Chapter 21 Electric Current and Direct- Current Circuits

Size: px
Start display at page:

Download "Chapter 21 Electric Current and Direct- Current Circuits"

Transcription

1 Chapter 21 Electric Current and Direct- Current Circuits

2 Menu Electric Current Resistance and Ohm s Law Energy and Power in Electric Circuits Resistors in Series and Parallel

3 HW # 5 Pg : # 7, 8, 11, 19, 22, 28, 32, 44, 49, 73, 78 PHYS Due on Monday, Oct. 7 PHYS Due on Tuesday, Oct. 8

4 Electric Current Electric current is the flow of electric charge from one place to another. A closed path through which charge can flow, returning to its starting point, is called an electric circuit.

5 Up to now, we have been considering equilibrium configurations of charges -- electrostatics. Now we will consider steady-state motions of charges. Electrical current I dq dt Coulomb units : second Ampere(A) By convention +I denotes the direction of positive charge flow (or the opposite direction of negative charge flow). drift velocity I nqv d A # charges/volume

6 Electric Current A battery uses chemical reactions to produce a potential difference between its terminals. It causes current to flow through the flashlight bulb similar to the way the person lifting the water causes the water to flow through the paddle wheel.

7 Example # 1 The cell membrane separates the interior of a living cell from its surroundings. Socalled ion channels penetrate the membrane, allowing passage of materials into an out of the cell. A particular channel opens for 1.0 ms and allows passage of 1.1 X 10 singly ionized potassium ions during this time. What s the current in the channel?

8 Example # 2 How many coulombs of charge are in one ampere-hour?

9 Example # 3 A steady current of 2.5 A exists in a wire for 4.0 min. (a) How much total charge passed by a given point in the circuit during those 4.0 min? ( b ) How many electrons would this be?

10 Electric Current A battery that is disconnected from any circuit has an electric potential difference between its terminals that is called the electromotive force or emf: Remember despite its name, the emf is an electric potential, not a force. The amount of work it takes to move a charge ΔQ from one terminal to the other is:

11 Electric Current The direction of current flow from the positive terminal to the negative one was decided before it was realized that electrons are negatively charged. Therefore, current flows around a circuit in the direction a positive charge would move; electrons move the other way. However, this does not matter in most circuits.

12 Resistance and Ohm s Law Under normal circumstances, wires present some resistance to the motion of electrons. Ohm s law relates the voltage to the current: Be careful Ohm s law is not a universal law and is only useful for certain materials (which include most metallic conductors).

13 Resistance and Ohm s Law Solving for the resistance, we find The units of resistance, volts per ampere, are called ohms: Resistor symbol??

14 Practical resistors:

15 Example # 4 When a potential difference of 18 V is applied to a given wire, it conducts 0.35 A of current. What is the resistance of the wire?

16 Resistance and Ohm s Law Two wires of the same length and diameter will have different resistances if they are made of different materials. This property of a material is called the resistivity.

17 Resistance and Ohm s Law The difference between insulators, semiconductors, and conductors can be clearly seen in their resistivities:

18 Resistance and Ohm s Law In general, the resistance of materials goes up as the temperature goes up, due to thermal effects. This property can be used in thermometers. Resistivity decreases as the temperature decreases, but there is a certain class of materials called superconductors in which the resistivity drops suddenly to zero at a finite temperature, called the critical temperature T C.

19 Example # 5 Nichrome is a nickel chromium alloy used in heating applications like electric toasters, because it has a relatively high resistivity and heats up when current passes through it. Suppose you have a nichrome wire 0.20 mm in diameter and 75 cm long. ( a ) What s its resistance? ( b) Find the current when a potential difference of 120 V is connected across the wire s ends.

20 Energy and Power in Electric Circuits When a charge moves across a potential difference, its potential energy changes: Therefore, the power it takes to do this is

21 Energy and Power in Electric Circuits In materials for which Ohm s law holds, the power can also be written: This power mostly becomes heat inside the resistive material.

22 Example # 6 (Your turn) Consider a 60 W light bulb, connected to a 120 V voltage source. What is the current passing through the wire in the bulb? (A) 0.5 A (B) 1.0 A (C) 2.0 A (D) 240 A What is the resistance of the wire in the bulb? (A) 0.5 W (B) 1.0 W (C) 2.0 W (D) 240 W

23 What is the current passing through the wire in the bulb? A A A A

24 What is the resistant of the wire in the bulb? A A A A

25 Conceptual Checkpoint 21-2 A battery that produces a potential difference V is connected to a 5-W lightbulb. Later the 5-W lightbult is replaced with a 10- W lightbulb. (a) In which case does the battery supply more current? W W

26 Conceptual Checkpoint 21-2 A battery that produces a potential difference V is connected to a 5-W lightbulb. Later the 5-W lightbult is replaced with a 10- W lightbulb. (b) Which lightbulb has the greater resistance? W W

27 Example # 7 pb. # 29 a) Find the power dissipated in a 25-Ω electric heater connected to a 120- V outlet kw kw kw kw

28 Energy Use: Energy and Power in Electric Circuits When the electric company sends you a bill, your usage is quoted in kilowatt-hours (kwh). They are charging you for energy use, and kwh are a measure of energy.

29 Example # 8 Electric utilities measure energy in kilowatt-hours (kwh), where 1 kwh is the energy consumed if you use energy at the rate of 1 kw for 1 hour. If your monthly electric bill (30 days) is $100 and you pay 12.5c/kWh, what s your home s average power consumption and average current, assuming a 240-V potential difference between the wires supplying your home? Response for first question kw kw kw kw

30 Example # 8 Electric utilities measure energy in kilowatt-hours (kwh), where 1 kwh is the energy consumed if you use energy at the rate of 1 kw for 1 hour. If your monthly electric bill (30 days) is $100 and you pay 12.5c/kWh, what s your home s average power consumption and average current, assuming a 240-V potential difference between the wires supplying your home? Response for 2 nd question A A A A

31 Example # 9 Several male students in the same dorm room want to dry their hair. Having taken PHYS 1402 at UTPA, they have set their hair dryers to the low, 1000-W settings. Assuming a standard 120-V how many hair dryers can they operate simultaneously without tripping the 20-A circuit breaker? A A A A

32 Resistors in Series Resistors connected end to end are said to be in series. They can be replaced by a single equivalent resistance without changing the current in the circuit.

33 Example # 10 Two resistors, one having half the resistance of the other, are connected to a battery as shown on the board. What is the voltage across the bigger resistor? 1. A 2. B 3. C 4. D V b V b 3V b 2V b / 2 / 3 / 2 / 3

34 Example # 11 Two resistors, one having half the resistance of the other, are connected to a battery as shown on the board. What is the voltage across the bigger resistor? 1. A 2. B 3. C 4. D V b V b 3V b 2V b / 2 / 3 / 2 / 3

35 Resistors in Series Since the current through the series resistors must be the same in each, and the total potential difference is the sum of the potential differences across each resistor, we find that the equivalent resistance is:

36 Resistors in Series Since the current through the series resistors must be the same in each Total potential difference from point A to point B must be the emf of the battery ε ε = V 1 + V 2 + V 3.

37 Resistors in Series and Parallel Resistors are in parallel when they are across the same potential difference; they can again be replaced by a single equivalent resistance:

38 Resistors in Series and Parallel Using the fact that the potential difference across each resistor is the same, and the total current is the sum of the currents in each resistor, we find: Note that this equation gives you the inverse of the resistance, not the resistance itself!

39 Resistors in Series and Parallel If a circuit is more complex, start with combinations of resistors that are either purely in series or in parallel. Replace these with their equivalent resistances; as you go on you will be able to replace more and more of them.

Chapter 27. Circuits

Chapter 27. Circuits Chapter 27 Circuits 27.2: Pumping Charges: In order to produce a steady flow of charge through a resistor, one needs a charge pump, a device that by doing work on the charge carriers maintains a potential

More information

Phys102 Lecture 12 Electric Currents and Resistance

Phys102 Lecture 12 Electric Currents and Resistance Phys102 Lecture 12 Electric Currents and Resistance Key Points Ohm s Law Resistivity Electric Power Alternating Current References SFU Ed: 25-1,2,3,4,5,6,7. 6 th Ed: 18-1,2,3,4,5,6,7 25-1 The Electric

More information

16.3 Ohm s Law / Energy and Power / Electric Meters

16.3 Ohm s Law / Energy and Power / Electric Meters 16.3 Ohm s Law / Energy and Power / Electric Meters Voltage Within a battery, a chemical reaction occurs that transfers electrons from one terminal to another terminal. This potential difference across

More information

7. How long must a 100-watt light bulb be used in order to dissipate 1,000 joules of electrical energy? 1) 10 s 3) 1,000 s 2) 100 s 4) 100,000 s

7. How long must a 100-watt light bulb be used in order to dissipate 1,000 joules of electrical energy? 1) 10 s 3) 1,000 s 2) 100 s 4) 100,000 s 1. Which quantity must be the same for each component in any series circuit? 1) power 3) current 2) resistance 4) voltage 2. A student needs a 4-ohm resistor to complete a circuit. Only a large quantity

More information

Write the term that correctly completes the statement. Use each term once. ampere. electric current. resistor battery.

Write the term that correctly completes the statement. Use each term once. ampere. electric current. resistor battery. Date Period Name CHAPTER 22 Study Guide Current Electricity Vocabulary Review Write the term that correctly completes the statement. Use each term once. ampere electric current resistor battery kilowatt-hour

More information

AP Physics B Ch 18 and 19 Ohm's Law and Circuits

AP Physics B Ch 18 and 19 Ohm's Law and Circuits Name: Period: Date: AP Physics B Ch 18 and 19 Ohm's Law and Circuits MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A device that produces electricity

More information

Electric Current. Current and Voltage Difference

Electric Current. Current and Voltage Difference Current and Voltage Difference The net movement of electric charges in a single direction is an electric current. In a metal wire, or any material, electrons are in constant motion in all directions. As

More information

12.7 Power in Electric Circuits

12.7 Power in Electric Circuits 1.7 1.7 Power in Electric Circuits To predict the amount of energy used by an electrical device, such as a radio, stove, lights, or television, we first need to know the amount of time the device will

More information

CHAPTER 19 DC Circuits Units

CHAPTER 19 DC Circuits Units CHAPTER 19 DC Circuits Units EMF and Terminal Voltage Resistors in Series and in Parallel Kirchhoff s Rules EMFs in Series and in Parallel; Charging a Battery Circuits Containing Capacitors in Series and

More information

Electrical power. Objectives. Assessment. Assessment. Equations. Physics terms 5/27/14

Electrical power. Objectives. Assessment. Assessment. Equations. Physics terms 5/27/14 Electrical power Objectives Use the equation for electrical power to solve circuit problems. Understand basic concepts for home electricity usage and wiring. Calculate the power used by electric circuit

More information

Chapter 26 DC Circuits

Chapter 26 DC Circuits Chapter 26 DC Circuits Electric circuit needs battery or generator to produce current these are called sources of emf. Battery is a nearly constant voltage source, but does have a small internal resistance,

More information

Chapter 26 DC Circuits. Copyright 2009 Pearson Education, Inc.

Chapter 26 DC Circuits. Copyright 2009 Pearson Education, Inc. Chapter 26 DC Circuits 26-1 EMF and Terminal Voltage Electric circuit needs battery or generator to produce current these are called sources of emf. Battery is a nearly constant voltage source, but does

More information

Circuits-Circuit Analysis

Circuits-Circuit Analysis Base your answers to questions 1 through 3 on the information and diagram below. 4. A 9-volt battery is connected to a 4-ohm resistor and a 5-ohm resistor as shown in the diagram below. A 3.0-ohm resistor,

More information

10/23/2016. Circuit Diagrams. Circuit Diagrams. Circuit Elements

10/23/2016. Circuit Diagrams. Circuit Diagrams. Circuit Elements Circuit Diagrams The top figure shows a literal picture of a resistor and a capacitor connected by wires to a battery. The bottom figure is a circuit diagram of the same circuit. A circuit diagram is a

More information

Conceptual Physics Electricity and Circuits Practice Exam 2011

Conceptual Physics Electricity and Circuits Practice Exam 2011 Name: Class: Date: Conceptual Physics Electricity and Circuits Practice Exam 2011 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. In order to form an electric

More information

Period 11 Activity Sheet Solutions: Electric Current

Period 11 Activity Sheet Solutions: Electric Current Period 11 Activity Sheet Solutions: Electric Current Activity 11.1: How Can Electric Charge Do Work? Your instructor will demonstrate a Wimshurst machine, which separates electric charge. a) Describe what

More information

How is lightning similar to getting an electric shock when you reach for a metal door knob?

How is lightning similar to getting an electric shock when you reach for a metal door knob? How is lightning similar to getting an electric shock when you reach for a metal door knob? Electricity Electric charges are from protons, which are positive (+) and electrons, which are negative (-).

More information

Chapter: Electricity

Chapter: Electricity Chapter 13 Table of Contents Chapter: Electricity Section 1: Electric Charge Section 2: Electric Current Section 3: Electrical Energy 1 Electric Charge Positive and Negative Charge Atoms contain particles

More information

ELECTRIC POWER AND HOUSEHOLD CIRCUITS

ELECTRIC POWER AND HOUSEHOLD CIRCUITS ELECTRIC POWER AND HOUSEHOLD CIRCUITS HEATING EFFECT OF CURRENT Heating effect of electricity is one of the widely-used effects in the world. When electric current is passed through a conductor, it generates

More information

Name: Base your answer to the question on the information below and on your knowledge of physics.

Name: Base your answer to the question on the information below and on your knowledge of physics. Name: Figure 1 Base your answer to the question on the information below and on your knowledge of physics. A student constructed a series circuit consisting of a 12.0-volt battery, a 10.0-ohm lamp, and

More information

Welcome to the SEI presentation on the basics of electricity

Welcome to the SEI presentation on the basics of electricity Welcome to the SEI presentation on the basics of electricity 1 Electricity is a secondary energy source, meaning that it is produced from other, primary, energy sources. There are several primary sources

More information

Electric Circuits Exam

Electric Circuits Exam Electric Circuits Exam 1. The diagram below represents a lamp, a 10-volt battery, and a length of nichrome wire connected in series. 4. Which circuit has the smallest equivalent resistance? A) B) As the

More information

Physics - Chapters Task List

Physics - Chapters Task List Name Hour Physics - Chapters 34-35 Task List Task In Class? (Yes/No) Date Due Grade Lab 33.1 - Wet Cell Battery Yes */15 * Vodcast #1 Electric Circuits & Ohm s Law /21 Worksheet Concept Review #1-12, Ch

More information

Electricity Unit Review

Electricity Unit Review Science 9 Electricity Unit Review Name: General Definitions: Neutral Object Charge Separation Electrical Discharge Electric Current Amperes (amps) Voltage (volts) Voltmeter Ammeters Galvanometer Multimeter

More information

Current Electricity. GRADE 10 PHYSICAL SCIENCE Robyn Basson CAPS

Current Electricity. GRADE 10 PHYSICAL SCIENCE Robyn Basson CAPS Current Electricity GRADE 10 PHYSICAL SCIENCE Robyn Basson CAPS What is current electricity? The flow of moving charge, usually carried by moving electrons in a wire. Circuits A path in which charges continually

More information

Electrical Energy and Power Ratings

Electrical Energy and Power Ratings Section 1 - From the Wall Socket Electrical Energy and ower Ratings Batteries and the mains are sources of electrical energy. Electrical appliances can then convert this into other forms of energy. e.g.

More information

Frog's leg Batteries. Current flow of electric charge. L 26 Electricity and Magnetism [3] Batteries use chemical energy to produce electricity

Frog's leg Batteries. Current flow of electric charge. L 26 Electricity and Magnetism [3] Batteries use chemical energy to produce electricity L 26 Electricity and Magnetism [3] Electric circuits what conducts electricity what doesn t conduct electricity Current voltage and resistance Ohm s Law Heat in a resistor power loss Making simple circuit

More information

Chapter 28. Direct Current Circuits

Chapter 28. Direct Current Circuits Chapter 28 Direct Current Circuits Direct Current When the current in a circuit has a constant magnitude and direction, the current is called direct current Because the potential difference between the

More information

Chapter 21 Practical Electricity

Chapter 21 Practical Electricity Chapter 21 Practical Electricity (A) Electrical Power 1. State four applications of the heating effect of electricity. Home: o Used in electric kettles o Used in electric irons o Used in water heaters

More information

HOW IS ELECTRICITY PRODUCED?

HOW IS ELECTRICITY PRODUCED? ELECTRICITY HOW IS ELECTRICITY PRODUCED? All electricity is produced from other sources of energy. Hydroelectricity is produced from the stored energy of water held back by a dam. As the water runs downhill

More information

11.1 CURRENT ELECTRICITY. Electrochemical Cells (the energy source) pg Wet Cell. Dry Cell. Positive. Terminal. Negative.

11.1 CURRENT ELECTRICITY. Electrochemical Cells (the energy source) pg Wet Cell. Dry Cell. Positive. Terminal. Negative. Date: SNC1D: Electricity 11.1 CURRENT ELECTRICITY Define: CIRCUIT: path that electrons follow. CURRENT ELECTRICITY: continuous flow of electrons in a circuit LOAD: device that converts electrical energy

More information

Chapter 29 Electromagnetic Induction

Chapter 29 Electromagnetic Induction Chapter 29 Electromagnetic Induction Lecture by Dr. Hebin Li Goals of Chapter 29 To examine experimental evidence that a changing magnetic field induces an emf To learn how Faraday s law relates the induced

More information

Class X Chapter 09 Electrical Power and Household circuits Physics

Class X Chapter 09 Electrical Power and Household circuits Physics EXERCISE- 9 (A) Question 1: Write an expression for the electrical energy spent in flow of current through an electrical appliance in terms of current, resistance and time. Solution 1: Electrical energy,

More information

JSUNIL TUTORIAL PUNJABI COLONY GALI 01

JSUNIL TUTORIAL PUNJABI COLONY GALI 01 10 th Electricity Numerical 1. The current passing through a room heater has been halved. What will happen to the heat produced by it? 2. An electric iron of resistance 20 ohm draws a current of 5 amperes.

More information

physicspp.com Lester Lefkowitz/CORBIS

physicspp.com Lester Lefkowitz/CORBIS What You ll Learn You will explain energy transfer in circuits. You will solve problems involving current, potential difference, and resistance. You will diagram simple electric circuits. Why t s mportant

More information

Chapter Assessment Use with Chapter 22.

Chapter Assessment Use with Chapter 22. Date Period 22 Use with Chapter 22. Current Electricity Understanding Concepts Part A Use each of the following terms once to complete the statements below. ampere electric current potential difference

More information

Laboratory 5: Electric Circuits Prelab

Laboratory 5: Electric Circuits Prelab Phys 132L Fall 2018 Laboratory 5: Electric Circuits Prelab 1 Current and moving charges Atypical currentinanelectronic devicemightbe5.0 10 3 A.Determinethenumber of electrons that pass through the device

More information

Chapter 22 Current and Resistance

Chapter 22 Current and Resistance Chapter 22 Current and Resistance Chapter Goal: To learn how and why charge moves through a conductor as what we call a current. Slide 22-1 Chapter 22 Preview Looking Ahead Text: p. 702 Slide 22-2 Electric

More information

Flashlights. Flashlights 2. Flashlights 4. Flashlights 3. Flashlights 5. Flashlights 6

Flashlights. Flashlights 2. Flashlights 4. Flashlights 3. Flashlights 5. Flashlights 6 Flashlights 1 Flashlights 2 Observations about Flashlights Flashlights You turn them on and off with switches Brighter flashlights usually have more batteries Flashlights grow dimmer as their batteries

More information

Electricity Notes 3. Objectives

Electricity Notes 3. Objectives Electricity Notes 3 Objectives Series Circuit There is only one path for the current to travel. bulbs connected in series; when one goes out, they all go out. As you add more bulbs, the brightness of the

More information

Electricity. Chapter 20

Electricity. Chapter 20 Electricity Chapter 20 Types of electric charge Protons + charge Electrons - charge SI unit of electric charge is the coulomb (C) Interactions between charges Like charges repel Opposite charges attract

More information

Motional EMF. F = qvb

Motional EMF. F = qvb Motional EMF When a conducting rod moves through a constant magnetic field, a voltage is induced in the rod. This special case of electromagnetic induction arises as a result of the magnetic force that

More information

L E A R N I N G O U T C O M E S

L E A R N I N G O U T C O M E S L E A R N I N G O U T C O M E S What is charge? How does a charge form? Electricity What is an electric current? Y E A R 1 0 C H A P T E R 1 2 What are conductors, insulators and semiconductors? How does

More information

Batteries n Bulbs: Voltage, Current and Resistance (8/6/15) (approx. 2h)

Batteries n Bulbs: Voltage, Current and Resistance (8/6/15) (approx. 2h) Batteries n Bulbs: Voltage, Current and Resistance (8/6/15) (approx. 2h) Introduction A simple electric circuit can be made from a voltage source (batteries), wires through which current flows and a resistance,

More information

Ordinary Level Physics SOLUTIONS: EFFECTS OF AN ELECTRIC CURRENT

Ordinary Level Physics SOLUTIONS: EFFECTS OF AN ELECTRIC CURRENT Ordinary Level Physics SOLUTIONS: EFFECTS OF AN ELECTRIC CURRENT Safety Features and kilowatt hours The unit of energy is called the kilowatt hour One kilowatt hour is the amount of energy used by a 1000

More information

PHY152H1S Practical 3: Introduction to Circuits

PHY152H1S Practical 3: Introduction to Circuits PHY152H1S Practical 3: Introduction to Circuits Don t forget: List the NAMES of all participants on the first page of each day s write-up. Note if any participants arrived late or left early. Put the DATE

More information

More Complex Circuit

More Complex Circuit Series and Parallel Circuits Circuits usually include three components. One is a source of voltage difference that can be provided by a battery or an electrical outlet. Another is one or more devices that

More information

ELECTRICITY & MAGNETISM - EXAMINATION QUESTIONS (4)

ELECTRICITY & MAGNETISM - EXAMINATION QUESTIONS (4) ELECTRICITY & MAGNETISM - EXAMINATION QUESTIONS (4) 1. Which two electrical quantities are measured in volts? A current and e.m.f. B current and resistance C e.m.f. and potential difference D potential

More information

8.2 Electric Circuits and Electrical Power

8.2 Electric Circuits and Electrical Power 8.2 Electric Circuits and Electrical Power Every electrical device uses current to carry energy and voltage to push the current. How are electrical devices designed? What types of parts are used in an

More information

Electricity Electric Current current. ampere. Sources of Current

Electricity Electric Current current. ampere. Sources of Current Electricity The basis for the study of electricity begins with the electron. It is a small, negatively charged particle located outside the nucleus in all atoms. The nucleus of the atom is positively charged

More information

PHY132 Practicals Week 5 Student Guide

PHY132 Practicals Week 5 Student Guide PHY132 Practicals Week 5 Student Guide Concepts of this Module Introducing current and voltage Simple circuits Circuit diagrams Background When water flows through a garden hose, we can characterize the

More information

Electromagnetic Induction, Faraday s Experiment

Electromagnetic Induction, Faraday s Experiment Electromagnetic Induction, Faraday s Experiment A current can be produced by a changing magnetic field. First shown in an experiment by Michael Faraday A primary coil is connected to a battery. A secondary

More information

Current & Resistance. Electric Fish. Electric eel Torpedo ray. Dipole Potential

Current & Resistance. Electric Fish. Electric eel Torpedo ray. Dipole Potential Current & Resistance Current is the flow of charge. Such a flow is produced by a potential difference. The current depends on the potential difference and the resistance. The resistance is a property of

More information

Grade 11 Physical Science. ELECTRIC CIRCUITS - Sutherland High School-

Grade 11 Physical Science. ELECTRIC CIRCUITS - Sutherland High School- Grade 11 Physical Science ELECTRIC CIRCUITS - Sutherland High School- What you should know already CURRENT ELECTRICITY Moving charge carried by moving electrons in a wire. CIRCUITS 1 3 Components of a

More information

COPYRIGHTED MATERIAL SYSTEM OVERVIEW, TERMINOLOGY, AND BASIC CONCEPTS CHAPTER OBJECTIVES HISTORY OF ELECTRIC POWER

COPYRIGHTED MATERIAL SYSTEM OVERVIEW, TERMINOLOGY, AND BASIC CONCEPTS CHAPTER OBJECTIVES HISTORY OF ELECTRIC POWER 1 CHAPTER OBJECTIVES SYSTEM OVERVIEW, TERMINOLOGY, AND BASIC CONCEPTS Discuss the history of electricity Present a basic overview of today s electric power system Discuss general terminology and basic

More information

Introduction to Electricity & Electrical Current

Introduction to Electricity & Electrical Current Introduction to Electricity & Electrical Current Physical Science Georgia Performance Standards: SPS10a. Investigate static electricity in terms of friction, induction, and conduction. SPS10b. Explain

More information

Chapter 19: DC Circuits

Chapter 19: DC Circuits Chapter 19: DC Circuits EMF and Terminal Voltage Resistors in Series and in Parallel Kirchhoff s Rules EMFs in Series and in Parallel; Charging a Battery Capacitors in Series and in Parallel RC Circuits

More information

POWER METER. my2010 (c)

POWER METER. my2010 (c) POWER METER ELECTRIC POWER Electric power is the rate at which electric energy is transferred by an electric circuit. The SI unit of power is the watt. When electric current flows in a circuit, it can

More information

Electromagnetic Induction Chapter Questions. 1. What is the Electromagnetic Force (EMF)? What are the units of EMF?

Electromagnetic Induction Chapter Questions. 1. What is the Electromagnetic Force (EMF)? What are the units of EMF? Electromagnetic Induction Chapter Questions 1. What is the Electromagnetic Force (EMF)? What are the units of EMF? 2. The discovery of electric currents generating an magnetic field led physicists to look

More information

Electric current is related to the voltage that produces it, and the resistance that opposes it.

Electric current is related to the voltage that produces it, and the resistance that opposes it. Electric current is related to the voltage that produces it, and the resistance that opposes it. Voltage produces a flow of charge, or current, within a conductor. The flow is restrained by the resistance

More information

INDIAN SCHOOL MUSCAT

INDIAN SCHOOL MUSCAT INDIAN SCHOOL MUSCAT Department of Physics Class:XII Physics Worksheet-3 (2018-2019) Chapter 3: Current Electricity Section A Conceptual and Application type Questions 1 Two wires of equal length, one

More information

2. Four 20-Ω resistors are connected in parallel and the combination is connected to a 20- V emf device. The current in any one of the resistors is:

2. Four 20-Ω resistors are connected in parallel and the combination is connected to a 20- V emf device. The current in any one of the resistors is: University Physics (Prof. David Flory) Chapt_27 Sunday, February 03, 2008 Page 1 Name: Date: 1. By using only two resistors, R1 and R2, a student is able to obtain resistances of 3 Ω, 4 Ω, 12 Ω, and 16

More information

34 Electric Current. Electric current is related to the voltage that produces it, and the resistance that opposes it.

34 Electric Current. Electric current is related to the voltage that produces it, and the resistance that opposes it. Electric current is related to the voltage that produces it, and the resistance that opposes it. Voltage produces a flow of charge, or current, within a conductor. The flow is restrained by the resistance

More information

Incandescent Lightbulb. Electricity passes through a tungsten (W) filament, which in turn glows white hot (4500F).

Incandescent Lightbulb. Electricity passes through a tungsten (W) filament, which in turn glows white hot (4500F). 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Incandescent Lightbulb Electricity passes through a tungsten (W) filament, which in turn glows white hot (4500F). Very inefficient: 90% of the electrical energy is lost

More information

Section 4: Voltage. The EMF, ideal voltage or open circuit voltage is defined as the energy per unit charge developed within a source.

Section 4: Voltage. The EMF, ideal voltage or open circuit voltage is defined as the energy per unit charge developed within a source. Section 4: Voltage As electrons are moved within the cell by the electrolyte, work is done on the electrons. This work is stored as potential energy in the electrons. In other words, they have the ability

More information

34.5 Electric Current: Ohm s Law OHM, OHM ON THE RANGE. Purpose. Required Equipment and Supplies. Discussion. Procedure

34.5 Electric Current: Ohm s Law OHM, OHM ON THE RANGE. Purpose. Required Equipment and Supplies. Discussion. Procedure Name Period Date CONCEPTUAL PHYSICS Experiment 34.5 Electric : Ohm s Law OHM, OHM ON THE RANGE Thanx to Dean Baird Purpose In this experiment, you will arrange a simple circuit involving a power source

More information

Circuit Basics and Components

Circuit Basics and Components Circuit Basics Electric circuits are arrangements of conductors and components that permit electrical current to flow. A circuit can be as simple as a battery and lamp or as sophisticated as a computer.

More information

Alternating Current (AC) Electricity

Alternating Current (AC) Electricity Alternating Current (AC) Electricity Alternating current or AC electricity is the type of electricity commonly used in homes and businesses throughout the world. While the flow of electrons through a wire

More information

Mandatory Experiment: Electric conduction

Mandatory Experiment: Electric conduction Name: Class: Mandatory Experiment: Electric conduction In this experiment, you will investigate how different materials affect the brightness of a bulb in a simple electric circuit. 1. Take a battery holder,

More information

Using Electricity. Summary Notes. 1. From the Wall Socket Household appliances. Earth wire and safety.

Using Electricity. Summary Notes. 1. From the Wall Socket Household appliances. Earth wire and safety. Using Electricity Summary Notes Section Content 1. From the Wall Socket Household appliances. Earth wire and safety. 2. Alternating and Direct Battery and transformer. Current Circuit diagrams. Current

More information

INVESTIGATION ONE: WHAT DOES A VOLTMETER DO? How Are Values of Circuit Variables Measured?

INVESTIGATION ONE: WHAT DOES A VOLTMETER DO? How Are Values of Circuit Variables Measured? How Are Values of Circuit Variables Measured? INTRODUCTION People who use electric circuits for practical purposes often need to measure quantitative values of electric pressure difference and flow rate

More information

ELECTRICAL FUNDAMENTALS

ELECTRICAL FUNDAMENTALS ELECTRICAL FUNDAMENTALS PLUG OCTOBER 27, 2016 ARINDERPAL MATHARU IDEAWORKS MOHAWK COLLEGE Introduction Goal: To provide you with the Electrical Fundamentals Early 1800s Timeline 21 ST Century Current Current

More information

Q2. The diagram shows a network of four 2 Ω resistors. The effective resistance, in Ω, between X and Y is A 0.5 B 1.2 C 1.7. D 2.

Q2. The diagram shows a network of four 2 Ω resistors. The effective resistance, in Ω, between X and Y is A 0.5 B 1.2 C 1.7. D 2. Q1. Three identical cells, each of internal resistance R, are connected in series with an external resistor of resistance R. The current in the external resistor is I. If one of the cells is reversed in

More information

CELLS AND BATTERIES Understand the general features of cells and batteries Describe the relationship between cells and batteries. Describe the basic

CELLS AND BATTERIES Understand the general features of cells and batteries Describe the relationship between cells and batteries. Describe the basic Cell & Batteries CELLS AND BATTERIES Understand the general features of cells and batteries Describe the relationship between cells and batteries. Describe the basic operation of a battery. Compare between

More information

Chapter 23 Magnetic Flux and Faraday s Law of Induction

Chapter 23 Magnetic Flux and Faraday s Law of Induction Chapter 23 Magnetic Flux and Faraday s Law of Induction Units of Chapter 23 Induced Electromotive Force Magnetic Flux Faraday s Law of Induction Lenz s Law Mechanical Work and Electrical Energy Generators

More information

Section 3 Electric Circuits

Section 3 Electric Circuits Section 3 Electric Circuits As You Read What You'll Learn Explain how voltage, current, and resistance are related in an electric circuit. Investigate the difference between series and parallel circuits.

More information

PHYS 1444 Section 004. Lecture #18. Induction of EMF. Electric Generators DC Generator Eddy Currents Transformer. Monday, Apr. 9, Dr.

PHYS 1444 Section 004. Lecture #18. Induction of EMF. Electric Generators DC Generator Eddy Currents Transformer. Monday, Apr. 9, Dr. PHYS 1444 Section 004 Induction of EMF Lecture #18 Monday, April 9, 2012 Dr. Electric Generators DC Generator Eddy Currents Transformer Today s homework is #11, due 10pm, Tuesday, Apr. 17!! 1 Announcements

More information

Chapter 19: Direct Current Circuits

Chapter 19: Direct Current Circuits Chapter 19: Direct Current Circuits In this chapter we will explore circuits with batteries, resistors, and capacitors In this course, we will only consider: Direct current circuit where the current is

More information

Chapter 3. ECE Tools and Concepts

Chapter 3. ECE Tools and Concepts Chapter 3 ECE Tools and Concepts 31 CHAPTER 3. ECE TOOLS AND CONCEPTS 3.1 Section Overview This section has four exercises. Each exercise uses a prototyping board for building the circuits. Understanding

More information

A direct current (DC) circuit. L 26 Electricity and Magnetism [4] Alternating Current (AC) Direct Current DC. AC power

A direct current (DC) circuit. L 26 Electricity and Magnetism [4] Alternating Current (AC) Direct Current DC. AC power L 26 Electricity and Magnetism [4] A direct current (DC) circuit simple electrical circuits direct current DC Alternating current (AC) vs direct current (DC) electric power distribution household electricity

More information

TECHNICAL TERMS AND ABBREVIATIONS

TECHNICAL TERMS AND ABBREVIATIONS THIRD REVISED SHEET NO. 3.1 CANCELS SECOND REVISED SHEET NO. 3.1 TECHNICAL TERMS AND ABBREVIATIONS ALTERNATING CURRENT (A-C): AMPERE: BASE RATES: BRITISH THERMAL UNIT (BTU): CAPACITOR or CAPACITANCE: CAPACITY

More information

V=I R P=V I P=I 2 R. E=P t V 2 R

V=I R P=V I P=I 2 R. E=P t V 2 R Circuit Concepts Learners should be able to: (a) draw, communicate and analyse circuits using standard circuit symbols using standard convention (b) apply current and voltage rules in series and parallel

More information

PHYSICS MCQ (TERM-1) BOARD PAPERS

PHYSICS MCQ (TERM-1) BOARD PAPERS GRADE: 10 PHYSICS MCQ (TERM-1) BOARD PAPERS 1 The number of division in ammeter of range 2A is 10 and voltmeter of range 5 V is 20. When the switch of the circuit given below is closed, ammeter reading

More information

Electricity concepts teacher backgrounder

Electricity concepts teacher backgrounder Electricity concepts teacher backgrounder What is electricity, where does it come from and what do we use it for? Scientifically, electricity is the movement of electrons from one atom to another. This

More information

Parts of an atom. Protons (P + ) Electrons (e - ) Neutrons. Have a positive electric charge. Have a negative electric charge

Parts of an atom. Protons (P + ) Electrons (e - ) Neutrons. Have a positive electric charge. Have a negative electric charge Electricity Parts of an atom Protons (P + ) Have a positive electric charge Electrons (e - ) Have a negative electric charge Neutrons Are neutral Have no charge Electric Charge In most atoms, the charges

More information

A direct current (DC) circuit. Alternating Current (AC) Direct Current DC. AC current. L 27 Electricity and Magnetism [4]

A direct current (DC) circuit. Alternating Current (AC) Direct Current DC. AC current. L 27 Electricity and Magnetism [4] L 27 Electricity and Magnetism [4] A direct current (DC) circuit simple electrical circuits direct current DC Alternating current (AC) vs direct current (DC) electric power distribution household electricity

More information

Review: Magnetic Flux, EMF

Review: Magnetic Flux, EMF Announcements Professor Reitze taking over for the rest of the semester Occasional classes by Professor Kumar WebAssign HW Set 7 due the Friday Problems cover material from Chapters 20 and 21 Tea and Cookies

More information

PAPER ASSIGNMENT #1: ELECTRIC CIRCUITS Due at the beginning of class Saturday, February 9, 2008

PAPER ASSIGNMENT #1: ELECTRIC CIRCUITS Due at the beginning of class Saturday, February 9, 2008 PHYS 591 - Foundations of Science II By Richard Matthews PAPER ASSIGNMENT #1: ELECTRIC CIRCUITS Due at the beginning of class Saturday, February 9, 2008 Part I; Outline of the important elements of the

More information

Lab 3 : Electric Potentials

Lab 3 : Electric Potentials Lab 3 : Electric Potentials INTRODUCTION: When a point charge is in an electric field a force is exerted on the particle. If the particle moves then the electrical work done is W=F x. In general, W = dw

More information

Science Olympiad Shock Value ~ Basic Circuits and Schematics

Science Olympiad Shock Value ~ Basic Circuits and Schematics Science Olympiad Shock Value ~ Basic Circuits and Schematics Use a single D battery, a single bare wire and a light bulb. Find four different ways to light the light bulb using only a battery, one wire

More information

Electrical Connections

Electrical Connections Electrical Connections TABLE OF CONTENTS ABOUT DELTA SCIENCE MODULES Program Introduction................... iii Teacher s Guide..................... iv Delta Science Readers............... vi Equipment

More information

Electric Circuits. Say Thanks to the Authors Click (No sign in required)

Electric Circuits. Say Thanks to the Authors Click   (No sign in required) Electric Circuits Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) To access a customizable version of this book, as well as other interactive content, visit www.ck12.org

More information

Adapted from presentation developed by Scott Fausneaucht

Adapted from presentation developed by Scott Fausneaucht Adapted from presentation developed by Scott Fausneaucht Definition of Electricity Electrical Fundamentals Generation & Transmission Transformers Fuses & Circuit Breakers Motors Motor Controls Safety Not

More information

Circuit Analysis Questions A level standard

Circuit Analysis Questions A level standard 1. (a) set of decorative lights consists of a string of lamps. Each lamp is rated at 5.0 V, 0.40 W and is connected in series to a 230 V supply. Calculate the number of lamps in the set, so that each lamp

More information

Direct-Current Circuits

Direct-Current Circuits Chapter 26 Direct-Current Circuits PowerPoint Lectures for University Physics, 14th Edition Hugh D. Young and Roger A. Freedman Lectures by Jason Harlow Learning Goals for Chapter 26 Looking forward at

More information

4 Electric Circuits. TAKE A LOOK 2. Identify Below each switch, label the circuit as a closed circuit or an open circuit.

4 Electric Circuits. TAKE A LOOK 2. Identify Below each switch, label the circuit as a closed circuit or an open circuit. CHAPTER 17 4 Electric Circuits SECTION Introduction to Electricity BEFORE YOU READ After you read this section, you should be able to answer these questions: What are the three main parts of a circuit?

More information

Electricity and Hydrogen: The energy carriers. Energy and Power for Electricity Electrical Distribution Hydrogen not a source, a carrier

Electricity and Hydrogen: The energy carriers. Energy and Power for Electricity Electrical Distribution Hydrogen not a source, a carrier Electricity and Hydrogen: The energy carriers Energy and Power for Electricity Electrical Distribution Hydrogen not a source, a carrier Unit 07 Electricity - Slide 1 Quiz The wheels of a 5000kg truck place

More information

UNIT 1. Introduction to Electricity. Introduction:

UNIT 1. Introduction to Electricity. Introduction: UNIT 1 Introduction to Electricity Introduction: This unit describes how electricity is related to basic atomic theory, how it is contained and moved, and the part magnetism plays in producing and using

More information

CHAPTER OUTLINE CHAPTER RESOURCES

CHAPTER OUTLINE CHAPTER RESOURCES Electricity NEW the BIG idea Moving s transfer energy. 5.1 5.2 Charges can move from one place to another. 5.3 Electric current is a flow of charge. Electric charge is a property of matter. Electrons have

More information

Phys102 Lecture 20/21 Electromagnetic Induction and Faraday s Law

Phys102 Lecture 20/21 Electromagnetic Induction and Faraday s Law Phys102 Lecture 20/21 Electromagnetic Induction and Faraday s Law Key Points Induced EMF Faraday s Law of Induction; Lenz s Law References SFU Ed: 29-1,2,3,4,5,6. 6 th Ed: 21-1,2,3,4,5,6,7. Induced EMF

More information