Chapter 29 Electromagnetic Induction

Size: px
Start display at page:

Download "Chapter 29 Electromagnetic Induction"

Transcription

1 Chapter 29 Electromagnetic Induction Lecture by Dr. Hebin Li

2 Goals of Chapter 29 To examine experimental evidence that a changing magnetic field induces an emf To learn how Faraday s law relates the induced emf to the change in flux To determine the direction of an induced emf To calculate the emf induced by a moving conductor To learn how a changing magnetic flux generates an electric field To study the four fundamental equations that describe electricity and magnetism

3 Induced current A changing magnetic flux causes an induced current. The induced emf is the corresponding emf causing the current. A time-varying magnetic field can act as a source of electric field

4 Magnetic flux through an area element Figure below shows how to calculate the magnetic flux through an element of area.

5 Magnetic flux through a finite area The flux depends on the orientation of the surface with respect to the magnetic field.

6 Faraday s law Faraday s law: The induced emf in a closed loop equals the negative of the time rate of change of magnetic flux through the loop. IF the coil has N identical turns, and if the flux varies at the same rate through each turn, then Change of flux can have various causes.

7 Example: emf and the current induced in a loop A coil of 5.00 cm in radius, containing 100 turns, is placed in a uniform magnetic field that varies with time according to B = T t + ( T s s 4)t4. The coil is connected to a 500-Ω resistor, and its plane is perpendicular to the magnetic field. You can ignore the resistance of the coil. (a) Find the magnitude of the induced emf in the coil as a function of time. (b) What is the current in the resistor at time t = 5.00 s?

8 Example: A rectangle measuring 30.0 cm by 40.0 cm is located inside a region of a spatially uniform magnetic field of 1.25 T, with the field perpendicular to the plane of the coil. The coil is pulled out at a steady rate of 2.00 cm/s traveling perpendicular to the field lines. The region of the field ends abruptly as shown. Find the emf induced in this coil when it is (a) all inside the field; (b) partly inside the field; (c) all outside the field.

9 Direction of the induced emf Define a positive direction With the defined positive direction, determine the signs of the magnetic flux Φ B and its rate of change dφ B /dt. Determine the sign of the induced emf ( dφ B /dt). Use the right hand rule to determine the direction of the induced emf and current. Note: an easier way is to use Lenz s law.

10 A simple alternator

11 DC generator and back emf in a motor

12 Lenz s law Lenz s law: The direction of any magnetic induction effect is such as to oppose the cause of the effect.

13 Examples: applications of Lenz s law There is a current in the straight wire going from right to left. What is the direction of the induced current in the round coil if the current increases?

14 Examples: applications of Lenz s law In the figure below, the bar is moving to the left. What is the direction of the induced current?

15 Slidewire generator In a slidewire generator, a U-shaped conductor is placed in a uniform magnetic field that is perpendicular to the plane. We lay a metal rod (slidewire) across the two arms of the conductor, forming a circuit, and move it to the right with constant velocity. This induces an emf and a current. Find the magnitude and direction of the resulting induced emf.

16 Motional electromotive force The motional electromotive force across the ends of a rod moving perpendicular to a magnetic field is

17 Examples: The conducting rod ab shown in the figure below makes contact with metal rails ca and db. The apparatus is in a uniform magnetic field of T, perpendicular to the plane of the figure (a) Find the magnitude of the emf induced in the rod when it is moving toward the right with a speed 7.50 m/s. (b) In what direction does the current flow in the rod? (c) If the resistance of the circuit abdc is 1.5 Ω and does not change, find the force (magnitude and direction) required to keep the rod moving to the right with a constant speed of 7.50 m/s. (d) Compare the rate at which mechanical work is done by the force (Fv) with the rate at which thermal energy is developed in the circuit (I 2 R).

18 Induced electric fields Changing magnetic flux causes an induced electric field. The induced electric field for a solenoid can be measured. The line integral of the induced electric field around a closed path is equal to the induced emf. Faraday s law can be restated in terms of the induced electric field.

19 Induced electric fields The magnetic field along the solenoid axis Neglect the small field outside the solenoid, then the magnetic flux through the loop is

20 Maxwell s equations Maxwell s equations consist of

Physics 121 Practice Problem Solutions 11 Faraday s Law of Induction

Physics 121 Practice Problem Solutions 11 Faraday s Law of Induction Physics 121 Practice Problem Solutions 11 Faraday s Law of Induction Contents: 121P11-1P, 3P,4P, 5P, 7P, 17P, 19P, 24P, 27P, 28P, 31P Overview Magnetic Flux Motional EMF Two Magnetic Induction Experiments

More information

Electromagnetic Induction Chapter Questions. 1. What is the Electromagnetic Force (EMF)? What are the units of EMF?

Electromagnetic Induction Chapter Questions. 1. What is the Electromagnetic Force (EMF)? What are the units of EMF? Electromagnetic Induction Chapter Questions 1. What is the Electromagnetic Force (EMF)? What are the units of EMF? 2. The discovery of electric currents generating an magnetic field led physicists to look

More information

Phys102 Lecture 20/21 Electromagnetic Induction and Faraday s Law

Phys102 Lecture 20/21 Electromagnetic Induction and Faraday s Law Phys102 Lecture 20/21 Electromagnetic Induction and Faraday s Law Key Points Induced EMF Faraday s Law of Induction; Lenz s Law References SFU Ed: 29-1,2,3,4,5,6. 6 th Ed: 21-1,2,3,4,5,6,7. Induced EMF

More information

Unit 8 ~ Learning Guide Name:

Unit 8 ~ Learning Guide Name: Unit 8 ~ Learning Guide Name: Instructions: Using a pencil, complete the following notes as you work through the related lessons. Show ALL work as is explained in the lessons. You are required to have

More information

Electromagnetic Induction and Faraday s Law

Electromagnetic Induction and Faraday s Law Electromagnetic Induction and Faraday s Law Solenoid Magnetic Field of a Current Loop Solenoids produce a strong magnetic field by combining several loops. A solenoid is a long, helically wound coil of

More information

Electromagnetic Induction, Faraday s Experiment

Electromagnetic Induction, Faraday s Experiment Electromagnetic Induction, Faraday s Experiment A current can be produced by a changing magnetic field. First shown in an experiment by Michael Faraday A primary coil is connected to a battery. A secondary

More information

Lecture Outline Chapter 23. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 23. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc. Lecture Outline Chapter 23 Physics, 4 th Edition James S. Walker Chapter 23 Magnetic Flux and Faraday s Law of Induction Units of Chapter 23 Induced Electromotive Force Magnetic Flux Faraday s Law of Induction

More information

Chapter 23 Magnetic Flux and Faraday s Law of Induction

Chapter 23 Magnetic Flux and Faraday s Law of Induction Chapter 23 Magnetic Flux and Faraday s Law of Induction Units of Chapter 23 Induced Electromotive Force Magnetic Flux Faraday s Law of Induction Lenz s Law Mechanical Work and Electrical Energy Generators

More information

Almost 200 years ago, Faraday looked for evidence that a magnetic field would induce an electric current with this apparatus:

Almost 200 years ago, Faraday looked for evidence that a magnetic field would induce an electric current with this apparatus: Chapter 21 Electromagnetic Induction and Faraday s Law Chapter 21 Induced EMF Faraday s Law of Induction; Lenz s Law EMF Induced in a Moving Conductor Changing Magnetic Flux Produces an E Field Inductance

More information

FARADAY S LAW ELECTROMAGNETIC INDUCTION

FARADAY S LAW ELECTROMAGNETIC INDUCTION FARADAY S LAW ELECTROMAGNETIC INDUCTION magnetic flux density, magnetic field strength, -field, magnetic induction [tesla T] magnetic flux [weber Wb or T.m 2 ] A area [m 2 ] battery back t T f angle between

More information

Update. This week A. B. Kaye, Ph.D. Associate Professor of Physics. Michael Faraday

Update. This week A. B. Kaye, Ph.D. Associate Professor of Physics. Michael Faraday 10/26/17 Update Last week Completed Sources of Magnetic Fields (Chapter 30) This week A. B. Kaye, Ph.D. Associate Professor of Physics (Chapter 31) Next week 30 October 3 November 2017 Chapter 32 Induction

More information

PHY 152 (ELECTRICITY AND MAGNETISM)

PHY 152 (ELECTRICITY AND MAGNETISM) PHY 152 (ELECTRICITY AND MAGNETISM) ELECTRIC MOTORS (AC & DC) ELECTRIC GENERATORS (AC & DC) AIMS Students should be able to Describe the principle of magnetic induction as it applies to DC and AC generators.

More information

AP Physics B: Ch 20 Magnetism and Ch 21 EM Induction

AP Physics B: Ch 20 Magnetism and Ch 21 EM Induction Name: Period: Date: AP Physics B: Ch 20 Magnetism and Ch 21 EM Induction MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) If the north poles of

More information

Ch 20 Inductance and Faraday s Law 1, 3, 4, 5, 7, 9, 10, 11, 17, 21, 25, 30, 31, 39, 41, 49

Ch 20 Inductance and Faraday s Law 1, 3, 4, 5, 7, 9, 10, 11, 17, 21, 25, 30, 31, 39, 41, 49 Ch 20 Inductance and Faraday s Law 1, 3, 4, 5, 7, 9, 10, 11, 17, 21, 25, 30, 31, 39, 41, 49 The coil with the switch is connected to a battery. (Primary coil) When current goes through a coil, it produces

More information

1. This question is about electrical energy and associated phenomena.

1. This question is about electrical energy and associated phenomena. 1. This question is about electrical energy and associated phenomena. Electromagnetism The current in the circuit is switched on. electromagnet State Faraday s law of electromagnetic induction and use

More information

Motional emf. as long as the velocity, field, and length are mutually perpendicular.

Motional emf. as long as the velocity, field, and length are mutually perpendicular. Motional emf Motional emf is the voltage induced across a conductor moving through a magnetic field. If a metal rod of length L moves at velocity v through a magnetic field B, the motional emf is: ε =

More information

ELECTROMAGNETIC INDUCTION. FARADAY'S LAW

ELECTROMAGNETIC INDUCTION. FARADAY'S LAW 1. Aim. Physics Department Electricity and Magnetism Laboratory. ELECTROMAGNETIC INDUCTION. FARADAY'S LAW Observe the effect of introducing a permanent magnet into a coil. Study what happens when you introduce

More information

Physics12 Unit 8/9 Electromagnetism

Physics12 Unit 8/9 Electromagnetism Name: Physics12 Unit 8/9 Electromagnetism 1. An electron, travelling with a constant velocity, enters a region of uniform magnetic field. Which of the following is not a possible pathway? 2. A bar magnet

More information

Faraday s Law. HPP Activity 75v1. Exploration. Obtain. 50 or 100 turn wire coil bar magnet galvanometer

Faraday s Law. HPP Activity 75v1. Exploration. Obtain. 50 or 100 turn wire coil bar magnet galvanometer HPP Activity 75v1 Faraday s Law Exploration Obtain 50 or 100 turn wire coil bar magnet galvanometer Connect the coil to the galvanometer so that a clockwise current will produce a leftward deflection of

More information

INDUCED ELECTROMOTIVE FORCE (1)

INDUCED ELECTROMOTIVE FORCE (1) INDUCED ELECTROMOTIVE FORCE (1) Michael Faraday showed in the 19 th Century that a magnetic field can produce an electric field To show this, two circuits are involved, the first of which is called the

More information

PHYS 1444 Section 004. Lecture #19. DC Generator Transformer. Generalized Faraday s Law Mutual Inductance Self Inductance. Wednesday, Apr.

PHYS 1444 Section 004. Lecture #19. DC Generator Transformer. Generalized Faraday s Law Mutual Inductance Self Inductance. Wednesday, Apr. PHYS 1444 Section 004 DC Generator Transformer Lecture #19 Wednesday, April 11, 2012 Dr. Generalized Faraday s Law Mutual Inductance Self Inductance 1 Announcements Term exam #2 Non-comprehensive Date

More information

Figure 1: Relative Directions as Defined for Faraday s Law

Figure 1: Relative Directions as Defined for Faraday s Law Faraday s Law INTRODUCTION This experiment examines Faraday s law of electromagnetic induction. The phenomenon involves induced voltages and currents due to changing magnetic fields. (Do not confuse this

More information

4) With an induced current, thumb points force/velocity and palm points current

4) With an induced current, thumb points force/velocity and palm points current Matt Katz Chapter 22 Review Right Hand Rules 1 st Right Hand Rule - use for wires 1) point thumb in direction of current (I) 2) B is where your fingers point 2 nd Right Hand Rule - use for solenoids or

More information

Motional EMF. F = qvb

Motional EMF. F = qvb Motional EMF When a conducting rod moves through a constant magnetic field, a voltage is induced in the rod. This special case of electromagnetic induction arises as a result of the magnetic force that

More information

Chapter 22. Electromagnetic Induction

Chapter 22. Electromagnetic Induction Chapter 22 Electromagnetic Induction 22.1 Induced Emf and Induced Current There are a number of ways a magnetic field can be used to generate an electric current. It is the changing field that produces

More information

Chapter 31. Faraday s Law

Chapter 31. Faraday s Law Chapter 31 Faraday s Law Michael Faraday 1791 1867 British physicist and chemist Great experimental scientist Contributions to early electricity include: Invention of motor, generator, and transformer

More information

Induced Emf and Magnetic Flux *

Induced Emf and Magnetic Flux * OpenStax-CNX module: m42390 1 Induced Emf and Magnetic Flux * OpenStax This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 4.0 Abstract Calculate the ux of

More information

1. What type of material can be induced to become a temporary magnet? A) diamagnetic B) ferromagnetic C) monomagnetic D) paramagnetic

1. What type of material can be induced to become a temporary magnet? A) diamagnetic B) ferromagnetic C) monomagnetic D) paramagnetic Assignment 1 Magnetism and Electromagnetism Name: Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. Show appropriate workings. 1. What type of

More information

Faraday's Law of Induction

Faraday's Law of Induction Induction EX-9914 Page 1 of 6 EQUIPMENT Faraday's Law of Induction INCLUDED: 1 Induction Wand EM-8099 1 Variable Gap Lab Magnet EM-8641 1 Large Rod Stand ME-8735 2 45 cm Long Steel Rod ME-8736 1 Multi

More information

Chapter 29 Electromagnetic Induction and Faraday s Law

Chapter 29 Electromagnetic Induction and Faraday s Law Chapter 29 Electromagnetic Induction and Faraday s Law 29.1 Induced EMF Units of Chapter 29 : 1-8 29.3 EMF Induced in a Moving Conductor: 9, 10 29.4 Electric Generators: 11 29.5 Counter EMF and Torque;

More information

EXPERIMENT 13 QUALITATIVE STUDY OF INDUCED EMF

EXPERIMENT 13 QUALITATIVE STUDY OF INDUCED EMF 220 13-1 I. THEORY EXPERIMENT 13 QUALITATIVE STUDY OF INDUCED EMF Along the extended central axis of a bar magnet, the magnetic field vector B r, on the side nearer the North pole, points away from this

More information

Experiment 10. Faraday s Law of Induction. One large and two small (with handles) coils, plastic triangles, T-base BNC connector, graph paper.

Experiment 10. Faraday s Law of Induction. One large and two small (with handles) coils, plastic triangles, T-base BNC connector, graph paper. PHYSICS 171 UNIVERSITY PHYSICS LAB II Experiment 10 Faraday s Law of Induction Equipment: F Supplies: unction Generator, Oscilloscope. One large and two small (with handles) coils, plastic triangles, T-base

More information

Lecture 19 Chapter 30 Faraday s Law Course website:

Lecture 19 Chapter 30 Faraday s Law Course website: Lecture 19 Chapter 30 Faraday s Law Who cares that Faraday s Law is used here? Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsii Today we are going to discuss: Chapter 30: Section

More information

Note 9: Faraday s Law

Note 9: Faraday s Law Note 9: Faraday s Law In 1831, Faraday discovered that EMF (electromotive force, i.e., voltage) was induced by time varying magnetic flux. This was a monumental discovery in the physics history. Before

More information

Faraday's Law of Induction

Faraday's Law of Induction Purpose Theory Faraday's Law of Induction a. To investigate the emf induced in a coil that is swinging through a magnetic field; b. To investigate the energy conversion from mechanical energy to electrical

More information

Homework # Physics 2 for Students of Mechanical Engineering

Homework # Physics 2 for Students of Mechanical Engineering Homework #10 203-1-1721 Physics 2 for Students of Mechanical Engineering Part A 3. In Fig. 34-41 below, the magnetic flux through the loop shown increases according to the relation B = (6 mwb/s 2 )t 2

More information

Review: Magnetic Flux, EMF

Review: Magnetic Flux, EMF Announcements Professor Reitze taking over for the rest of the semester Occasional classes by Professor Kumar WebAssign HW Set 7 due the Friday Problems cover material from Chapters 20 and 21 Tea and Cookies

More information

Lab 9: Faraday s and Ampere s Laws

Lab 9: Faraday s and Ampere s Laws Lab 9: Faraday s and Ampere s Laws Introduction In this experiment we will explore the magnetic field produced by a current in a cylindrical coil of wire, that is, a solenoid. In the previous experiment

More information

Union College Winter 2016 Name Partner s Name

Union College Winter 2016 Name Partner s Name Union College Winter 2016 Name Partner s Name Physics 121 Lab 8: Electromagnetic Induction By Faraday s Law, a change in the magnetic flux through a coil of wire results in a current flowing in the wire.

More information

CHAPTER 8: ELECTROMAGNETISM

CHAPTER 8: ELECTROMAGNETISM CHAPTER 8: ELECTROMAGNETISM 8.1 Effect of a Magnet on a Current-carrying Conductor 8.1.1 Straight Wire Magnetic fields are circular Field is strongest close to the wire Increasing the current increases

More information

ELECTRO MAGNETIC INDUCTION

ELECTRO MAGNETIC INDUCTION 6 ELECTRO MAGNETIC INDUCTION 06.01 Electromagnetic induction When the magnetic flux linked with a coil or conductor changes, an emf is developed in it. This phenomenon is known as electromagnetic induction.

More information

Danyal Education (Contact: ) A commitment to teach and nurture. c) sketch a graph of voltage output against time for a simple a.c.

Danyal Education (Contact: ) A commitment to teach and nurture. c) sketch a graph of voltage output against time for a simple a.c. (Contact: 9855 9224) Electricity and Magnetism: Electromagnetic Induction (*) (#) Candidates should be able to: a) deduce from Faraday s experiments on electromagnetic induction or other appropriate experiments:

More information

Today s lecture: Generators Eddy Currents Self Inductance Energy Stored in a Magnetic Field

Today s lecture: Generators Eddy Currents Self Inductance Energy Stored in a Magnetic Field PHYSICS 1B Today s lecture: Generators Eddy Currents Self Inductance Energy Stored in a Magnetic Field PHYSICS 1B Lenz's Law Generators Electric generators take in energy by work and transfer it out by

More information

PHYS 1444 Section 004. Lecture #18. Induction of EMF. Electric Generators DC Generator Eddy Currents Transformer. Monday, Apr. 9, Dr.

PHYS 1444 Section 004. Lecture #18. Induction of EMF. Electric Generators DC Generator Eddy Currents Transformer. Monday, Apr. 9, Dr. PHYS 1444 Section 004 Induction of EMF Lecture #18 Monday, April 9, 2012 Dr. Electric Generators DC Generator Eddy Currents Transformer Today s homework is #11, due 10pm, Tuesday, Apr. 17!! 1 Announcements

More information

Lecture PowerPoints. Chapter 21 Physics: Principles with Applications, 7th edition, Global Edition Giancoli

Lecture PowerPoints. Chapter 21 Physics: Principles with Applications, 7th edition, Global Edition Giancoli Lecture PowerPoints Chapter 21 Physics: Principles with Applications, 7th edition, Global Edition Giancoli This work is provided solely for the use of instructors in teaching their courses and assessing

More information

Faraday s Law of Induction III

Faraday s Law of Induction III Faraday s Law of Induction III Physics 2415 Lecture 21 Michael Fowler, UVa Today s Topics More on Faraday s Law of Induction Generators Back emf and Counter Torque Transformers General form of Faraday

More information

PHYS 2212L - Principles of Physics Laboratory II

PHYS 2212L - Principles of Physics Laboratory II PHYS 2212L - Principles of Physics Laboratory II Laboratory Advanced Sheet Faraday's Law 1. Objectives. The objectives of this laboratory are a. to verify the dependence of the induced emf in a coil on

More information

If the magnetic field is created by an electromagnet, what happens if we keep it stationary but vary its strength by changing the current through it?

If the magnetic field is created by an electromagnet, what happens if we keep it stationary but vary its strength by changing the current through it? If a moving electron in a magnetic field experiences a force pushing on it at right angles to its motion, what happens when we take a copper wire (with lots of easily dislodged electrons in it) and move

More information

INDUCTANCE FM CHAPTER 6

INDUCTANCE FM CHAPTER 6 CHAPTER 6 INDUCTANCE INTRODUCTION The study of inductance is a very challenging but rewarding segment of electricity. It is challenging because at first it seems that new concepts are being introduced.

More information

ELECTROMAGNETIC INDUCTION

ELECTROMAGNETIC INDUCTION 83 E7 ELECTROMAGNETIC INDUCTION OBJECTIVES Aims By studying this chapter you should get to understand the nature of the two kinds of electromagnetic induction, the differences between them and their common

More information

CHAPTER 6 INTRODUCTION TO MOTORS AND GENERATORS

CHAPTER 6 INTRODUCTION TO MOTORS AND GENERATORS CHAPTER 6 INTRODUCTION TO MOTORS AND GENERATORS Objective Describe the necessary conditions for motor and generator operation. Calculate the force on a conductor carrying current in the presence of the

More information

Pre-lab Questions: Please review chapters 19 and 20 of your textbook

Pre-lab Questions: Please review chapters 19 and 20 of your textbook Introduction Magnetism and electricity are closely related. Moving charges make magnetic fields. Wires carrying electrical current in a part of space where there is a magnetic field experience a force.

More information

Make Your Own Electricity

Make Your Own Electricity Make Your Own Electricity Topic Electromagnetic induction Introduction Electromagnetic induction the creation of a difference in electric potential between the ends of a conductor moving in a magnetic

More information

Experimental Question 1: Levitation of Conductors in an Oscillating Magnetic Field

Experimental Question 1: Levitation of Conductors in an Oscillating Magnetic Field Experimental Question 1: Levitation of Conductors in an Oscillating Magnetic Field In an oscillating magnetic field of sufficient strength, levitation of a metal conductor becomes possible. The levitation

More information

Electromagnetic Induction (approx. 1.5 h) (11/9/15)

Electromagnetic Induction (approx. 1.5 h) (11/9/15) (approx. 1.5 h) (11/9/15) Introduction In 1819, during a lecture demonstration, the Danish scientist Hans Christian Oersted noticed that the needle of a compass was deflected when placed near a current-carrying

More information

Laboratory 8: Induction and Faraday s Law

Laboratory 8: Induction and Faraday s Law Phys 112L Spring 2013 Laboratory 8: Induction and Faraday s Law 1 Faraday s Law: Theoretical Considerations Much of this exercise is based on a similar exercise in Tutorials in Introductory Physics by

More information

RL Circuits Challenge Problems

RL Circuits Challenge Problems RL Circuits Challenge Problems Problem : RL Circuits Consider the circuit at left, consisting of a battery (emf ε), an inductor L, resistor R and switch S. For times t< the switch is open and there is

More information

HSC Physics motors and generators magnetic flux and induction

HSC Physics motors and generators magnetic flux and induction PD32a HSC Physics motors and generators student name....................... Monday, 30 May 2016 number о number о 1 1 c 26 2 2 17 27 3 3 18 28 4 4 19 29 5 5 6 6 7 7 8 8 9 9 10 a 10 b 11 c 12 d 13 e 14

More information

Electrical machines - generators and motors

Electrical machines - generators and motors Electrical machines - generators and motors We have seen that when a conductor is moved in a magnetic field or when a magnet is moved near a conductor, a current flows in the conductor. The amount of current

More information

ELEN 236 DC Motors 1 DC Motors

ELEN 236 DC Motors 1 DC Motors ELEN 236 DC Motors 1 DC Motors Pictures source: http://hyperphysics.phy-astr.gsu.edu/hbase/magnetic/mothow.html#c1 1 2 3 Some DC Motor Terms: 1. rotor: The movable part of the DC motor 2. armature: The

More information

SPH3U1 Lesson 10 Magnetism. If the wire through a magnetic field is bent into a loop, the loop can be made to turn up to 90 0.

SPH3U1 Lesson 10 Magnetism. If the wire through a magnetic field is bent into a loop, the loop can be made to turn up to 90 0. SPH3U1 Lesson 10 Magnetism GALVAOMETERS If the wire through a magnetic field is bent into a loop, the loop can be made to turn up to 90 0. otice how the current runs in the opposite directions on opposite

More information

ECET 211 Electric Machines & Controls Lecture 5-1 Electric Motors. Lecture 5-1 Electric Motors

ECET 211 Electric Machines & Controls Lecture 5-1 Electric Motors. Lecture 5-1 Electric Motors ECET 211 Electric Machines & Controls Lecture 5-1 Electric Motors (1 of 4) Text Book: Chapter 5 Electric Motors, Electric Motors and Control Systems, by Frank D. Petruzella, published by McGraw Hill, 2015.

More information

Electric Generators *

Electric Generators * OpenStax-CNX module: m55411 1 Electric Generators * OpenStax This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 4.0 1 Learning Objectives By the end of this

More information

Faraday s Law of Induction. Equation (1)

Faraday s Law of Induction. Equation (1) Improved Electromagnetic Can Crusher Robert W. Trant Jr. and Thomas D. Adams Advisor: Dr. Gore Introduction We have improved the previous model of the Electromagnetic Can Crusher. Its intended purpose

More information

Pre-lab Questions: Please review chapters 19 and 20 of your textbook

Pre-lab Questions: Please review chapters 19 and 20 of your textbook Introduction Magnetism and electricity are closely related. Moving charges make magnetic fields. Wires carrying electrical current in a part of space where there is a magnetic field experience a force.

More information

Electromagnetic Induction

Electromagnetic Induction Electromagnetic Induction Question Paper Level ubject Exam oard Unit Topic ooklet O Level Physics ambridge International Examinations Electricity and Magnetism Electromagnetic Induction Question Paper

More information

Energy & Sustainability. Lecture 8: Electric Power Generation And Distribution February 5, 2009

Energy & Sustainability. Lecture 8: Electric Power Generation And Distribution February 5, 2009 Energy & Sustainability Lecture 8: Electric Power Generation And Distribution February 5, 2009 Illumination Example Input stage Power Station Distribution system Your meter Useful energy! Electric Power

More information

Describe an experiment to demonstrate that there is a magnetic field around a current carrying conductor.

Describe an experiment to demonstrate that there is a magnetic field around a current carrying conductor. EXERCISE 10 (A) Question 1: Describe an experiment to demonstrate that there is a magnetic field around a current carrying conductor. Solution 1: Experiment: In Fig, AB is a wire lying in the north- south

More information

ELECTROMAGNETIC INDUCTION. Faraday s Law Lenz s Law Generators Transformers Cell Phones

ELECTROMAGNETIC INDUCTION. Faraday s Law Lenz s Law Generators Transformers Cell Phones ELECTROMAGNETIC INDUCTION Faraday s Law Lenz s Law Generators Transformers Cell Phones Recall Oersted's principle: when a current passes through a straight conductor there will be a circular magnetic field

More information

1. Which device creates a current based on the principle of electromagnetic induction?

1. Which device creates a current based on the principle of electromagnetic induction? Assignment 2 Electromagnetism Name: 1. Which device creates a current based on the principle of electromagnetic induction? A) galvanometer B) generator C) motor D) solenoid 2. The bar magnet below enters

More information

Electrical Machines II. Week 5-6: Induction Motor Construction, theory of operation, rotating magnetic field and equivalent circuit

Electrical Machines II. Week 5-6: Induction Motor Construction, theory of operation, rotating magnetic field and equivalent circuit Electrical Machines II Week 5-6: Induction Motor Construction, theory of operation, rotating magnetic field and equivalent circuit Asynchronous (Induction) Motor: industrial construction Two types of induction

More information

Pre-lab Quiz/PHYS 224 Faraday s Law and Dynamo. Your name Lab section

Pre-lab Quiz/PHYS 224 Faraday s Law and Dynamo. Your name Lab section Pre-lab Quiz/PHYS 224 Faraday s Law and Dynamo Your name Lab section 1. What do you investigate in this lab? 2. In a dynamo, the coil is wound with N=100 turns of wire and has an area A=0.0001 m 2. The

More information

Eddy Currents and Magnetic Damping *

Eddy Currents and Magnetic Damping * OpenStax-CNX module: m42404 1 Eddy Currents and Magnetic Damping * OpenStax This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 Abstract Explain the magnitude

More information

Lab 12: Faraday s Effect and LC Circuits

Lab 12: Faraday s Effect and LC Circuits Part 1) Faraday s Law OBJECTIVES In this part of the lab you will Use Faraday s law to predict the emf produced in a coil from a time-varying magnetic field Measure the emf produced in a coil for a time-varying

More information

VCE PHYSICS Unit 3 Topic 2 ELECTRIC POWER

VCE PHYSICS Unit 3 Topic 2 ELECTRIC POWER VCE PHYSICS Unit 3 Topic 2 ELECTRIC POWER Unit Outline This unit covers the following areas: 1. Apply a field model to magnetic phenomena including shapes and directions produced by bar magnets and by

More information

MS.RAJA ELGADFY/ELECTROMAGENETIC PAPER3

MS.RAJA ELGADFY/ELECTROMAGENETIC PAPER3 MSRAJA ELGADFY/ELECTROMAGENETIC PAPER3 1- In Fig 91, A and B are two conductors on insulating stands Both A and B were initially uncharged X Y A B Fig 91 (a) Conductor A is given the positive charge shown

More information

CURRENT ELECTRICITY - II

CURRENT ELECTRICITY - II SALIENT FEATURES Faraday s laws of electrolysis Magnetic effects of electricity Electro magnetic induction CURRENT ELECTRICITY - II FARADAY S LAWS OF ELECTROYLYSIS ELECTROLYSIS The process of decomposition

More information

Magnetism - General Properties

Magnetism - General Properties Magnetism - General Properties A magnet, when suspended from a string, will align itself along the north - south direction. Two like poles of a magnet will repel each other, while opposite poles will attract.

More information

DEPARTMENT OF EI ELECTRICAL MACHINE ASSIGNMENT 1

DEPARTMENT OF EI ELECTRICAL MACHINE ASSIGNMENT 1 It is the mark of an educated mind to be able to entertain a thought without accepting it. DEPARTMENT OF EI ELECTRICAL MACHINE ASSIGNMENT 1 1. Explain the Basic concepts of rotating machine. 2. With help

More information

Intext Exercise 1 Question 1: Why does a compass needle get deflected when brought near a bar magnet?

Intext Exercise 1 Question 1: Why does a compass needle get deflected when brought near a bar magnet? Intext Exercise 1 Why does a compass needle get deflected when brought near a bar magnet? A compass needle is a small bar magnet. When it is brought near a bar magnet, its magnetic field lines interact

More information

Page 1 of 19. Website: Mobile:

Page 1 of 19. Website:     Mobile: Question 1: Why does a compass needle get deflected when brought near a bar magnet? A compass needle is a small bar magnet. When it is brought near a bar magnet, its magnetic field lines interact with

More information

SPH3U UNIVERSITY PHYSICS

SPH3U UNIVERSITY PHYSICS SPH3U UNIVERSITY PHYSICS ELECTRICITY & MAGNETISM L (P.599-604) The large-scale production of electrical energy that we have today is possible because of electromagnetic induction. The electric generator,

More information

DC motor theory. Resources and methods for learning about these subjects (list a few here, in preparation for your research):

DC motor theory. Resources and methods for learning about these subjects (list a few here, in preparation for your research): DC motor theory This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

More information

Drouin Secondary College VCE Physics Unit 4: Electric Power VCE - PHYSICS UNIT 4 TOPIC 1 ELECTRIC POWER TOPIC NOTES. Page 1

Drouin Secondary College VCE Physics Unit 4: Electric Power VCE - PHYSICS UNIT 4 TOPIC 1 ELECTRIC POWER TOPIC NOTES. Page 1 VCE - PHYSICS UNIT 4 TOPIC 1 ELECTRIC POWER TOPIC NOTES Page 1 Unit Outline This unit covers the following areas: 1. Apply a field model to magnetic phenomena including shapes and directions produced by

More information

CHAPTER THREE DC MOTOR OVERVIEW AND MATHEMATICAL MODEL

CHAPTER THREE DC MOTOR OVERVIEW AND MATHEMATICAL MODEL CHAPTER THREE DC MOTOR OVERVIEW AND MATHEMATICAL MODEL 3.1 Introduction Almost every mechanical movement that we see around us is accomplished by an electric motor. Electric machines are a means of converting

More information

MAGNETIC EFFECTS OF ELECTRIC CURRENT

MAGNETIC EFFECTS OF ELECTRIC CURRENT MAGNETIC EFFECTS OF ELECTRIC CURRENT It is observed that when a compass is brought near a current carrying conductor the needle of compass gets deflected because of flow of electricity. This shows that

More information

ELECTRICITY: INDUCTORS QUESTIONS

ELECTRICITY: INDUCTORS QUESTIONS ELECTRICITY: INDUCTORS QUESTIONS No Brain Too Small PHYSICS QUESTION TWO (2017;2) In a car engine, an induction coil is used to produce a very high voltage spark. An induction coil acts in a similar way

More information

Faraday s Law of Induction:

Faraday s Law of Induction: Faraday s Law of Induction: Lenz s Law Bởi: OpenStaxCollege Faraday s and Lenz s Law Faraday s experiments showed that the emf induced by a change in magnetic flux depends on only a few factors. First,

More information

Magnetic Effects of Electric Current

Magnetic Effects of Electric Current Magnetic Effects of Electric Current Question 1: Why does a compass needle get deflected when brought near a bar magnet? Answer: A compass needle is a small bar magnet. When it is brought near a bar magnet,

More information

EEE3441 Electrical Machines Department of Electrical Engineering. Lecture. Introduction to Electrical Machines

EEE3441 Electrical Machines Department of Electrical Engineering. Lecture. Introduction to Electrical Machines Department of Electrical Engineering Lecture Introduction to Electrical Machines 1 In this Lecture Induction motors and synchronous machines are introduced Production of rotating magnetic field Three-phase

More information

MAGNETIC EFFECT OF ELECTRIC CURRENT

MAGNETIC EFFECT OF ELECTRIC CURRENT BAL BHARATI PUBLIC SCHOOL, PITAMPURA Class X MAGNETIC EFFECT OF ELECTRIC CURRENT 1. Magnetic Field due to a Current through a Straight Conductor (a) Nature of magnetic field: The magnetic field lines due

More information

Chapter 21 Electric Current and Direct- Current Circuits

Chapter 21 Electric Current and Direct- Current Circuits Chapter 21 Electric Current and Direct- Current Circuits Menu Electric Current Resistance and Ohm s Law Energy and Power in Electric Circuits Resistors in Series and Parallel HW # 5 Pg. 754 759: # 7, 8,

More information

AP Lab 22.3 Faraday s Law

AP Lab 22.3 Faraday s Law Name School Date AP Lab 22.3 Faraday s Law Objectives To investigate and measure the field along the axis of a solenoid carrying a constant or changing current. To investigate and measure the emf induced

More information

ELECTRICITY: ELECTROMAGNETISM QUESTIONS

ELECTRICITY: ELECTROMAGNETISM QUESTIONS ELECTRICITY: ELECTROMAGNETISM QUESTIONS The flying fox (2017;3) Sam has a flying fox (zip line) that he wants to use in the dark. Sam connects a 12.0 V battery to a spotlight, using two 1.60-metre-long

More information

INTRODUCTION Principle

INTRODUCTION Principle DC Generators INTRODUCTION A generator is a machine that converts mechanical energy into electrical energy by using the principle of magnetic induction. Principle Whenever a conductor is moved within a

More information

ELECTROMAGNETISM. 1. the number of turns. 2. An increase in current. Unlike an ordinary magnet, electromagnets can be switched on and off.

ELECTROMAGNETISM. 1. the number of turns. 2. An increase in current. Unlike an ordinary magnet, electromagnets can be switched on and off. ELECTROMAGNETISM Unlike an ordinary magnet, electromagnets can be switched on and off. A simple electromagnet consists of: - a core (usually iron) - several turns of insulated copper wire When current

More information

CHAPTER 13 MAGNETIC EFFECTS OF ELECTRIC CURRENT

CHAPTER 13 MAGNETIC EFFECTS OF ELECTRIC CURRENT CHAPTER 13 MAGNETIC EFFECTS OF ELECTRIC CURRENT Compass needle:- It is a small bar magnet, whose north end is pointing towards north pole and south end is pointing towards south pole of earth..hans Oersted

More information

Experiment 6: Induction

Experiment 6: Induction Experiment 6: Induction Part 1. Faraday s Law. You will send a current which changes at a known rate through a solenoid. From this and the solenoid s dimensions you can determine the rate the flux through

More information

DC Generator. - The direction of current flow in the conductor is given by Fleming s right hand rule. Figure 2: Change in current direction

DC Generator. - The direction of current flow in the conductor is given by Fleming s right hand rule. Figure 2: Change in current direction DC Generator 1. THE DIRECTION OF CURRENT DUE TO INDUCED VOLTAGE: UNDERSTANDING FLEMING S RIGHT HAND RULE - The direction of current flow in the conductor is given by Fleming s right hand rule Figure 1:

More information

Single Phase Induction Motor. Dr. Sanjay Jain Department Of EE/EX

Single Phase Induction Motor. Dr. Sanjay Jain Department Of EE/EX Single Phase Induction Motor Dr. Sanjay Jain Department Of EE/EX Application :- The single-phase induction machine is the most frequently used motor for refrigerators, washing machines, clocks, drills,

More information