HSC Physics motors and generators magnetic flux and induction

Size: px
Start display at page:

Download "HSC Physics motors and generators magnetic flux and induction"

Transcription

1 PD32a HSC Physics motors and generators student name Monday, 30 May 2016 number о number о 1 1 c a 10 b 11 c 12 d 13 e 14 f 15 g a 21 b 22

2 2 c a 24 b 25 result out of 29 applied to the system

3 PD32a

4 4 Question 1 Who discovered the generation of an electric current by a magnet moving near a coil? 1 Faraday Hertz Oersted Tesla Question 2 Which of the following can be used to show the production of alternating current? 1 Moving a wire that is part of a closed circuit through a magnetic field at varying speeds. Moving a solenoid that is connected into a circuit up and down. Rotate a current-carrying coil between the poles of a pair of radial magnets. Move a magnet in and out of a solenoid which is part of a closed circuit. Question 3 The north pole of a magnet is moved into a coil of wire which is connected to an ammeter. Predict the effect on the current indicated on the ammeter of: (a) moving the magnet into the coil faster. 1 (b) moving the magnet out of the coil more slowly. 1 (c) moving a south pole into the magnet at the same speed. 1 (d) moving a south pole out of the coil at double the speed. 1 (e) halving the number of turns in the coil. 1 (f) moving two north poles into the coil at the same speed. 1 (g) moving two south poles out of the coil faster. 1 Question 4 Outline Faraday s experiments with coils and magnets and the observations he made. 6

5 5 Question 5 A magnet is continuously moved towards and away from a coil which is connected to an 1 ammeter. The magnet does not ever move inside the coil. What will be observed on the ammeter? An increasing current as the magnet moves closer and a decreasing current as the magnet moves away. A decreasing current as the magnet moves closer and an increasing current as the magnet moves away. An alternating current. No current because the magnet did not move inside the coil. Question 6 The diagrams show the directions of the induced currents formed by magnets moving towards 1 or away from identical coils. Which of the diagrams is correct? W and Y only. X and Z only. W, Y and X only. X, Y and Z only. Question 7 Recall the two statements with which Faraday summarised his observations on electromagnetic 2 induction. Question 8 Explain the idea of relative movement between a conductor and a magnetic field. 3

6 6 Question 9 In an experiment a student moved a magnet into, through and out of a coil as shown in the 1 diagram. Which graph best shows the emf generated in the coil? Question 10 (a) Describe the experiment you did to observe the generation of an electric current by 4 moving a magnet in a coil or by moving a coil near a magnet. (b) Recall four factors which influenced the generation of an electric current in a coil as 2 studied by the experiment you did. (c) For each factor, explain why that factor influenced the current. 2 Question 11 (a) Clarify the idea of a magnetic field. 2 (b) Define magnetic field strength in terms of magnetic flux. 2 (c) Recall the units and symbol used to measure magnetic field strength. 1

7 7 Question 12 The diagram shows equipment used to generate a current. Assuming that the coil starts from 1 the position shown, and rotates at constant rotational speed, which graph best shows the current delivered to the external circuit by this device as it rotates through 360? Question 13 (a) Define magnetic flux. 1 (b) Define magnetic flux density. 1 (c) Using the two diagrams distinguish between magnetic flux and magnetic flux density 2 (magnetic field strength).

8 8 Question 14 A bar magnet is moved backwards and forwards near a coil which is connected to a data logger 1 calibrated to plot the emf induced in the coil. The graph below the diagram shows the plot obtained. The magnet was then moved back and forth near the magnet at twice the original speed. Which plot best shows the new graph produced by the data logger? (All graphs are drawn to the same scale.) Question 15 (a) A 5.0 cm squared coil with 10 turns is placed into a uniform magnetic field. The 2 magnetic flux density is 0.80 T. The angle between the plane of the coil and the magnetic field lines is 20. Calculate the magnetic flux through the coil. (b) The coil rotates from its initial position to 90. Plot the graph of the magnetic flux 4 versus the angle between the plane of the coil and the magnetic field lines.

1. This question is about electrical energy and associated phenomena.

1. This question is about electrical energy and associated phenomena. 1. This question is about electrical energy and associated phenomena. Electromagnetism The current in the circuit is switched on. electromagnet State Faraday s law of electromagnetic induction and use

More information

Electromagnetic Induction

Electromagnetic Induction Electromagnetic Induction Question Paper Level ubject Exam oard Unit Topic ooklet O Level Physics ambridge International Examinations Electricity and Magnetism Electromagnetic Induction Question Paper

More information

FARADAY S LAW ELECTROMAGNETIC INDUCTION

FARADAY S LAW ELECTROMAGNETIC INDUCTION FARADAY S LAW ELECTROMAGNETIC INDUCTION magnetic flux density, magnetic field strength, -field, magnetic induction [tesla T] magnetic flux [weber Wb or T.m 2 ] A area [m 2 ] battery back t T f angle between

More information

1. What type of material can be induced to become a temporary magnet? A) diamagnetic B) ferromagnetic C) monomagnetic D) paramagnetic

1. What type of material can be induced to become a temporary magnet? A) diamagnetic B) ferromagnetic C) monomagnetic D) paramagnetic Assignment 1 Magnetism and Electromagnetism Name: Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. Show appropriate workings. 1. What type of

More information

Electromagnets & Induction Vocabulary

Electromagnets & Induction Vocabulary Electromagnets & Induction Vocabulary Term Definition Coil Solenoid Electric Motor Parts of an electric motor: Rotor commutator armature brushes Electromagnetic Induction Faraday s Law of Induction Generator

More information

1. Which device creates a current based on the principle of electromagnetic induction?

1. Which device creates a current based on the principle of electromagnetic induction? Assignment 2 Electromagnetism Name: 1. Which device creates a current based on the principle of electromagnetic induction? A) galvanometer B) generator C) motor D) solenoid 2. The bar magnet below enters

More information

Unit 8 ~ Learning Guide Name:

Unit 8 ~ Learning Guide Name: Unit 8 ~ Learning Guide Name: Instructions: Using a pencil, complete the following notes as you work through the related lessons. Show ALL work as is explained in the lessons. You are required to have

More information

Magnetism - General Properties

Magnetism - General Properties Magnetism - General Properties A magnet, when suspended from a string, will align itself along the north - south direction. Two like poles of a magnet will repel each other, while opposite poles will attract.

More information

1 A strong electromagnet is used to attract pins. core. current. coil. pins. What happens when the current in the coil is halved?

1 A strong electromagnet is used to attract pins. core. current. coil. pins. What happens when the current in the coil is halved? 1 strong electromagnet is used to attract pins. current core pins coil What happens when the current in the coil is halved? No pins are attracted. Some pins are attracted, but not as many. The same number

More information

GraspIT AQA GCSE Magnetism and Electromagnetism - Questions

GraspIT AQA GCSE Magnetism and Electromagnetism - Questions A. Permanent and Induced Magnetism, Magnetic Forces and Fields 1. The following question is about magnets. a. Iron is a magnetic material. Name two other magnetic elements. (2) b. Describe the effect a

More information

DC motor theory. Resources and methods for learning about these subjects (list a few here, in preparation for your research):

DC motor theory. Resources and methods for learning about these subjects (list a few here, in preparation for your research): DC motor theory This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

More information

Physics12 Unit 8/9 Electromagnetism

Physics12 Unit 8/9 Electromagnetism Name: Physics12 Unit 8/9 Electromagnetism 1. An electron, travelling with a constant velocity, enters a region of uniform magnetic field. Which of the following is not a possible pathway? 2. A bar magnet

More information

AP Physics B: Ch 20 Magnetism and Ch 21 EM Induction

AP Physics B: Ch 20 Magnetism and Ch 21 EM Induction Name: Period: Date: AP Physics B: Ch 20 Magnetism and Ch 21 EM Induction MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) If the north poles of

More information

3 Electricity from Magnetism

3 Electricity from Magnetism CHAPTER 2 3 Electricity from Magnetism SECTION Electromagnetism BEFORE YOU READ After you read this section, you should be able to answer these questions: How can a magnetic field make an electric current?

More information

ELECTRICITY: INDUCTORS QUESTIONS

ELECTRICITY: INDUCTORS QUESTIONS ELECTRICITY: INDUCTORS QUESTIONS No Brain Too Small PHYSICS QUESTION TWO (2017;2) In a car engine, an induction coil is used to produce a very high voltage spark. An induction coil acts in a similar way

More information

Lecture Outline Chapter 23. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 23. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc. Lecture Outline Chapter 23 Physics, 4 th Edition James S. Walker Chapter 23 Magnetic Flux and Faraday s Law of Induction Units of Chapter 23 Induced Electromotive Force Magnetic Flux Faraday s Law of Induction

More information

Electromagnetic Induction Chapter Questions. 1. What is the Electromagnetic Force (EMF)? What are the units of EMF?

Electromagnetic Induction Chapter Questions. 1. What is the Electromagnetic Force (EMF)? What are the units of EMF? Electromagnetic Induction Chapter Questions 1. What is the Electromagnetic Force (EMF)? What are the units of EMF? 2. The discovery of electric currents generating an magnetic field led physicists to look

More information

Lab 9: Faraday s and Ampere s Laws

Lab 9: Faraday s and Ampere s Laws Lab 9: Faraday s and Ampere s Laws Introduction In this experiment we will explore the magnetic field produced by a current in a cylindrical coil of wire, that is, a solenoid. In the previous experiment

More information

Ch 20 Inductance and Faraday s Law 1, 3, 4, 5, 7, 9, 10, 11, 17, 21, 25, 30, 31, 39, 41, 49

Ch 20 Inductance and Faraday s Law 1, 3, 4, 5, 7, 9, 10, 11, 17, 21, 25, 30, 31, 39, 41, 49 Ch 20 Inductance and Faraday s Law 1, 3, 4, 5, 7, 9, 10, 11, 17, 21, 25, 30, 31, 39, 41, 49 The coil with the switch is connected to a battery. (Primary coil) When current goes through a coil, it produces

More information

Chapter 23 Magnetic Flux and Faraday s Law of Induction

Chapter 23 Magnetic Flux and Faraday s Law of Induction Chapter 23 Magnetic Flux and Faraday s Law of Induction Units of Chapter 23 Induced Electromotive Force Magnetic Flux Faraday s Law of Induction Lenz s Law Mechanical Work and Electrical Energy Generators

More information

MAGNETIC FORCE ON A CURRENT-CARRYING WIRE

MAGNETIC FORCE ON A CURRENT-CARRYING WIRE MAGNETIC FORCE ON A CURRENT-CARRYING WIRE Pre-Lab Questions Page 1. What is the SI unit for Magnetic Field? Name: Class: Roster Number: Instructor: 2. The magnetic field on a wire is 12.0 x 10 5 Gausses,

More information

Physics 121 Practice Problem Solutions 11 Faraday s Law of Induction

Physics 121 Practice Problem Solutions 11 Faraday s Law of Induction Physics 121 Practice Problem Solutions 11 Faraday s Law of Induction Contents: 121P11-1P, 3P,4P, 5P, 7P, 17P, 19P, 24P, 27P, 28P, 31P Overview Magnetic Flux Motional EMF Two Magnetic Induction Experiments

More information

Chapter 29 Electromagnetic Induction

Chapter 29 Electromagnetic Induction Chapter 29 Electromagnetic Induction Lecture by Dr. Hebin Li Goals of Chapter 29 To examine experimental evidence that a changing magnetic field induces an emf To learn how Faraday s law relates the induced

More information

Electromagnetic Induction and Faraday s Law

Electromagnetic Induction and Faraday s Law Electromagnetic Induction and Faraday s Law Solenoid Magnetic Field of a Current Loop Solenoids produce a strong magnetic field by combining several loops. A solenoid is a long, helically wound coil of

More information

Figure 1: Relative Directions as Defined for Faraday s Law

Figure 1: Relative Directions as Defined for Faraday s Law Faraday s Law INTRODUCTION This experiment examines Faraday s law of electromagnetic induction. The phenomenon involves induced voltages and currents due to changing magnetic fields. (Do not confuse this

More information

Electrical machines - generators and motors

Electrical machines - generators and motors Electrical machines - generators and motors We have seen that when a conductor is moved in a magnetic field or when a magnet is moved near a conductor, a current flows in the conductor. The amount of current

More information

Laboratory 8: Induction and Faraday s Law

Laboratory 8: Induction and Faraday s Law Phys 112L Spring 2013 Laboratory 8: Induction and Faraday s Law 1 Faraday s Law: Theoretical Considerations Much of this exercise is based on a similar exercise in Tutorials in Introductory Physics by

More information

Union College Winter 2016 Name Partner s Name

Union College Winter 2016 Name Partner s Name Union College Winter 2016 Name Partner s Name Physics 121 Lab 8: Electromagnetic Induction By Faraday s Law, a change in the magnetic flux through a coil of wire results in a current flowing in the wire.

More information

Magnetism and Electricity ASSIGNMENT EDULABZ. the mere presence of magnet, is called...

Magnetism and Electricity ASSIGNMENT EDULABZ. the mere presence of magnet, is called... Magnetism and Electricity ASSIGNMENT 1. Fill in the blank spaces by choosing the correct words from the list given below. List : magnetic field, magnetic keepers, electric bell, stop, magnetic induction,

More information

Experimental Question 1: Levitation of Conductors in an Oscillating Magnetic Field

Experimental Question 1: Levitation of Conductors in an Oscillating Magnetic Field Experimental Question 1: Levitation of Conductors in an Oscillating Magnetic Field In an oscillating magnetic field of sufficient strength, levitation of a metal conductor becomes possible. The levitation

More information

Like poles repel, unlike poles attract can be made into a magnet

Like poles repel, unlike poles attract can be made into a magnet Topic 7 Magnetism and Electromagnetism 7.1 Magnets and Magnetic Fields A permanent magnet has its own magnetic field : region in which a magnetic force is felt Poles are the places where the magnetic force

More information

HSC Physics. Module 9.3. Motors and. Generators

HSC Physics. Module 9.3. Motors and. Generators HSC Physics Module 9.3 Motors and Generators 9.3 Motors and Generators (30 indicative hours) Contextual Outline Electricity is a convenient and flexible form of energy. It can be generated and distributed

More information

Electromagnetic Induction (approx. 1.5 h) (11/9/15)

Electromagnetic Induction (approx. 1.5 h) (11/9/15) (approx. 1.5 h) (11/9/15) Introduction In 1819, during a lecture demonstration, the Danish scientist Hans Christian Oersted noticed that the needle of a compass was deflected when placed near a current-carrying

More information

Faraday's Law of Induction

Faraday's Law of Induction Purpose Theory Faraday's Law of Induction a. To investigate the emf induced in a coil that is swinging through a magnetic field; b. To investigate the energy conversion from mechanical energy to electrical

More information

Almost 200 years ago, Faraday looked for evidence that a magnetic field would induce an electric current with this apparatus:

Almost 200 years ago, Faraday looked for evidence that a magnetic field would induce an electric current with this apparatus: Chapter 21 Electromagnetic Induction and Faraday s Law Chapter 21 Induced EMF Faraday s Law of Induction; Lenz s Law EMF Induced in a Moving Conductor Changing Magnetic Flux Produces an E Field Inductance

More information

PHYS 2212L - Principles of Physics Laboratory II

PHYS 2212L - Principles of Physics Laboratory II PHYS 2212L - Principles of Physics Laboratory II Laboratory Advanced Sheet Faraday's Law 1. Objectives. The objectives of this laboratory are a. to verify the dependence of the induced emf in a coil on

More information

Induced Emf and Magnetic Flux *

Induced Emf and Magnetic Flux * OpenStax-CNX module: m42390 1 Induced Emf and Magnetic Flux * OpenStax This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 4.0 Abstract Calculate the ux of

More information

Experiment 10. Faraday s Law of Induction. One large and two small (with handles) coils, plastic triangles, T-base BNC connector, graph paper.

Experiment 10. Faraday s Law of Induction. One large and two small (with handles) coils, plastic triangles, T-base BNC connector, graph paper. PHYSICS 171 UNIVERSITY PHYSICS LAB II Experiment 10 Faraday s Law of Induction Equipment: F Supplies: unction Generator, Oscilloscope. One large and two small (with handles) coils, plastic triangles, T-base

More information

NORTHERN ILLINOIS UNIVERSITY PHYSICS DEPARTMENT. Physics 211 E&M and Quantum Physics Spring Lab #6: Magnetic Fields

NORTHERN ILLINOIS UNIVERSITY PHYSICS DEPARTMENT. Physics 211 E&M and Quantum Physics Spring Lab #6: Magnetic Fields NORTHERN ILLINOIS UNIVERSITY PHYSICS DEPARTMENT Physics 211 E&M and Quantum Physics Spring 2018 Lab #6: Magnetic Fields Lab Writeup Due: Mon/Wed/Thu/Fri, March 5/7/8/9, 2018 Background Magnetic fields

More information

Chapter 8 Magnetism and Its Uses. Section 1: Magnetism Section 2: Electricity and Magnetism Section 3: Producing Electric Current

Chapter 8 Magnetism and Its Uses. Section 1: Magnetism Section 2: Electricity and Magnetism Section 3: Producing Electric Current Chapter 8 Magnetism and Its Uses Section 1: Magnetism Section 2: Electricity and Magnetism Section 3: Producing Electric Current Section 1: Magnetism Standard 6: Demonstrate an understanding of the nature,

More information

ELECTROMAGNETIC INDUCTION. Faraday s Law Lenz s Law Generators Transformers Cell Phones

ELECTROMAGNETIC INDUCTION. Faraday s Law Lenz s Law Generators Transformers Cell Phones ELECTROMAGNETIC INDUCTION Faraday s Law Lenz s Law Generators Transformers Cell Phones Recall Oersted's principle: when a current passes through a straight conductor there will be a circular magnetic field

More information

PURE PHYSICS ELECTRICITY & MAGNETISM (PART I)

PURE PHYSICS ELECTRICITY & MAGNETISM (PART I) PURE PHYSICS ELECTRICITY & MAGNETISM (PART I) 1 A student walks across a thick carpet and becomes positively charged as his shoes rub on the carpet. When he touches the metal handle of a door, negative

More information

Update. This week A. B. Kaye, Ph.D. Associate Professor of Physics. Michael Faraday

Update. This week A. B. Kaye, Ph.D. Associate Professor of Physics. Michael Faraday 10/26/17 Update Last week Completed Sources of Magnetic Fields (Chapter 30) This week A. B. Kaye, Ph.D. Associate Professor of Physics (Chapter 31) Next week 30 October 3 November 2017 Chapter 32 Induction

More information

Pre-lab Questions: Please review chapters 19 and 20 of your textbook

Pre-lab Questions: Please review chapters 19 and 20 of your textbook Introduction Magnetism and electricity are closely related. Moving charges make magnetic fields. Wires carrying electrical current in a part of space where there is a magnetic field experience a force.

More information

Make Your Own Electricity

Make Your Own Electricity Make Your Own Electricity Topic Electromagnetic induction Introduction Electromagnetic induction the creation of a difference in electric potential between the ends of a conductor moving in a magnetic

More information

UNIT 2. INTRODUCTION TO DC GENERATOR (Part 1) OBJECTIVES. General Objective

UNIT 2. INTRODUCTION TO DC GENERATOR (Part 1) OBJECTIVES. General Objective DC GENERATOR (Part 1) E2063/ Unit 2/ 1 UNIT 2 INTRODUCTION TO DC GENERATOR (Part 1) OBJECTIVES General Objective : To apply the basic principle of DC generator, construction principle and types of DC generator.

More information

Note 9: Faraday s Law

Note 9: Faraday s Law Note 9: Faraday s Law In 1831, Faraday discovered that EMF (electromotive force, i.e., voltage) was induced by time varying magnetic flux. This was a monumental discovery in the physics history. Before

More information

Chapter 31. Faraday s Law

Chapter 31. Faraday s Law Chapter 31 Faraday s Law Michael Faraday 1791 1867 British physicist and chemist Great experimental scientist Contributions to early electricity include: Invention of motor, generator, and transformer

More information

Q1. Figure 1 shows a straight wire passing through a piece of card.

Q1. Figure 1 shows a straight wire passing through a piece of card. THE MOTOR EFFECT Q1. Figure 1 shows a straight wire passing through a piece of card. A current (I) is passing down through the wire. Figure 1 (a) Describe how you could show that a magnetic field has been

More information

MS.RAJA ELGADFY/ELECTROMAGENETIC PAPER3

MS.RAJA ELGADFY/ELECTROMAGENETIC PAPER3 MSRAJA ELGADFY/ELECTROMAGENETIC PAPER3 1- In Fig 91, A and B are two conductors on insulating stands Both A and B were initially uncharged X Y A B Fig 91 (a) Conductor A is given the positive charge shown

More information

Introduction: Electromagnetism:

Introduction: Electromagnetism: This model of both an AC and DC electric motor is easy to assemble and disassemble. The model can also be used to demonstrate both permanent and electromagnetic motors. Everything comes packed in its own

More information

Ordinary Level Physics ANSWERS : ELECTROMAGNETIC INDUCTION. Solutions

Ordinary Level Physics ANSWERS : ELECTROMAGNETIC INDUCTION. Solutions Ordinary Level Physics ANSWERS : ELECTROMAGNETIC INDUCTION Solutions 2015 Question 12 (d) [Ordinary Level] A solenoid (long coil of wire) is connected to a battery as shown. (i) Copy the diagram into your

More information

Section 1: Magnets and Magnetic Fields Section 2: Magnetism from Electric Currents Section 3: Electric Currents from Magnetism

Section 1: Magnets and Magnetic Fields Section 2: Magnetism from Electric Currents Section 3: Electric Currents from Magnetism Section 1: Magnets and Magnetic Fields Section 2: Magnetism from Electric Currents Section 3: Electric Currents from Magnetism Key Terms Magnetic Poles Magnetic Fields Magnets The name magnet comes from

More information

Phys102 Lecture 20/21 Electromagnetic Induction and Faraday s Law

Phys102 Lecture 20/21 Electromagnetic Induction and Faraday s Law Phys102 Lecture 20/21 Electromagnetic Induction and Faraday s Law Key Points Induced EMF Faraday s Law of Induction; Lenz s Law References SFU Ed: 29-1,2,3,4,5,6. 6 th Ed: 21-1,2,3,4,5,6,7. Induced EMF

More information

SPH3U UNIVERSITY PHYSICS

SPH3U UNIVERSITY PHYSICS SPH3U UNIVERSITY PHYSICS ELECTRICITY & MAGNETISM L (P.599-604) The large-scale production of electrical energy that we have today is possible because of electromagnetic induction. The electric generator,

More information

Magnetism from Electricity

Magnetism from Electricity 2 What You Will Learn Identify the relationship between an electric current and a magnetic field. Compare solenoids and electromagnets. Describe how electromagnetism is involved in the operation of doorbells,

More information

If the magnetic field is created by an electromagnet, what happens if we keep it stationary but vary its strength by changing the current through it?

If the magnetic field is created by an electromagnet, what happens if we keep it stationary but vary its strength by changing the current through it? If a moving electron in a magnetic field experiences a force pushing on it at right angles to its motion, what happens when we take a copper wire (with lots of easily dislodged electrons in it) and move

More information

Experiment 6: Induction

Experiment 6: Induction Experiment 6: Induction Part 1. Faraday s Law. You will send a current which changes at a known rate through a solenoid. From this and the solenoid s dimensions you can determine the rate the flux through

More information

ELECTROMAGNETIC INDUCTION. FARADAY'S LAW

ELECTROMAGNETIC INDUCTION. FARADAY'S LAW 1. Aim. Physics Department Electricity and Magnetism Laboratory. ELECTROMAGNETIC INDUCTION. FARADAY'S LAW Observe the effect of introducing a permanent magnet into a coil. Study what happens when you introduce

More information

CLASSIFIED 5 MAGNETISM ELECTROMAGNETIC INDUCTION GENERATOR MOTOR - TRANSFORMER. Mr. Hussam Samir

CLASSIFIED 5 MAGNETISM ELECTROMAGNETIC INDUCTION GENERATOR MOTOR - TRANSFORMER. Mr. Hussam Samir CLASSIFIED 5 MAGNETISM ELECTROMAGNETIC INDUCTION GENERATOR MOTOR - TRANSFORMER Mr. Hussam Samir EXAMINATION QUESTIONS (5) 1. A wire perpendicular to the page carries an electric current in a direction

More information

Pre-lab Questions: Please review chapters 19 and 20 of your textbook

Pre-lab Questions: Please review chapters 19 and 20 of your textbook Introduction Magnetism and electricity are closely related. Moving charges make magnetic fields. Wires carrying electrical current in a part of space where there is a magnetic field experience a force.

More information

Electromagnetic Induction, Faraday s Experiment

Electromagnetic Induction, Faraday s Experiment Electromagnetic Induction, Faraday s Experiment A current can be produced by a changing magnetic field. First shown in an experiment by Michael Faraday A primary coil is connected to a battery. A secondary

More information

EXPERIMENT 13 QUALITATIVE STUDY OF INDUCED EMF

EXPERIMENT 13 QUALITATIVE STUDY OF INDUCED EMF 220 13-1 I. THEORY EXPERIMENT 13 QUALITATIVE STUDY OF INDUCED EMF Along the extended central axis of a bar magnet, the magnetic field vector B r, on the side nearer the North pole, points away from this

More information

Chapter 22: Electric motors and electromagnetic induction

Chapter 22: Electric motors and electromagnetic induction Chapter 22: Electric motors and electromagnetic induction The motor effect movement from electricity When a current is passed through a wire placed in a magnetic field a force is produced which acts on

More information

1 (a) (i) State what is meant by the direction of an electric field....[1] Fig. 9.1 shows a pair of oppositely-charged horizontal metal plates with the top plate positive. Fig. 9.1 The electric field between

More information

Magnets and magnetism

Magnets and magnetism Chapter 2 Electromagnetism Section 1 Magnets and magnetism Vocabulary: magnet magnetic pole magnetic force Properties of Magnets Magnetic Poles on a magnet, the magnetic poles are the locations where the

More information

Magnetic Effects of Electric Current

Magnetic Effects of Electric Current CHAPTER13 Magnetic Effects of Electric Current Multiple Choice Questions 1. Choose the incorrect statement from the following regarding magnetic lines of field (a) The direction of magnetic field at a

More information

Name: Base your answer to the question on the information below and on your knowledge of physics.

Name: Base your answer to the question on the information below and on your knowledge of physics. Name: Figure 1 Base your answer to the question on the information below and on your knowledge of physics. A student constructed a series circuit consisting of a 12.0-volt battery, a 10.0-ohm lamp, and

More information

Motional emf. as long as the velocity, field, and length are mutually perpendicular.

Motional emf. as long as the velocity, field, and length are mutually perpendicular. Motional emf Motional emf is the voltage induced across a conductor moving through a magnetic field. If a metal rod of length L moves at velocity v through a magnetic field B, the motional emf is: ε =

More information

Pre-lab Quiz/PHYS 224 Faraday s Law and Dynamo. Your name Lab section

Pre-lab Quiz/PHYS 224 Faraday s Law and Dynamo. Your name Lab section Pre-lab Quiz/PHYS 224 Faraday s Law and Dynamo Your name Lab section 1. What do you investigate in this lab? 2. In a dynamo, the coil is wound with N=100 turns of wire and has an area A=0.0001 m 2. The

More information

Today s lecture: Generators Eddy Currents Self Inductance Energy Stored in a Magnetic Field

Today s lecture: Generators Eddy Currents Self Inductance Energy Stored in a Magnetic Field PHYSICS 1B Today s lecture: Generators Eddy Currents Self Inductance Energy Stored in a Magnetic Field PHYSICS 1B Lenz's Law Generators Electric generators take in energy by work and transfer it out by

More information

The rod and the cloth both become charged as electrons move between them.

The rod and the cloth both become charged as electrons move between them. 1 polythene rod is rubbed with a cloth. polythene rod cloth The rod and the cloth both become charged as electrons move between them. The rod becomes negatively charged. Which diagram shows how the rod

More information

SPH3U1 Lesson 10 Magnetism. If the wire through a magnetic field is bent into a loop, the loop can be made to turn up to 90 0.

SPH3U1 Lesson 10 Magnetism. If the wire through a magnetic field is bent into a loop, the loop can be made to turn up to 90 0. SPH3U1 Lesson 10 Magnetism GALVAOMETERS If the wire through a magnetic field is bent into a loop, the loop can be made to turn up to 90 0. otice how the current runs in the opposite directions on opposite

More information

Academic Year

Academic Year EXCELLENCE INTERNATIONAL SCHOOL First Term, Work sheet (1) Grade (9) Academic Year 2014-2015 Subject: quantities Topics:- Static electricity - Eelectrical NAME: DATE: MULTIPLE CHOICE QUESTIONS: 1 - A circuit

More information

Faraday s Law. HPP Activity 75v1. Exploration. Obtain. 50 or 100 turn wire coil bar magnet galvanometer

Faraday s Law. HPP Activity 75v1. Exploration. Obtain. 50 or 100 turn wire coil bar magnet galvanometer HPP Activity 75v1 Faraday s Law Exploration Obtain 50 or 100 turn wire coil bar magnet galvanometer Connect the coil to the galvanometer so that a clockwise current will produce a leftward deflection of

More information

Science 30 Unit C Electromagnetic Energy

Science 30 Unit C Electromagnetic Energy Science 30 Unit C Electromagnetic Energy Outcome 1: Students will explain field theory and analyze its applications in technologies used to produce, transmit and transform electrical energy. Specific Outcome

More information

Q1. (a) A science technician sets up the apparatus shown below to demonstrate the motor effect. He uses a powerful permanent magnet.

Q1. (a) A science technician sets up the apparatus shown below to demonstrate the motor effect. He uses a powerful permanent magnet. Q. (a) A science technician sets up the apparatus shown below to demonstrate the motor effect. He uses a powerful permanent magnet. The copper roller is placed across the metal rails. When the switch is

More information

Lab 6: Electrical Motors

Lab 6: Electrical Motors Lab 6: Electrical Motors Members in the group : 1. Nattanit Trakullapphan (Nam) 1101 2. Thaksaporn Sirichanyaphong (May) 1101 3. Paradee Unchaleevilawan (Pop) 1101 4. Punyawee Lertworawut (Earl) 1101 5.

More information

ELECTROMAGNETISM. 1. the number of turns. 2. An increase in current. Unlike an ordinary magnet, electromagnets can be switched on and off.

ELECTROMAGNETISM. 1. the number of turns. 2. An increase in current. Unlike an ordinary magnet, electromagnets can be switched on and off. ELECTROMAGNETISM Unlike an ordinary magnet, electromagnets can be switched on and off. A simple electromagnet consists of: - a core (usually iron) - several turns of insulated copper wire When current

More information

INTRODUCTION Principle

INTRODUCTION Principle DC Generators INTRODUCTION A generator is a machine that converts mechanical energy into electrical energy by using the principle of magnetic induction. Principle Whenever a conductor is moved within a

More information

PHY 152 (ELECTRICITY AND MAGNETISM)

PHY 152 (ELECTRICITY AND MAGNETISM) PHY 152 (ELECTRICITY AND MAGNETISM) ELECTRIC MOTORS (AC & DC) ELECTRIC GENERATORS (AC & DC) AIMS Students should be able to Describe the principle of magnetic induction as it applies to DC and AC generators.

More information

Mr. Freeze QUALITATIVE QUESTIONS

Mr. Freeze QUALITATIVE QUESTIONS QUALITATIVE QUESTIONS Many of the questions that follow refer to the graphs of data collected when riding Mr. Freeze with high tech data collection vests. With your I.D., you can borrow a vest without

More information

Lab 12: Faraday s Effect and LC Circuits

Lab 12: Faraday s Effect and LC Circuits Part 1) Faraday s Law OBJECTIVES In this part of the lab you will Use Faraday s law to predict the emf produced in a coil from a time-varying magnetic field Measure the emf produced in a coil for a time-varying

More information

INDUCED ELECTROMOTIVE FORCE (1)

INDUCED ELECTROMOTIVE FORCE (1) INDUCED ELECTROMOTIVE FORCE (1) Michael Faraday showed in the 19 th Century that a magnetic field can produce an electric field To show this, two circuits are involved, the first of which is called the

More information

INDIAN SCHOOL MUSCAT

INDIAN SCHOOL MUSCAT INDIAN SCHOOL MUSCAT Department of Physics Class:XII Physics Worksheet-3 (2018-2019) Chapter 3: Current Electricity Section A Conceptual and Application type Questions 1 Two wires of equal length, one

More information

UNIQUE SCIENCE ACADEMY

UNIQUE SCIENCE ACADEMY 1 UIQUE IEE EMY Test (Unit 21) ame :... Paper: Physics ate :... ode: 5054 lass: II Time llowed: 40Minutes This document consists of 6 printed pages. Maximum Marks: 25 T [Total 15 Marks] heory ection: Fig.

More information

Evaluation copy. The Magnetic Field in a Slinky. computer OBJECTIVES MATERIALS INITIAL SETUP

Evaluation copy. The Magnetic Field in a Slinky. computer OBJECTIVES MATERIALS INITIAL SETUP The Magnetic Field in a Slinky Computer 26 A solenoid is made by taking a tube and wrapping it with many turns of wire. A metal Slinky is the same shape and will serve as our solenoid. When a current passes

More information

4) With an induced current, thumb points force/velocity and palm points current

4) With an induced current, thumb points force/velocity and palm points current Matt Katz Chapter 22 Review Right Hand Rules 1 st Right Hand Rule - use for wires 1) point thumb in direction of current (I) 2) B is where your fingers point 2 nd Right Hand Rule - use for solenoids or

More information

PHYSICS MCQ (TERM-1) BOARD PAPERS

PHYSICS MCQ (TERM-1) BOARD PAPERS GRADE: 10 PHYSICS MCQ (TERM-1) BOARD PAPERS 1 The number of division in ammeter of range 2A is 10 and voltmeter of range 5 V is 20. When the switch of the circuit given below is closed, ammeter reading

More information

BELT-DRIVEN ALTERNATORS

BELT-DRIVEN ALTERNATORS CHAPTER 13 BELT-DRIVEN ALTERNATORS INTRODUCTION A generator is a machine that converts mechanical energy into electrical energy using the principle of magnetic induction. This principle is based on the

More information

To discover the factors affecting the direction of rotation and speed of three-phase motors.

To discover the factors affecting the direction of rotation and speed of three-phase motors. EXPERIMENT 12 Direction of Rotation of Three-Phase Motor PURPOSE: To discover the factors affecting the direction of rotation and speed of three-phase motors. BRIEFING: The stators of three-phase motors

More information

Magnetic Effects of Electric Current

Magnetic Effects of Electric Current Magnetic Effects of Electric Current Question 1: Why does a compass needle get deflected when brought near a bar magnet? Answer: A compass needle is a small bar magnet. When it is brought near a bar magnet,

More information

VCE PHYSICS Unit 3 Topic 2 ELECTRIC POWER

VCE PHYSICS Unit 3 Topic 2 ELECTRIC POWER VCE PHYSICS Unit 3 Topic 2 ELECTRIC POWER Unit Outline This unit covers the following areas: 1. Apply a field model to magnetic phenomena including shapes and directions produced by bar magnets and by

More information

Circuit Analysis Questions A level standard

Circuit Analysis Questions A level standard 1. (a) set of decorative lights consists of a string of lamps. Each lamp is rated at 5.0 V, 0.40 W and is connected in series to a 230 V supply. Calculate the number of lamps in the set, so that each lamp

More information

Electromagnetism. Investigations

Electromagnetism. Investigations Electromagnetism Investigations Autumn 2015 ELECTROMAGNETISM Investigations Table of Contents Magnetic effect of an electric current* 2 Force on a current-carrying conductor in a magnetic field* 6 Faraday

More information

DC CIRCUITS ELECTROMAGNETISM

DC CIRCUITS ELECTROMAGNETISM DC CIRCUITS 1. State and Explain Ohm s Law. Write in brief about the limitations of Ohm s Law. 2. State and explain Kirchhoff s laws. 3. Write in brief about disadvantages of series circuit and advantages

More information

The Magnetic Field in a Coil. Evaluation copy. Figure 1. square or circular frame Vernier computer interface momentary-contact switch

The Magnetic Field in a Coil. Evaluation copy. Figure 1. square or circular frame Vernier computer interface momentary-contact switch The Magnetic Field in a Coil Computer 25 When an electric current flows through a wire, a magnetic field is produced around the wire. The magnitude and direction of the field depends on the shape of the

More information

4 Electricity and Magnetism

4 Electricity and Magnetism 4 Electricity and Magnetism 1. Simple phenomena of magnetism 2. Electrical quantities 3. Electrical circuits 4. Dangers of electricity 5. Electromagnetic effects 6. Cathode ray oscilloscope 1. The diagram

More information

2014 ELECTRICAL TECHNOLOGY

2014 ELECTRICAL TECHNOLOGY SET - 1 II B. Tech I Semester Regular Examinations, March 2014 ELECTRICAL TECHNOLOGY (Com. to ECE, EIE, BME) Time: 3 hours Max. Marks: 75 Answer any FIVE Questions All Questions carry Equal Marks ~~~~~~~~~~~~~~~~~~~~~~~~~~

More information

MAGNETIC EFFECTS OF ELECTRIC CURRENT. To understand Magnetic effects of Electric current, first we should know what is the Magnet?

MAGNETIC EFFECTS OF ELECTRIC CURRENT. To understand Magnetic effects of Electric current, first we should know what is the Magnet? MAGNETIC EFFECTS OF ELECTRIC CURRENT To understand Magnetic effects of Electric current, first we should know what is the Magnet? Magnet A Magnet is an object which attracts pieces of iron, steel, nickel

More information