. Read to Learn. Positive and Negative Charges. Picture This. section. chapter 6 Electricity 1 section Electric Charge What You ll Learn how electric charges exert forces about conductors and insulators how things become electrically charged Before You Read Think about some

More information

Your web browser (Safari 7) is out of date. For more security, comfort and. the best experience on this site: Update your browser Ignore

Your web browser (Safari 7) is out of date. For more security, comfort and. the best experience on this site: Update your browser Ignore Your web browser (Safari 7) is out of date. For more security, comfort and Activitydevelop the best experience on this site: Update your browser Ignore Circuits with Friends What is a circuit, and what

More information

Batteries n Bulbs: Voltage, Current and Resistance (8/6/15) (approx. 2h)

Batteries n Bulbs: Voltage, Current and Resistance (8/6/15) (approx. 2h) Batteries n Bulbs: Voltage, Current and Resistance (8/6/15) (approx. 2h) Introduction A simple electric circuit can be made from a voltage source (batteries), wires through which current flows and a resistance,

More information

reflect energy: the ability to do work

reflect energy: the ability to do work reflect Have you ever thought about how much we depend on electricity? Electricity is a form of energy that runs computers, appliances, and radios. Electricity lights our homes, schools, and office buildings.

More information

ELECTRICITY & MAGNETISM - EXAMINATION QUESTIONS (4)

ELECTRICITY & MAGNETISM - EXAMINATION QUESTIONS (4) ELECTRICITY & MAGNETISM - EXAMINATION QUESTIONS (4) 1. Which two electrical quantities are measured in volts? A current and e.m.f. B current and resistance C e.m.f. and potential difference D potential

More information

Electrical power. Objectives. Assessment. Assessment. Equations. Physics terms 5/27/14

Electrical power. Objectives. Assessment. Assessment. Equations. Physics terms 5/27/14 Electrical power Objectives Use the equation for electrical power to solve circuit problems. Understand basic concepts for home electricity usage and wiring. Calculate the power used by electric circuit

More information

Chapter 28. Direct Current Circuits

Chapter 28. Direct Current Circuits Chapter 28 Direct Current Circuits Direct Current When the current in a circuit has a constant magnitude and direction, the current is called direct current Because the potential difference between the

More information

INVESTIGATION ONE: WHAT DOES A VOLTMETER DO? How Are Values of Circuit Variables Measured?

INVESTIGATION ONE: WHAT DOES A VOLTMETER DO? How Are Values of Circuit Variables Measured? How Are Values of Circuit Variables Measured? INTRODUCTION People who use electric circuits for practical purposes often need to measure quantitative values of electric pressure difference and flow rate

More information

Understanding Electricity and Electrical Safety Teacher s Guide

Understanding Electricity and Electrical Safety Teacher s Guide Understanding Electricity and Electrical Safety Teacher s Guide Note to Instructor: The activities and experiments in this booklet build on each other to develop a student s understanding of electricity

More information

Based on results from TIMSS Key. bulb. bulb. switch. wir. battery. wir. switch. Lesson plan on investigative science. wire.

Based on results from TIMSS Key. bulb. bulb. switch. wir. battery. wir. switch. Lesson plan on investigative science. wire. bulb Based on results from TIMSS 2015 Key battery Key ba bu tte switch sw h itc bulb e wir battery switch wire bat sw Lesson plan on investigative science Electricity wir Electricity Pupils performed less

More information

Total: Allow six to seven class periods for project planning, designing, building, and presenting.

Total: Allow six to seven class periods for project planning, designing, building, and presenting. Unit 1350 Keeping it Safe: An Electrical Security System Summary In this lesson, teams of three or four students will apply their knowledge of electric charge, energy sources, and series and parallel electric

More information

Q2. The diagram shows a network of four 2 Ω resistors. The effective resistance, in Ω, between X and Y is A 0.5 B 1.2 C 1.7. D 2.

Q2. The diagram shows a network of four 2 Ω resistors. The effective resistance, in Ω, between X and Y is A 0.5 B 1.2 C 1.7. D 2. Q1. Three identical cells, each of internal resistance R, are connected in series with an external resistor of resistance R. The current in the external resistor is I. If one of the cells is reversed in

More information

Section 4 WHAT MAKES CHARGE MOVE IN A CIRCUIT?

Section 4 WHAT MAKES CHARGE MOVE IN A CIRCUIT? Section 4 WHAT MAKES CHARGE MOVE IN A CIRCUIT? INTRODUCTION Why does capacitor charging stop even though a battery is still trying to make charge move? What makes charge move during capacitor discharging

More information

Class X Chapter 09 Electrical Power and Household circuits Physics

Class X Chapter 09 Electrical Power and Household circuits Physics EXERCISE- 9 (A) Question 1: Write an expression for the electrical energy spent in flow of current through an electrical appliance in terms of current, resistance and time. Solution 1: Electrical energy,

More information

Pre-lab Questions: Please review chapters 19 and 20 of your textbook

Pre-lab Questions: Please review chapters 19 and 20 of your textbook Introduction Magnetism and electricity are closely related. Moving charges make magnetic fields. Wires carrying electrical current in a part of space where there is a magnetic field experience a force.

More information

ACTIVITY 1: Electric Circuit Interactions

ACTIVITY 1: Electric Circuit Interactions CYCLE 5 Developing Ideas ACTIVITY 1: Electric Circuit Interactions Purpose Many practical devices work because of electricity. In this first activity of the Cycle you will first focus your attention on

More information

4 Electric Circuits. TAKE A LOOK 2. Identify Below each switch, label the circuit as a closed circuit or an open circuit.

4 Electric Circuits. TAKE A LOOK 2. Identify Below each switch, label the circuit as a closed circuit or an open circuit. CHAPTER 17 4 Electric Circuits SECTION Introduction to Electricity BEFORE YOU READ After you read this section, you should be able to answer these questions: What are the three main parts of a circuit?

More information

PHY152H1S Practical 3: Introduction to Circuits

PHY152H1S Practical 3: Introduction to Circuits PHY152H1S Practical 3: Introduction to Circuits Don t forget: List the NAMES of all participants on the first page of each day s write-up. Note if any participants arrived late or left early. Put the DATE

More information

Chapter 21 Practical Electricity

Chapter 21 Practical Electricity Chapter 21 Practical Electricity (A) Electrical Power 1. State four applications of the heating effect of electricity. Home: o Used in electric kettles o Used in electric irons o Used in water heaters

More information

Pre-lab Questions: Please review chapters 19 and 20 of your textbook

Pre-lab Questions: Please review chapters 19 and 20 of your textbook Introduction Magnetism and electricity are closely related. Moving charges make magnetic fields. Wires carrying electrical current in a part of space where there is a magnetic field experience a force.

More information

Electricity and Magnetism Module 2 Student Guide

Electricity and Magnetism Module 2 Student Guide Concepts of this Module Introducing current and voltage Simple circuits Circuit diagrams Background Electricity and Magnetism Module 2 Student Guide When water flows through a garden hose, we can characterize

More information

Basic voltmeter use. Resources and methods for learning about these subjects (list a few here, in preparation for your research):

Basic voltmeter use. Resources and methods for learning about these subjects (list a few here, in preparation for your research): Basic voltmeter use This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

More information

12 Electricity and Circuits

12 Electricity and Circuits 12 Electricity and Circuits We use electricity for many purposes to make our tasks easier. For example, we use electricity to operate pumps that lift water from wells or from ground level to the roof top

More information

AP Physics B Ch 18 and 19 Ohm's Law and Circuits

AP Physics B Ch 18 and 19 Ohm's Law and Circuits Name: Period: Date: AP Physics B Ch 18 and 19 Ohm's Law and Circuits MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A device that produces electricity

More information

Chapter 27. Circuits

Chapter 27. Circuits Chapter 27 Circuits 27.2: Pumping Charges: In order to produce a steady flow of charge through a resistor, one needs a charge pump, a device that by doing work on the charge carriers maintains a potential

More information

Write the term that correctly completes the statement. Use each term once. ampere. electric current. resistor battery.

Write the term that correctly completes the statement. Use each term once. ampere. electric current. resistor battery. Date Period Name CHAPTER 22 Study Guide Current Electricity Vocabulary Review Write the term that correctly completes the statement. Use each term once. ampere electric current resistor battery kilowatt-hour

More information

Introduction: Electromagnetism:

Introduction: Electromagnetism: This model of both an AC and DC electric motor is easy to assemble and disassemble. The model can also be used to demonstrate both permanent and electromagnetic motors. Everything comes packed in its own

More information

Chapter: Electricity

Chapter: Electricity Chapter 13 Table of Contents Chapter: Electricity Section 1: Electric Charge Section 2: Electric Current Section 3: Electrical Energy 1 Electric Charge Positive and Negative Charge Atoms contain particles

More information

Chapter 21 Electric Current and Direct- Current Circuits

Chapter 21 Electric Current and Direct- Current Circuits Chapter 21 Electric Current and Direct- Current Circuits Menu Electric Current Resistance and Ohm s Law Energy and Power in Electric Circuits Resistors in Series and Parallel HW # 5 Pg. 754 759: # 7, 8,

More information

Name Period. (c) Now replace the round bulb(s) with long bulb(s). How does the brightness change?

Name Period. (c) Now replace the round bulb(s) with long bulb(s). How does the brightness change? Name Period P Phys 1 Discovery Lesson Electric Circuits 2.1 Experiment: Charge Flow Strength & Resistors circuit is an unbroken loop of conductors. Charge (q) can flow continuously in a circuit. If an

More information

Electric Circuits. Say Thanks to the Authors Click (No sign in required)

Electric Circuits. Say Thanks to the Authors Click   (No sign in required) Electric Circuits Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) To access a customizable version of this book, as well as other interactive content, visit www.ck12.org

More information

PHY132 Practicals Week 5 Student Guide

PHY132 Practicals Week 5 Student Guide PHY132 Practicals Week 5 Student Guide Concepts of this Module Introducing current and voltage Simple circuits Circuit diagrams Background When water flows through a garden hose, we can characterize the

More information

ELECTRIC CURRENT. Name(s)

ELECTRIC CURRENT. Name(s) Name(s) ELECTRIC CURRT The primary purpose of this activity is to decide upon a model for electric current. As is the case for all scientific models, your electricity model should be able to explain observed

More information

a) Understand the conditions for lighting a light bulb by connecting it to batteries with wires to make it illuminate.

a) Understand the conditions for lighting a light bulb by connecting it to batteries with wires to make it illuminate. This area deals with simple electric circuits and electromagnets. In this area, students learn about electricity for the first time and build an electromagnet and a simple circuit to compare the brightness

More information

Which of the following statements is/are correct about the circuit above?

Which of the following statements is/are correct about the circuit above? Name: ( ) Class: Date: Electricity Exercises 1. Which of the following statements is/are correct about the circuit above? (1) Electrons flow from right to left through the bulb A. (2) Charges will be used

More information

Electricity Unit Review

Electricity Unit Review Science 9 Electricity Unit Review Name: General Definitions: Neutral Object Charge Separation Electrical Discharge Electric Current Amperes (amps) Voltage (volts) Voltmeter Ammeters Galvanometer Multimeter

More information

FUN! Protected Under 18 U.S.C. 707

FUN! Protected Under 18 U.S.C. 707 FUN! Protected Under 18 U.S.C. 707 DC I Lesson Objectives: 1. What is Electricity? 2. Discover the Electron 3. Learn about Conductors and Insulators 4. Learn about Voltage and Current 5. Learn the difference

More information

Mandatory Experiment: Electric conduction

Mandatory Experiment: Electric conduction Name: Class: Mandatory Experiment: Electric conduction In this experiment, you will investigate how different materials affect the brightness of a bulb in a simple electric circuit. 1. Take a battery holder,

More information

34.5 Electric Current: Ohm s Law OHM, OHM ON THE RANGE. Purpose. Required Equipment and Supplies. Discussion. Procedure

34.5 Electric Current: Ohm s Law OHM, OHM ON THE RANGE. Purpose. Required Equipment and Supplies. Discussion. Procedure Name Period Date CONCEPTUAL PHYSICS Experiment 34.5 Electric : Ohm s Law OHM, OHM ON THE RANGE Thanx to Dean Baird Purpose In this experiment, you will arrange a simple circuit involving a power source

More information

Circuit Basics and Components

Circuit Basics and Components Circuit Basics Electric circuits are arrangements of conductors and components that permit electrical current to flow. A circuit can be as simple as a battery and lamp or as sophisticated as a computer.

More information

Lab 08: Circuits. This lab is due at the end of the laboratory period

Lab 08: Circuits. This lab is due at the end of the laboratory period Name: Partner(s): 1114 section: Desk # Date: Purpose Lab 08: Circuits This lab is due at the end of the laboratory period The purpose of this lab is to gain experience with setting up electric circuits

More information

All Worn Out! Measure the voltage of batteries as they discharge. Predict how different size batteries will behave when being discharged.

All Worn Out! Measure the voltage of batteries as they discharge. Predict how different size batteries will behave when being discharged. All Worn Out! Computer 43 Have you ever wondered why some flashlights use small batteries and some use big ones? What difference does it make? Do larger batteries make the light brighter? Will the size

More information

Lecture PowerPoints. Chapter 19 Physics: Principles with Applications, 6 th edition Giancoli

Lecture PowerPoints. Chapter 19 Physics: Principles with Applications, 6 th edition Giancoli Lecture PowerPoints Chapter 19 Physics: Principles with Applications, 6 th edition Giancoli 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for

More information

RL Circuits Challenge Problems

RL Circuits Challenge Problems RL Circuits Challenge Problems Problem : RL Circuits Consider the circuit at left, consisting of a battery (emf ε), an inductor L, resistor R and switch S. For times t< the switch is open and there is

More information

Section 3 Electric Circuits

Section 3 Electric Circuits Section 3 Electric Circuits As You Read What You'll Learn Explain how voltage, current, and resistance are related in an electric circuit. Investigate the difference between series and parallel circuits.

More information

Chapter 19: DC Circuits

Chapter 19: DC Circuits Chapter 19: DC Circuits EMF and Terminal Voltage Resistors in Series and in Parallel Kirchhoff s Rules EMFs in Series and in Parallel; Charging a Battery Capacitors in Series and in Parallel RC Circuits

More information

Using Electricity. Summary Notes. 1. From the Wall Socket Household appliances. Earth wire and safety.

Using Electricity. Summary Notes. 1. From the Wall Socket Household appliances. Earth wire and safety. Using Electricity Summary Notes Section Content 1. From the Wall Socket Household appliances. Earth wire and safety. 2. Alternating and Direct Battery and transformer. Current Circuit diagrams. Current

More information

Direct-Current Circuits

Direct-Current Circuits Chapter 26 Direct-Current Circuits PowerPoint Lectures for University Physics, 14th Edition Hugh D. Young and Roger A. Freedman Lectures by Jason Harlow Learning Goals for Chapter 26 Looking forward at

More information

Cabrillo College Physics 10L. LAB 7 Circuits. Read Hewitt Chapter 23

Cabrillo College Physics 10L. LAB 7 Circuits. Read Hewitt Chapter 23 Cabrillo College Physics 10L Name LAB 7 Circuits Read Hewitt Chapter 23 What to learn and explore Every electrical circuit must have at least one source (which supplies electrical energy to the circuit)

More information

Electromagnetic Induction, Faraday s Experiment

Electromagnetic Induction, Faraday s Experiment Electromagnetic Induction, Faraday s Experiment A current can be produced by a changing magnetic field. First shown in an experiment by Michael Faraday A primary coil is connected to a battery. A secondary

More information

Is it Magnetic? 1. Fill in each table. List things ATTRACTED by a magnet on the LEFT and things NOT ATTRACTED on the RIGHT.

Is it Magnetic? 1. Fill in each table. List things ATTRACTED by a magnet on the LEFT and things NOT ATTRACTED on the RIGHT. Is it Magnetic? 1. Fill in each table. List things ATTRACTED by a magnet on the LEFT and things NOT ATTRACTED on the RIGHT. MAGNETIC NON-MAGNETIC # Object Made from check # Object Made from check --- ------------

More information

Physics - Chapters Task List

Physics - Chapters Task List Name Hour Physics - Chapters 34-35 Task List Task In Class? (Yes/No) Date Due Grade Lab 33.1 - Wet Cell Battery Yes */15 * Vodcast #1 Electric Circuits & Ohm s Law /21 Worksheet Concept Review #1-12, Ch

More information

Electrical Connections

Electrical Connections Electrical Connections TABLE OF CONTENTS ABOUT DELTA SCIENCE MODULES Program Introduction................... iii Teacher s Guide..................... iv Delta Science Readers............... vi Equipment

More information

Academic Year

Academic Year EXCELLENCE INTERNATIONAL SCHOOL First Term, Work sheet (1) Grade (9) Academic Year 2014-2015 Subject: quantities Topics:- Static electricity - Eelectrical NAME: DATE: MULTIPLE CHOICE QUESTIONS: 1 - A circuit

More information

Goals. Introduction (4.1) R = V I

Goals. Introduction (4.1) R = V I Lab 4. Ohm s Law Goals To understand Ohm s law, used to describe behavior of electrical conduction in many materials and circuits. To calculate electrical power dissipated as heat. To understand and use

More information

ELECTRIC POWER AND HOUSEHOLD CIRCUITS

ELECTRIC POWER AND HOUSEHOLD CIRCUITS ELECTRIC POWER AND HOUSEHOLD CIRCUITS HEATING EFFECT OF CURRENT Heating effect of electricity is one of the widely-used effects in the world. When electric current is passed through a conductor, it generates

More information

Basic Circuits Notes- THEORY. An electrical circuit is a closed loop conducting path in which electrical current flows

Basic Circuits Notes- THEORY. An electrical circuit is a closed loop conducting path in which electrical current flows Basic Circuits Notes- THEORY NAME: An electrical circuit is a closed loop conducting path in which electrical current flows Now how does a circuit work? In order to get the water flowing, you d need a

More information

Stay Safe Around Electricity Teacher s Guide

Stay Safe Around Electricity Teacher s Guide Stay Safe Around Electricity Teacher s Guide INTRODUCTION The Stay Safe Around Electricity activity booklet can be used as a follow-up to an electric utility presentation or as a stand-alone piece to teach

More information

V=I R P=V I P=I 2 R. E=P t V 2 R

V=I R P=V I P=I 2 R. E=P t V 2 R Circuit Concepts Learners should be able to: (a) draw, communicate and analyse circuits using standard circuit symbols using standard convention (b) apply current and voltage rules in series and parallel

More information

ELECTRICITY: INDUCTORS QUESTIONS

ELECTRICITY: INDUCTORS QUESTIONS ELECTRICITY: INDUCTORS QUESTIONS No Brain Too Small PHYSICS QUESTION TWO (2017;2) In a car engine, an induction coil is used to produce a very high voltage spark. An induction coil acts in a similar way

More information

CHAPTER 6.3: CURRENT ELECTRICITY

CHAPTER 6.3: CURRENT ELECTRICITY CHAPTER 6.3: CURRENT ELECTRICITY These components are used in electric circuits. TASK: Draw how you could make this lamp light. Electricity will only flow through a complete circuit. The battery, wires

More information

BASIC ELECTRICAL MEASUREMENTS By David Navone

BASIC ELECTRICAL MEASUREMENTS By David Navone BASIC ELECTRICAL MEASUREMENTS By David Navone Just about every component designed to operate in an automobile was designed to run on a nominal 12 volts. When this voltage, V, is applied across a resistance,

More information

CLASSIFIED 5 MAGNETISM ELECTROMAGNETIC INDUCTION GENERATOR MOTOR - TRANSFORMER. Mr. Hussam Samir

CLASSIFIED 5 MAGNETISM ELECTROMAGNETIC INDUCTION GENERATOR MOTOR - TRANSFORMER. Mr. Hussam Samir CLASSIFIED 5 MAGNETISM ELECTROMAGNETIC INDUCTION GENERATOR MOTOR - TRANSFORMER Mr. Hussam Samir EXAMINATION QUESTIONS (5) 1. A wire perpendicular to the page carries an electric current in a direction

More information

What does the measure? I

What does the measure? I TOP 17 urrent Electricity 1 Which of the following is a correct unit for electrical energy? 5 The diagrams show the symbols and ranges of five meters. ampere Which meter should be used to measure a current

More information

Chapter Assessment Use with Chapter 22.

Chapter Assessment Use with Chapter 22. Date Period 22 Use with Chapter 22. Current Electricity Understanding Concepts Part A Use each of the following terms once to complete the statements below. ampere electric current potential difference

More information

Chapter 22 Current and Resistance

Chapter 22 Current and Resistance Chapter 22 Current and Resistance Chapter Goal: To learn how and why charge moves through a conductor as what we call a current. Slide 22-1 Chapter 22 Preview Looking Ahead Text: p. 702 Slide 22-2 Electric

More information

Electric Circuits. Lab. FCJJ 16 - Solar Hydrogen Science Kit. Next Generation Science Standards. Initial Prep Time. Lesson Time. Assembly Requirements

Electric Circuits. Lab. FCJJ 16 - Solar Hydrogen Science Kit. Next Generation Science Standards. Initial Prep Time. Lesson Time. Assembly Requirements Next Generation Science Standards NGSS Science and Engineering Practices: Asking questions and defining problems Developing and using models Planning and carrying out investigations Analyzing and interpreting

More information

4 Electric Circuits. TAKE A LOOK 2. Identify Below each switch, label the circuit as a closed circuit or an open circuit.

4 Electric Circuits. TAKE A LOOK 2. Identify Below each switch, label the circuit as a closed circuit or an open circuit. CHAPTER 1 4 Electric Circuits SECTION Introduction to Electricity BEFORE YOU READ After you read this section, you should be able to answer these questions: What are the three main parts of a circuit?

More information

ELECTRICITY: ELECTROMAGNETISM QUESTIONS

ELECTRICITY: ELECTROMAGNETISM QUESTIONS ELECTRICITY: ELECTROMAGNETISM QUESTIONS The flying fox (2017;3) Sam has a flying fox (zip line) that he wants to use in the dark. Sam connects a 12.0 V battery to a spotlight, using two 1.60-metre-long

More information

Student Exploration: Advanced Circuits

Student Exploration: Advanced Circuits Name: Date: Student Exploration: Advanced Circuits [Note to teachers and students: This Gizmo was designed as a follow-up to the Circuits Gizmo. We recommend doing that activity before trying this one.]

More information

Chapter 31. Faraday s Law

Chapter 31. Faraday s Law Chapter 31 Faraday s Law Michael Faraday 1791 1867 British physicist and chemist Great experimental scientist Contributions to early electricity include: Invention of motor, generator, and transformer

More information

Series and Parallel Networks

Series and Parallel Networks Series and Parallel Networks Department of Physics & Astronomy Texas Christian University, Fort Worth, TX January 17, 2014 1 Introduction In this experiment you will examine the brightness of light bulbs

More information

FUN! Protected Under 18 U.S.C. 707

FUN! Protected Under 18 U.S.C. 707 FUN! Protected Under 18 U.S.C. 707 6 Volt Lantern Battery Spring terminals (also available in screw terminals) Alligator Clips Best method to attach wires to the spring terminals on a lantern battery.

More information

Cable Car. Category: Physics: Balance & Center of Mass, Electricity and Magnetism, Force and Motion. Type: Make & Take.

Cable Car. Category: Physics: Balance & Center of Mass, Electricity and Magnetism, Force and Motion. Type: Make & Take. Cable Car Category: Physics: Balance & Center of Mass, Electricity and Magnetism, Force and Motion Type: Make & Take Rough Parts List: 1 Paperclip, large 2 Paperclips, small 1 Wood stick, 1 x 2 x 6 4 Electrical

More information

Solar Powered System - 2

Solar Powered System - 2 Solar Matters III Teacher Page Solar Powered System - 2 Student Objective The student: given a photovoltaic system will be able to name the component parts and describe their function in the PV system

More information

SNC1D PHYSICS 4/6/2013. THE CHARACTERISTICS OF ELECTRICITY L Electrical Resistance (P ) Electrical Resistance. Electrical Resistance

SNC1D PHYSICS 4/6/2013. THE CHARACTERISTICS OF ELECTRICITY L Electrical Resistance (P ) Electrical Resistance. Electrical Resistance SNC1D PHYSICS THE CHARACTERISTICS OF ELECTRICITY L Electrical Resistance (P.441-443) Electrical Resistance Have you ever noticed that when you recharge your cellphone, MP3 player, or laptop computer, the

More information

Kinetic Instruments Inc.

Kinetic Instruments Inc. Kinetic Instruments Inc. Subject: Vari-Lux 5H Handpiece LED Light Source Tubing Document: 1260.1.1 Date: November 29, 2011 Content: General 1. Conventional Halogen Illumination 1.1 Conventional halogen

More information

Can You Light the Bulb?

Can You Light the Bulb? 3-5 Physical Science Southern Nevada Regional Professional Development Program Can You Light the Bulb? INTRODUCTION Electrical energy is easily transferred through loops that we call circuits. This activity

More information

Electricity is such a common part of our lifestyle that we tend to forget the amazing

Electricity is such a common part of our lifestyle that we tend to forget the amazing Electricity is such a common part of our lifestyle that we tend to forget the amazing processes involved in its production and distribution. With the flick of a switch you can light up a room, play video

More information

Chapter 19. DC Circuits

Chapter 19. DC Circuits Ch-19-1 Chapter 19 Questions DC Circuits 1. Explain why birds can sit on power lines safely, even though the wires have no insulation around them, whereas leaning a metal ladder up against a power line

More information

Conceptual Physics Electricity and Circuits Practice Exam 2011

Conceptual Physics Electricity and Circuits Practice Exam 2011 Name: Class: Date: Conceptual Physics Electricity and Circuits Practice Exam 2011 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. In order to form an electric

More information

SPS10. Students will investigate the properties of electricity and magnetism.

SPS10. Students will investigate the properties of electricity and magnetism. ELECTRICITY SPS10. Students will investigate the properties of electricity and magnetism. a. Investigate static electricity in terms of Friction Induction Conduction b. Explain the flow of electrons in

More information

How is lightning similar to getting an electric shock when you reach for a metal door knob?

How is lightning similar to getting an electric shock when you reach for a metal door knob? How is lightning similar to getting an electric shock when you reach for a metal door knob? Electricity Electric charges are from protons, which are positive (+) and electrons, which are negative (-).

More information

Lesson 2: Electrical Safety Ladders can become electrified if they come into contact with electric wires. Don't raise a ladder close to electric

Lesson 2: Electrical Safety Ladders can become electrified if they come into contact with electric wires. Don't raise a ladder close to electric Lesson 2: Electrical Safety Ladders can become electrified if they come into contact with electric wires. Don't raise a ladder close to electric lines. Never touch hanging or broken wires. Don't trim trees

More information

Circuits-Circuit Analysis

Circuits-Circuit Analysis Base your answers to questions 1 through 3 on the information and diagram below. 4. A 9-volt battery is connected to a 4-ohm resistor and a 5-ohm resistor as shown in the diagram below. A 3.0-ohm resistor,

More information

Today s lecture: Generators Eddy Currents Self Inductance Energy Stored in a Magnetic Field

Today s lecture: Generators Eddy Currents Self Inductance Energy Stored in a Magnetic Field PHYSICS 1B Today s lecture: Generators Eddy Currents Self Inductance Energy Stored in a Magnetic Field PHYSICS 1B Lenz's Law Generators Electric generators take in energy by work and transfer it out by

More information

Unit 8 ~ Learning Guide Name:

Unit 8 ~ Learning Guide Name: Unit 8 ~ Learning Guide Name: Instructions: Using a pencil, complete the following notes as you work through the related lessons. Show ALL work as is explained in the lessons. You are required to have

More information

UNIT 4 Electrical Applications

UNIT 4 Electrical Applications UNIT 4 Electrical Applications Topic How do the sources used 4.1 to generate electrical energy compare? (Pages 244-51) Topic 4.1: How do the sources used to generate electrical energy compare? Topic 4.6:

More information

PhysicsAndMathsTutor.com 1

PhysicsAndMathsTutor.com 1 Q1. A battery of emf 9.0 V and internal resistance, r, is connected in the circuit shown in the figure below. (a) The current in the battery is 1.0 A. (i) Calculate the pd between points A and B in the

More information

Circuits. Now put the round bulb in a socket and set up the following circuit. The bulb should light up.

Circuits. Now put the round bulb in a socket and set up the following circuit. The bulb should light up. Name: Partner(s): 1118 section: Desk # Date: Purpose Circuits The purpose of this lab is to gain experience with setting up electric circuits and using meters to measure voltages and currents, and to introduce

More information

PAPER 2 THEORY QUESTIONS

PAPER 2 THEORY QUESTIONS PAPER 2 THEORY QUESTIONS 1 A plastic rod is rubbed with a cloth and becomes negatively charged. (a) Explain how the rod becomes negatively charged when rubbed with a cloth... [2] (b) An uncharged metal-coated

More information

Chapter 19: Direct Current Circuits

Chapter 19: Direct Current Circuits Chapter 19: Direct Current Circuits In this chapter we will explore circuits with batteries, resistors, and capacitors In this course, we will only consider: Direct current circuit where the current is

More information

Chapter 3. ECE Tools and Concepts

Chapter 3. ECE Tools and Concepts Chapter 3 ECE Tools and Concepts 31 CHAPTER 3. ECE TOOLS AND CONCEPTS 3.1 Section Overview This section has four exercises. Each exercise uses a prototyping board for building the circuits. Understanding

More information