Fundamentals of Aircraft and Rocket Propulsion

Size: px
Start display at page:

Download "Fundamentals of Aircraft and Rocket Propulsion"

Transcription

1 Fundamentals of Aircraft and Rocket Propulsion

2 ThiS is a FM Blank Page

3 Ahmed F. El-Sayed Fundamentals of Aircraft and Rocket Propulsion

4 Ahmed F. El-Sayed Department of Mechanical Engineering Zagazig University Zagazig, Egypt ISBN ISBN (ebook) DOI / Library of Congress Control Number: Springer-Verlag London 2016 The author(s) has/have asserted their right(s) to be identified as the author(s) of this work in accordance with the Copyright, Design and Patents Act This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. Printed on acid-free paper This Springer imprint is published by Springer Nature The registered company is Springer-Verlag London Ltd.

5 To my parents whose endless love, support, and encouragement were a constant source for my inspiration

6 ThiS is a FM Blank Page

7 Preface Pedagogically, the fundamental principles are the foundation for lifelong learning. Thus, this book through a simple treatment can provide students of aerospace/ aeronautical and mechanical engineering with a deep understanding of both aircraft and spacecraft propulsions. The development of aircrafts in only one century is far beyond expectations. December 1903 was the dawn of human-engineered flight when the Wright Brothers flew their first flights that lasted for a few seconds in Ohio, USA. This first aircraft was powered by a single piston engine and had no passengers, neither did it have a fuselage nor landing gears. It is extremely amazing that in 2011 over 2.8 billion passengers were carried by the world s commercial airlines via more than 222,500 aircrafts powered by more than 260,000 different types of aero engines. Some of these aircrafts can carry as many as 800 passengers for more than 15 h of flying time, while others can fly at supersonic speeds. In 2015, the number of passengers exceeded 3.3 billion. Now, piston engines are no longer the single actor in propulsion theater, though they are still dominant! Turbojet engines were the first jet engines invented in the late 1930s and took a reasonable share in military and civil-powered flights for nearly two decades. In the late 1950s and early 1960s, turbofan engines (or bypass turbojet engines) were invented. These are the present prevailing engines which power faster, quieter, cleaner, and heavier aircrafts. In the 1950s also two other engine types, namely, turboprop and turboshaft, were invented to power commercial airliners and military transport aircrafts and rotorcrafts. Due to the rapid advance in air transportation as well as military and intelligence missions, aircraft and rocket propulsion has become an essential part of engineering education. Propulsion is the combined aero-thermal science for aircrafts and rockets. Propulsion has both macro- and microscales. Macroscale handles the performance and operation of aircrafts and rockets during different missions, while microscale is concerned with component design including both rotary modules (i.e., compressor, fan, pump, and turbine) and stationary modules (i.e., intake, combustor, afterburner, and nozzle). vii

8 viii Preface The primary aim of this text is to give students a thorough grounding in both the theory and practice of propulsion. It discusses the design, operation, installation and several inspections, repair, and maintenance aspects of aircraft and rocket engines. This book serves as a text for undergraduate and first year graduate students in mechanical, aeronautical, aerospace, avionics, and aviation engineering departments. Moreover, it can be used by practicing engineers in aviation and gas turbine industries. Background in fluid mechanics and thermodynamics at fundamental levels is assumed. The book also provides educators with comprehensive solved examples, practical engine case studies, intelligent unsolved problems, and design projects. The material of this book is the outcome of industrial, research, and educational experience for more than 40 years in numerous civil, military institutions, and companies of 9 countries including the USA, Russia, Austria, UK, Belgium, China, and Japan as well as Egypt. The book is composed of 11 chapters and 4 appendices. The first ten chapters handle air-breathing engines, while non-air-breathing (or rocket) engines are analyzed in Chap. 11. Chapter 1 is rather a unique one! It provides a rigorous classification of all types of aircrafts and its sources of power. The first part classifies aircrafts as aerostats/ aerodynes, fixed wing/rotary wing (or rotorcrafts), and hybrid fixed/rotary wings as well as all other lift aircrafts (flapping wing or ornithopter, lifting body, and fan wing). The second part handles power plant types. Power plants belong to two main groups, namely, external and internal combustion engines. External combustion engines are steam, Stirling, and nuclear engines. Internal combustion engines are further classified as shaft and reaction engines. Shaft engine group is either of the intermittent combustion types (Wankel and piston) or continuous combustion types (turboprop, turboshaft, and propfan). Reaction engines are either of the athodyd or turbine engines. Athodyd engines include ramjet, scramjet, and pulsejet (valved, valveless, and pulse detonation types). Finally, turbine-based engines include turbojet, turbofan, and turbo-ramjet engines. Chapters 2 and 3 emphasize that a few fundamental physical principles, rightly applied, can provide a deep understanding of operation and performance of aircrafts and space vehicles. Chapter 2 provides a review of basic laws of compressible flow with heat and friction. Conservation of mass, momentum, moment of momentum, and energy equations applied to open control volume are reviewed. A review for aspects of normal and oblique shock waves and Fanno and Rayleigh flows follows. Flow in diffusers in aircrafts as well as flow in nozzles in both aircrafts and rockets are discussed. Standard atmosphere is highlighted to emphasize variations of air properties at different altitudes. Chapter 3 relies upon governing formulae reviewed in Chap. 2 in driving the different performance parameters of jet propulsion, namely, thrust force, operation efficiencies (propulsive, thermal, and overall), specific impulse, and fuel consumption. Other parameters that couple aircraft and engine performance like aircraft

9 Preface ix range and endurance are presented. Analysis of aircraft mission, route planning, and non-return point are next highlighted. Chapter 4 provides the necessary analyses of piston engines and propellers. Though piston engine was the first in-flight air-breathing engine employed by the Wright brothers in 1903, it maintains its strong existence until now. It represents more than 70 % of present-day air-breathing engines. They are extensively used in small fixed wing, sport aircrafts, UAVs, and lighter than air flying vehicles, as well as many rotorcrafts. Unfortunately, it is overlooked in most available propulsion books. A concise analysis of power cycles for two- and four-stroke engines, compression or spark ignition (CI and SI), and Wankel engines as well as turboand superchargers is reviewed for power and thermal efficiency optimization. Piston engines cannot generate the necessary propulsive force for a flying vehicle on its own. Thus, it should be coupled to propellers. Classifications of propellers based on various aspects are defined. Propeller s power and thrust force coefficients are defined using simple aerodynamic theories (momentum, modified momentum, and blade-element). Chapter 5 is devoted to athodyd (nonrotating modules) engines, namely, pulsejet, ramjet, and scramjet engines. All cannot produce thrust force at zero flight speed, so other propulsive methods are used for takeoff operation. Each engine is composed of intake, combustion chamber, and nozzle. An analysis of ideal and real cycles as well as performance parameters of all engines is identified. Pulsejet engine is an internal combustion engine that produces thrust intermittently and is either of the valved or valveless type. Pulse detonation engine (PDE) is evolved in the last decade. PDE promises higher fuel efficiency (even compared with turbofan jet engines). Ramjet engine represents the first invented continuous combustion engine. It is used in both aircrafts and rockets. The third engine analyzed in this chapter is scramjet (supersonic combustion ramjet). Combustion takes place in supersonic airflow. Thus it can fly at extremely high speeds (NASA X-43A reached Mach 9.6). Finally, dual-mode (Ram-Scram) combustion engine is analyzed. Chapters 6 and 7 treat air-breathing engines incorporating rotating modules. Chapter 6 handles turbine-based engines (turbojet, turbofan, and turbo-ramjet), while Chap. 7 treats shaft-based engines (turboprop, turboshaft, and propfan). One of the objectives of both chapters is to exercise students to practice realistic engines, build confidence, and a sense of professionalism. Both chapters start with a historical prospective and a classification of each engine. Next, thermodynamic and performance analyses for ideal and real cycles are introduced and further explained via solved examples. Chapter 6 starts by the first flown jet engine, namely, turbojet engine, which was coinvented in the 1930s by British and German activities. Analyses of single and double spools in the presence and absence of afterburner are described. Though rarely used in airliners or military planes in present days, it is still used in micro turbojets and turbojets powering rockets during sustained flight. Turbofan engines are continuing its superiority for most present commercial airliners and military planes as well as some rockets for sustained flight. A unique classification of the numerous types of this engine based on fan location

10 x Preface (forward/aft), bypass ratio (low/high), number of spools (single/double/triple), number of nozzles (single/double), fan/turbine coupling (geared/ungeared), and finally afterburner (present/absent) is given. After detailed analyses for some (not all) types of turbofan, the third engine, namely, turbo-ramjet, is presented. It is found in two configurations: wraparound or above/under types. An analysis of its single mode or combined mode is precisely defined. Chapter 7 is confined to shaft-based engines in which performance is controlled by shaft power rather than thrust force. Also, its economy is governed by brakespecific fuel consumption rather than thrust-specific fuel consumption. Turboprop engines power manned and unmanned aircrafts. It may be of the puller (tractor) or pusher types. It may be also either a single or double spool. This section is ended by an analogy between turboprop and turbofan engines. Next, turboshaft engines which mainly power helicopters are classified and analyzed. Exhaust speeds are no longer important in this type of engines as all available energy is converted into shaft power. Finally, propfan or unducted fan (UDF) engines, normally described as ultrahigh bypass (UHP) ratio engine, are classified based on fan location (forward/ aft) and numbers of fan stages (single/double). A thermodynamic analysis of this engine is presented for the first time in this book. It combines features from both turbofan and turboprop engines. Chapter 8 presents aero-/thermodynamic analyses of stationary modules of jet engines, namely, intakes, combustion chamber, afterburner, and nozzle. At first, different methods for power plant installation (wing/fuselage/tail, or combinations) are discussed as it has a direct influence on air flow rates into intakes and ingestion of foreign objects into the engines. Also, intakes for fixed and rotary wing aircrafts as well as rockets are described. Moreover, subsonic and supersonic intakes are reviewed for optimum jet engine performance. Intake geometry and its performance are also presented. A review of combustion chambers including types, chemistry of combustion, aerodynamics, and thermodynamics of flow in its different elements is presented. Afterburners in turbojets/turbofans in supersonic aircrafts are analyzed. Different types of aviation fuels and biofuels as a future jet fuel for green aviation are examined. The exhaust system is treated here in a general scope. Convergent and convergent divergent (de Laval) nozzles are analyzed. Moreover, thrust reverse and thrust vectoring are reviewed. Noise control for nozzles is given. Turbomachinery (i.e., fans, compressors, and turbines) are treated in Chaps. 9 and 10. The objective of both chapters is to provide a simplified understanding of its aerodynamics, thermal, and stresses in both compressors and turbines. In Chap. 9, different types of compressors are first identified, but only centrifugal and axial flow types are analyzed. The three main components of centrifugal compressor, namely, impeller, stator, and volute/scroll, are first analyzed taking into consideration their different types. Positive/negative prewhirl is also presented. Concerning axial compressor, the aerodynamics of single and multistages is reviewed. A performance map for both compressors is employed in identifying design and off-design operation. Lastly, different mechanisms for avoiding surge and rotating stall are discussed.

11 Preface xi Chapter 10 treats radial and axial flow turbines. Radial turbine is to a great extent similar to centrifugal compressor. The aerodynamics and thermodynamics of its components (i.e., inlet, nozzle, rotor, and outlet duct) are presented. Next, single and multistage axial flow turbines are treated with either impulse or reaction blading. Mechanical design and cooling techniques are reviewed. Finally, turbine map and off-design performance of both turbines are discussed. Matching between compressors and turbines in both gas generators and jet engines ends this chapter. Rocket propulsion is discussed in Chap. 11. It starts with a brief history of rocketry followed by classifications of rockets based on type, launching mode, range, engine, warhead, and guidance systems. Rocket performance parameters (i.e., thrust force, effective exhaust velocity, specific impulse, thrust coefficient, and combustion chamber pressure drop) are derived in closed forms similar to those in Chap. 3 for air-breathing engines. A comprehensive section for multistaging is presented. Finally, an analysis of exhaust system (i.e., nozzle geometry, exhaust velocity, and structural coefficient) is given. Both chemical and nonchemical rocket engines are reviewed. Chemical rockets are further divided into liquid, solid, and hybrid rockets. Solid propellant types, combustion chamber, and nozzles are defined. In liquid propellant rockets, a turbopump is added. A hybrid rocket combines liquid and solid propellant systems. Nonchemical rockets including nuclear heating and electrically powered and electrothermal, electromagnetic, and electrostatic thrusters are reviewed. The book ends with 4 appendices. These lists chronicle details of piston, turbojet, and turbofan engines, as well as milestones for rockets. Finally, I would like to express my sincere appreciation and gratitude to Airbus Industries and Rolls-Royce plc for their permission to use illustrations and photographs within this text. I would like to express my sincere thanks to my editor, Charlotte Cross, who was a great help since day one and continued her support during the tough time of manuscript writing. I m deeply honored by the support of the dean and staff of Moscow Institute for Physics and Technology (MIPT), Moscow University, and for granting me their medal of 50th anniversary Particular thanks for the continuous help and technical support of: Professor Darrell Pepper, Director, NCACM, University of Nevada Las Vegas, USA Mr. Joseph Veres, Compressor Section, NASA Glenn Research Center, Cleveland, USA Professor Louis Chow, University of Central Florida, Orlando, USA Dr. Dennis Barbeau, AIAA Phoenix Section, USA I would like to express my sincere thanks and utmost gratitude to my students: Ahmed Z. Almeldein, Aerospace Department, Korea Advanced Institute of Science and Technology, South Korea; Mohamed Aziz and Eslam Said Ahmed, Institute of Aviation Engineering and Technology (IAET); Amr Kamel, Egyptian Air Force; Mohamed Emera and Ibrahim Roufael, Mechanical Power Engineering

12 xii Preface Department, Zagazig University; and Ahmed Hamed, Senior Production Engineer, Engine Overhaul Directorate, EgyptAir Maintenance and Engineering Company. At last, I extend my heartfelt gratitude to my wife, Amany, and sons Mohamed, Abdallah, and Khalid who were the real inspiration and motivation behind this work. Zagazig, Egypt Ahmed F. El-Sayed

13 Contents 1 Classifications of Aircrafts and Propulsion Systems Introduction Classifications of Aircrafts General Aerostats Aerodynes Fixed Wing Aircrafts Rotorcrafts (Rotor-Wing Aircrafts) Hybrid Fixed/Rotary Wings Other Methods of Lift Aircrafts Classifications of Propulsion Systems External Combustion Internal Combustion Other Power Sources References A Review of Basic Laws for a Compressible Flow Introduction System and Control Volume Fundamental Equations Conservation of Mass (Continuity Equation) Linear Momentum (Newton s Second Law) Angular Momentum Equation (Moment of Momentum) Energy Equation (First Law of Thermodynamics) The Second Law of Thermodynamics and the Entropy Equation Equation of State xiii

14 xiv Contents 2.4 Steady One-Dimensional Compressible Flow Isentropic Relations Sonic Conditions Classification of Mach Regimes Diffusers and Nozzles Shocks Rayleigh Flow Equations The Standard Atmosphere References Performance Parameters of Jet Engines Introduction Thrust Force Factors Affecting Thrust Jet Nozzle Air Speed Mass Air Flow Altitude Ram Effect Engine Performance Parameters Propulsive Efficiency Thermal Efficiency Propeller Efficiency Overall Efficiency Takeoff Thrust Specific Fuel Consumption Aircraft Range Range Factor Endurance and Endurance Factor Mission Segment Weight Fraction Head- and Tail-Wind Route Planning Specific Impulse References Piston Engines and Propellers Introduction Intermittent (or Piston) Engines Milestones Types of Aero Piston Engines Aerodynamics and Thermodynamics of Reciprocating ICE Terminology for Four-Stroke Engine Air-Standard Analysis Engine Cycles

15 Contents xv 4.4 Aircraft Propellers Introduction Nomenclature Classifications Source of Power Material Coupling to the Output Shaft Control Number of Propellers Coupled to Each Engine Direction of Rotation Propulsion Method Number of Blades Aerodynamic Design Axial Momentum, (or Actuator Disk) Theory Modified Momentum or Simple Vortex Model Blade Element Considerations Dimensionless Parameters Typical Propeller Performance Conclusion References Pulsejet, Ramjet, and Scramjet Engines Introduction to Athodyd Engines Pulsejet Introduction Brief History Valved Pulsejet Thermodynamic Cycle Valveless Pulsejet Pulsating Nature of Flow Parameters in Pulsejet Engines Pulse Detonation Engine (PDE) Ramjet Introduction Applications Aero-Thermodynamic Analysis of Modules Aero-thermodynamic Analysis of Ramjet Cycle Nuclear Ramjet Double Throat Ramjet Engine Scramjet Introduction Evolution of Scramjets Advantages and Disadvantages of Scramjets Aero-Thermodynamic Analysis of Scramjets

16 xvi Contents Performance Analysis Dual-Mode Combustion Engine (Dual Ram-Scramjet) Conclusion References Turbine-Based Engines: Turbojet, Turbofan, and Turboramjet Engines Introduction Turbojet Introduction Milestones of Turbojet Engines Thermodynamic Cycle Analysis of a Single Spool Performance Parameters of a Single Spool Important Definitions Double-Spool Turbojet Thermodynamic Analysis of Double-Spool Turbojet Performance Parameters of Double-Spool Turbojet Engine Micro-turbojet Turbofan Introduction Milestones Classifications of Turbofan Engines Forward Fan Unmixed Double-Spool Configuration Forward Fan Mixed-Flow Engine Forward Fan Unmixed Three-Spool Engine Turbine-Based Combined-Cycle (TBCC) Engines Introduction Historical Review of Supersonic and Hypersonic Aircrafts Technology Challenges of the Future Flight Propulsion System Configurations Performance of TBCC (or Hybrid Engine) Cycle Analysis of Turboramjet (or TBCC) Engine General Analysis for a Turboramjet Engine Design Procedure Future TBCC Engine Conclusion References

17 Contents xvii 7 Shaft Engines Turboprop, Turboshaft, and Propfan Introduction Turboprop Engines Introduction Milestones Thermodynamics Analysis of Turboprop Engines Equivalent Engine Power Fuel Consumption Analogy with Turbofan Engines Turboshaft Introduction Examples for Turboshaft Manufacturers and Engines Thermodynamic Analysis of Turboshaft Engines Power Generated by Turboshaft Engines Propfan Introduction Historical Hints Classifications of Propfans Comparisons Between Turboprop, Propfan, and Turbofan References Stationary Modules Intakes, Combustors, and Nozzles Intake Introduction Power Plant Installation Inlet Performance Parameters Subsonic Intakes Supersonic Intakes Hypersonic Inlets Performance Parameters Combustion Systems Introduction Types of Combustion Chamber Components of Combustion Chamber Aerodynamics of Combustion Chamber The Chemistry of Combustion The First Law Analysis of Combustion Combustion Chamber Performance Material Aircraft Fuels Emissions and Pollutants Afterburner

18 xviii Contents 8.3 Exhaust Nozzle Introduction Operation of Nozzles Performance Parameters of Nozzles High-Speed Vehicles References Centrifugal and Axial Compressors Introduction Centrifugal Compressor Introduction Layout of Compressor Classification of Centrifugal Compressors Governing Equations Slip Factor (σ) Types of Impeller Impeller Isentropic Efficiency Radial Impeller Diffuser Prewhirl Discharge System Compressor Map Surge Axial Flow Compressor Introduction Comparison Between Axial and Centrifugal Compressors Mean Flow (Two-Dimensional Approach) Basic Design Parameters Design Parameters Real Flow in Axial Compressor Simplified Radial Equilibrium Equation (SRE) Conceptual Design Procedure for Axial Compressor Blade Design Choice of Airfoil Type Compressor Map Centrifugal and Axial Compressors Material Closure References Turbines Introduction Axial Flow Turbines Flow Features Euler Equation

19 Contents xix Efficiency and Pressure Ratio Loss Coefficients in Nozzle and Rotor Performance Parameters Free Vortex Design Turbine Cooling Techniques Guide Lines for Axial Turbine Design Turbine Map Radial Flow Turbine Introduction Aero-Thermodynamics of Radial Inflow Turbine Recommended Design Values for Radial Inflow Turbines Radial Versus Axial Turbines Gas Turbine Engine Matching Introduction Compatibility Conditions Single Shaft Gas Turbine Engine Off-Design of Free Turbine Engine References Rocket Propulsion Introduction History Important Events Future Plans of Rocket and Space Flights (2014 and Beyond) Classifications of Rockets Method of Propulsion Types of Missiles Launch Mode Range Number of Stages Applications Rocket Performance Parameters Thrust Force Effective Exhaust Velocity (V eff ) Exhaust Velocity (u e ) Important Nozzle Relations Characteristic Velocity (C*) Thrust Coefficient (C F ) Total Impulse (I t ) Specific Impulse (I sp ) Specific Propellant Consumption Mass Ratio (MR)

20 xx Contents Propellant Mass Fraction (ζ) Impulse-to-Weight Ratio Efficiencies The Rocket Equation Single-Stage Rocket Multistage Rockets Rocket Equation for a Series Multistage Rocket Rocket Equation for a Parallel Multistage Rocket Advantages of Staging Disadvantages of Staging Chemical Rocket Engines Introduction Performance Characteristics Solid Propellant Introduction Composition of a Solid Propellant Basic Definitions Burning Rate Characteristics of Some Solid Propellants Liquid-Propellant Rocket Engines (LREs) Introduction Applications Propellant Feed System of LREs Liquid Propellants Fundamental Relations Pump-Fed System Rocket Pumps Pump Materials and Fabrication Processes Axial Turbine Hybrid Propulsion Introduction Mathematical Modeling Advantages and Disadvantages of Hybrid Engines Nuclear Rocket Propulsion Electric Rocket Propulsion Introduction Electrostatic Rockets Electrothermal Rockets Electromagnetic Rockets References

21 Contents xxi Appendices Appendix A Appendix B Appendix C Appendix D Index

1. Aero-Science B.Sc. Aero Science-I Total Mark: 100 Appendix A (Outlines of Tests) Aero-Engines : 100 Marks

1. Aero-Science B.Sc. Aero Science-I Total Mark: 100 Appendix A (Outlines of Tests) Aero-Engines : 100 Marks 1. Aero-Science B.Sc. Aero Science-I Total Mark: 100 Appendix A (Outlines of Tests) Aero-Engines : 100 Marks Note:- The questions will be set in each paper. Candidates are to attempt any five except in

More information

Aerospace Propulsion Systems

Aerospace Propulsion Systems Brochure More information from http://www.researchandmarkets.com/reports/1288672/ Aerospace Propulsion Systems Description: Aerospace Propulsion Systems is a unique book focusing on each type of propulsion

More information

Jay Gundlach AIAA EDUCATION SERIES. Manassas, Virginia. Joseph A. Schetz, Editor-in-Chief. Blacksburg, Virginia. Aurora Flight Sciences

Jay Gundlach AIAA EDUCATION SERIES. Manassas, Virginia. Joseph A. Schetz, Editor-in-Chief. Blacksburg, Virginia. Aurora Flight Sciences Jay Gundlach Aurora Flight Sciences Manassas, Virginia AIAA EDUCATION SERIES Joseph A. Schetz, Editor-in-Chief Virginia Polytechnic Institute and State University Blacksburg, Virginia Published by the

More information

CONTENTS Duct Jet Propulsion / Rocket Propulsion / Applications of Rocket Propulsion / 15 References / 25

CONTENTS Duct Jet Propulsion / Rocket Propulsion / Applications of Rocket Propulsion / 15 References / 25 CONTENTS PREFACE xi 1 Classification 1.1. Duct Jet Propulsion / 2 1.2. Rocket Propulsion / 4 1.3. Applications of Rocket Propulsion / 15 References / 25 2 Definitions and Fundamentals 2.1. Definition /

More information

AERONAUTICAL ENGINEERING

AERONAUTICAL ENGINEERING AERONAUTICAL ENGINEERING SHIBIN MOHAMED Asst. Professor Dept. of Mechanical Engineering Al Ameen Engineering College Al- Ameen Engg. College 1 Aerodynamics-Basics These fundamental basics first must be

More information

Preface. Acknowledgments. List of Tables. Nomenclature: organizations. Nomenclature: acronyms. Nomenclature: main symbols. Nomenclature: Greek symbols

Preface. Acknowledgments. List of Tables. Nomenclature: organizations. Nomenclature: acronyms. Nomenclature: main symbols. Nomenclature: Greek symbols Contents Preface Acknowledgments List of Tables Nomenclature: organizations Nomenclature: acronyms Nomenclature: main symbols Nomenclature: Greek symbols Nomenclature: subscripts/superscripts Supplements

More information

Introduction to Gas Turbine Engines

Introduction to Gas Turbine Engines Introduction to Gas Turbine Engines Introduction Gas Turbine Engine - Configurations Gas Turbine Engine Gas Generator Compressor is driven by the turbine through an interconnecting shaft Turbine is driven

More information

In this lecture... Components of ramjets and pulsejets Ramjet combustors Types of pulsejets: valved and valveless, Pulse detonation engines

In this lecture... Components of ramjets and pulsejets Ramjet combustors Types of pulsejets: valved and valveless, Pulse detonation engines In this lecture... Components of ramjets and pulsejets Ramjet combustors Types of pulsejets: valved and valveless, ulse detonation engines Ramjet engines Ramjet engines consist of intakes, combustors and

More information

Introduction to Aerospace Propulsion

Introduction to Aerospace Propulsion Introduction to Aerospace Propulsion Introduction Newton s 3 rd Law of Motion as the cornerstone of propulsion Different types of aerospace propulsion systems Development of jet engines Newton s Third

More information

JET AIRCRAFT PROPULSION

JET AIRCRAFT PROPULSION 1 JET AIRCRAFT PROPULSION a NPTEL-II Video Course for Aerospace Engineering Students Bhaskar Roy and A M Pradeep Aerospace Engineering Department I.I.T., Bombay 2 Brief outline of the syllabus Introduction

More information

Welcome to Aerospace Engineering

Welcome to Aerospace Engineering Welcome to Aerospace Engineering DESIGN-CENTERED INTRODUCTION TO AEROSPACE ENGINEERING Notes 5 Topics 1. Course Organization 2. Today's Dreams in Various Speed Ranges 3. Designing a Flight Vehicle: Route

More information

Introduction to Aerospace Engineering

Introduction to Aerospace Engineering Introduction to Aerospace Engineering Lecture slides Challenge the future 1 18-9-2011 Introduction to Aerospace Engineering AE1101ab - Propulsion Delft University of Technology Prof.dr.ir. Challenge JaccotheHoekstra

More information

Jet Aircraft Propulsion Prof Bhaskar Roy Prof. A. M. Pradeep Department of Aerospace Engineering Indian Institute of Technology, Bombay

Jet Aircraft Propulsion Prof Bhaskar Roy Prof. A. M. Pradeep Department of Aerospace Engineering Indian Institute of Technology, Bombay Jet Aircraft Propulsion Prof Bhaskar Roy Prof. A. M. Pradeep Department of Aerospace Engineering Indian Institute of Technology, Bombay Lecture No. # 01 Intro and Development of Jet Aircraft Propulsion

More information

Aircraft Propulsion Technology

Aircraft Propulsion Technology Unit 90: Aircraft Propulsion Technology Unit code: L/601/7249 QCF level: 4 Credit value: 15 Aim This unit aims to develop learners understanding of the principles and laws of aircraft propulsion and their

More information

Experience. Education. Ahmed F. El-Sayed

Experience. Education. Ahmed F. El-Sayed 1970 Mackenzie Dr, Columbus, OH 43220 (614)-388-877 dr_ahmedhelal@yahoo.com https://www.linkedin.com/in/ahmedfelsayed, http://www.ahmedfelsayed.com/ and-http://www.angelfire.com/ia/afelsayed http://www.linkedin.com/in/ahmedfelsayed,

More information

Alternative Propulsion for Automobiles

Alternative Propulsion for Automobiles Alternative Propulsion for Automobiles . Cornel Stan Alternative Propulsion for Automobiles Cornel Stan West Saxon University Zwickau, Germany Translation from the German language edition: Alternative

More information

Wireless Networks. Series Editor Xuemin Sherman Shen University of Waterloo Waterloo, Ontario, Canada

Wireless Networks. Series Editor Xuemin Sherman Shen University of Waterloo Waterloo, Ontario, Canada Wireless Networks Series Editor Xuemin Sherman Shen University of Waterloo Waterloo, Ontario, Canada More information about this series at http://www.springer.com/series/14180 Miao Wang Ran Zhang Xuemin

More information

Engine Performance Analysis

Engine Performance Analysis Engine Performance Analysis Introduction The basics of engine performance analysis The parameters and tools used in engine performance analysis Introduction Parametric cycle analysis: Independently selected

More information

Felix Du Temple de la Croix Monoplane 1857

Felix Du Temple de la Croix Monoplane 1857 2 1 Felix Du Temple de la Croix Monoplane 1857 2 Thrust for Flight 3 Unpowered airplanes George Cayle s design (early 19 th century) Samuel P Langley s Airplane (late 19 th century) 4 Langley s Airplane

More information

Foundations of Thermodynamics and Chemistry. 1 Introduction Preface Model-Building Simulation... 5 References...

Foundations of Thermodynamics and Chemistry. 1 Introduction Preface Model-Building Simulation... 5 References... Contents Part I Foundations of Thermodynamics and Chemistry 1 Introduction... 3 1.1 Preface.... 3 1.2 Model-Building... 3 1.3 Simulation... 5 References..... 8 2 Reciprocating Engines... 9 2.1 Energy Conversion...

More information

AE 651 Aerodynamics of Compressors and Turbines

AE 651 Aerodynamics of Compressors and Turbines AE 651 Aerodynamics of Compressors and Turbines A M Pradeep ampradeep@aero.iitb.ac.in; Ph: 7125 Office: 208D; Office hours: 0900-1300 hrs. ; 1415-1730 hrs. Course schedule: Tuesday: 1530-1655 hrs. Friday:

More information

Prof. João Melo de Sousa Instituto Superior Técnico Aerospace & Applied Mechanics. Part B Acoustic Emissions 4 Airplane Noise Sources

Prof. João Melo de Sousa Instituto Superior Técnico Aerospace & Applied Mechanics. Part B Acoustic Emissions 4 Airplane Noise Sources Prof. João Melo de Sousa Instituto Superior Técnico Aerospace & Applied Mechanics Part B Acoustic Emissions 4 Airplane Noise Sources The primary source of noise from an airplane is its propulsion system.

More information

AE Aircraft Performance and Flight Mechanics

AE Aircraft Performance and Flight Mechanics AE 429 - Aircraft Performance and Flight Mechanics Propulsion Characteristics Types of Aircraft Propulsion Mechanics Reciprocating engine/propeller Turbojet Turbofan Turboprop Important Characteristics:

More information

Chapter 9 GAS POWER CYCLES

Chapter 9 GAS POWER CYCLES Thermodynamics: An Engineering Approach Seventh Edition in SI Units Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011 Chapter 9 GAS POWER CYCLES Mehmet Kanoglu University of Gaziantep Copyright The McGraw-Hill

More information

Chapter 9 GAS POWER CYCLES

Chapter 9 GAS POWER CYCLES Thermodynamics: An Engineering Approach, 6 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2008 Chapter 9 GAS POWER CYCLES Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction

More information

Content : 4.1 Brayton cycle-p.v. diagram and thermal efficiency. 4Marks Classification of gas turbines.

Content : 4.1 Brayton cycle-p.v. diagram and thermal efficiency. 4Marks Classification of gas turbines. Content : 4.1 Brayton cycle-p.v. diagram and thermal efficiency. 4Marks Classification of gas turbines. 4.2 Construction and working of gas turbines i) Open cycle ii) Closed cycle gas Turbines, P.V. and

More information

Part II. HISTORICAL AND ENGINEERING ANALYSIS OF AIRSHIP PLAN-AND- DESIGN AND SERVICE DECISIONS

Part II. HISTORICAL AND ENGINEERING ANALYSIS OF AIRSHIP PLAN-AND- DESIGN AND SERVICE DECISIONS CONTENTS MONOGRAPHER S FOREWORD DEFENITIONS, SYMBOLS, ABBREVIATIONS, AND INDICES Part I. LAWS AND RULES OF AEROSTATIC FLIGHT PRINCIPLE Chapter 1. AIRCRAFT FLIGHT PRINCIPLE 1.1 Flight Principle Classification

More information

In this lecture... Prof. Bhaskar Roy, Prof. A M Pradeep, Department of Aerospace, IIT Bombay

In this lecture... Prof. Bhaskar Roy, Prof. A M Pradeep, Department of Aerospace, IIT Bombay 1 In this lecture... Intakes for powerplant Transport aircraft Military aircraft 2 Intakes Air intakes form the first component of all air breathing propulsion systems. The word Intake is normally used

More information

Chapter 4 Lecture 16. Engine characteristics 4. Topics. Chapter IV

Chapter 4 Lecture 16. Engine characteristics 4. Topics. Chapter IV Chapter 4 Lecture 16 Engine characteristics 4 Topics 4.3.3 Characteristics of a typical turboprop engine 4.3.4 Characteristics of a typical turbofan engine 4.3.5 Characteristics of a typical turbojet engines

More information

AN INTRODUCTION TO THERMODYNAMIC CYCLE SIMULATIONS FOR INTERNAL COMBUSTION ENGINES

AN INTRODUCTION TO THERMODYNAMIC CYCLE SIMULATIONS FOR INTERNAL COMBUSTION ENGINES AN INTRODUCTION TO THERMODYNAMIC CYCLE SIMULATIONS FOR INTERNAL COMBUSTION ENGINES AN INTRODUCTION TO THERMODYNAMIC CYCLE SIMULATIONS FOR INTERNAL COMBUSTION ENGINES Jerald A. Caton Department of Mechanical

More information

La Propulsione nei futuri sistemi di trasporto aerospaziale. Raffaele Savino Università di Napoli Federico II

La Propulsione nei futuri sistemi di trasporto aerospaziale. Raffaele Savino Università di Napoli Federico II La Propulsione nei futuri sistemi di trasporto aerospaziale Raffaele Savino Università di Napoli Federico II Aeronautics and Space Different propulsion systems Airbreathing: atmospheric air is captured,

More information

Introduction to I.C Engines CH. 1. Prepared by: Dr. Assim Adaraje

Introduction to I.C Engines CH. 1. Prepared by: Dr. Assim Adaraje Introduction to I.C Engines CH. 1 Prepared by: Dr. Assim Adaraje 1 An internal combustion engine (ICE) is a heat engine where the combustion of a fuel occurs with an oxidizer (usually air) in a combustion

More information

CONCEPTUAL DESIGN OF A NEW TYPE OF ENGINE FOR VARIOUS APPLICATIONS WITH EXPECTED 10% HIGHER OVERALL EFFICIENCY

CONCEPTUAL DESIGN OF A NEW TYPE OF ENGINE FOR VARIOUS APPLICATIONS WITH EXPECTED 10% HIGHER OVERALL EFFICIENCY International Journal of Mechanical and Production Engineering Research and Development (IJMPERD ) Vol.1, Issue 2 Dec 2011 58-65 TJPRC Pvt. Ltd., CONCEPTUAL DESIGN OF A NEW TYPE OF ENGINE FOR VARIOUS APPLICATIONS

More information

Hydropneumatic Suspension Systems

Hydropneumatic Suspension Systems Hydropneumatic Suspension Systems Wolfgang Bauer Hydropneumatic Suspension Systems 123 Dr. Wolfgang Bauer Peter-Nickel-Str. 6 69469 Weinheim Germany dr.w.bauer-de@web.de ISBN 978-3-642-15146-0 e-isbn

More information

Chapter 6. Supercharging

Chapter 6. Supercharging SHROFF S. R. ROTARY INSTITUTE OF CHEMICAL TECHNOLOGY (SRICT) DEPARTMENT OF MECHANICAL ENGINEERING. Chapter 6. Supercharging Subject: Internal Combustion Engine 1 Outline Chapter 6. Supercharging 6.1 Need

More information

Design Rules and Issues with Respect to Rocket Based Combined Cycles

Design Rules and Issues with Respect to Rocket Based Combined Cycles Respect to Rocket Based Combined Cycles Tetsuo HIRAIWA hiraiwa.tetsuo@jaxa.jp ABSTRACT JAXA Kakuda space center has been studying rocket based combined cycle engine for the future space transportation

More information

Chapter 4 Estimation of wing loading and thrust loading - 10 Lecture 18 Topics

Chapter 4 Estimation of wing loading and thrust loading - 10 Lecture 18 Topics Chapter 4 Estimation of wing loading and thrust loading - 10 Lecture 18 Topics 4.15.3 Characteristics of a typical turboprop engine 4.15.4 Characteristics of a typical turbofan engine 4.15.5 Characteristics

More information

State Legislation, Regulation or Document Reference. Civil Aviation Rule (CAR) ; Civil Aviation Rules (CAR) Part 21. Appendix C.

State Legislation, Regulation or Document Reference. Civil Aviation Rule (CAR) ; Civil Aviation Rules (CAR) Part 21. Appendix C. Annex or Recommended Practice Definition INTERNATIONAL STANDARDS AND RECOMMENDED PRACTICES PART I. DEFINITIONS AND SYMBOLS Civil Aviation Rule (CAR) 91.807; Civil Aviation Rules (CAR) Part 21 The s of

More information

Power Cycles. Ideal Cycles, Internal Combustion

Power Cycles. Ideal Cycles, Internal Combustion Gas Power Cycles Power Cycles Ideal Cycles, Internal Combustion Otto cycle, spark ignition Diesel cycle, compression ignition Sterling & Ericsson cycles Brayton cycles Jet-propulsion cycle Ideal Cycles,

More information

ia 451s, 10-y (12) Patent Application Publication (10) Pub. No.: US 2003/ A1 (19) United States Johnson et al. (43) Pub. Date: Feb.

ia 451s, 10-y (12) Patent Application Publication (10) Pub. No.: US 2003/ A1 (19) United States Johnson et al. (43) Pub. Date: Feb. (19) United States US 2003OO29160A1 (12) Patent Application Publication (10) Pub. No.: US 2003/0029160 A1 Johnson et al. (43) Pub. Date: Feb. 13, 2003 (54) COMBINED CYCLE PULSE DETONATION TURBINE ENGINE

More information

Development and Implementation of Interactive/Visual Software for Simple Aircraft Gas Turbine Design

Development and Implementation of Interactive/Visual Software for Simple Aircraft Gas Turbine Design Development and Implementation of Interactive/Visual Software for Simple Aircraft Gas Turbine Design Afshin J. Ghajar, Ronald D. Delahoussaye, Vandan V. Nayak School of Mechanical and Aerospace Engineering,

More information

Aircraft Propulsion And Gas Turbine Engines Semantic Scholar

Aircraft Propulsion And Gas Turbine Engines Semantic Scholar Aircraft Propulsion And Gas Turbine Engines Semantic Scholar We have made it easy for you to find a PDF Ebooks without any digging. And by having access to our ebooks online or by storing it on your computer,

More information

TURBOPROP ENGINE App. K AIAA AIRCRAFT ENGINE DESIGN

TURBOPROP ENGINE App. K AIAA AIRCRAFT ENGINE DESIGN CORSO DI LAUREA SPECIALISTICA IN Ingegneria Aerospaziale PROPULSIONE AEROSPAZIALE I TURBOPROP ENGINE App. K AIAA AIRCRAFT ENGINE DESIGN www.amazon.com LA DISPENSA E E DISPONIBILE SU http://www.ingindustriale.unisalento.it/didattica/

More information

(Refer Slide Time: 1:13)

(Refer Slide Time: 1:13) Fluid Dynamics And Turbo Machines. Professor Dr Dhiman Chatterjee. Department Of Mechanical Engineering. Indian Institute Of Technology Madras. Part A. Module-2. Lecture-2. Turbomachines: Definition and

More information

Supersonic Combustion Experimental Investigation at T2 Hypersonic Shock Tunnel

Supersonic Combustion Experimental Investigation at T2 Hypersonic Shock Tunnel Supersonic Combustion Experimental Investigation at T2 Hypersonic Shock Tunnel D. Romanelli Pinto, T.V.C. Marcos, R.L.M. Alcaide, A.C. Oliveira, J.B. Chanes Jr., P.G.P. Toro, and M.A.S. Minucci 1 Introduction

More information

(a) then mean effective pressure and the indicated power for each end ; (b) the total indicated power : [16]

(a) then mean effective pressure and the indicated power for each end ; (b) the total indicated power : [16] Code No: R05220304 Set No. 1 II B.Tech II Semester Regular Examinations, Apr/May 2007 THERMAL ENGINEERING-I ( Common to Mechanical Engineering and Automobile Engineering) Time: 3 hours Max Marks: 80 Answer

More information

Idealizations Help Manage Analysis of Complex Processes

Idealizations Help Manage Analysis of Complex Processes 8 CHAPTER Gas Power Cycles 8-1 Idealizations Help Manage Analysis of Complex Processes The analysis of many complex processes can be reduced to a manageable level by utilizing some idealizations (fig.

More information

THERMAL ENGINEERING. SHIBIN MOHAMED Asst. Professor Dept. of Mechanical Engineering Al Ameen Engineering College.

THERMAL ENGINEERING. SHIBIN MOHAMED Asst. Professor Dept. of Mechanical Engineering Al Ameen Engineering College. THERMAL ENGINEERING SHIBIN MOHAMED Asst. Professor Dept. of Mechanical Engineering Al Ameen Engineering College Al- Ameen Engg. College 1 Steam Engine: Definition A steam engine is a heat engine that converts

More information

Training Title GAS TURBINE AND COMPRESSOR OPERATION, MAINTENANCE AND TROUBLESHOOTING

Training Title GAS TURBINE AND COMPRESSOR OPERATION, MAINTENANCE AND TROUBLESHOOTING Training Title GAS TURBINE AND COMPRESSOR OPERATION, MAINTENANCE AND TROUBLESHOOTING Training Duration 5 days Training Venue and Dates Gas Turbine and Compressor Operation, Maintenance and Troubleshooting

More information

Automotive Chassis Engineering

Automotive Chassis Engineering Automotive Chassis Engineering David C. Barton John D. Fieldhouse Automotive Chassis Engineering 123 David C. Barton School of Mechanical Engineering University of Leeds Leeds UK John D. Fieldhouse School

More information

Gujarat, India,

Gujarat, India, Experimental Analysis of Convergent, Convergent Divergent nozzles at various mass flow rates for pressure ratio and pressure along the length of nozzle Rakesh K. Bumataria 1, Darpan V. Patel 2, Sharvil

More information

AE 451 Aeronautical Engineering Design I Propulsion and Fuel System Integration. Prof. Dr. Serkan Özgen Dept. Aerospace Engineering December 2017

AE 451 Aeronautical Engineering Design I Propulsion and Fuel System Integration. Prof. Dr. Serkan Özgen Dept. Aerospace Engineering December 2017 AE 451 Aeronautical Engineering Design I Propulsion and Fuel System Integration Prof. Dr. Serkan Özgen Dept. Aerospace Engineering December 2017 Propulsion system options 2 Propulsion system options 3

More information

ME3264: LAB 9 Gas Turbine Power System

ME3264: LAB 9 Gas Turbine Power System OBJECTIVE ME3264: LAB 9 Gas Turbine Power System Professor Chih-Jen Sung Spring 2013 A fully integrated jet propulsion system will be used for the study of thermodynamic and operating principles of gas

More information

Future Trends in Aeropropulsion Gas Turbines

Future Trends in Aeropropulsion Gas Turbines Future Trends in Aeropropulsion Gas Turbines Cyrus B. Meher-Homji, P.E. Turbomachinery Group Bechtel Corporation ASME SW Texas Gas Turbine Technical Chapter 12-Nov-2012 Copyright 2012 : C.B. Meher-Homji

More information

Aerospace Engineering Aerospace Vehicle System. Introduction of Propulsion Engineering

Aerospace Engineering Aerospace Vehicle System. Introduction of Propulsion Engineering Introduction of Aerospace Engineering Aerospace Vehicle System Propulsion engineering / education are focused on the propulsion system of the aircraft and spacecraft. Propulsion engineering is mainly classified

More information

VALVE TIMING DIAGRAM FOR SI ENGINE VALVE TIMING DIAGRAM FOR CI ENGINE

VALVE TIMING DIAGRAM FOR SI ENGINE VALVE TIMING DIAGRAM FOR CI ENGINE VALVE TIMING DIAGRAM FOR SI ENGINE VALVE TIMING DIAGRAM FOR CI ENGINE Page 1 of 13 EFFECT OF VALVE TIMING DIAGRAM ON VOLUMETRIC EFFICIENCY: Qu. 1:Why Inlet valve is closed after the Bottom Dead Centre

More information

Combustion engines. Combustion

Combustion engines. Combustion Combustion engines Chemical energy in fuel converted to thermal energy by combustion or oxidation Heat engine converts chemical energy into mechanical energy Thermal energy raises temperature and pressure

More information

In this lecture... Fixed and variable geometry nozzles Functions of nozzles Thrust vector control Thrust reversal Noise control

In this lecture... Fixed and variable geometry nozzles Functions of nozzles Thrust vector control Thrust reversal Noise control 1 In this lecture... Nozzle: Fixed and variable geometry nozzles Functions of nozzles Thrust vector control Thrust reversal Noise control 2 Exhaust nozzles Nozzles form the exhaust system of gas turbine

More information

ENGINE STARTING PERFORMANCE EVALUATION AT STATIC STATE CONDITIONS USING SUPERSONIC AIR INTAKE

ENGINE STARTING PERFORMANCE EVALUATION AT STATIC STATE CONDITIONS USING SUPERSONIC AIR INTAKE 24 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES STARTING PERFORMANCE EVALUATION AT STATIC STATE CONDITIONS USING SUPERSONIC AIR INTAKE Author1* Takashi Nishikido Author2* Iwao Murata Author3**

More information

Ayhan Demirbas. Biodiesel. A Realistic Fuel Alternative for Diesel Engines

Ayhan Demirbas. Biodiesel. A Realistic Fuel Alternative for Diesel Engines Biodiesel Ayhan Demirbas Biodiesel A Realistic Fuel Alternative for Diesel Engines 123 Ayhan Demirbas Professor of Energy Technology Sila Science and Energy Trabzon Turkey ISBN 978-1-84628-994-1 e-isbn

More information

Jet Aircraft Propulsion Prof. Bhaskar Roy Prof. A.M. Pradeep Department of Aerospace Engineering Indian Institute of Technology, Bombay

Jet Aircraft Propulsion Prof. Bhaskar Roy Prof. A.M. Pradeep Department of Aerospace Engineering Indian Institute of Technology, Bombay Jet Aircraft Propulsion Prof. Bhaskar Roy Prof. A.M. Pradeep Department of Aerospace Engineering Indian Institute of Technology, Bombay Lecture No. # 04 Turbojet, Reheat Turbojet and Multi-Spool Engines

More information

Fundamentals of steam turbine systems

Fundamentals of steam turbine systems Principles of operation Fundamentals of steam turbine systems - The motive power in a steam turbine is obtained by the rate of change in momentum of a high velocity jet of steam impinging on a curved blade

More information

Reducing Landing Distance

Reducing Landing Distance Reducing Landing Distance I've been wondering about thrust reversers, how many kinds are there and which are the most effective? I am having a debate as to whether airplane engines reverse, or does something

More information

AE 452 Aeronautical Engineering Design II Installed Engine Performance. Prof. Dr. Serkan Özgen Dept. Aerospace Engineering March 2016

AE 452 Aeronautical Engineering Design II Installed Engine Performance. Prof. Dr. Serkan Özgen Dept. Aerospace Engineering March 2016 AE 452 Aeronautical Engineering Design II Installed Engine Performance Prof. Dr. Serkan Özgen Dept. Aerospace Engineering March 2016 Propulsion 2 Propulsion F = ma = m V = ρv o S V V o ; thrust, P t =

More information

SILENT SUPERSONIC TECHNOLOGY DEMONSTRATION PROGRAM

SILENT SUPERSONIC TECHNOLOGY DEMONSTRATION PROGRAM 25 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES SILENT SUPERSONIC TECHNOLOGY DEMONSTRATION PROGRAM Akira Murakami* *Japan Aerospace Exploration Agency Keywords: Supersonic, Flight experiment,

More information

COPYRIGHTED MATERIAL. Introduction. 1.1 Gas Turbine Concepts

COPYRIGHTED MATERIAL. Introduction. 1.1 Gas Turbine Concepts 1 Introduction The modern gas turbine engine used for aircraft propulsion is a complex machine comprising many systems and subsystems that are required to operate together as a complex integrated entity.

More information

ELECTRIC DRIVES N.K. DE P.K. SEN

ELECTRIC DRIVES N.K. DE P.K. SEN ELECTRIC DRIVES N.K. DE P.K. SEN Electric Drives NISIT K. DE Associate Professor Department of Electrical Engineering Indian Institute of Technology Kharagpur and PRASANTA K. SEN Assistant Professor Department

More information

Turbo-Rocket. A brand new class of hybrid rocket. Rene Nardi and Eduardo Mautone

Turbo-Rocket. A brand new class of hybrid rocket. Rene Nardi and Eduardo Mautone Turbo-Rocket R A brand new class of hybrid rocket Rene Nardi and Eduardo Mautone 53 rd AIAA/SAE/ASEE Joint Propulsion Conference July 10 12, 2017 - Atlanta, Georgia Rumo ao Espaço R - UFC Team 2 Background

More information

Propeller Blade Bearings for Aircraft Open Rotor Engine

Propeller Blade Bearings for Aircraft Open Rotor Engine NTN TECHNICAL REVIEW No.84(2016) [ New Product ] Guillaume LEFORT* The Propeller Blade Bearings for Open Rotor Engine SAGE2 were developed by NTN-SNR in the frame of the Clean Sky aerospace programme.

More information

ME2301 THERMAL ENGINEERING L T P C OBJECTIVE:

ME2301 THERMAL ENGINEERING L T P C OBJECTIVE: ME2301 THERMAL ENGINEERING L T P C 3 1 0 4 OBJECTIVE: To integrate the concepts, laws and methodologies from the first course in thermo dynamics into analysis of cyclic processes To apply the thermodynamic

More information

Opportunities For Innovative Collaboration. Propulsion Directorate Propulsion & Power for the 21st Century Warfighter

Opportunities For Innovative Collaboration. Propulsion Directorate Propulsion & Power for the 21st Century Warfighter Opportunities For Innovative Collaboration Propulsion Directorate Propulsion & Power for the 21st Century Warfighter Propulsion Directorate Our Mission Create and transition advanced air breathing and

More information

Introduction to Modeling and Control of Internal Combustion Engine Systems

Introduction to Modeling and Control of Internal Combustion Engine Systems Introduction to Modeling and Control of Internal Combustion Engine Systems Lino Guzzella and Christopher H. Onder Introduction to Modeling and Control of Internal Combustion Engine Systems ABC Prof. Dr.

More information

INSTITUTO TECNOLÓGICO DE AERONÁUTICA CENTER FOR REFERENCE ON GAS TURBINES GAS TURBINE GROUP

INSTITUTO TECNOLÓGICO DE AERONÁUTICA CENTER FOR REFERENCE ON GAS TURBINES GAS TURBINE GROUP GAS TURBINE GROUP 2012 Background The Campus Engineering Departments Laboratories Center for Reference on Gas Turbines The Campus INSTITUTO TECNOLÓGICO DE AERONÁUTICA The Campus INSTITUTO TECNOLÓGICO DE

More information

A Computational Study of Axial Compressor Rotor Casing Treatments and Stator Land Seals

A Computational Study of Axial Compressor Rotor Casing Treatments and Stator Land Seals Virginia Commonwealth University VCU Scholars Compass Theses and Dissertations Graduate School 2006 A Computational Study of Axial Compressor Rotor Casing Treatments and Stator Land Seals Charles C. Cates

More information

CFD Analysis on a Different Advanced Rocket Nozzles

CFD Analysis on a Different Advanced Rocket Nozzles International Journal of Engineering and Advanced Technology (IJEAT) CFD Analysis on a Different Advanced Rocket Nozzles Munipally Prathibha, M. Satyanarayana Gupta, Simhachalam Naidu Abstract The reduction

More information

Chapter 4 Engine characteristics (Lectures 13 to 16)

Chapter 4 Engine characteristics (Lectures 13 to 16) Chapter 4 Engine characteristics (Lectures 13 to 16) Keywords: Engines for airplane applications; piston engine; propeller characteristics; turbo-prop, turbofan and turbojet engines; choice of engine for

More information

End of Book Questions Chapter 7 Aircraft Power Plants

End of Book Questions Chapter 7 Aircraft Power Plants End of Book Questions Chapter 7 Aircraft Power Plants 7-1. What engine does NOT draw air from the outside to fuel the combustion process? A. Gas turbine B. Rocket C. Turboprop D. Turboshaft 7-2. How many

More information

STUDY OF INFLUENCE OF ENGINE CONTROL LAWS ON TAKEOFF PERFORMANCES AND NOISE AT CONCEPTUAL DESIGN OF SSBJ PROPULSION SYSTEM

STUDY OF INFLUENCE OF ENGINE CONTROL LAWS ON TAKEOFF PERFORMANCES AND NOISE AT CONCEPTUAL DESIGN OF SSBJ PROPULSION SYSTEM 7 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES STUDY OF INFLUENCE OF ENGINE CONTROL LAWS ON TAKEOFF PERFORMANCES AND NOISE AT CONCEPTUAL DESIGN OF SSBJ PROPULSION SYSTEM Pavel A. Ryabov Central

More information

Study of Inlet Guide Vanes for Centrifugal Compressor in Miniature Gas-Turbines

Study of Inlet Guide Vanes for Centrifugal Compressor in Miniature Gas-Turbines Study of Inlet Guide Vanes for Centrifugal Compressor in Miniature Gas-Turbines Ronald Reagon R 1 Roshan Suhail 2, Shashank N 3, Ganesh Nag 4 Vishnu Tej 5 1 Asst. Professor, Department of Mechanical Engineering,

More information

FLUIDIC THRUST VECTORING NOZZLES

FLUIDIC THRUST VECTORING NOZZLES FLUIDIC THRUST VECTORING NOZZLES J.J. Isaac and C. Rajashekar Propulsion Division National Aerospace Laboratories (Council of Scientific & Industrial Research) Bangalore 560017, India April 2014 SUMMARY

More information

This fuel can be mixed with gasoline or burned by itself. At the present time this fuel is not

This fuel can be mixed with gasoline or burned by itself. At the present time this fuel is not This fuel can be mixed with gasoline or burned by itself. At the present time this fuel is not widely available. 2 3.0 ENGINE OPERATION The operation of UAV engines essentially lies in the classification

More information

DESIGN AND PERFORMANCE ANALYSIS OF SINGLE INLET MULTIPLE OUTLET JET NOZZLE WITH THRUST VECTOR CONTROL

DESIGN AND PERFORMANCE ANALYSIS OF SINGLE INLET MULTIPLE OUTLET JET NOZZLE WITH THRUST VECTOR CONTROL DESIGN AND PERFORMANCE ANALYSIS OF SINGLE INLET MULTIPLE OUTLET JET NOZZLE WITH THRUST VECTOR CONTROL PV Senthiil 1,VS Mirudhuneka 2, Aakash Shirrushti 3 1 Head, Advance Manufacturing Technology, Mechanical

More information

LEAP-X Program Update

LEAP-X Program Update LEAP-X Program Update 29 Oct 09 NYC CFM International Proprietary Information The information in this document is CFM Proprietary Information and is disclosed in confidence. It is the property of CFM International

More information

Programme area 4a. Fluid Energy Machines

Programme area 4a. Fluid Energy Machines Programme area 4a Fluid Energy 136 Contents: Fundamentals of Fluid Mechanics 138 Thermodynamics 140 Mechanics / Other 142 Power Engines Hydroturbines Pelton...143 Francis...144 others...145 Steam Turbines...146

More information

APPLICATION OF STAR-CCM+ TO TURBOCHARGER MODELING AT BORGWARNER TURBO SYSTEMS

APPLICATION OF STAR-CCM+ TO TURBOCHARGER MODELING AT BORGWARNER TURBO SYSTEMS APPLICATION OF STAR-CCM+ TO TURBOCHARGER MODELING AT BORGWARNER TURBO SYSTEMS BorgWarner: David Grabowska 9th November 2010 CD-adapco: Dean Palfreyman Bob Reynolds Introduction This presentation will focus

More information

Introduction to the ICAO Engine Emissions Databank

Introduction to the ICAO Engine Emissions Databank Introduction to the ICAO Engine Emissions Databank Background Standards limiting the emissions of smoke, unburnt hydrocarbons (HC), carbon monoxide (CO) and oxides of nitrogen (NOx) from turbojet and turbofan

More information

Martin J. L. Turner. Expedition Mars. Published in association with. Chichester, UK

Martin J. L. Turner. Expedition Mars. Published in association with. Chichester, UK Martin J. L. Turner Expedition Mars Springer Published in association with Praxis Publishing Chichester, UK Contents Preface Acknowledgements List of illustrations, colour plates and tables xi xv xvii

More information

Supersonic Combustion of Liquid Hydrogen using Slotted Shaped Pylon Injectors

Supersonic Combustion of Liquid Hydrogen using Slotted Shaped Pylon Injectors Advances in Aerospace Science and Applications. ISSN 2277-3223 Volume 3, Number 3 (2013), pp. 131-136 Research India Publications http://www.ripublication.com/aasa.htm Supersonic Combustion of Liquid Hydrogen

More information

SR-71 PROPULSION SYSTEM P&W J58 ENGINE (JT11D-20) ONE OF THE BEST JET ENGINES EVER BUILT

SR-71 PROPULSION SYSTEM P&W J58 ENGINE (JT11D-20) ONE OF THE BEST JET ENGINES EVER BUILT SR-71 PROPULSION SYSTEM P&W J58 ENGINE (JT11D-20) PETER LAW ONE OF THE BEST JET ENGINES EVER BUILT Rolls-Royce Milestone Engines Merlin Conway W2B Welland Derwent Trent SR-71 GENERAL CHARACTERISTICS

More information

ELECTRICITY GENERATION USING WIND POWER

ELECTRICITY GENERATION USING WIND POWER ELECTRICITY GENERATION USING WIND POWER ELECTRICITY GENERATION USING WIND POWER William Shepherd University of Bradford, UK Li Zhang University of Leeds, UK World Scientific NEW JERSEY LONDON SINGAPORE

More information

Learn About. Quick Write

Learn About. Quick Write LESSON 5 Flight Power D Quick Write Which is the more significant achievement being the first to invent something, or the first to make it practical? Or are both equally important? Learn About the principles

More information

Assignment-1 Introduction

Assignment-1 Introduction Assignment-1 Introduction 1. Compare S.I. engines with C.I engines. 2. Explain with the help of neat sketch, the working of a 2-stroke petrol engine. 3. Derive an equation of efficiency, work output and

More information

ENERGY AND PRODUCTS APPLIED STUDIES FOR ENGINEERS. PRO2 Present and Future fuels Materials. PRO4 Gas, industrial combustion and environment

ENERGY AND PRODUCTS APPLIED STUDIES FOR ENGINEERS. PRO2 Present and Future fuels Materials. PRO4 Gas, industrial combustion and environment ENERGY AND PRODUCTS APPLIED STUDIES FOR ENGINEERS Program PRO1 Refining processes PRO2 Present and Future fuels Materials PRO3 Fuels - logistics PRO4 Gas, industrial combustion and environment PRO5 Lubrication

More information

Internal Combustion Engines

Internal Combustion Engines Introduction Lecture 1 1 Outline In this lecture we will learn about: Definition of internal combustion Development of the internal combustion engine Different engine classifications We will also draw

More information

Turbostroje 2015 Návrh spojení vysokotlaké a nízkotlaké turbíny. Turbomachinery 2015, Design of HP and LP turbine connection

Turbostroje 2015 Návrh spojení vysokotlaké a nízkotlaké turbíny. Turbomachinery 2015, Design of HP and LP turbine connection Turbostroje 2015 Turbostroje 2015 Návrh spojení vysokotlaké a nízkotlaké turbíny Turbomachinery 2015, Design of HP and LP turbine connection J. Hrabovský 1, J. Klíma 2, V. Prokop 3, M. Komárek 4 Abstract:

More information

Metrovick F2/4 Beryl. Turbo-Union RB199

Metrovick F2/4 Beryl. Turbo-Union RB199 Turbo-Union RB199 Metrovick F2/4 Beryl Development of the F2, the first British axial flow turbo-jet, began in f 940. After initial flight trials in the tail of an Avro Lancaster, two F2s were installed

More information

NON-POSITIVE-DISPLACEMENT PUMPS (engine fuel-injection pumps F02M; ion pumps H01J 41/12; electrodynamic pumps H02K 44/02)

NON-POSITIVE-DISPLACEMENT PUMPS (engine fuel-injection pumps F02M; ion pumps H01J 41/12; electrodynamic pumps H02K 44/02) CPC - F04D - 2018.08 F04D NON-POSITIVE-DISPLACEMENT PUMPS (engine fuel-injection pumps F02M; ion pumps H01J 41/12; electrodynamic pumps H02K 44/02) Non positive displacement pumps for liquids, for elastic

More information

PERFORMANCE STUDY OF A 1 MW GAS TURBINE USING VARIABLE GEOMETRY COMPRESSOR AND TURBINE BLADE COOLING

PERFORMANCE STUDY OF A 1 MW GAS TURBINE USING VARIABLE GEOMETRY COMPRESSOR AND TURBINE BLADE COOLING PERFORMANCE STUDY OF A 1 MW GAS TURBINE USING VARIABLE GEOMETRY COMPRESSOR AND TURBINE BLADE COOLING Cleverson Bringhenti (+55-12-3947 6951, cleverson@ita.br) Jesuino Takachi Tomita (+55-12-3947 6951,

More information

Design and Test of Transonic Compressor Rotor with Tandem Cascade

Design and Test of Transonic Compressor Rotor with Tandem Cascade Proceedings of the International Gas Turbine Congress 2003 Tokyo November 2-7, 2003 IGTC2003Tokyo TS-108 Design and Test of Transonic Compressor Rotor with Tandem Cascade Yusuke SAKAI, Akinori MATSUOKA,

More information

Conversion of Automotive Turbocharger to Gas Turbine

Conversion of Automotive Turbocharger to Gas Turbine International Journal of Management, IT & Engineering Vol. 8 Issue 9, September 2018, ISSN: 2249-0558 Impact Factor: 7.119 Journal Homepage: Double-Blind Peer Reviewed Refereed Open Access International

More information