Piezoelectric Direct Drive Servovalve

Size: px
Start display at page:

Download "Piezoelectric Direct Drive Servovalve"

Transcription

1 Piezoelectric Direct Drive Servovalve Jason E. Lindler, Eric H. Anderson CSA Engineering 2565 Leghorn Street, Mountain View, California Industrial and Commercial Applications of Smart Structures Technologies San Diego, CA March 2000 Copyright 2002 Society of Photo-Optical Instrumentation Engineers. This paper was published in the Proceedings of SPIE Volume , Industrial and Commercial Applications of Smart Structures Technologies 2002, and is made available as an electronic reprint (preprint) with permission of SPIE. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.

2 SPIE Paper , Industrial and Commercial Applications of Smart Structures Technologies, San Diego, March 2002 Piezoelectric Direct Drive Servovalve Jason E. Lindler and Eric H. Anderson CSA Engineering Inc., 2565 Leghorn St., Mountain View, CA ABSTRACT A single-stage servovalve using direct piezoelectric actuator drive is described. The single-stage servovalve design offers higher bandwidth than conventional two-stage valves. It takes advantage of the high energy density in piezoelectric materials while addressing the need for internal amplification of stroke. When used alone, the valve can regulate pressure, and when used in combination with a hydraulic output device it forms part of an effective servohydraulic actuator. Development of a direct drive prototype valve is described. Discussion includes design issues related to low stroke smart material actuators such as piezoelectrics. Component and subsystem testing and results are reviewed. Electronic drive and control of the piezoelectric and overall device along with performance in the control of fluid flow is discussed. The value of the new servovalve is shown in the combination of the valve with a hydraulic output device. Data are supplied for this servohydraulic actuator. The new actuator shows promise for a motion simulator application and more generally for motion control at higher bandwidth than is possible with currently available servohydraulics. INTRODUCTION While all-electric, or electromagnetic actuation is appealing for some applications, it isn t appropriate for others. For many high load systems, hydraulic devices have remained a necessary and desirable means of actuation. The control of these hydraulic actuators is commonly effected through the application of various types of servovalves. In most servovalves a mechanical or electrical signal is utilized to direct the position of a valve spool within a valve housing. The position of the valve spool determines the flow path(s) between valve ports to direct flow to the ports of a hydraulic actuator, thus determining the direction of force application and motion of the actuator. The need for higher frequency, more precise control of systems and devices has led to ever improving servovalves and other components. Servovalves have evolved from relatively slow acting two-stage devices, where the first stage consists of a pilot valve, to faster versions of the same architecture. The pilot valve is controlled by some low power means such as human force input or a low power electrical signal, and shuttles a pressurized fluid or gas supply in a pilot system which thereby displaces a valve spool in a larger flow, power control valve. The power control valve in turn determines the flow direction to a high force, large displacement actuator. The compliance and inertia in the hardware used for pilot valve operation and the compliance and fluid inertia in the pilot fluid system combine to significantly reduce the frequency response of the power control valve to the original system command input. The need for faster acting systems has led to the development of various single-stage control valves where a single, directly controlled system develops the force necessary to shuttle the valve spool in the flow control valve governing the high force actuator. This approach simplifies the internal component arrangement while retaining the fundamental multi-way action of the spool valve. One area of interest that motivated the development of the single-stage device described here was flight motion simulation. 1 A higher bandwidth servovalve would enhance overall simulator performance bandwidth, particularly in the case of small simulators. 2 The same approach could be used in pneumatic servovalves, but the immediate interest is in hydraulic systems. CONVENTIONAL TWO-STAGE SERVOVALVES Design and operation of servovalves is fairly well understood. 3,4 As described above, a typical servovalve consists of two stages, in which the first is an electromagnetic torque actuator, and the second is a clever multi-way fluid valve. In hydraulic control valves, mechanical motion of a spool directs fluid power between ports located on one side of the valve. In four-way valve operation, a manifold routes flow from a pressure port and a return port to the spool inside of a 1

3 sleeve. In addition, the manifold routes flow from two control ports, which normally are connected to an actuator, to the spool inside of the sleeve. In the center position, flow edges on the spool block the pressure and return ports from two control ports. Any displacement of the spool allows fluid flow from the pressure port to one of the two control ports. At the same time, the spool displacement allows fluid flow from the other control port to the return port. When the control ports are connected to sides of a hydraulic actuator, fluid flowing into one control port and out of the other control port creates motion of the actuator output shaft. Motion of the spool in the opposite direction reverses the direction of the flow and subsequently the direction of motion of the actuator shaft. The displacement of the spool relative to the sleeve regulates the amount of flow going into and out of the control ports. This proportional control of the fluid flow can be used to command a hydraulic actuator. Figure 1: Hydraulic circuit of a two-stage servovalve with pump supply and mass load In these standard hydraulic control valves, or servovalves, a low power electrical signal is hydraulically amplified to control the position of the spool. For the hydraulic amplification, an electromagnetic torque motor connects to a deflection tube that balances the pressure drop between two nozzles This action is shown schematically in Figure 1 where an external pump supplies pressurized flow. Application of current through coils in the torque motor angles the deflection tube, which then blocks flow from one of the nozzles. Blocking the flow through a nozzle creates a pressure differential that shifts the location of the spool in the sleeve. The location of the spool within the sleeve then directs the flow of hydraulic fluid. As pressurized fluid is supplied to one side, and removed from the other side of a hydraulic output device or actuator, the device moves and drives any attached load. DIRECT DRIVE SERVOVALVES While hydraulic amplification allows for low power electrical command signals, the response time of this amplification limits the bandwidth of the resultant actuation systems. To overcome the bandwidth limitation of hydraulic amplification, one possible approach is electrical amplification of the command signal. With electrical amplification of the command signal, an electronic amplifier and electromagnetic motor directly control the position of the spool. This is a viable approach that has been realized in specialized products. However, the weak force and energy density of electromagnetic motors limit the force and bandwidth of these direct drive systems for a given device size. High energy density piezoelectric materials present a possible alternative to electromagnetic actuation to further improve the response time of the spool in direct drive systems. A direct drive valve (Figure 2) is a device in which there is no hydraulic amplification of the electrical command signal. Instead of an electrically driven torque motor that allows flow to move the spool, the electrically driven actuator itself drives the spool. While the direct drive of the spool presents a solution to the problem of bandwidth, a number of other design challenges arise with direct drive servovalves. The force to accelerate the spool mass and flow forces on the spool can be high and thus require physically large electromagnetic actuation. Another important issue in direct drive devices is that the actuator must deliver the full motion of the spool, i.e. the spool lift must be large enough to allow significant flow of high-pressure fluid. 2

4 Insufficient spool motion does not allow fluid movement through openings and also results in a number of tolerance issues. Generally, spool lift is easy for an electromagnetic actuator to deliver at low frequencies. Direct drive arrangements are not necessarily well-balanced hydraulically. In hydraulically-amplified servovalves, side forces on the spool are balanced to prevent loads from creating excess wear on the spool that reduces the lifetime of the system. However, in most direct drive systems, the attachment point to the spool results in unequal fluid pressure being applied to the spool. As a result, careful design of the attachment point is required to prevent transmission of side loads from the mechanical drive to the spool. In addition, in the case of a power failure, the spool should return to the neutral position and not direct the hydraulic fluid. Figure 2: Hydraulic circuit of a direct drive servovalve with pump supply and mass load Direct drive servovalves do offer higher bandwidth. They also provide other advantages over conventional servovalves. First, typical hydraulic servovalves require careful balancing of the nozzle bridge amplifier to prevent a DC offset in the hydraulic command signal. However, directly driving the spool with electrical amplification allows for a simpler electrical balancing of the spool. Furthermore, directly driving the spool with feedback allows for advance positioning control strategies to improve the system s response time and linear performance. These advantages along with higher bandwidth provided the motivation for work on a direct drive piezoelectric servovalve. PIEZOELECTRIC MATERIALS The piezoelectric effect is exploited in numerous transducers. In the basic effect, a piezoelectric element generates a charge when it is subjected to an input mechanical stress. In the converse effect, the element develops an output mechanical deformation when an electric field is applied. For this application, the piezoelectric behaves as an actuator, although enhanced control may be possible if the element were to be used simultaneously as an actuator and sensor. Piezoelectrics were selected to be the primary actuator material for several reasons. First, these materials have high power density high power output per unit volume or mass. Servovalves should be compact to allow proper integration into larger control system hardware. A high bandwidth valve of the same size as conventional two-stage valves is desirable. Second, the materials are stiff, increasing the likelihood that the internal dynamics will not severely limit overall device bandwidth. Third, these materials respond well at high frequencies, far beyond what is required for this application. Finally, piezoelectric actuators are available in geometries that are readily integrated into other devices. Piezoelectrics produce a more linear response than electrostrictives or magnetostrictives. They provide a much smaller overall size than magnetostrictives. However, like other stiff smart materials, piezoelectrics do not produce large strokes. They are typically capable of only 0.1% strain, perhaps 0.15% for certain compositions. This constraint, and the lack of off-the-shelf high voltage, high current amplifiers, together impose the greatest potential limits on the use of piezoelectrics in many applications. In this area, advances in single crystal materials offer hope for higher strain and enhanced device performance. But for the demonstration device here, mechanical amplification was necessary. 3

5 DIRECT DRIVE PIEZOELECTRIC VALVE The piezoelectric-based valve is designed as a direct replacement for a conventional servovalve such as the ones described by ISO Therefore, one constraint on the design was that standard fluid porting be used. This fluid porting gave the valve a geometry that was similar in several overall dimensions to conventional two-stage valves. The design was completed using knowledge of piezoelectric actuator capabilities and consideration of applicable performance trades in traditional servovalve design including the total required spool motion. Figure 3: Piezoelectric direct drive servovalve solid model with cross-section The external view of the servovalve is shown on the left in Figure 3. A piezoelectric actuator replaces the electromagnetic torque motor and the hydraulic amplifier. In addition, there is no mechanical feedback in the piezoelectric servovalve. The cross-section on the right in Figure 3 shows detail of the interior. The piezoelectric stack in the upper section changes length and drives the vertical element on the right of the assembly. This lever element effectively amplifies the piezoelectric motion, trading force for a five times or greater increase in stroke. With a nominal stroke of up to 60 µm, the piezoelectric stack will move the spool by up to 0.3 mm. Up to twice as much spool motion may be desirable for large flows, but this level proved adequate for prototype demonstration. The pivot point of the lever arm seals the hydraulic fluid from the piezoelectric material, and the perpendicular location of the lever arm also prevents fluid pressure from loading the spool in the axial direction and causing an offset from the neutral spool position. A sleeve positioning screw allows for the axial positioning of the spool within the sleeve by compressing the sleeve preload spring. Careful attention must be made not to side load the spool, which could create excess wear on the spool and sleeve (Figure 4). Figure 4: Piezoelectric stack actuator (left) and spool and sleeve of the direct drive valve (right) 4

6 The piezoelectric stack (Figure 4) uses a special high strain PLZT composition from Rockwell Scientific. With dimensions mm, and a room temperature capacitance of approximately 3.5 µf, the transducer presents a large reactive load that is difficult to drive with standard electronic amplifiers. Fortunately, an arbitrary drive waveform is not necessarily required. Periodic drive signals are usually adequate for most servohydraulic applications. Figure 5: The prototype piezoelectric servovalve Electronic control via feedback can be achieved by locating feedback sensors on the left end cap (Figure 3) to monitor the state of the spool. Furthermore, another servovalve configuration could include integrated electronics for local feedback control of the device. In the present research these sensing and control additions were not realized in hardware. EXPERIMENTAL RESULTS Two groups of tests were performed on the new actuator combination. First, the piezoelectric valve was characterized by itself in order to determine its dynamic characteristics. Second, the valve was used to control flow to verify that it could perform as a controllable valve, including when it was connected to a hydraulic output device. Figure 6: Frequency response of the piezoelectric valve driven at low amplitude with a broadband input 5

7 The mechanically amplified piezoelectric response was measured using eddy current displacement sensors to determine the bandwidth of the piezohydraulic servovalve. These measurements were done with the valve end cap removed and the sensor sighting directly on the end of the spool. The dynamics were characterized in the absence of hydraulic fluid. A typical response plot is shown in Figure 6. The most distinctive feature of the plot is a very lightly damped mode at about 340 Hz. This is the first device mode involving the spool bouncing on the piezoelectric stack and lever compliance. The extremely low level of damping (Q ~300) is expected to increase significantly once the spool is inside the sleeve and surrounded by fluid. A low frequency amplification of about 7:1 was achieved. With the stack displacement of 50 µm, the spool motion is about.350 µm. As a conventional servovalve may have about 500 µm of motion, the piezoelectric valve s smaller displacement reduces the rated flow of the valve. A resonant frequency of about 500 Hz was hoped for in this first design. However, the additional compliance in the attachments between the piezoelectric stack and the lever, and between the lever and spool acted to reduce this frequency. Future designs would improve these interfaces. These designs could also make use of a slightly longer stack and the same lever ratio for larger overall valve stroke, or a smaller lever ratio for the same stroke and possibly higher natural frequency. A resonant frequency between 500 and 1000 Hz is necessary to offer significant advantage over existing two-stage valves. The piezohydraulic servovalve was then tested with fluid flowing through the valve. In the test setup, a variable orifice can be opened or closed to present a load (Figure 7). Pressure can be measured on both sides of the active valve. This test setup offers many advantages for characterizing a valve. Most of the advantages result from the fact that the control ports are connected to an extremely small volume. In a hydraulic actuator with large volumes of fluid, the performance of the actuator depends on the valve and the hydraulic pump. As a result, for certain frequencies the performance of the actuator is limited by the lack of flow and not the servovalve. However, with the test setup, the small volumes connected to the control ports prevent flow from limiting the response of the pressure. As a result, only the bandwidth of the valve limits the response time of the pressure to either side of the control ports. Figure 7: Test setup for measurement of valve response in control of pressure across variable impedance load To test the performance of the valve, the piezoelectric was driven with a square wave voltage. Pressure was measured at ports on either side of the valve. Results for four different drive frequencies are shown in Figure 8. Note that the valve drive is strictly open loop. There is neither a differential pressure loop, nor a position feedback loop closed. The quick rise time of the pressure demonstrates the fundamentally fast response time of the piezoelectric servovalve. The oscillations present in each response, but most apparent in the lower right plot, in which the square wave input is at 25 Hz, are due to the 340 Hz mode. The damping in the mode has increased significantly from the response measured 6

8 without fluid present. In the system with fluid, the damping ratio is about 2%, roughly 30 times that measured in dry air. The system response could be damped further with feedback control or by increasing passive damping in the critical mode. Figure 8: Pressure response of the piezoelectric valve driven with a square wave input Figure 9: Piezoelectric servovalve integrated with custom hydraulic actuator 7

9 A demonstration servohydraulic actuator was designed (Figure 9). The actuator includes a servovalve and a custom hydraulic output piston. Note that one end of the piston is contained within the actuator. The actual stroke is larger than 0.5 inch in this engineering prototype. To save space and weight, the manifold for the valve is directly integrated into the hydraulic cylinder. Incorporating an industry standard bolt circle and port layout, the new cylinder allows for control from either a commercial servovalve or the new piezohydraulic valve. Figure 10: Testing of the new actuator driving a mass simulator For our purposes, the ultimate test of the new actuator assembly is in an arrangement that captures the essential features of a motion control simulator. Figure 10 shows such a test setup with a 10-pound mass acting as payload. From an external pump, pressure and return lines were connected to the manifold of the hydraulic actuator. A high voltage amplifier was then used to drive the piezoelectric servovalve. Testing up to 200 Hz sinusoidal excitation demonstrated the feasibility of the piezoelectric servovalve for high bandwidth applications. One of the difficulties in testing was the interaction of the servovalve with the pump. The 0.5 gallon per minute (GPM) pump was unable to supply the necessary flow to the valve to allow high displacement operation. A larger 5 GPM pump was also used. Because the servovalve operated open loop, it was difficult to carry out tests with durations of more than a few tens of seconds. Further, pressures were limited to 1000 psi because the actuator prototype was designed to support up to 1500 psi safely. Figure 11: Measurements from the combined actuator tests 8

10 Typical data from the tests is shown in Figure 11. This data was measured at low drive amplitude of V. The actuator can be driven up to 800 V. Sinusoidal motion was achieved, although the displacement amplitudes were low. The drift due to the open loop nature of the operation is not visible over these short time scales, but it was significant. Implementation of local feedback control is planned to enhance device performance. CONCLUSION The current piezoelectric valve is rated for 2 gallons per minute at 1500 psi. Modification of various O-rings and seals would allow for 3000 psi operation. Increasing the displacement of the spool would raise the maximum flow rate of the servovalve. However, achieving the increase in displacement by raising the lever arm amplification factor would reduce the bandwidth of the system. A better solution for increasing the stroke of the spool, without affecting the lever arm, is to incorporate a longer piezoelectric material into the servovalve. An alternate approach would use a higher output piezoelectric. The natural frequency of the direct drive valve limits the bandwidth of the servovalve. In the current design, more detailed manufacturing of the spool could reduce the mass of the valve by 1/3. Unfortunately, a 1/3 reduction in mass corresponds to only a 1/9 increase in the natural frequency. As a result, to raise the natural frequency of the valve it is preferable to improve the stiffness of the lever arm. Improving the attachment points and thickening the lever arm would increase the stiffness of the valve while only adding a small amount of mass. Other modifications would address internal stress concentrations at attachment points. For enhanced performance, a non-contact sensor, such as an eddy current sensor or a linear variable differential transformer (LVDT), could monitor the spool position. The sensor would allow for control strategies useful in high speed positioning of the spool. In addition, for spool position sensing, a housing should be incorporated into the servovalve to provide a space for signal conditioning close to the sensor. Finally, replacing the spool position sensor with an alternate pressure transducer would create a piezoelectric high-speed pressure control valve. The basic feasibility of a new piezoelectric servovalve was demonstrated. The new piezoelectric direct drive servovalve offers the potential for faster response compared to a traditional two-stage servovalves or even direct drive electromagnetic valves. The valve can be used for direct pressure control or as a flow controller. The servovalve and hydraulic output device comprise a servohydraulic actuator. The next generation device will incorporate several improvements to increase bandwidth and overall performance. ACKNOWLEDGEMENTS This paper reports on work conducted for the Air Force Research Laboratory under contract F C-0058, Lt. Ben Smallwood, Program Manager. The authors thank Patrick Atkins for helpful input. REFERENCES 1. J. M. Carter, New HWIL Motion System Developments, Technologies for Synthetic Environments: Hardware-inthe-Loop Testing VI, SPIE Paper , April E. Anderson et al., Image Stabilization Testbed (ISTAT Technologies for Synthetic Environments: Hardware-inthe-Loop Testing VI, SPIE Paper , April H. Merritt, Hydraulic Control Systems, John Wiley & Sons, New York NY, J. Johnson, Designer s Handbook for Electrohydraulic Servo and Proportional Systems, IDAS Engineering Inc., East Troy WI,

test with confidence HV Series TM Test Systems Hydraulic Vibration

test with confidence HV Series TM Test Systems Hydraulic Vibration test with confidence HV Series TM Test Systems Hydraulic Vibration Experience. Technology. Value. The Difference. HV Series TM. The Difference. Our philosophy is simple. Provide a system designed for optimum

More information

MECHATRONICS LAB MANUAL

MECHATRONICS LAB MANUAL MECHATRONICS LAB MANUAL T.E.(Mechanical) Sem-VI Department of Mechanical Engineering SIESGST, Nerul, Navi Mumbai LIST OF EXPERIMENTS Expt. No. Title Page No. 1. Study of basic principles of sensing and

More information

three different ways, so it is important to be aware of how flow is to be specified

three different ways, so it is important to be aware of how flow is to be specified Flow-control valves Flow-control valves include simple s to sophisticated closed-loop electrohydraulic valves that automatically adjust to variations in pressure and temperature. The purpose of flow control

More information

Mohit Law. Keywords: Machine tools, Active vibration isolation, Electro-hydraulic actuator, Design guidelines, Sensitivity analysis

Mohit Law. Keywords: Machine tools, Active vibration isolation, Electro-hydraulic actuator, Design guidelines, Sensitivity analysis College of Engineering., Pune, Maharashtra, INDIA. Design Guidelines for an Electro-Hydraulic Actuator to Isolate Machines from Vibrations Mohit Law Department of Mechanical Engineering Indian Institute

More information

Finite Element and Experimental Validation of Stiffness Analysis of Precision Feedback Spring and Flexure Tube of Jet Pipe Electrohydraulic Servovalve

Finite Element and Experimental Validation of Stiffness Analysis of Precision Feedback Spring and Flexure Tube of Jet Pipe Electrohydraulic Servovalve Finite Element and Experimental Validation of Stiffness Analysis of Precision Feedback Spring and Flexure Tube of Jet Pipe Electrohydraulic Servovalve M. Singaperumal*, Somashekhar. S. Hiremath* R. Krishna

More information

A LIGHTWEIGHT, LOW LEAKAGE PIEZOELECTRIC SERVOVALVE

A LIGHTWEIGHT, LOW LEAKAGE PIEZOELECTRIC SERVOVALVE A LIGHTWEIGHT, LOW LEAKAGE PIEZOELECTRIC SERVOVALVE PERSSON L. Johan PLUMMER Andrew BOWEN Chris Centre for Power Transmission and Motion Control, Department of Mechanical Engineering, University of Bath,

More information

DAMPING OF VIBRATION IN BELT-DRIVEN MOTION SYSTEMS USING A LAYER OF LOW-DENSITY FOAM

DAMPING OF VIBRATION IN BELT-DRIVEN MOTION SYSTEMS USING A LAYER OF LOW-DENSITY FOAM DAMPING OF VIBRATION IN BELT-DRIVEN MOTION SYSTEMS USING A LAYER OF LOW-DENSITY FOAM Kripa K. Varanasi and Samir A. Nayfeh Department of Mechanical Engineering Massachusetts Institute of Technology Cambridge,

More information

Hybrid MEMS Proportional Pneumatic Valve Project 16HS1

Hybrid MEMS Proportional Pneumatic Valve Project 16HS1 Marquette University Milwaukee School of Engineering Purdue University University of California, Merced University of Illinois, Urbana-Champaign University of Minnesota Vanderbilt University Hybrid MEMS

More information

Modeling and Optimization of a Linear Electromagnetic Piston Pump

Modeling and Optimization of a Linear Electromagnetic Piston Pump Fluid Power Innovation & Research Conference Minneapolis, MN October 10 12, 2016 ing and Optimization of a Linear Electromagnetic Piston Pump Paul Hogan, MS Student Mechanical Engineering, University of

More information

Reduction of Self Induced Vibration in Rotary Stirling Cycle Coolers

Reduction of Self Induced Vibration in Rotary Stirling Cycle Coolers Reduction of Self Induced Vibration in Rotary Stirling Cycle Coolers U. Bin-Nun FLIR Systems Inc. Boston, MA 01862 ABSTRACT Cryocooler self induced vibration is a major consideration in the design of IR

More information

Linear Shaft Motors in Parallel Applications

Linear Shaft Motors in Parallel Applications Linear Shaft Motors in Parallel Applications Nippon Pulse s Linear Shaft Motor (LSM) has been successfully used in parallel motor applications. Parallel applications are ones in which there are two or

More information

An Introduction to Fatigue Testing Equipment, Test Setup & Data Collection

An Introduction to Fatigue Testing Equipment, Test Setup & Data Collection An Introduction to Fatigue Testing Equipment, Test Setup & Data Collection Lisa Goodwin Servohydraulic Sales Specialist & Market Manager - Instron The difference is measurable 1 Themes.. Certainty of Measurement

More information

Air Bearing Shaker for Precision Calibration of Accelerometers

Air Bearing Shaker for Precision Calibration of Accelerometers Air Bearing Shaker for Precision Calibration of Accelerometers NOMENCLATURE Jeffrey Dosch PCB Piezotronics 3425 Walden Avenue, Depew NY DUT Device Under Test S B DUT sensitivity to magnetic field [(m/sec

More information

A Simple and Scalable Force Actuator

A Simple and Scalable Force Actuator A Simple and Scalable Force Actuator Eduardo Torres-Jara and Jessica Banks Computer Science and Artificial Intelligence Laboratory Massachusetts Institute of Technology 200 Technology Square, Cambridge,

More information

MCV102A. Pressure Control Servovalve DESCRIPTION FEATURES ORDERING INFORMATION. BLN Issued: October 1998

MCV102A. Pressure Control Servovalve DESCRIPTION FEATURES ORDERING INFORMATION. BLN Issued: October 1998 MCV102A Pressure Control Servovalve Issued: October 1998 DESCRIPTION The MCV102A Pressure Control Servovalve (PCS) is a twostage, fourway, closed loop electrohydraulic servovalve that provides an output

More information

FEASIBILITY STYDY OF CHAIN DRIVE IN WATER HYDRAULIC ROTARY JOINT

FEASIBILITY STYDY OF CHAIN DRIVE IN WATER HYDRAULIC ROTARY JOINT FEASIBILITY STYDY OF CHAIN DRIVE IN WATER HYDRAULIC ROTARY JOINT Antti MAKELA, Jouni MATTILA, Mikko SIUKO, Matti VILENIUS Institute of Hydraulics and Automation, Tampere University of Technology P.O.Box

More information

Modeling and Optimization of a Linear Electromagnetic Piston Pump

Modeling and Optimization of a Linear Electromagnetic Piston Pump Fluid Power Innovation & Research Conference Minneapolis, MN October 10 12, 2016 ing and Optimization of a Linear Electromagnetic Piston Pump Paul Hogan, MS Student Mechanical Engineering, University of

More information

CHAPTER 6 MECHANICAL SHOCK TESTS ON DIP-PCB ASSEMBLY

CHAPTER 6 MECHANICAL SHOCK TESTS ON DIP-PCB ASSEMBLY 135 CHAPTER 6 MECHANICAL SHOCK TESTS ON DIP-PCB ASSEMBLY 6.1 INTRODUCTION Shock is often defined as a rapid transfer of energy to a mechanical system, which results in a significant increase in the stress,

More information

LECTURE 27 SERVO VALVES FREQUENTLY ASKED QUESTIONS

LECTURE 27 SERVO VALVES FREQUENTLY ASKED QUESTIONS LECTURE 27 SERVO VALVES FREQUENTLY ASKED QUESTIONS 1. Define a servo valve Servo valve is a programmable orifice. Servo valve is an automatic device for controlling large amount of power by means of very

More information

Appendix A: Motion Control Theory

Appendix A: Motion Control Theory Appendix A: Motion Control Theory Objectives The objectives for this appendix are as follows: Learn about valve step response. Show examples and terminology related to valve and system damping. Gain an

More information

Load Cell for Manually Operated Presses Model 8451

Load Cell for Manually Operated Presses Model 8451 w Technical Product Information Load Cell for Manually Operated Presses 1. Introduction... 2 2. Preparing for use... 2 2.1 Unpacking... 2 2.2 Using the instrument for the first time... 2 2.3 Grounding

More information

Hydraulic Proportional and Closed Loop System Design

Hydraulic Proportional and Closed Loop System Design Hydraulic Proportional and Closed Loop System Design Neal Hanson Product Manager Industrial Valves and Electrohydraulics 1 Electrohydraulics Contents 1. Electrohydraulic Principles 2. Proportional Valve

More information

Development of a low voltage Dielectric Electro-Active Polymer actuator

Development of a low voltage Dielectric Electro-Active Polymer actuator Development of a low voltage Dielectric Electro-Active Polymer actuator C. Mangeot Noliac A/S, Kvistgaard, Denmark 1.1 Abstract: In the present paper, a low-voltage Dielectric Electro-active Polymer (DEAP)

More information

Electromagnetic Fully Flexible Valve Actuator

Electromagnetic Fully Flexible Valve Actuator Electromagnetic Fully Flexible Valve Actuator A traditional cam drive train, shown in Figure 1, acts on the valve stems to open and close the valves. As the crankshaft drives the camshaft through gears

More information

Design Considerations for Pressure Sensing Integration

Design Considerations for Pressure Sensing Integration Design Considerations for Pressure Sensing Integration Where required, a growing number of OEM s are opting to incorporate MEMS-based pressure sensing components into portable device and equipment designs,

More information

HIGH CAPACITY TWO-STAGE PULSE TUBE

HIGH CAPACITY TWO-STAGE PULSE TUBE HIGH CAPACITY TWO-STAGE PULSE TUBE C. Jaco, T. Nguyen, D. Harvey, and E. Tward Northrop Grumman Space Technology Redondo Beach, CA, USA ABSTRACT The High Capacity Cryocooler (HCC) provides large capacity

More information

Development of a Self-latching Hold-down RElease Kinematic (SHREK)

Development of a Self-latching Hold-down RElease Kinematic (SHREK) Development of a Self-latching Hold-down RElease Kinematic (SHREK) Ruggero Cassanelli * Abstract SHREK (Self-latching Hold-down Release Kinematic), is an innovative shape memory actuated hold down and

More information

COMPARING SLOTTED vs. SLOTLESS BRUSHLESS DC MOTORS

COMPARING SLOTTED vs. SLOTLESS BRUSHLESS DC MOTORS COMPARING SLOTTED vs. SLOTLESS Authored By: Engineering Team Members Pittman Motors Slotless brushless DC motors represent a unique and compelling subset of motors within the larger category of brushless

More information

Determination of Spring Modulus for Several Types of Elastomeric Materials (O-rings) and Establishment of an Open Database For Seals*

Determination of Spring Modulus for Several Types of Elastomeric Materials (O-rings) and Establishment of an Open Database For Seals* Determination of Spring Modulus for Several Types of Elastomeric Materials (O-rings) and Establishment of an Open Database For Seals* W. M. McMurtry and G. F. Hohnstreiter Sandia National Laboratories,

More information

APS 420 ELECTRO-SEIS Long Stroke Shaker with Linear Ball Bearings Page 1 of 5

APS 420 ELECTRO-SEIS Long Stroke Shaker with Linear Ball Bearings Page 1 of 5 Long Stroke Shaker with Linear Ball Bearings Page 1 of 5 The APS 420 ELECTRO-SEIS shaker is a long stroke, electrodynamic force generator specifically designed to be used alone or in arrays for studying

More information

Chapter 2 Dynamic Analysis of a Heavy Vehicle Using Lumped Parameter Model

Chapter 2 Dynamic Analysis of a Heavy Vehicle Using Lumped Parameter Model Chapter 2 Dynamic Analysis of a Heavy Vehicle Using Lumped Parameter Model The interaction between a vehicle and the road is a very complicated dynamic process, which involves many fields such as vehicle

More information

MECHANICAL EQUIPMENT. Engineering. Theory & Practice. Vibration & Rubber Engineering Solutions

MECHANICAL EQUIPMENT. Engineering. Theory & Practice. Vibration & Rubber Engineering Solutions MECHANICAL EQUIPMENT Engineering Theory & Practice Vibration & Rubber Engineering Solutions The characteristic of an anti-vibration mounting that mainly determines its efficiency as a device for storing

More information

Hydrostatic Drive. 1. Main Pump. Hydrostatic Drive

Hydrostatic Drive. 1. Main Pump. Hydrostatic Drive Hydrostatic Drive The Hydrostatic drive is used to drive a hydraulic motor at variable speed. A bi-directional, variable displacement pump controls the direction and speed of the hydraulic motor. This

More information

3. DESCRIPTION OF SHAKING TABLE SYSTEM COMPONENTS

3. DESCRIPTION OF SHAKING TABLE SYSTEM COMPONENTS 17 3. DESCRIPTION OF SHAKING TABLE SYSTEM COMPONENTS 3.1. INTRODUCTION The earthquake simulator is a system that consists of several components which must be designed to effectively work together. Each

More information

Lecture 6. This week: Lab 13: Hydraulic Power Steering [ Lab 14: Integrated Lab (Hydraulic test bench) ]

Lecture 6. This week: Lab 13: Hydraulic Power Steering [ Lab 14: Integrated Lab (Hydraulic test bench) ] 133 Lecture 6 This week: Lab 13: Hydraulic Power Steering [ Lab 14: Integrated Lab (Hydraulic test bench) ] 4-way directional control valve; proportional valve; servo-valve Modeling / Analysis of a servo-valve

More information

Directional servo-valve of 4-way design

Directional servo-valve of 4-way design Courtesy of CM/Flodyne/Hydradyne Motion Control Hydraulic Pneumatic Electrical Mechanical (0) 426-54 www.cmafh.com Directional servo-valve of 4-way design Type 4WSE3E 32 Size 32 Component series 5X Maximum

More information

APS 113 ELECTRO-SEIS Long Stroke Shaker with Linear Ball Bearings Page 1 of 5

APS 113 ELECTRO-SEIS Long Stroke Shaker with Linear Ball Bearings Page 1 of 5 Long Stroke Shaker with Linear Ball Bearings Page 1 of 5 The ELECTRO-SEIS shaker is a long stroke, electrodynamic force generator specifically designed to be used alone or in arrays for studying dynamic

More information

Influence of Cylinder Bore Volume on Pressure Pulsations in a Hermetic Reciprocating Compressor

Influence of Cylinder Bore Volume on Pressure Pulsations in a Hermetic Reciprocating Compressor Purdue University Purdue e-pubs International Compressor Engineering Conference School of Mechanical Engineering 2014 Influence of Cylinder Bore Volume on Pressure Pulsations in a Hermetic Reciprocating

More information

Input, Control and Processing elements

Input, Control and Processing elements PNEUMATIC & HYDRAULIC SYSTEMS CHAPTER FIVE Input, Control and Processing elements Dr. Ibrahim Naimi Valves The function of valves is to control the fluid path or the pressure or the flow rate. Depending

More information

MCV106A. Hydraulic Displacment Control-PV DESCRIPTION FEATURES ORDERING INFORMATION. BLN Issued: March 1991

MCV106A. Hydraulic Displacment Control-PV DESCRIPTION FEATURES ORDERING INFORMATION. BLN Issued: March 1991 DESCRIPTION MCV106A Hydraulic Displacment Control-PV Issued: March 1991 The MCV106A Hydraulic Displacement Control (HDC) is a costeffective hydraulic pump stroke control which uses mechanical feedback

More information

CLOSED CIRCUIT HYDROSTATIC TRANSMISSION

CLOSED CIRCUIT HYDROSTATIC TRANSMISSION Energy conservation and other advantages in Mobile Equipment Through CLOSED CIRCUIT HYDROSTATIC TRANSMISSION C. Ramakantha Murthy Technical Consultant Various features/advantages of HST Hydrostatic transmissions

More information

Active vibration reduction applied to the compressor of an air-conditioning unit for trams

Active vibration reduction applied to the compressor of an air-conditioning unit for trams Active vibration reduction applied to the compressor of an air-conditioning unit for trams J. Bös, E. Janssen, M. Kauba and D. Mayer Fraunhofer Institute for Structural Durability and System Reliability

More information

Passive Vibration Reduction with Silicone Springs and Dynamic Absorber

Passive Vibration Reduction with Silicone Springs and Dynamic Absorber Available online at www.sciencedirect.com Physics Procedia 19 (2011 ) 431 435 International Conference on Optics in Precision Engineering and Nanotechnology 2011 Passive Vibration Reduction with Silicone

More information

Mathematical Modelling and Simulation Of Semi- Active Suspension System For An 8 8 Armoured Wheeled Vehicle With 11 DOF

Mathematical Modelling and Simulation Of Semi- Active Suspension System For An 8 8 Armoured Wheeled Vehicle With 11 DOF Mathematical Modelling and Simulation Of Semi- Active Suspension System For An 8 8 Armoured Wheeled Vehicle With 11 DOF Sujithkumar M Sc C, V V Jagirdar Sc D and MW Trikande Sc G VRDE, Ahmednagar Maharashtra-414006,

More information

IMPACT REGISTER, INC. PRECISION BUILT RECORDERS SINCE 1914

IMPACT REGISTER, INC. PRECISION BUILT RECORDERS SINCE 1914 IMPACT REGISTER, INC. PRECISION BUILT RECORDERS SINCE 1914 RM-3WE (THREE WAY) ACCELEROMETER GENERAL The RM-3WE accelerometer measures and permanently records, for periods of 30, 60, and 90 days, the magnitude,

More information

Contents. Pressure measurement technology Pressure calibrators 18 Exercises 19-20

Contents. Pressure measurement technology Pressure calibrators 18 Exercises 19-20 1 Pressure Contents Topics: Slide No: Pressure measurement technology 03-17 Pressure calibrators 18 Exercises 19-20 2 Pressure Gauges Barometer Used to measure Barometric Pressure Reference is 0 psia,

More information

A Practical Guide to Free Energy Devices

A Practical Guide to Free Energy Devices A Practical Guide to Free Energy Devices Part PatD11: Last updated: 3rd February 2006 Author: Patrick J. Kelly Electrical power is frequently generated by spinning the shaft of a generator which has some

More information

Analysis and control of vehicle steering wheel angular vibrations

Analysis and control of vehicle steering wheel angular vibrations Analysis and control of vehicle steering wheel angular vibrations T. LANDREAU - V. GILLET Auto Chassis International Chassis Engineering Department Summary : The steering wheel vibration is analyzed through

More information

Steering Performance Evaluation of Off Highway Vehicle Using Matlab Tools

Steering Performance Evaluation of Off Highway Vehicle Using Matlab Tools Steering Performance Evaluation of Off Highway Vehicle Using Matlab Tools Presenters: Narasimha Kota Vikas Kshirsagar Overview of Presentation Introduction Different Steering Types Orbital Steering Mechanism

More information

EXPERIMENTAL VERIFICATION OF INDUCED VOLTAGE SELF- EXCITATION OF A SWITCHED RELUCTANCE GENERATOR

EXPERIMENTAL VERIFICATION OF INDUCED VOLTAGE SELF- EXCITATION OF A SWITCHED RELUCTANCE GENERATOR EXPERIMENTAL VERIFICATION OF INDUCED VOLTAGE SELF- EXCITATION OF A SWITCHED RELUCTANCE GENERATOR Velimir Nedic Thomas A. Lipo Wisconsin Power Electronic Research Center University of Wisconsin Madison

More information

Servo and Proportional Valves

Servo and Proportional Valves Servo and Proportional Valves Servo and proportional valves are used to precisely control the position or speed of an actuator. The valves are different internally but perform the same function. A servo

More information

Wheels for a MEMS MicroVehicle

Wheels for a MEMS MicroVehicle EE245 Fall 2001 1 Wheels for a MEMS MicroVehicle Isaac Sever and Lloyd Lim sever@eecs.berkeley.edu, limlloyd@yahoo.com ABSTRACT Inch-worm motors achieve high linear displacements with high forces while

More information

Using Hydraulic Systems

Using Hydraulic Systems Lesson A6 7 Using Hydraulic Systems Unit A. Mechanical Systems and Technology Problem Area 6. Agricultural Power Systems Lesson 7. Using Hydraulic Systems New Mexico Content Standard: Pathway Strand: Power,

More information

The Electrohydraulic Servovalve Coloring Book. Rosamond Dolid, PMP MTS Systems Corporation

The Electrohydraulic Servovalve Coloring Book. Rosamond Dolid, PMP MTS Systems Corporation The Electrohydraulic ervovalve Coloring Book Rosamond Dolid, PMP MT ystems Corporation 2010 Acknowledgements The CAD rendering and drawings were contributed by Nathan Milner and Kristin Haag, undergraduate

More information

Fig.1 Sky-hook damper

Fig.1 Sky-hook damper 1. Introduction To improve the ride comfort of the Maglev train, control techniques are important. Three control techniques were introduced into the Yamanashi Maglev Test Line vehicle. One method uses

More information

GEEPLUS. Characteristics & Selection of Voice Coil Motors. Voice Coil Motor Characteristics

GEEPLUS. Characteristics & Selection of Voice Coil Motors. Voice Coil Motor Characteristics Characteristics & Selection of Voice Coil Motors Voice Coil Motor Characteristics Voice Coil Motors are highly controllable electrical actuators suitable for applications needing only limited displacement.

More information

Active magnetic inertia latch for hard disk drives

Active magnetic inertia latch for hard disk drives Microsyst Technol (2011) 17:127 132 DOI 10.1007/s00542-010-1168-8 TECHNICAL PAPER Active magnetic inertia latch for hard disk drives Bu Hyun Shin Kyung-Ho Kim Seung-Yop Lee Received: 2 August 2010 / Accepted:

More information

CHAPTER 4: EXPERIMENTAL WORK 4-1

CHAPTER 4: EXPERIMENTAL WORK 4-1 CHAPTER 4: EXPERIMENTAL WORK 4-1 EXPERIMENTAL WORK 4.1 Preamble 4-2 4.2 Test setup 4-2 4.2.1 Experimental setup 4-2 4.2.2 Instrumentation, control and data acquisition 4-4 4.3 Hydro-pneumatic spring characterisation

More information

Procedia Engineering 00 (2009) Mountain bike wheel endurance testing and modeling. Robin C. Redfield a,*, Cory Sutela b

Procedia Engineering 00 (2009) Mountain bike wheel endurance testing and modeling. Robin C. Redfield a,*, Cory Sutela b Procedia Engineering (29) Procedia Engineering www.elsevier.com/locate/procedia 9 th Conference of the International Sports Engineering Association (ISEA) Mountain bike wheel endurance testing and modeling

More information

SHOCK ABSORBER/DAMPER TESTING MACHINE

SHOCK ABSORBER/DAMPER TESTING MACHINE SHOCK ABSORBER/DAMPER TESTING MACHINE Dampening force of a shock absorber is directly proportional to velocity and this parameter needs to be precisely controlled. A small variation of 1mm in a stroke

More information

EXPERIMENTAL RESEARCH OF PROPERTIES OF HYDRAULIC DRIVE FOR VALVES OF INTERNAL COMBUSTION ENGINES

EXPERIMENTAL RESEARCH OF PROPERTIES OF HYDRAULIC DRIVE FOR VALVES OF INTERNAL COMBUSTION ENGINES Journal of KONES Powertrain and Transport, Vol. 0, No. 1 013 EXPERIMENTAL RESEARCH OF PROPERTIES OF HYDRAULIC DRIVE FOR VALVES OF INTERNAL COMBUSTION ENGINES Tomasz Szyd owski, Mariusz Smoczy ski Technical

More information

Seismic-upgrading of Existing Stacks of Nuclear Power Station using Structural Control Oil Dampers

Seismic-upgrading of Existing Stacks of Nuclear Power Station using Structural Control Oil Dampers October 12-17, 28, Beijing, China ABSTRACT : Seismic-upgrading of Existing Stacks of Nuclear Power Station using Structural Control Oil Dampers Ryu Shimamoto 1, Fukashi Mori 2, Tomonori Kitaori 2, Satoru

More information

Comparing FEM Transfer Matrix Simulated Compressor Plenum Pressure Pulsations to Measured Pressure Pulsations and to CFD Results

Comparing FEM Transfer Matrix Simulated Compressor Plenum Pressure Pulsations to Measured Pressure Pulsations and to CFD Results Purdue University Purdue e-pubs International Compressor Engineering Conference School of Mechanical Engineering 2012 Comparing FEM Transfer Matrix Simulated Compressor Plenum Pressure Pulsations to Measured

More information

Journal of Advanced Mechanical Design, Systems, and Manufacturing

Journal of Advanced Mechanical Design, Systems, and Manufacturing Pneumatic Valve Operated by Multiplex Pneumatic Transmission * Yasutaka NISHIOKA **, Koichi SUZUMORI **, Takefumi KANDA ** and Shuichi WAKIMOTO ** **Department of Natural Science and Technology, Okayama

More information

ENHANCED ROTORDYNAMICS FOR HIGH POWER CRYOGENIC TURBINE GENERATORS

ENHANCED ROTORDYNAMICS FOR HIGH POWER CRYOGENIC TURBINE GENERATORS The 9th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery Honolulu, Hawaii, February -1, ENHANCED ROTORDYNAMICS FOR HIGH POWER CRYOGENIC TURBINE GENERATORS Joel V. Madison

More information

Research on the Structure of Linear Oscillation Motor and the Corresponding Applications on Piston Type Refrigeration Compressor

Research on the Structure of Linear Oscillation Motor and the Corresponding Applications on Piston Type Refrigeration Compressor International Conference on Informatization in Education, Management and Business (IEMB 2015) Research on the Structure of Linear Oscillation Motor and the Corresponding Applications on Piston Type Refrigeration

More information

2F MEMS Proportional Pneumatic Valve

2F MEMS Proportional Pneumatic Valve 2F MEMS Proportional Pneumatic Valve Georgia Institute of Technology Milwaukee School of Engineering North Carolina A&T State University Purdue University University of Illinois, Urbana-Champaign University

More information

Researches regarding a pressure pulse generator as a segment of model for a weighing in motion system

Researches regarding a pressure pulse generator as a segment of model for a weighing in motion system IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Researches regarding a pressure pulse generator as a segment of model for a weighing in motion system To cite this article: I

More information

Torque Feedback Control of Dry Friction Clutches for a Dissipative Passive Haptic Interface

Torque Feedback Control of Dry Friction Clutches for a Dissipative Passive Haptic Interface Torque Feedback Control of Dry Friction Clutches for a Dissipative Passive Haptic Interface Davin K. Swanson and Wayne J. Book George W. Woodruff School of Mechanical Engineering Georgia Institute of Technology

More information

Semi-Active Suspension for an Automobile

Semi-Active Suspension for an Automobile Semi-Active Suspension for an Automobile Pavan Kumar.G 1 Mechanical Engineering PESIT Bangalore, India M. Sambasiva Rao 2 Mechanical Engineering PESIT Bangalore, India Abstract Handling characteristics

More information

Four-Quadrant Multi-Fluid Pump/Motor

Four-Quadrant Multi-Fluid Pump/Motor Georgia Institute of Technology Marquette University Milwaukee School of Engineering North Carolina A&T State University Purdue University University of California, Merced University of Illinois, Urbana-Champaign

More information

STRUCTURAL CONTROL USING HYBRID SPRING-DAMPER ISOLATOR WITH INTEGRAL GAPPING FUNCTION

STRUCTURAL CONTROL USING HYBRID SPRING-DAMPER ISOLATOR WITH INTEGRAL GAPPING FUNCTION STRUCTURAL CONTROL USING HYBRID SPRING-DAMPER ISOLATOR WITH INTEGRAL GAPPING FUNCTION by Douglas P. Taylor, President John Metzger, Engineering Manager - Special Projects Donald Horne, Design Engineer

More information

Chapter 7: DC Motors and Transmissions. 7.1: Basic Definitions and Concepts

Chapter 7: DC Motors and Transmissions. 7.1: Basic Definitions and Concepts Chapter 7: DC Motors and Transmissions Electric motors are one of the most common types of actuators found in robotics. Using them effectively will allow your robot to take action based on the direction

More information

PNEUMATIC HIGH SPEED SPINDLE WITH AIR BEARINGS

PNEUMATIC HIGH SPEED SPINDLE WITH AIR BEARINGS PNEUMATIC HIGH SPEED SPINDLE WITH AIR BEARINGS Terenziano RAPARELLI, Federico COLOMBO and Rodrigo VILLAVICENCIO Department of Mechanics, Politecnico di Torino Corso Duca degli Abruzzi 24, Torino, 10129

More information

Ch 4 Motor Control Devices

Ch 4 Motor Control Devices Ch 4 Motor Control Devices Part 1 Manually Operated Switches 1. List three examples of primary motor control devices. (P 66) Answer: Motor contactor, starter, and controller or anything that control the

More information

Application Note Original Instructions Development of Gas Fuel Control Systems for Dry Low NOx (DLN) Aero-Derivative Gas Turbines

Application Note Original Instructions Development of Gas Fuel Control Systems for Dry Low NOx (DLN) Aero-Derivative Gas Turbines Application Note 83404 Original Instructions Development of Gas Fuel Control Systems for Dry Low NOx (DLN) Aero-Derivative Gas Turbines Woodward reserves the right to update any portion of this publication

More information

G761 Series Servovalves ISO Size 04

G761 Series Servovalves ISO Size 04 G761 Series Servovalves ISO 137 Size 4 TWO STAGE SERVOVALVES G761 SERIES SERVOVALVES The G761 Series flow control servovalves are throttle valves for 3- and preferably 4-way applications.they are a high

More information

LogSplitterPlans.Com

LogSplitterPlans.Com Hydraulic Pump Basics LogSplitterPlans.Com Hydraulic Pump Purpose : Provide the Flow needed to transmit power from a prime mover to a hydraulic actuator. Hydraulic Pump Basics Types of Hydraulic Pumps

More information

Lecture 7. Coming week s lab: Integrative lab (your choice!)

Lecture 7. Coming week s lab: Integrative lab (your choice!) Lecture 7 Coming week s lab: Integrative lab (your choice!) Today: Systems review exercise due end of class Your feedback Review: sequencing and asynchronous circuit analysis Hydraulic hybrid vehicles

More information

A NEW METHODOLOGY FOR DETECTION OF A LOOSE OR WORN BALL JOINTS USED IN VEHICLES SUSPENSION SYSTEM

A NEW METHODOLOGY FOR DETECTION OF A LOOSE OR WORN BALL JOINTS USED IN VEHICLES SUSPENSION SYSTEM Proceedings of the 7th International Conference on Mechanics and Materials in Design Albufeira/Portugal 11-15 June 2017. Editors J.F. Silva Gomes and S.A. Meguid. Publ. INEGI/FEUP (2017) PAPER REF: 6658

More information

EFFECTIVENESS OF THE ACTIVE PNEUMATIC SUSPENSION OF THE OPERATOR S SEAT OF THE MOBILE MACHINE IN DEPEND OF THE VIBRATION REDUCTION STRATEGIES

EFFECTIVENESS OF THE ACTIVE PNEUMATIC SUSPENSION OF THE OPERATOR S SEAT OF THE MOBILE MACHINE IN DEPEND OF THE VIBRATION REDUCTION STRATEGIES Journal of KONES Powertrain and Transport, Vol. 25, No. 3 2018 EFFECTIVENESS OF THE ACTIVE PNEUMATIC SUSPENSION OF THE OPERATOR S SEAT OF THE MOBILE MACHINE IN DEPEND OF THE VIBRATION REDUCTION STRATEGIES

More information

Next-generation Inverter Technology for Environmentally Conscious Vehicles

Next-generation Inverter Technology for Environmentally Conscious Vehicles Hitachi Review Vol. 61 (2012), No. 6 254 Next-generation Inverter Technology for Environmentally Conscious Vehicles Kinya Nakatsu Hideyo Suzuki Atsuo Nishihara Koji Sasaki OVERVIEW: Realizing a sustainable

More information

Diesel-Driven Compressor Torque Pulse Measurement in a Transport Refrigeration Unit

Diesel-Driven Compressor Torque Pulse Measurement in a Transport Refrigeration Unit Purdue University Purdue e-pubs International Compressor Engineering Conference School of Mechanical Engineering 214 Diesel-Driven Compressor Torque Pulse Measurement in a Transport Refrigeration Unit

More information

Fluidic Stochastic Modular Robotics: Revisiting the System Design

Fluidic Stochastic Modular Robotics: Revisiting the System Design Fluidic Stochastic Modular Robotics: Revisiting the System Design Viktor Zykov Hod Lipson Computational Synthesis Cornell University Grand Challenges in the Area of Self-Reconfigurable Modular Robots Self-repair

More information

The Application of Simulink for Vibration Simulation of Suspension Dual-mass System

The Application of Simulink for Vibration Simulation of Suspension Dual-mass System Sensors & Transducers 204 by IFSA Publishing, S. L. http://www.sensorsportal.com The Application of Simulink for Vibration Simulation of Suspension Dual-mass System Gao Fei, 2 Qu Xiao Fei, 2 Zheng Pei

More information

Flow Line Controls Positioner Specifications Series 55 3-15 psi Pneumatic Series 56 4-20 ma Electro-Pneumatic Series 55 Series 56 Flow Line Controls, Inc. P.O. Box 677 Schriever, LA 70395 Phone: 985-414-6003

More information

QuickStick Repeatability Analysis

QuickStick Repeatability Analysis QuickStick Repeatability Analysis Purpose This application note presents the variables that can affect the repeatability of positioning using a QuickStick system. Introduction Repeatability and accuracy

More information

Review and Proposal of Exhaust gas operated air brake system for automobile

Review and Proposal of Exhaust gas operated air brake system for automobile Review and Proposal of Exhaust gas operated air brake system for automobile Shriram Pawar 1, Praful Rote 2, Pathan Sahil, Mohd Sayed 4 1 BE student Mechanical, SND COE & RC, YEOLA, Maharashtra,India 2

More information

ACTIVE AXIAL ELECTROMAGNETIC DAMPER

ACTIVE AXIAL ELECTROMAGNETIC DAMPER ACTIVE AXIAL ELECTROMAGNETIC DAMPER Alexei V. Filatov, Larry A. Hawkins Calnetix Inc., Cerritos, CA, 973, USA afilatov@calnetix.com Venky Krishnan, Bryan Lam Direct Drive Systems Inc., Cerritos, CA, 973,

More information

HS CYCLIC CUM STATIC TRIAXIAL TEST SYSTEM

HS CYCLIC CUM STATIC TRIAXIAL TEST SYSTEM HS28.610 CYCLIC CUM STATIC TRIAXIAL TEST SYSTEM Meets the essential requirements of ASTM-5311/3999 Introduction The system is a highly advanced combination of hydraulic and pneumatic technology where σ1

More information

631 Series Servovalves ISO 4401 Size 05

631 Series Servovalves ISO 4401 Size 05 631 Series Servovalves ISO 4401 Size 05 TWO STAGE SERVOVALVES 631 SERIES SERVOVALVES The 631 Series flow control servovalves are throttle valves for 3- and preferably 4-way applications.they are a medium

More information

EFFECTIVE SOLUTIONS FOR SHOCK AND VIBRATION CONTROL

EFFECTIVE SOLUTIONS FOR SHOCK AND VIBRATION CONTROL EFFECTIVE SOLUTIONS FOR SHOCK AND VIBRATION CONTROL Part 1 Alan Klembczyk TAYLOR DEVICES, INC. North Tonawanda, NY Part 2 Herb LeKuch Shocktech / 901D Monsey, NY SAVIAC Tutorial 2009 Part 1 OUTLINE Introduction

More information

STRUCTURAL BEHAVIOUR OF 5000 kn DAMPER

STRUCTURAL BEHAVIOUR OF 5000 kn DAMPER STRUCTURAL BEHAVIOUR OF 5000 kn DAMPER I.H. Mualla Dr. Eng. CTO of DAMPTECH A/S E.D. Jakupsson Dept. of Civil Engineering, Technical University of Denmark L.O. Nielsen Professor, Dept. of Civil Engineering,

More information

Troubleshooting Bosch Proportional Valves

Troubleshooting Bosch Proportional Valves Troubleshooting Bosch Proportional Valves An Informative Webinar Developed by GPM Hydraulic Consulting, Inc. Instructed By Copyright, 2009 GPM Hydraulic Consulting, Inc. TABLE OF CONTENTS Bosch Valves

More information

Preparatory Course (task NA 3.6) Basics of experimental testing and theoretical background

Preparatory Course (task NA 3.6) Basics of experimental testing and theoretical background Preparatory Course (task NA 3.6) Basics of experimental testing and theoretical background Module 4 TEST SYSTEM Part 1 SHAKING TABLE TECHNOLOGY ACTUATORS PUMPS PERFORMANCES Dr. J.C. QUEVAL, CEA/Saclay

More information

Hybrid MEMS Pneumatic Proportional Control Valve

Hybrid MEMS Pneumatic Proportional Control Valve Marquette University Milwaukee School of Engineering Purdue University University of California, Merced University of Illinois, Urbana-Champaign University of Minnesota Vanderbilt University Hybrid MEMS

More information

Motor Technologies Motor Sizing 101

Motor Technologies Motor Sizing 101 Motor Technologies Motor Sizing 101 TN-2003 REV 161221 PURPOSE This technical note addresses basic motor sizing with simple calculations that can be done to generally size any motor application. It will

More information

Lecture 7. Lab 14: Integrative lab (part 2) Lab 15: Intro. Electro-hydraulic Control Setups (2 sessions)

Lecture 7. Lab 14: Integrative lab (part 2) Lab 15: Intro. Electro-hydraulic Control Setups (2 sessions) Coming week s lab: Lecture 7 Lab 14: Integrative lab (part 2) Lab 15: Intro. Electro-hydraulic Control Setups (2 sessions) 4 th floor Shepherd (room # TBD) Guest lecturer next week (10/30/15): Dr. Denis

More information

Non-Pyrotechnic Multi-Point Release Mechanisms for Spacecraft Release

Non-Pyrotechnic Multi-Point Release Mechanisms for Spacecraft Release Non-Pyrotechnic Multi-Point Release Mechanisms for Spacecraft Release Ambrosio Mejia *, John Sudick* and Geoff Kaczynski* Abstract The Non-Explosive Actuator (NEA) is an electrically initiated Hold-Down

More information

Assemblies for Parallel Kinematics. Frank Dürschmied. INA reprint from Werkstatt und Betrieb Vol. No. 5, May 1999 Carl Hanser Verlag, München

Assemblies for Parallel Kinematics. Frank Dürschmied. INA reprint from Werkstatt und Betrieb Vol. No. 5, May 1999 Carl Hanser Verlag, München Assemblies for Parallel Kinematics Frank Dürschmied INA reprint from Werkstatt und Betrieb Vol. No. 5, May 1999 Carl Hanser Verlag, München Assemblies for Parallel Kinematics Frank Dürschmied Joints and

More information