Lab 12: Faraday s Effect and LC Circuits

Size: px
Start display at page:

Download "Lab 12: Faraday s Effect and LC Circuits"

Transcription

1 Part 1) Faraday s Law OBJECTIVES In this part of the lab you will Use Faraday s law to predict the emf produced in a coil from a time-varying magnetic field Measure the emf produced in a coil for a time-varying magnetic field Faraday s law states that a changing magnetic flux will produce an electric field: d E dl=- B nda ˆ dt NC If you place a coil with appropriate orientation in the region of this changing magnetic field, the electric field will cause a voltage difference between the ends of the coil. In this lab you create a changing magnetic field by moving a bar magnet away from a coil, and measure the resulting potential difference (emf). Before you make the measurement, you will attempt to calculate what the emf will be. 1) Warm Up Problem Problem 1) The north pole of a bar magnet points toward a thin circular coil of wire containing 40 turns. The magnet is moved away from the coil, so that the flux through one turn inside the coil decreases by 0.3 T m 2 in 0.2 s. What is the average emf induced in the coil during this time interval? Viewed from the right side (opposite the bar magnet), does the induced current run clockwise or counterclockwise? Explain briefly. CHECKPOINT 1: Ask an instructor to check your work for credit. You may proceed while you wait to be checked off

2 2) Predicting the emf a) Take out the following items for this part of the lab: 1 compass 1 bar magnet 1 ruler or meter stick 1 coil of 1600 turns 1 PASport voltage sensor b) Quickly determine and record the magnetic dipole moment of the bar magnet in your kit. If you do not remember how to do this see Lab 9, Section 3 (you can do this with a compass and a ruler). If you examine your 1600 turn coil you will notice that the inside and outside diameters of the coil are rather different. Hold the bar magnet so the end of the magnet is just outside the coil, as shown below. This will be the initial position. You need to calculate the approximate magnetic flux through one turn of the coil, due to the magnet at this location, and then find the total flux through all the turns of the coil. Magnet Coil c) Determine the average area of one turn of the coil (read on for details). If you take the coil to be a square with internal width and height w and outside width and height W, then the average area is:

3 3 3 W -w A= 3 W-w Which is obtained by using the average value of a function, on an interval defined as: to 1 f = a-b a b 1 A = W-w 1 A = W-w f x dx W w W 2 x dx w 1 x A = W-w W -w A = 3 W-w A x dx d) Determine the average magnetic field inside the coil from the bar magnet, by deriving a formula in the same way we derived the formula for average area. 3 W Recall that the magnitude of the magnetic field of a bar magnet on axis is: w The lower limit of the integral is l, the distance from the center of the magnet to the front of the coil. The upper limit of the integral is L, the distance from the center of the magnet to the far end of the coil. e) Determine the average magnetic flux through one turn of the coil in this initial situation. f) Determine the average magnetic flux through all turns of the coil. Now hold your magnet 30 cm away from the coil. This is your final position g) Determine the average magnetic field inside the coil from the bar magnet. h) Determine the average magnetic flux through one turn of the coil in this final situation. i) Determine the average magnetic flux through all turns of the coil.

4 You want to move the magnet rapidly away from the coil so that the change in flux is large. A typical time for rapidly moving your hand 30 cm is 0.05 s. There is a motion sensor attached to the TA s computer where you can check how fast you can move your hand if you wish. j) Use either the typical t = 0.05 s or the time you measured for t along with the change in flux from initial to final position, to predict the emf you should observe when you quickly move the magnet from near the coil to 30 cm away. CHECKPOINT 2: Ask an instructor to check your work for credit. You may proceed while you wait to be checked off 3) Measuring the emf a) Log on to the lab computer and double click on Faraday.ds located on laptop desktop. It should automatically start software known as Datastudio. b) Connect the PASport voltage sensor cables to the coil. c) Click START to start recording, and move the magnet back and forth a few times to see what happens. d) Move the magnet slowly. e) Describe qualitatively what you observe. f) Move the magnet rapidly. g) Describe qualitatively what is different in your observations. h) Now measure the peak emf in the coil when you move the magnet away rapidly several times (you do not need to stop your hand when it is 30 cm away). Start at the initial location you used in your prediction calculation. i) Draw a sketch of a typical peak with scale and units in your work space j) Compare your experimental value to your predicted value. k) Given the approximations you made in estimating the emf, are your measured and predicted values in good agreement? CHECKPOINT 3: Ask an instructor to check your work for credit. You may proceed while you wait to be checked off

5 Part 2) RLC Oscillating Circuits OBJECTIVES In this part of the lab you will: Write a VPython program to simulate a circuit consisting of a capacitor and inductor (LC circuit) Add resistance to your LC circuit program to make a RLC circuit Adjust the resistance in your RLC circuit to observe different circuit behaviors An inductor is a device which stores energy in a magnetic field. A capacitor stores energy in an electric field. If you wire the two devices together the potential energy in the circuit will oscillate between that in the electric field and that in the magnetic field. You will use VPython to simulate the behavior of one of these circuits (an LC circuit), then you will add in resistance (an RLC), due to a resistor or the intrinsic resistance in the circuit itself, to make your model into a more realistic circuit. 1) Warm Up Problems Problem 2) A circuit consists of a capacitor and in inductor. Given the that voltage change across a capacitor is Q di and the voltage change across and inductor is -L, C dt solve the energy conservation equation for di. Problem 3) To the above circuit, add a resistor in series, across which the potential change is -IR. Solve the new energy conservation equation for di. CHECKPOINT 4: Ask an instructor to check your work for credit. You may proceed while you wait to be checked off 2) Modeling a RLC Circuit with VPython a) Open a New IDLE window and enter the basic skeleton of a program, like that below. from visual import * from visual.graph import * from future import division # Define Constants # Initial Values

6 # Create Objects # Calculations Do the following in you constants section. You need to input the characteristics of the circuit which are the resistance, the inductance, and the capacitance. b) Set the inductance ( L ) of the inductor in your simulated circuit to be H. c) Se the capacitance ( C ) of the capacitor in your circuit to be 1 F. d) Set the resistance ( R ) of your circuit to be 0 Ohms. You will run this circuit for a set amount of time so you need to define a time interval. e) Set your time interval ( deltat ) to be s. Do the following in your initial values section. The initial state of your circuit will be the capacitor charged to 3 V and no current in the circuit. f) Set the initial charge ( Q ) to be the charge on the capacitor if it were charged to 3 V. g) Set the initial current ( I ) to be 0. h) Set the time ( t ) to 0. Do the following in your create objects section. You want to graph both current, which relates to the potential energy stored in the inductor, and charge, which relates to the potential energy stored in the capacitor. i) Create a graph called Qgraph with the following line of code. Qgraph = gcurve(color=color.cyan) j) Create a graph called Igraph. Igraph = gcurve(color=color.red) Do the following in your calculations section. The period of a RLC circuit is given by

7 T=2π LC k) Make VPython calculate and print out the period of your RLC circuit (in VPython the word pi is equal to the the value of pi). You want to watch the behavior of your circuit as time passes so you will need to use a loop containing update equations. l) Construct a while loop that will stop after 10 s (in VPython time). Do the following in the loop The current will change as time passes, so you need to enter a current update equation. m) Input the current update equation. This will be given by I=I+dI n) Put in the expression you found in Problem 3 of the Warm Up for di. As time passes, the charge on the capacitor will also change. o) Input the charge update equation given by p) Update the time Q=Q-Idt q) Add data to your graph with the following lines of code. Qgraph.plot( pos=(t,q)) Igraph.plot( pos=(t,i)) r) Run your code. i. Does the period on your graph match the period VPython printed out? If the periods do not match there is a problem with your code. You should see a graph of the amount of charge on the capacitor and the amount of current versus time. A capacitor stores potential energy in an electric field while an inductor stores potential energy in a magnetic field. What you are simulating is a circuit which transfers potential energy back and forth between the two circuit elements. This is like a weight on a vertical spring. That system transfers potential energy between two forms as well, gravity and spring potential. If each of these systems has no energy losses they will oscillate forever,

8 however, each one gives up energy as heat. The weight gives up energy as heat when the metal of the spring bends and also loses energy due to air resistance. The circuit gives up energy to heat through the resistance of the metal from which the circuit is made. ii. In your graph what is a noticeable relation between current and charge on the capacitor There are three types of behavior you should observe depending on your resistance. You have already seen the first one involving no resistance (undamped oscillations). s) Slowly increase the resistance of your circuit until you see the other two behaviors. If your resistance becomes too high the program will crash. t) Sketch a graph of all three behaviors in your work space. CHECKPOINT 5: Ask an instructor to check your work for credit.

Faraday's Law of Induction

Faraday's Law of Induction Induction EX-9914 Page 1 of 6 EQUIPMENT Faraday's Law of Induction INCLUDED: 1 Induction Wand EM-8099 1 Variable Gap Lab Magnet EM-8641 1 Large Rod Stand ME-8735 2 45 cm Long Steel Rod ME-8736 1 Multi

More information

Faraday's Law of Induction

Faraday's Law of Induction Purpose Theory Faraday's Law of Induction a. To investigate the emf induced in a coil that is swinging through a magnetic field; b. To investigate the energy conversion from mechanical energy to electrical

More information

Electromagnetic Induction (approx. 1.5 h) (11/9/15)

Electromagnetic Induction (approx. 1.5 h) (11/9/15) (approx. 1.5 h) (11/9/15) Introduction In 1819, during a lecture demonstration, the Danish scientist Hans Christian Oersted noticed that the needle of a compass was deflected when placed near a current-carrying

More information

PHYS 2212L - Principles of Physics Laboratory II

PHYS 2212L - Principles of Physics Laboratory II PHYS 2212L - Principles of Physics Laboratory II Laboratory Advanced Sheet Faraday's Law 1. Objectives. The objectives of this laboratory are a. to verify the dependence of the induced emf in a coil on

More information

RL Circuits Challenge Problems

RL Circuits Challenge Problems RL Circuits Challenge Problems Problem : RL Circuits Consider the circuit at left, consisting of a battery (emf ε), an inductor L, resistor R and switch S. For times t< the switch is open and there is

More information

Chapter 23 Magnetic Flux and Faraday s Law of Induction

Chapter 23 Magnetic Flux and Faraday s Law of Induction Chapter 23 Magnetic Flux and Faraday s Law of Induction Units of Chapter 23 Induced Electromotive Force Magnetic Flux Faraday s Law of Induction Lenz s Law Mechanical Work and Electrical Energy Generators

More information

Unit 8 ~ Learning Guide Name:

Unit 8 ~ Learning Guide Name: Unit 8 ~ Learning Guide Name: Instructions: Using a pencil, complete the following notes as you work through the related lessons. Show ALL work as is explained in the lessons. You are required to have

More information

Figure 1: Relative Directions as Defined for Faraday s Law

Figure 1: Relative Directions as Defined for Faraday s Law Faraday s Law INTRODUCTION This experiment examines Faraday s law of electromagnetic induction. The phenomenon involves induced voltages and currents due to changing magnetic fields. (Do not confuse this

More information

Laboratory 8: Induction and Faraday s Law

Laboratory 8: Induction and Faraday s Law Phys 112L Spring 2013 Laboratory 8: Induction and Faraday s Law 1 Faraday s Law: Theoretical Considerations Much of this exercise is based on a similar exercise in Tutorials in Introductory Physics by

More information

Lecture Outline Chapter 23. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 23. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc. Lecture Outline Chapter 23 Physics, 4 th Edition James S. Walker Chapter 23 Magnetic Flux and Faraday s Law of Induction Units of Chapter 23 Induced Electromotive Force Magnetic Flux Faraday s Law of Induction

More information

Union College Winter 2016 Name Partner s Name

Union College Winter 2016 Name Partner s Name Union College Winter 2016 Name Partner s Name Physics 121 Lab 8: Electromagnetic Induction By Faraday s Law, a change in the magnetic flux through a coil of wire results in a current flowing in the wire.

More information

EXPERIMENT 13 QUALITATIVE STUDY OF INDUCED EMF

EXPERIMENT 13 QUALITATIVE STUDY OF INDUCED EMF 220 13-1 I. THEORY EXPERIMENT 13 QUALITATIVE STUDY OF INDUCED EMF Along the extended central axis of a bar magnet, the magnetic field vector B r, on the side nearer the North pole, points away from this

More information

Chapter 29 Electromagnetic Induction

Chapter 29 Electromagnetic Induction Chapter 29 Electromagnetic Induction Lecture by Dr. Hebin Li Goals of Chapter 29 To examine experimental evidence that a changing magnetic field induces an emf To learn how Faraday s law relates the induced

More information

Experiment 10. Faraday s Law of Induction. One large and two small (with handles) coils, plastic triangles, T-base BNC connector, graph paper.

Experiment 10. Faraday s Law of Induction. One large and two small (with handles) coils, plastic triangles, T-base BNC connector, graph paper. PHYSICS 171 UNIVERSITY PHYSICS LAB II Experiment 10 Faraday s Law of Induction Equipment: F Supplies: unction Generator, Oscilloscope. One large and two small (with handles) coils, plastic triangles, T-base

More information

Today s lecture: Generators Eddy Currents Self Inductance Energy Stored in a Magnetic Field

Today s lecture: Generators Eddy Currents Self Inductance Energy Stored in a Magnetic Field PHYSICS 1B Today s lecture: Generators Eddy Currents Self Inductance Energy Stored in a Magnetic Field PHYSICS 1B Lenz's Law Generators Electric generators take in energy by work and transfer it out by

More information

Electromagnetic Induction, Faraday s Experiment

Electromagnetic Induction, Faraday s Experiment Electromagnetic Induction, Faraday s Experiment A current can be produced by a changing magnetic field. First shown in an experiment by Michael Faraday A primary coil is connected to a battery. A secondary

More information

NORTHERN ILLINOIS UNIVERSITY PHYSICS DEPARTMENT. Physics 211 E&M and Quantum Physics Spring Lab #6: Magnetic Fields

NORTHERN ILLINOIS UNIVERSITY PHYSICS DEPARTMENT. Physics 211 E&M and Quantum Physics Spring Lab #6: Magnetic Fields NORTHERN ILLINOIS UNIVERSITY PHYSICS DEPARTMENT Physics 211 E&M and Quantum Physics Spring 2018 Lab #6: Magnetic Fields Lab Writeup Due: Mon/Wed/Thu/Fri, March 5/7/8/9, 2018 Background Magnetic fields

More information

PHYS 1444 Section 004. Lecture #19. DC Generator Transformer. Generalized Faraday s Law Mutual Inductance Self Inductance. Wednesday, Apr.

PHYS 1444 Section 004. Lecture #19. DC Generator Transformer. Generalized Faraday s Law Mutual Inductance Self Inductance. Wednesday, Apr. PHYS 1444 Section 004 DC Generator Transformer Lecture #19 Wednesday, April 11, 2012 Dr. Generalized Faraday s Law Mutual Inductance Self Inductance 1 Announcements Term exam #2 Non-comprehensive Date

More information

Update. This week A. B. Kaye, Ph.D. Associate Professor of Physics. Michael Faraday

Update. This week A. B. Kaye, Ph.D. Associate Professor of Physics. Michael Faraday 10/26/17 Update Last week Completed Sources of Magnetic Fields (Chapter 30) This week A. B. Kaye, Ph.D. Associate Professor of Physics (Chapter 31) Next week 30 October 3 November 2017 Chapter 32 Induction

More information

1. This question is about electrical energy and associated phenomena.

1. This question is about electrical energy and associated phenomena. 1. This question is about electrical energy and associated phenomena. Electromagnetism The current in the circuit is switched on. electromagnet State Faraday s law of electromagnetic induction and use

More information

Experimental Question 1: Levitation of Conductors in an Oscillating Magnetic Field

Experimental Question 1: Levitation of Conductors in an Oscillating Magnetic Field Experimental Question 1: Levitation of Conductors in an Oscillating Magnetic Field In an oscillating magnetic field of sufficient strength, levitation of a metal conductor becomes possible. The levitation

More information

Electromagnetic Induction Chapter Questions. 1. What is the Electromagnetic Force (EMF)? What are the units of EMF?

Electromagnetic Induction Chapter Questions. 1. What is the Electromagnetic Force (EMF)? What are the units of EMF? Electromagnetic Induction Chapter Questions 1. What is the Electromagnetic Force (EMF)? What are the units of EMF? 2. The discovery of electric currents generating an magnetic field led physicists to look

More information

The Magnetic Field in a Coil. Evaluation copy. Figure 1. square or circular frame Vernier computer interface momentary-contact switch

The Magnetic Field in a Coil. Evaluation copy. Figure 1. square or circular frame Vernier computer interface momentary-contact switch The Magnetic Field in a Coil Computer 25 When an electric current flows through a wire, a magnetic field is produced around the wire. The magnitude and direction of the field depends on the shape of the

More information

Electromagnetic Induction and Faraday s Law

Electromagnetic Induction and Faraday s Law Electromagnetic Induction and Faraday s Law Solenoid Magnetic Field of a Current Loop Solenoids produce a strong magnetic field by combining several loops. A solenoid is a long, helically wound coil of

More information

FARADAY S LAW ELECTROMAGNETIC INDUCTION

FARADAY S LAW ELECTROMAGNETIC INDUCTION FARADAY S LAW ELECTROMAGNETIC INDUCTION magnetic flux density, magnetic field strength, -field, magnetic induction [tesla T] magnetic flux [weber Wb or T.m 2 ] A area [m 2 ] battery back t T f angle between

More information

Induced Emf and Magnetic Flux *

Induced Emf and Magnetic Flux * OpenStax-CNX module: m42390 1 Induced Emf and Magnetic Flux * OpenStax This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 4.0 Abstract Calculate the ux of

More information

Lenz s and Faraday s Laws

Lenz s and Faraday s Laws Lenz s and Faraday s Laws KET Virtual Physics Labs Worksheet Lab 14-1 As you work through the steps in the lab procedure, record your experimental values and the results on this worksheet. Use the exact

More information

HSC Physics motors and generators magnetic flux and induction

HSC Physics motors and generators magnetic flux and induction PD32a HSC Physics motors and generators student name....................... Monday, 30 May 2016 number о number о 1 1 c 26 2 2 17 27 3 3 18 28 4 4 19 29 5 5 6 6 7 7 8 8 9 9 10 a 10 b 11 c 12 d 13 e 14

More information

INDUCED ELECTROMOTIVE FORCE (1)

INDUCED ELECTROMOTIVE FORCE (1) INDUCED ELECTROMOTIVE FORCE (1) Michael Faraday showed in the 19 th Century that a magnetic field can produce an electric field To show this, two circuits are involved, the first of which is called the

More information

Lab 9: Faraday s and Ampere s Laws

Lab 9: Faraday s and Ampere s Laws Lab 9: Faraday s and Ampere s Laws Introduction In this experiment we will explore the magnetic field produced by a current in a cylindrical coil of wire, that is, a solenoid. In the previous experiment

More information

ELECTRICITY: INDUCTORS QUESTIONS

ELECTRICITY: INDUCTORS QUESTIONS ELECTRICITY: INDUCTORS QUESTIONS No Brain Too Small PHYSICS QUESTION TWO (2017;2) In a car engine, an induction coil is used to produce a very high voltage spark. An induction coil acts in a similar way

More information

Motional emf. as long as the velocity, field, and length are mutually perpendicular.

Motional emf. as long as the velocity, field, and length are mutually perpendicular. Motional emf Motional emf is the voltage induced across a conductor moving through a magnetic field. If a metal rod of length L moves at velocity v through a magnetic field B, the motional emf is: ε =

More information

Pre-lab Questions: Please review chapters 19 and 20 of your textbook

Pre-lab Questions: Please review chapters 19 and 20 of your textbook Introduction Magnetism and electricity are closely related. Moving charges make magnetic fields. Wires carrying electrical current in a part of space where there is a magnetic field experience a force.

More information

Phys102 Lecture 20/21 Electromagnetic Induction and Faraday s Law

Phys102 Lecture 20/21 Electromagnetic Induction and Faraday s Law Phys102 Lecture 20/21 Electromagnetic Induction and Faraday s Law Key Points Induced EMF Faraday s Law of Induction; Lenz s Law References SFU Ed: 29-1,2,3,4,5,6. 6 th Ed: 21-1,2,3,4,5,6,7. Induced EMF

More information

ELECTROMAGNETIC INDUCTION. Faraday s Law Lenz s Law Generators Transformers Cell Phones

ELECTROMAGNETIC INDUCTION. Faraday s Law Lenz s Law Generators Transformers Cell Phones ELECTROMAGNETIC INDUCTION Faraday s Law Lenz s Law Generators Transformers Cell Phones Recall Oersted's principle: when a current passes through a straight conductor there will be a circular magnetic field

More information

Almost 200 years ago, Faraday looked for evidence that a magnetic field would induce an electric current with this apparatus:

Almost 200 years ago, Faraday looked for evidence that a magnetic field would induce an electric current with this apparatus: Chapter 21 Electromagnetic Induction and Faraday s Law Chapter 21 Induced EMF Faraday s Law of Induction; Lenz s Law EMF Induced in a Moving Conductor Changing Magnetic Flux Produces an E Field Inductance

More information

DC motor theory. Resources and methods for learning about these subjects (list a few here, in preparation for your research):

DC motor theory. Resources and methods for learning about these subjects (list a few here, in preparation for your research): DC motor theory This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

More information

The Physics of the Automotive Ignition System

The Physics of the Automotive Ignition System I. Introduction This laboratory exercise explores the physics of automotive ignition systems used on vehicles for about half a century until the 1980 s, and introduces more modern transistorized systems.

More information

Make Your Own Electricity

Make Your Own Electricity Make Your Own Electricity Topic Electromagnetic induction Introduction Electromagnetic induction the creation of a difference in electric potential between the ends of a conductor moving in a magnetic

More information

Faraday s Law. HPP Activity 75v1. Exploration. Obtain. 50 or 100 turn wire coil bar magnet galvanometer

Faraday s Law. HPP Activity 75v1. Exploration. Obtain. 50 or 100 turn wire coil bar magnet galvanometer HPP Activity 75v1 Faraday s Law Exploration Obtain 50 or 100 turn wire coil bar magnet galvanometer Connect the coil to the galvanometer so that a clockwise current will produce a leftward deflection of

More information

Chapter 7. Magnetic Fields. 7.1 Purpose. 7.2 Introduction

Chapter 7. Magnetic Fields. 7.1 Purpose. 7.2 Introduction Chapter 7 Magnetic Fields 7.1 Purpose Magnetic fields are intrinsically connected to electric currents. Whenever a current flows through a wire, a magnetic field is produced in the region around the wire.

More information

Pre-lab Questions: Please review chapters 19 and 20 of your textbook

Pre-lab Questions: Please review chapters 19 and 20 of your textbook Introduction Magnetism and electricity are closely related. Moving charges make magnetic fields. Wires carrying electrical current in a part of space where there is a magnetic field experience a force.

More information

ELECTROMAGNETIC INDUCTION. FARADAY'S LAW

ELECTROMAGNETIC INDUCTION. FARADAY'S LAW 1. Aim. Physics Department Electricity and Magnetism Laboratory. ELECTROMAGNETIC INDUCTION. FARADAY'S LAW Observe the effect of introducing a permanent magnet into a coil. Study what happens when you introduce

More information

Mr. Freeze QUALITATIVE QUESTIONS

Mr. Freeze QUALITATIVE QUESTIONS QUALITATIVE QUESTIONS Many of the questions that follow refer to the graphs of data collected when riding Mr. Freeze with high tech data collection vests. With your I.D., you can borrow a vest without

More information

ECSE-2100 Fields and Waves I Spring Project 1 Beakman s Motor

ECSE-2100 Fields and Waves I Spring Project 1 Beakman s Motor Names _ and _ Project 1 Beakman s Motor For this project, students should work in groups of two. It is permitted for groups to collaborate, but each group of two must submit a report and build the motor

More information

Chapter 31. Faraday s Law

Chapter 31. Faraday s Law Chapter 31 Faraday s Law Michael Faraday 1791 1867 British physicist and chemist Great experimental scientist Contributions to early electricity include: Invention of motor, generator, and transformer

More information

Physics 121 Practice Problem Solutions 11 Faraday s Law of Induction

Physics 121 Practice Problem Solutions 11 Faraday s Law of Induction Physics 121 Practice Problem Solutions 11 Faraday s Law of Induction Contents: 121P11-1P, 3P,4P, 5P, 7P, 17P, 19P, 24P, 27P, 28P, 31P Overview Magnetic Flux Motional EMF Two Magnetic Induction Experiments

More information

ELECTRO MAGNETIC INDUCTION

ELECTRO MAGNETIC INDUCTION 6 ELECTRO MAGNETIC INDUCTION 06.01 Electromagnetic induction When the magnetic flux linked with a coil or conductor changes, an emf is developed in it. This phenomenon is known as electromagnetic induction.

More information

Series and Parallel Circuits Virtual Lab

Series and Parallel Circuits Virtual Lab Series and Parallel Circuits Virtual Lab Learning Goals: Students will be able to Discuss basic electricity relationships Discuss basic electricity relationships in series and parallel circuits Build series,

More information

1. What type of material can be induced to become a temporary magnet? A) diamagnetic B) ferromagnetic C) monomagnetic D) paramagnetic

1. What type of material can be induced to become a temporary magnet? A) diamagnetic B) ferromagnetic C) monomagnetic D) paramagnetic Assignment 1 Magnetism and Electromagnetism Name: Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. Show appropriate workings. 1. What type of

More information

Evaluation copy. The Magnetic Field in a Slinky. computer OBJECTIVES MATERIALS INITIAL SETUP

Evaluation copy. The Magnetic Field in a Slinky. computer OBJECTIVES MATERIALS INITIAL SETUP The Magnetic Field in a Slinky Computer 26 A solenoid is made by taking a tube and wrapping it with many turns of wire. A metal Slinky is the same shape and will serve as our solenoid. When a current passes

More information

Danyal Education (Contact: ) A commitment to teach and nurture. c) sketch a graph of voltage output against time for a simple a.c.

Danyal Education (Contact: ) A commitment to teach and nurture. c) sketch a graph of voltage output against time for a simple a.c. (Contact: 9855 9224) Electricity and Magnetism: Electromagnetic Induction (*) (#) Candidates should be able to: a) deduce from Faraday s experiments on electromagnetic induction or other appropriate experiments:

More information

Faraday s Law of Induction. Equation (1)

Faraday s Law of Induction. Equation (1) Improved Electromagnetic Can Crusher Robert W. Trant Jr. and Thomas D. Adams Advisor: Dr. Gore Introduction We have improved the previous model of the Electromagnetic Can Crusher. Its intended purpose

More information

MS.RAJA ELGADFY/ELECTROMAGENETIC PAPER3

MS.RAJA ELGADFY/ELECTROMAGENETIC PAPER3 MSRAJA ELGADFY/ELECTROMAGENETIC PAPER3 1- In Fig 91, A and B are two conductors on insulating stands Both A and B were initially uncharged X Y A B Fig 91 (a) Conductor A is given the positive charge shown

More information

Ignition Coil Current Waveforms 2007 Honda Accord SE 4CYL

Ignition Coil Current Waveforms 2007 Honda Accord SE 4CYL P a g e 1 Ignition Coil Current Waveforms 2007 Honda Accord SE 4CYL With a current clamp and a cheap scope, it is easy to monitor the ignition coil currents and quickly diagnose a bad ignition coil. The

More information

Concepts of One Dimensional Kinematics Activity Purpose

Concepts of One Dimensional Kinematics Activity Purpose Concepts of One Dimensional Kinematics Activity Purpose During the activity, students will become familiar with identifying how the position, the velocity, and the acceleration of an object will vary with

More information

HL: Mutual Induction. Mutual / Self-Induction Learning Outcomes. Mutual / Self-Induction Learning Outcomes

HL: Mutual Induction. Mutual / Self-Induction Learning Outcomes. Mutual / Self-Induction Learning Outcomes 1 Mutual / Self-Induction Learning Outcomes HL: Define and discuss mutual induction for two adjacent coils. HL: Demonstrate mutual induction. HL: Define and describe self-induction. HL: Demonstrate self-induction.

More information

SPH3U UNIVERSITY PHYSICS

SPH3U UNIVERSITY PHYSICS SPH3U UNIVERSITY PHYSICS ELECTRICITY & MAGNETISM L (P.599-604) The large-scale production of electrical energy that we have today is possible because of electromagnetic induction. The electric generator,

More information

Lecture PowerPoints. Chapter 21 Physics: Principles with Applications, 7th edition, Global Edition Giancoli

Lecture PowerPoints. Chapter 21 Physics: Principles with Applications, 7th edition, Global Edition Giancoli Lecture PowerPoints Chapter 21 Physics: Principles with Applications, 7th edition, Global Edition Giancoli This work is provided solely for the use of instructors in teaching their courses and assessing

More information

EXPERIMENT 11: FARADAY S LAW OF INDUCTION

EXPERIMENT 11: FARADAY S LAW OF INDUCTION LAB SECTION: NAME: EXPERIMENT 11: FARADAY S LAW OF INDUCTION Introduction: In this lab, you will use solenoids and magnets to investigate the qualitative properties of electromagnetic inductive effects

More information

HSC Physics. Module 9.3. Motors and. Generators

HSC Physics. Module 9.3. Motors and. Generators HSC Physics Module 9.3 Motors and Generators 9.3 Motors and Generators (30 indicative hours) Contextual Outline Electricity is a convenient and flexible form of energy. It can be generated and distributed

More information

Chapter 22. Electromagnetic Induction

Chapter 22. Electromagnetic Induction Chapter 22 Electromagnetic Induction 22.1 Induced Emf and Induced Current There are a number of ways a magnetic field can be used to generate an electric current. It is the changing field that produces

More information

Electrostatic Induction and the Faraday Ice Pail

Electrostatic Induction and the Faraday Ice Pail Electrostatic Induction and the Faraday Ice Pail Adapted from 8.02T Fall 2001 writeup by Peter Fisher and Jason Cahoon February 13, 2004 1 Introduction When a positively charged object like a glass rod

More information

ELECTROMAGNETISM. 1. the number of turns. 2. An increase in current. Unlike an ordinary magnet, electromagnets can be switched on and off.

ELECTROMAGNETISM. 1. the number of turns. 2. An increase in current. Unlike an ordinary magnet, electromagnets can be switched on and off. ELECTROMAGNETISM Unlike an ordinary magnet, electromagnets can be switched on and off. A simple electromagnet consists of: - a core (usually iron) - several turns of insulated copper wire When current

More information

ENSC387: Introduction to Electromechanical Sensors and Actuators LAB 5: DC MOTORS WARNING:

ENSC387: Introduction to Electromechanical Sensors and Actuators LAB 5: DC MOTORS WARNING: ENSC387: Introduction to Electromechanical Sensors and Actuators LAB 5: DC MOTORS WARNING: Please be extremely cautious to precisely follow the procedures described in this manual. It is very easy to break

More information

University of TN Chattanooga Physics 1040L 8/28/2012

University of TN Chattanooga Physics 1040L 8/28/2012 PHYSICS 1040L LAB 5: MAGNETIC FIELD Objectives: 1. Determine the relationship between magnetic field and the current in a solenoid. 2. Determine the relationship between magnetic field and the number of

More information

Pre-lab Quiz/PHYS 224 Faraday s Law and Dynamo. Your name Lab section

Pre-lab Quiz/PHYS 224 Faraday s Law and Dynamo. Your name Lab section Pre-lab Quiz/PHYS 224 Faraday s Law and Dynamo Your name Lab section 1. What do you investigate in this lab? 2. In a dynamo, the coil is wound with N=100 turns of wire and has an area A=0.0001 m 2. The

More information

Experiment 6: Induction

Experiment 6: Induction Experiment 6: Induction Part 1. Faraday s Law. You will send a current which changes at a known rate through a solenoid. From this and the solenoid s dimensions you can determine the rate the flux through

More information

AP Physics B: Ch 20 Magnetism and Ch 21 EM Induction

AP Physics B: Ch 20 Magnetism and Ch 21 EM Induction Name: Period: Date: AP Physics B: Ch 20 Magnetism and Ch 21 EM Induction MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) If the north poles of

More information

DC CIRCUITS ELECTROMAGNETISM

DC CIRCUITS ELECTROMAGNETISM DC CIRCUITS 1. State and Explain Ohm s Law. Write in brief about the limitations of Ohm s Law. 2. State and explain Kirchhoff s laws. 3. Write in brief about disadvantages of series circuit and advantages

More information

2014 ELECTRICAL TECHNOLOGY

2014 ELECTRICAL TECHNOLOGY SET - 1 II B. Tech I Semester Regular Examinations, March 2014 ELECTRICAL TECHNOLOGY (Com. to ECE, EIE, BME) Time: 3 hours Max. Marks: 75 Answer any FIVE Questions All Questions carry Equal Marks ~~~~~~~~~~~~~~~~~~~~~~~~~~

More information

1. Which device creates a current based on the principle of electromagnetic induction?

1. Which device creates a current based on the principle of electromagnetic induction? Assignment 2 Electromagnetism Name: 1. Which device creates a current based on the principle of electromagnetic induction? A) galvanometer B) generator C) motor D) solenoid 2. The bar magnet below enters

More information

Eddy Currents and Magnetic Damping *

Eddy Currents and Magnetic Damping * OpenStax-CNX module: m42404 1 Eddy Currents and Magnetic Damping * OpenStax This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 Abstract Explain the magnitude

More information

Faraday s Law of Induction III

Faraday s Law of Induction III Faraday s Law of Induction III Physics 2415 Lecture 21 Michael Fowler, UVa Today s Topics More on Faraday s Law of Induction Generators Back emf and Counter Torque Transformers General form of Faraday

More information

AP Lab 22.3 Faraday s Law

AP Lab 22.3 Faraday s Law Name School Date AP Lab 22.3 Faraday s Law Objectives To investigate and measure the field along the axis of a solenoid carrying a constant or changing current. To investigate and measure the emf induced

More information

Armature Reaction and Saturation Effect

Armature Reaction and Saturation Effect Exercise 3-1 Armature Reaction and Saturation Effect EXERCISE OBJECTIVE When you have completed this exercise, you will be able to demonstrate some of the effects of armature reaction and saturation in

More information

CLASSIFIED 5 MAGNETISM ELECTROMAGNETIC INDUCTION GENERATOR MOTOR - TRANSFORMER. Mr. Hussam Samir

CLASSIFIED 5 MAGNETISM ELECTROMAGNETIC INDUCTION GENERATOR MOTOR - TRANSFORMER. Mr. Hussam Samir CLASSIFIED 5 MAGNETISM ELECTROMAGNETIC INDUCTION GENERATOR MOTOR - TRANSFORMER Mr. Hussam Samir EXAMINATION QUESTIONS (5) 1. A wire perpendicular to the page carries an electric current in a direction

More information

Lab 6: Magnetic Fields

Lab 6: Magnetic Fields Names: 1.) 2.) 3.) Lab 6: Magnetic Fields Learning objectives: Observe shape of a magnetic field around a bar magnet (Iron Filing and magnet) Observe how static charged objects interact with magnetic fields

More information

If the magnetic field is created by an electromagnet, what happens if we keep it stationary but vary its strength by changing the current through it?

If the magnetic field is created by an electromagnet, what happens if we keep it stationary but vary its strength by changing the current through it? If a moving electron in a magnetic field experiences a force pushing on it at right angles to its motion, what happens when we take a copper wire (with lots of easily dislodged electrons in it) and move

More information

Electrostatic Charging

Electrostatic Charging 64 Electrostatic Charging Equipment List Qty Items Part Numbers 1 Charge Sensor CI-6555 1 Charge Producers and Proof Planes ES-9057A 1 Faraday Ice Pail ES-9024A Introduction The purpose of this activity

More information

25 B43 B43.1 THE MEASUREMENT OF e/m BY THE BAINBRIDGE METHOD

25 B43 B43.1 THE MEASUREMENT OF e/m BY THE BAINBRIDGE METHOD 25 B43 B43.1 THE MEASUREMENT OF e/m BY THE BAINBRIDGE METHOD OBJECT The object of this experiment is to use the Bainbridge method to determine the electron chargeto-mass ratio. DESCRIPTION OF APPARATUS

More information

The Magnetic Field in a Slinky

The Magnetic Field in a Slinky The Magnetic Field in a Slinky A solenoid is made by taking a tube and wrapping it with many turns of wire. A metal Slinky is the same shape and will serve as our solenoid. When a current passes through

More information

PHYS 1444 Section 004. Lecture #18. Induction of EMF. Electric Generators DC Generator Eddy Currents Transformer. Monday, Apr. 9, Dr.

PHYS 1444 Section 004. Lecture #18. Induction of EMF. Electric Generators DC Generator Eddy Currents Transformer. Monday, Apr. 9, Dr. PHYS 1444 Section 004 Induction of EMF Lecture #18 Monday, April 9, 2012 Dr. Electric Generators DC Generator Eddy Currents Transformer Today s homework is #11, due 10pm, Tuesday, Apr. 17!! 1 Announcements

More information

Note 9: Faraday s Law

Note 9: Faraday s Law Note 9: Faraday s Law In 1831, Faraday discovered that EMF (electromotive force, i.e., voltage) was induced by time varying magnetic flux. This was a monumental discovery in the physics history. Before

More information

Exploring the Energy Grid Grades 6-8. Name:

Exploring the Energy Grid Grades 6-8. Name: Exploring the Energy Grid Grades 6-8 Name: Exploration 1 Rapidly turn the handles clockwise on all three generators at the end of the table, watching the System Voltage panel: 1. Draw the needle when the

More information

Ch 20 Inductance and Faraday s Law 1, 3, 4, 5, 7, 9, 10, 11, 17, 21, 25, 30, 31, 39, 41, 49

Ch 20 Inductance and Faraday s Law 1, 3, 4, 5, 7, 9, 10, 11, 17, 21, 25, 30, 31, 39, 41, 49 Ch 20 Inductance and Faraday s Law 1, 3, 4, 5, 7, 9, 10, 11, 17, 21, 25, 30, 31, 39, 41, 49 The coil with the switch is connected to a battery. (Primary coil) When current goes through a coil, it produces

More information

Electrical machines - generators and motors

Electrical machines - generators and motors Electrical machines - generators and motors We have seen that when a conductor is moved in a magnetic field or when a magnet is moved near a conductor, a current flows in the conductor. The amount of current

More information

Electromagnetic Induction

Electromagnetic Induction Electromagnetic Induction Question Paper Level ubject Exam oard Unit Topic ooklet O Level Physics ambridge International Examinations Electricity and Magnetism Electromagnetic Induction Question Paper

More information

Electrostatic Charging

Electrostatic Charging 64 Electrostatic Charging Equipment List Qty Items Part Numbers 1 Charge Sensor CI-6555 1 Charge Producers and Proof Planes ES-9057A 1 Faraday Ice Pail ES-9024A Introduction The purpose of this activity

More information

EARTH S MAGNETIC FIELD

EARTH S MAGNETIC FIELD Course and Section Date Names EARTH S MAGNETIC FIELD Short description: In this experiment, you will produce a magnetic field in the coil BCOIL and combined it with the Earth magnetic field BEARTH. Looking

More information

The theory of electromagnetic field motion. 5. Unipolar generator with a rotating magnet

The theory of electromagnetic field motion. 5. Unipolar generator with a rotating magnet The theory of electromagnetic field motion. 5. Unipolar generator with a rotating magnet L.N. Voytsehovich The unipolar generator with a rotating permanent magnet is considered in the article. On the basis

More information

Impulse, Momentum, and Energy Procedure

Impulse, Momentum, and Energy Procedure Impulse, Momentum, and Energy Procedure OBJECTIVE In this lab, you will verify the Impulse-Momentum Theorem by investigating the collision of a moving cart with a fixed spring. You will also use the Work-Energy

More information

Review: Magnetic Flux, EMF

Review: Magnetic Flux, EMF Announcements Professor Reitze taking over for the rest of the semester Occasional classes by Professor Kumar WebAssign HW Set 7 due the Friday Problems cover material from Chapters 20 and 21 Tea and Cookies

More information

Chapter 29 Electromagnetic Induction and Faraday s Law

Chapter 29 Electromagnetic Induction and Faraday s Law Chapter 29 Electromagnetic Induction and Faraday s Law 29.1 Induced EMF Units of Chapter 29 : 1-8 29.3 EMF Induced in a Moving Conductor: 9, 10 29.4 Electric Generators: 11 29.5 Counter EMF and Torque;

More information

Introduction: Electromagnetism:

Introduction: Electromagnetism: This model of both an AC and DC electric motor is easy to assemble and disassemble. The model can also be used to demonstrate both permanent and electromagnetic motors. Everything comes packed in its own

More information

45 Current Electricity. February 09, Current Electricity. What we will learn, Arc Attack. Electric Man. 1

45 Current Electricity. February 09, Current Electricity. What we will learn, Arc Attack. Electric Man.   1 Current Electricity What we will learn, Arc Attack Electric Man www.mrcjcs.com 1 Conductors and Insulators An electric current is a flow of electric charge. Set up a simple electrical circuit and insert

More information

Batteries n Bulbs: Voltage, Current and Resistance (8/6/15) (approx. 2h)

Batteries n Bulbs: Voltage, Current and Resistance (8/6/15) (approx. 2h) Batteries n Bulbs: Voltage, Current and Resistance (8/6/15) (approx. 2h) Introduction A simple electric circuit can be made from a voltage source (batteries), wires through which current flows and a resistance,

More information

Mechatronics and Electrical Drives

Mechatronics and Electrical Drives Fachgebiet eistungselektronik und Elektrische Antriebstechnik Prof. Dr. Ing. Joachim Böcker Mechatronics and Electrical Drives 29.02.2016 Surname: Student number: First name: Course of Study: Task: (Points)

More information

DEPARTMENT OF EI ELECTRICAL MACHINE ASSIGNMENT 1

DEPARTMENT OF EI ELECTRICAL MACHINE ASSIGNMENT 1 It is the mark of an educated mind to be able to entertain a thought without accepting it. DEPARTMENT OF EI ELECTRICAL MACHINE ASSIGNMENT 1 1. Explain the Basic concepts of rotating machine. 2. With help

More information

Physics12 Unit 8/9 Electromagnetism

Physics12 Unit 8/9 Electromagnetism Name: Physics12 Unit 8/9 Electromagnetism 1. An electron, travelling with a constant velocity, enters a region of uniform magnetic field. Which of the following is not a possible pathway? 2. A bar magnet

More information