Parts of an atom. Protons (P + ) Electrons (e - ) Neutrons. Have a positive electric charge. Have a negative electric charge

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Parts of an atom. Protons (P + ) Electrons (e - ) Neutrons. Have a positive electric charge. Have a negative electric charge"

Transcription

1 Electricity

2 Parts of an atom Protons (P + ) Have a positive electric charge Electrons (e - ) Have a negative electric charge Neutrons Are neutral Have no charge

3 Electric Charge In most atoms, the charges of the protons and electrons cancel each other out Atom has no net charge Atoms become charged by: GAINING AND LOSING ELECTRONS Can be detected by an electroscope

4 Static Electricity The accumulation of excess electric charges on an object

5 Static Electricity Activity Quickly and quietly find a partner and a pair of desks!

6 Static Electricity The accumulation of excess electric charges on an object

7 Law of Conservation of Charge Charge may be transferred from object to object, but it cannot be created or destroyed. Sound familiar? Law of Conservation of Energy

8 Opposites attract

9 Likes Repel

10 Charged atoms Electric field is generated by electrically charged particles and timevarying magnetic fields. Charges can act on each other even at a distance

11 More About Charge

12 Conductors and Insulators CONDUCTORS Materials that allow electrons to easily move through. Examples: Metals INSULATORS Materials that do not allow electrons to easily move through. Examples: Plastic Wood Rubber Glass

13 Let s explore HOW OBJECTS CAN BE CHARGED

14 Charging by Contact/Friction Process of transferring charge by touching or rubbing Example Rubbing your feet on the carpet and getting static electricity

15 Charging by induction Process of rearranging electrons on a neutral object by a nearby charged object Example A balloon that has been rubbed on your hair causing someone else s arm hair to move

16 Static discharge A transfer of charge through the air between two objects because of a buildup of static electricity Examples Lightning Spark from touching objects

17 Grounding Using a conductor to direct an electric charge to the ground Examples Lightning Rod

18 Copy the following into your notes: Electrical energy can be converted to: mechanical, thermal, and light energy. Electric Power is: The rate at which electrical energy is converted from one form to another (measured in Watts) Electric Power formula: P= I x V (Power=Current x Voltage difference) P=Power (W), I=Current (A), V=Potential difference (V) Electrical Energy formula: E=P x t (Energy=Power x Time) E= Energy (KwH), P=Power (W), t=time (h) Next, complete questions 8-14 on the Electricity Practice Calculations sheet given back to you today. If you missed any in 1-7, you should correct it. You have 25 minutes to do this; whatever is not completed today will be homework.

19

20 Static Electricity the net accumulation of electric charges on an object Electric Field force exerted by an e - on anything that has an electric charge opposite charges attract like charges repel

21 Static Discharge the movement of electrons to relieve a separation in charge

22 Conductor material that allows electrons to move through it easily e - are loosely held ex: metals like copper and silver

23 Insulator material that doesn t allow electrons to move through it easily e - are tightly held ex: plastic, wood, rubber, glass

24 Electroscope instrument that detects the presence of electrical charges leaves separate when they gain either a + or - charge

25 The flow of charges (usually electrons) through a wire or conductor. Measured in amperes (A or amps)

26 ALWAYS flows from High to Low voltage A voltage difference is the push that causes charges to move. Measured in volts (V)

27 For charges to flow (to have current or voltage) a wire must always be connected in a closed path

28 A - battery B - switch C - light bulb D - resistor

29 Dry Cell Battery Produces a voltage difference between its zinc container and its carbon suspension rod Causes current to flow between them

30 Wet Cell Battery Contains two connected plates made of different metals (usually lead) in a connected solution (usually sulfuric acid) Car, truck and tractor batteries

31 Wall Socket Has a voltage difference across the two holes of an outlet. Generators at power plants provide the voltage difference

32 The tendency for a material to oppose the flow of electrons Changes electrical energy into thermal energy and light All materials have some electrical resistance Copper - low resistance Tungsten - high resistance

33 Measured in Ohms (Ω) Resistance increases with Increased length Decreased diameter Increased heat Think of a garden hose

34 Current = Voltage / Resistance V=Voltage I=Current R=Resistance

35 A lightbulb with a resistance of 160 is plugged into a 120-V outlet. What is the current flowing through the bulb? GIVEN: R = 160 V = 120 V I =? V WORK: I = V R I = (120 V) (160 ) I = 0.75 A I R

36 What property of electric current causes light bulbs to give light?

37 Resistance. As electrons flow through the filament, the filament resists their flow and changes electrical energy into thermal energy and light.

38 Solve the Following: A light bulb is connected into a circuit and provides provides 5 ohms of resistance. How much voltage must be applied to insure a current of 15 amps will travel through the lightbulb? What is the voltage across a 12-ohm resistor with a current of 35 amps?

39 Rely on generators to produce a voltage difference across the outlet causing charge to move when the circuit is complete

40 Current only has one path (or loop) to follow Example: Some holiday lights

41 current is the same throughout circuit lights are equal brightness each device receives a fraction of the total voltage get dimmer as lights are added If any part of the circuit is broken, the current stops flowing

42 Current only has two or more paths (or branches) to follow Example: Electric system in a house

43 current travels in multiple paths one break doesn t stop flow current varies in different branches takes path of least resistance bigger light would be dimmer each device receives the total voltage no change when lights are added

44 Use parallel circuits in a logical network Each branch receives the standard voltage from the electric company too many devices can cause wires to overheat

45 Enters your home at the circuit breaker/fuse box Branches out to all your outlets Like your Heart and blood vessels

46 Guards against overheating electric wires Contains a small piece of metal that melts if current becomes too high.

47 Guards against overheating electric wires Contains a small piece of metal that bends when it gets hot

48 Can be converted to Mechanical energy Thermal energy Light energy

49 The rate at which electrical energy is converted from one form to another Measured in Watts (W) Power = Current x Voltage Difference P (W) = I (A) x V (V)

50 P: power (W) P = I V I: current (A) V: potential difference (V)

51 A calculator has a 0.01-A current flowing through it. It operates with a potential difference of 9 V. How much power does it use? GIVEN: I = 0.01 A V = 9 V P =? P WORK: P = I V P = (0.01 A) (9 V) P = 0.09 W I V

52 Unit of electrical energy is the Kilowatt-Hour Equals 1000 Watts of power used for 1 hour Energy = Power x Time E (kwh) = P (kw) x t (h)

53 E = P t E: energy (kwh) P: power (kw) t: time (h)

54 A refrigerator is a major user of electrical power. If it uses 700 W and runs 10 hours each day, how much energy (in kwh) is used in one day? GIVEN: P = 700 W = 0.7 kw t = 10 h E =? E WORK: E = P t E = (0.7 kw) (10 h) E = 7 kwh P t

55 Does your home have a fuse box or circuit breaker? Why is it there? How does it work?

56 It is there to make sure the electrical wires in our home do not get too hot and start fires. If the wired get too hot, they melt the piece of metal in the fuse or bend the piece of metal in the circuit. This opens the circuit and stops the flow of current. If we have a fuse box, we have to replace the melted fuse with a new one. If we have a circuit breaker, we only need to unplug some appliances and flip a switch.

57 and its uses

58 force of attraction or repulsion between unlike or like poles due to the arrangement of electrons closely related to electricity

59 Interaction between two magnets Increases as distance decreases Bring your two magnets together-what happens?

60 The regions of a magnet where the magnetic force exerted by the magnet is strongest North and South

61 Magnetic Poles like poles repel unlike poles attract a broken magnet creates new poles!

62 Magnetic Field area around a magnet where magnetic forces act field lines show direction of field (N S)

63 Exerts magnetic force Surrounds a magnet Strongest closer to a magnet

64 A compass needle Is a small bar magnet that can freely rotate Always points NORTH

65 Magnetic Domain groups of atoms with aligned magnetic poles domain in a magnetized object, domains are all aligned

66 The magnetic field created by each atom exerts a force on nearby atoms Magnetic Materials Iron Cobalt Nickel Permanent Magnets Made by placing a magnetic material in a strong magnetic field forcing a large number of magnetic domains to line up

67 What formula would be used to solve the problem below? Use that formula to solve it: What materials allow charges to flow easily? What materials make it difficult for them to flow?

68 Produced by moving charges Field around a currentcarrying wire forms a circular pattern around the wire Strength depends on the amount of current flowing through the wire. Increased current = increased magnetic field

69 Electromagnet strong, temporary magnet formed when current is passed through a coil of wire surrounding an iron core acts like a bar magnet when current is on

70 Battery- Magnetic field is only present when current is flowing through the wire coil Field strength Can be increased by increasing the number of coils Can be increased by increasing the current flowing through wire

71 A device that uses an electromagnet to measure electric current Gas gauge-sensor attached to float

72 Speaker electrical energy mechanical energy wire coil moves back & forth as its magnetic field interacts with the field of a fixed magnet forced vibration causes the cone to move sound

73 Motor electrical energy mechanical energy electromagnet rotates between the poles of a fixed magnet commutator reverses the poles of the magnet

74 assembled motor armature & commutator brushes & wires to battery field magnet

75

76 Contains an electromagnet that is free to rotate between the poles of a permanent, fixed magnet. Coil in the electromagnet is connected to the source of current.

77 Changing the direction of the current causes the coil in the motor to keep rotating Rotation speed of motors can be controlled Vary amount of current More current = stronger magnetic field = magnetic force b/w coil and permanent magnetic increases = coil turns faster ug4ry

78 Complete the front side of your study guide. We will review this together. Remember, the study guide will be checked and needs to be completed!

79 Electromagnetic Induction producing a current by moving a wire through a magnetic field some microphones work just like minispeakers in reverse sound waves cause coil to move current Coil Dynamic Microphone

80 Electricity used in a home comes from a power plant with huge generators. Coils of electromagnets usually connected to a turbine (a large wheel that rotates when pushed by water, wind or steam.)

81 Electric Generator mechanical energy electrical energy armature is rotated between magnet poles magnetic field induces a current in the wire coil MOTOR GENERATOR

82 Hydroelectric Dam PE of lake water is converted to KE mechanical KE turns the generator shaft which creates electrical energy

83 Direct Current (DC) current flows in one direction dry cells Alternating Current (AC) current reverses its direction at regular intervals electrical outlets

84 Current that flows in only one direction through a wire

85 Reverses the direction of the current flow in a regular way In North America: 60 cycles per second = 60 Hz Changes directions 120 times each second

86 Transformer increases or decreases AC voltage primary coil AC produces a magnetic field that induces AC in the secondary coil voltage ratio = ratio of turns in each coil

87 Step-up Transformer increases the voltage more turns power plants Step-down Transformer decreases the voltage fewer turns household appliances (hairdryers, etc.)

88 J8EY

Electricity and Magnetism. Module 6

Electricity and Magnetism. Module 6 Electricity and Magnetism Module 6 What is electricity? The collection or flow of electrons in the form of an electric charge What is static electricity? When two objects rub against each other electrons

More information

4 Electric Circuits. TAKE A LOOK 2. Identify Below each switch, label the circuit as a closed circuit or an open circuit.

4 Electric Circuits. TAKE A LOOK 2. Identify Below each switch, label the circuit as a closed circuit or an open circuit. CHAPTER 17 4 Electric Circuits SECTION Introduction to Electricity BEFORE YOU READ After you read this section, you should be able to answer these questions: What are the three main parts of a circuit?

More information

Chapter 8 Magnetism and Its Uses. Section 1: Magnetism Section 2: Electricity and Magnetism Section 3: Producing Electric Current

Chapter 8 Magnetism and Its Uses. Section 1: Magnetism Section 2: Electricity and Magnetism Section 3: Producing Electric Current Chapter 8 Magnetism and Its Uses Section 1: Magnetism Section 2: Electricity and Magnetism Section 3: Producing Electric Current Section 1: Magnetism Standard 6: Demonstrate an understanding of the nature,

More information

MAGNETIC EFFECTS OF ELECTRIC CURRENT

MAGNETIC EFFECTS OF ELECTRIC CURRENT MAGNETIC EFFECTS OF ELECTRIC CURRENT It is observed that when a compass is brought near a current carrying conductor the needle of compass gets deflected because of flow of electricity. This shows that

More information

Unit 2: Electricity and Energy Resources

Unit 2: Electricity and Energy Resources 8 8 Table of Contents Unit 2: Electricity and Energy Resources Chapter 8: Magnetism and Its Uses 8.1: Magnetism 8.2: Electricity and Magnetism 8.3: Producing Electric Current 8.1 Magnets More than 2,000

More information

Is it Magnetic? 1. Fill in each table. List things ATTRACTED by a magnet on the LEFT and things NOT ATTRACTED on the RIGHT.

Is it Magnetic? 1. Fill in each table. List things ATTRACTED by a magnet on the LEFT and things NOT ATTRACTED on the RIGHT. Is it Magnetic? 1. Fill in each table. List things ATTRACTED by a magnet on the LEFT and things NOT ATTRACTED on the RIGHT. MAGNETIC NON-MAGNETIC # Object Made from check # Object Made from check --- ------------

More information

Magnets and magnetism

Magnets and magnetism Chapter 2 Electromagnetism Section 1 Magnets and magnetism Vocabulary: magnet magnetic pole magnetic force Properties of Magnets Magnetic Poles on a magnet, the magnetic poles are the locations where the

More information

Lesson 2: Electrical Safety Ladders can become electrified if they come into contact with electric wires. Don't raise a ladder close to electric

Lesson 2: Electrical Safety Ladders can become electrified if they come into contact with electric wires. Don't raise a ladder close to electric Lesson 2: Electrical Safety Ladders can become electrified if they come into contact with electric wires. Don't raise a ladder close to electric lines. Never touch hanging or broken wires. Don't trim trees

More information

Electromagnetism Junior Science. Easy to read Version

Electromagnetism Junior Science. Easy to read Version Electromagnetism Junior Science Easy to read Version 1a Electricity is a form of Energy Electricity is a type of energy. It can be transformed from many other types of energy; kinetic, chemical, nuclear

More information

ELECTROMAGNETIC INDUCTION. Faraday s Law Lenz s Law Generators Transformers Cell Phones

ELECTROMAGNETIC INDUCTION. Faraday s Law Lenz s Law Generators Transformers Cell Phones ELECTROMAGNETIC INDUCTION Faraday s Law Lenz s Law Generators Transformers Cell Phones Recall Oersted's principle: when a current passes through a straight conductor there will be a circular magnetic field

More information

Electrical Energy and Power Ratings

Electrical Energy and Power Ratings Section 1 - From the Wall Socket Electrical Energy and ower Ratings Batteries and the mains are sources of electrical energy. Electrical appliances can then convert this into other forms of energy. e.g.

More information

Electrical Connections

Electrical Connections Electrical Connections TABLE OF CONTENTS ABOUT DELTA SCIENCE MODULES Program Introduction................... iii Teacher s Guide..................... iv Delta Science Readers............... vi Equipment

More information

HOW IS ELECTRICITY PRODUCED?

HOW IS ELECTRICITY PRODUCED? ELECTRICITY HOW IS ELECTRICITY PRODUCED? All electricity is produced from other sources of energy. Hydroelectricity is produced from the stored energy of water held back by a dam. As the water runs downhill

More information

MAGNETIC EFFECTS OF ELECTRIC CURRENT. To understand Magnetic effects of Electric current, first we should know what is the Magnet?

MAGNETIC EFFECTS OF ELECTRIC CURRENT. To understand Magnetic effects of Electric current, first we should know what is the Magnet? MAGNETIC EFFECTS OF ELECTRIC CURRENT To understand Magnetic effects of Electric current, first we should know what is the Magnet? Magnet A Magnet is an object which attracts pieces of iron, steel, nickel

More information

ANSWER KEY. Using Electricity and Magnetism. Chapter Project Worksheet 1

ANSWER KEY. Using Electricity and Magnetism. Chapter Project Worksheet 1 Using Electricity and Magnetism Using Electricity and Magnetism Chapter Project Worksheet 1 1 6. Students data will vary greatly depending on the appliances and devices they examine as well as on the size

More information

Chapter 22: Electric motors and electromagnetic induction

Chapter 22: Electric motors and electromagnetic induction Chapter 22: Electric motors and electromagnetic induction The motor effect movement from electricity When a current is passed through a wire placed in a magnetic field a force is produced which acts on

More information

More Complex Circuit

More Complex Circuit Series and Parallel Circuits Circuits usually include three components. One is a source of voltage difference that can be provided by a battery or an electrical outlet. Another is one or more devices that

More information

Transmission & Distribution Glossary of Electrical Terms

Transmission & Distribution Glossary of Electrical Terms Transmission & Distribution Glossary of Electrical s Breaker Panel Bushing Circuit Circuit Breaker Conductor Conduit Consumption Current Distribution Electricity (Static vs. Current) Electron Feeder The

More information

8.2 Electric Circuits and Electrical Power

8.2 Electric Circuits and Electrical Power 8.2 Electric Circuits and Electrical Power Every electrical device uses current to carry energy and voltage to push the current. How are electrical devices designed? What types of parts are used in an

More information

Electrical Circuits Discussion Questions:

Electrical Circuits Discussion Questions: Electrical Circuits Discussion Questions: 1) What is electricity? 2) How does an electrical circuit work? 3) What types of materials conduct electrical energy? 4) How is electrical energy measured? 5)

More information

Unit D: Electrical Principles and Technologies

Unit D: Electrical Principles and Technologies Focusing Questions: Unit D: Electrical Principles and Technologies 1. How do we obtain and use electrical energy? 2. What significant principles are involved in developing, selecting, and using energyconsuming

More information

ELECTROMAGNETISM. 1. the number of turns. 2. An increase in current. Unlike an ordinary magnet, electromagnets can be switched on and off.

ELECTROMAGNETISM. 1. the number of turns. 2. An increase in current. Unlike an ordinary magnet, electromagnets can be switched on and off. ELECTROMAGNETISM Unlike an ordinary magnet, electromagnets can be switched on and off. A simple electromagnet consists of: - a core (usually iron) - several turns of insulated copper wire When current

More information

MAGNETIC EFFECTS OF CURRENT

MAGNETIC EFFECTS OF CURRENT Magnet A magnet is an object, which attracts pieces of iron, steel, nickel and cobalt. Naturally Occurring Magnet Lodestone is a naturally occurring magnet. It is actually a black coloured, oxide ore of

More information

Photographs of large cities, such as Seattle, Washington, are visible reminders of how much people rely on electrical energy.

Photographs of large cities, such as Seattle, Washington, are visible reminders of how much people rely on electrical energy. Photographs of large cities, such as Seattle, Washington, are visible reminders of how much people rely on electrical energy. Generating Electric Current How is voltage induced in a conductor? According

More information

Magnetism from Electricity

Magnetism from Electricity 2 What You Will Learn Identify the relationship between an electric current and a magnetic field. Compare solenoids and electromagnets. Describe how electromagnetism is involved in the operation of doorbells,

More information

Electricity and Magnetism (Demo Version) The pictures show different arrangements of a battery, a light bulb, and a piece of copper wire.

Electricity and Magnetism (Demo Version) The pictures show different arrangements of a battery, a light bulb, and a piece of copper wire. Read each question carefully. 1) The pictures show different arrangements of a battery, a light bulb, and a piece of copper wire. Which arrangement will light the bulb? 1 2) In which of the following circuits

More information

ELECTRICAL PRINCIPLES AND TECHNOLOGIES

ELECTRICAL PRINCIPLES AND TECHNOLOGIES 1 ELECTRICAL PRINCIPLES AND TECHNOLOGIES Science 9 Unit D 2 3.0 Devices and systems convert energy with varying efficiencies. 3.1 Energy Forms and Transformations 1 Electrical Energy: Tesla Coil 3 A Tesla

More information

Fourth Grade Physical Science. Magnetism and Electricity. Written By: Hortencia Garcia Christina Mavaro Kathleen Tomscha

Fourth Grade Physical Science. Magnetism and Electricity. Written By: Hortencia Garcia Christina Mavaro Kathleen Tomscha Fourth Grade Physical Science Magnetism and Electricity Written By: Hortencia Garcia Christina Mavaro Kathleen Tomscha Developed in Conjunction with K-12 Alliance/WestED Table of Contents 1 Conceptual

More information

Electricity concepts teacher backgrounder

Electricity concepts teacher backgrounder Electricity concepts teacher backgrounder What is electricity, where does it come from and what do we use it for? Scientifically, electricity is the movement of electrons from one atom to another. This

More information

English for Electrical Engineers

English for Electrical Engineers University of Kurdistan Department of Electrical & Computer Engineering English for Electrical Engineers H. Bevrani October, 2017 1 Contents Unit 1. Current, voltage and resistance... 3 Unit 2. Electrical

More information

A direct current (DC) circuit. L 26 Electricity and Magnetism [4] Alternating Current (AC) Direct Current DC. AC power

A direct current (DC) circuit. L 26 Electricity and Magnetism [4] Alternating Current (AC) Direct Current DC. AC power L 26 Electricity and Magnetism [4] A direct current (DC) circuit simple electrical circuits direct current DC Alternating current (AC) vs direct current (DC) electric power distribution household electricity

More information

Electricity. An atom with more protons than electrons has a positive charge.

Electricity. An atom with more protons than electrons has a positive charge. Electricity Lesson 1 How Are Electricity and Magnetism Related? Electricity Have you used electricity in the past hour? Did you turn on a lamp? Did you watch TV? Did you get something cold to drink from

More information

MAGNETIC EFFECTS OF ELECTRIC CURRENT

MAGNETIC EFFECTS OF ELECTRIC CURRENT MAGNETIC EFFECTS OF ELECTRIC CURRENT VERY SHORT ANSWER TYPE QUESTION [1 MARK] 1. Name the type of current: (a) used in household supply. (b) given by a cell. (a) Alternating current. (b) Direct current.

More information

FACT SHEET Standard: Electrical Safety

FACT SHEET Standard: Electrical Safety What is a Ground Fault Circuit Interrupter? FACT SHEET The ground-fault circuit interrupter, or GFCI, is a fast-acting circuit breaker designed to shut off electric power in the event of a ground-fault

More information

Alternating Current (AC) Electricity

Alternating Current (AC) Electricity Alternating Current (AC) Electricity Alternating current or AC electricity is the type of electricity commonly used in homes and businesses throughout the world. While the flow of electrons through a wire

More information

ExamLearn.ie. Magnetism

ExamLearn.ie. Magnetism ExamLearn.ie Magnetism Magnetism If you hold a pin close to a magnet, you will feel a pull. This pulling force is called magnetism. A magnet is a piece of metal that can attract other substances to it.

More information

INTRODUCTION Principle

INTRODUCTION Principle DC Generators INTRODUCTION A generator is a machine that converts mechanical energy into electrical energy by using the principle of magnetic induction. Principle Whenever a conductor is moved within a

More information

MAGNETIC EFFECT OF ELECTRIC CURRENT

MAGNETIC EFFECT OF ELECTRIC CURRENT BAL BHARATI PUBLIC SCHOOL, PITAMPURA Class X MAGNETIC EFFECT OF ELECTRIC CURRENT 1. Magnetic Field due to a Current through a Straight Conductor (a) Nature of magnetic field: The magnetic field lines due

More information

2017 NEC Electrical Review RV

2017 NEC Electrical Review RV PLEASE DO NOT BOOKMARK ANY ANYTIMECE WEBPAGES! Our system will remember the last page you viewed when logging out and back in but please DO NOT exit out when taking a test. Your place will NOT be saved.

More information

Electromagnetism. Investigations

Electromagnetism. Investigations Electromagnetism Investigations Autumn 2015 ELECTROMAGNETISM Investigations Table of Contents Magnetic effect of an electric current* 2 Force on a current-carrying conductor in a magnetic field* 6 Faraday

More information

Chapter 20. Induced Voltages and Inductance

Chapter 20. Induced Voltages and Inductance Chapter 20 Induced Voltages and Inductance Michael Faraday 1791 1867 Great experimental scientist Invented electric motor, generator and transformers Discovered electromagnetic induction Discovered laws

More information

MS.RAJA ELGADFY/ELECTROMAGENETIC PAPER3

MS.RAJA ELGADFY/ELECTROMAGENETIC PAPER3 MSRAJA ELGADFY/ELECTROMAGENETIC PAPER3 1- In Fig 91, A and B are two conductors on insulating stands Both A and B were initially uncharged X Y A B Fig 91 (a) Conductor A is given the positive charge shown

More information

Lesson Plan: Electricity and Magnetism (~100 minutes)

Lesson Plan: Electricity and Magnetism (~100 minutes) Lesson Plan: Electricity and Magnetism (~100 minutes) Concepts 1. Electricity and magnetism are fundamentally related. 2. Just as electric charge produced an electric field, electric current produces a

More information

8.1 Magnetism. 8.2 Electricity and Magnetism. 8.3 Producing Electric Current. A Natural Light Show. BIG Idea. Science Journal

8.1 Magnetism. 8.2 Electricity and Magnetism. 8.3 Producing Electric Current. A Natural Light Show. BIG Idea. Science Journal BIG Idea A magnet is surrounded by a magnetic field that exerts a force on other magnets. 8.1 Magnetism MAI Idea Like magnetic poles repel each other and unlike poles attract each other. 8.2 Electricity

More information

Introduction of Diesel Electrical and Electronic Systems

Introduction of Diesel Electrical and Electronic Systems CDX Diesel Electrical and Electronic Systems Introduction of Diesel Electrical and Electronic Systems ÂÂ Basic Electrical Principles Basic Electronic Principles Sources of Electricity Effects of Electricity

More information

Given the following items: wire, light bulb, & battery, think about how you can light the bulb.

Given the following items: wire, light bulb, & battery, think about how you can light the bulb. Light the Bulb! What You'll Do: Given the following items: wire, light bulb, & battery, think about how you can light the bulb. >>>>>>>>>Draw all the possible combinations that you can make with the bulb,

More information

IT'S MAGNETIC (1 Hour)

IT'S MAGNETIC (1 Hour) IT'S MAGNETIC (1 Hour) Addresses NGSS Level of Difficulty: 4 Grade Range: 3-5 OVERVIEW In this activity, students will create a simple electromagnet using a nail, a battery, and copper wire. They will

More information

THE FOURTH STATE. Gaining a universal insight into the diagnosis of automotive ignition systems. By: Bernie Thompson

THE FOURTH STATE. Gaining a universal insight into the diagnosis of automotive ignition systems. By: Bernie Thompson THE FOURTH STATE Gaining a universal insight into the diagnosis of automotive ignition systems By: Bernie Thompson Did you know that the forth state of matter powers the spark ignition internal combustion

More information

Resistance. Resistance is a property of matter that slows movement.

Resistance. Resistance is a property of matter that slows movement. Resistance Resistance Resistance is a property of matter that slows movement. The friction of a car s tires against the road is an example of resistance. The flow of water through a pipe is also an example

More information

Unit 4 Electricity and Media

Unit 4 Electricity and Media Unit 4 Electricity and Media Lesson 16: Lesson 17: Lesson 18: Lesson 19: Lesson 20: What is Electricity? Electromagnet Electric Power from Different Energy Sources Using Electricity Safely Science and

More information

Electricity and Magnetism. Introduction to Chapter 10

Electricity and Magnetism. Introduction to Chapter 10 3 Electricity and Magnetism Introduction to Chapter 10 Electricity and magnetism are related to each other. As you will learn in this chapter, the interactions between electricity and magnetism are the

More information

Electrical Fundamentals Ed Abdo

Electrical Fundamentals Ed Abdo Study Unit Electrical Fundamentals By Ed Abdo About the Author Edward Abdo has been actively involved in the motorcycle and ATV industry for more than 25 years. He received factory training from Honda,

More information

ELECTRICITY AND HWH COPPER CONDUCTOR

ELECTRICITY AND HWH COPPER CONDUCTOR 1. PREFACE +BATTERY TERMINAL +BATTERY TERMINAL + + + + + + + + + + + + ELECTRICITY AND HWH In the first section of this school, we did an in-depth study of general hydraulics. In section four, we applied

More information

Permanent Magnet DC Motor Operating as a Generator

Permanent Magnet DC Motor Operating as a Generator Exercise 2 Permanent Magnet DC Motor Operating as a Generator EXERCIE OBJECTIVE When you have completed this exercise, you will be familiar with the construction of permanent magnet dc motors as well as

More information

Alessandro Volta. Frog's leg Batteries. L 26 Electricity and Magnetism [3] Batteries. Inside a Duracell 1.5 Volt battery

Alessandro Volta. Frog's leg Batteries. L 26 Electricity and Magnetism [3] Batteries. Inside a Duracell 1.5 Volt battery L 26 Electricity and Magnetism [3] Electric circuits what conducts electricity what doesn t t conduct electricity Current voltage and resistance Ohm s s Law Heat in a resistor power loss Making simple

More information

ANSWERS AND MARK SCHEMES

ANSWERS AND MARK SCHEMES QUESTIONSHEET 1 One mark for each of: when the pressure switch (A) is pushed, a current flows the electromagnet (B) is activated/switched on the armature (C) is attracted to the electromagnet the clapper

More information

Conversion of a Model A Ford Starter for 12 Volt operation. By Dick Harrell Gra-Neva A s

Conversion of a Model A Ford Starter for 12 Volt operation. By Dick Harrell Gra-Neva A s Conversion of a Model A Ford Starter for 12 Volt operation By Dick Harrell Gra-Neva A s This presentation details converting a Model A starter for operation on a 12 Volt system. While a standard 6 volt

More information

Update. This week A. B. Kaye, Ph.D. Associate Professor of Physics. Michael Faraday

Update. This week A. B. Kaye, Ph.D. Associate Professor of Physics. Michael Faraday 10/26/17 Update Last week Completed Sources of Magnetic Fields (Chapter 30) This week A. B. Kaye, Ph.D. Associate Professor of Physics (Chapter 31) Next week 30 October 3 November 2017 Chapter 32 Induction

More information

FUN! Protected Under 18 U.S.C. 707

FUN! Protected Under 18 U.S.C. 707 FUN! Protected Under 18 U.S.C. 707 DC I Lesson Objectives: 1. What is Electricity? 2. Discover the Electron 3. Learn about Conductors and Insulators 4. Learn about Voltage and Current 5. Learn the difference

More information

Imagine not being able to use anything that plugs into an electrical socket.

Imagine not being able to use anything that plugs into an electrical socket. Physics 1003 Electromagnetism (Read objectives on screen.) (boy thinking on screen) Imagine your everyday life without talking on the telephone or watching TV. or listening to a radio or playing a CD.

More information

Almost 200 years ago, Faraday looked for evidence that a magnetic field would induce an electric current with this apparatus:

Almost 200 years ago, Faraday looked for evidence that a magnetic field would induce an electric current with this apparatus: Chapter 21 Electromagnetic Induction and Faraday s Law Chapter 21 Induced EMF Faraday s Law of Induction; Lenz s Law EMF Induced in a Moving Conductor Changing Magnetic Flux Produces an E Field Inductance

More information

Electromagnets ENERGY USE AND DELIVERY LESSON PLAN 3.3. Public School System Teaching Standards Covered

Electromagnets ENERGY USE AND DELIVERY LESSON PLAN 3.3. Public School System Teaching Standards Covered ENERGY USE AND DELIVERY LESSON PLAN 3.3 Electromagnets This lesson is designed for 3rd 5th grade students in a variety of school settings (public, private, STEM schools, and home schools) in the seven

More information

21.2 Electromagnetism

21.2 Electromagnetism In 1820 Hans Oersted discovered how magnetism and electricity are connected. A unit of measure of magnetic field strength, the oersted, is named after him. Electricity and Magnetism How can an electric

More information

Chapter 7: DC Motors and Transmissions. 7.1: Basic Definitions and Concepts

Chapter 7: DC Motors and Transmissions. 7.1: Basic Definitions and Concepts Chapter 7: DC Motors and Transmissions Electric motors are one of the most common types of actuators found in robotics. Using them effectively will allow your robot to take action based on the direction

More information

Unit 32 Three-Phase Alternators

Unit 32 Three-Phase Alternators Unit 32 Three-Phase Alternators Objectives: Discuss the operation of a three-phase alternator. Explain the effect of rotation speed on frequency. Explain the effect of field excitation on output voltage.

More information

Ignition Coil Current Waveforms 2007 Honda Accord SE 4CYL

Ignition Coil Current Waveforms 2007 Honda Accord SE 4CYL P a g e 1 Ignition Coil Current Waveforms 2007 Honda Accord SE 4CYL With a current clamp and a cheap scope, it is easy to monitor the ignition coil currents and quickly diagnose a bad ignition coil. The

More information

Magnetic Effect of Electric Current P-1

Magnetic Effect of Electric Current P-1 Magnetic Effect of Electric Current P-1 Magnetic Field: The space or region around a magnet (or a current Carrying wire) with in which its influence can be felt or magnetic force can be felt by another

More information

Figure 1: Relative Directions as Defined for Faraday s Law

Figure 1: Relative Directions as Defined for Faraday s Law Faraday s Law INTRODUCTION This experiment examines Faraday s law of electromagnetic induction. The phenomenon involves induced voltages and currents due to changing magnetic fields. (Do not confuse this

More information

Motor Basics AGSM 325 Motors vs Engines

Motor Basics AGSM 325 Motors vs Engines Motor Basics AGSM 325 Motors vs Engines Motors convert electrical energy to mechanical energy. Engines convert chemical energy to mechanical energy. 1 Motors Advantages Low Initial Cost - $/Hp Simple &

More information

Permanent Magnet DC Motor

Permanent Magnet DC Motor Renewable Energy Permanent Magnet DC Motor Courseware Sample 86357-F0 A RENEWABLE ENERGY PERMANENT MAGNET DC MOTOR Courseware Sample by the staff of Lab-Volt Ltd. Copyright 2011 Lab-Volt Ltd. All rights

More information

Danyal Education (Contact: ) A commitment to teach and nurture. c) sketch a graph of voltage output against time for a simple a.c.

Danyal Education (Contact: ) A commitment to teach and nurture. c) sketch a graph of voltage output against time for a simple a.c. (Contact: 9855 9224) Electricity and Magnetism: Electromagnetic Induction (*) (#) Candidates should be able to: a) deduce from Faraday s experiments on electromagnetic induction or other appropriate experiments:

More information

Basic Instruments Introduction Classification of instruments Operating principles Essential features of measuring

Basic Instruments  Introduction Classification of instruments Operating principles Essential features of measuring Basic Instruments www.worldwebsites8.blogspot.com Introduction Classification of instruments Operating principles Essential features of measuring instruments PMMC Instruments Moving Iron instruments Introduction

More information

The graphs show the voltage across two different types of cell as they transfer the last bit of their stored energy through the torch bulb.

The graphs show the voltage across two different types of cell as they transfer the last bit of their stored energy through the torch bulb. Q1. A small torch uses a single cell to make the bulb light up. (a) The graphs show the voltage across two different types of cell as they transfer the last bit of their stored energy through the torch

More information

ELEN 236 DC Motors 1 DC Motors

ELEN 236 DC Motors 1 DC Motors ELEN 236 DC Motors 1 DC Motors Pictures source: http://hyperphysics.phy-astr.gsu.edu/hbase/magnetic/mothow.html#c1 1 2 3 Some DC Motor Terms: 1. rotor: The movable part of the DC motor 2. armature: The

More information

B, are made of %-in. strap iron. Armature

B, are made of %-in. strap iron. Armature # 6-32 HACK SCREWS operating on low-voltage a.c. from a bell transformer is shown in Figs. 1 and 3. The field coils A and B are two magnets from a buzzer or doorbell placed so that the windings run in

More information

Just what is an alternator?

Just what is an alternator? Just what is an alternator? An alternator is the device used to produce the electricity the car needs to run and to keep the battery charged. The battery is the heart of your electrical system. But you

More information

Science Olympiad Shock Value ~ Basic Circuits and Schematics

Science Olympiad Shock Value ~ Basic Circuits and Schematics Science Olympiad Shock Value ~ Basic Circuits and Schematics Use a single D battery, a single bare wire and a light bulb. Find four different ways to light the light bulb using only a battery, one wire

More information

UNIT I D.C. MACHINES PART A. 3. What are factors on which hysteresis loss? It depends on magnetic flux density, frequency & volume of the material.

UNIT I D.C. MACHINES PART A. 3. What are factors on which hysteresis loss? It depends on magnetic flux density, frequency & volume of the material. EE6352-ELECTRICAL ENGINEERING AND INSTRUMENTATION UNIT I D.C. MACHINES PART A 1. What is prime mover? The basic source of mechanical power which drives the armature of the generator is called prime mover.

More information

High Demand Questions QUESTIONSHEET 1 (a) Teresa set up the circuit shown in the diagram. The ammeter reading was 0.4 A.

High Demand Questions QUESTIONSHEET 1 (a) Teresa set up the circuit shown in the diagram. The ammeter reading was 0.4 A. High Demand Questions QUESTIONSHEET 1 (a) Teresa set up the circuit shown in the diagram. The ammeter reading was 0.4 A. A 4 Ω (i) What is the value of the current through the 4Ω resistor? (ii) What is

More information

CHAPTER 3 DOMESTIC ELECTRICITY

CHAPTER 3 DOMESTIC ELECTRICITY CHAPTER 3 DOMESTIC ELECTRICITY 1 Electrical Power How to calculate power drawn from a source? Three equivalent expressions of power [HKCEE] [Power] Calculate the power dissipated in the 10Ω resistor. Page

More information

7. How long must a 100-watt light bulb be used in order to dissipate 1,000 joules of electrical energy? 1) 10 s 3) 1,000 s 2) 100 s 4) 100,000 s

7. How long must a 100-watt light bulb be used in order to dissipate 1,000 joules of electrical energy? 1) 10 s 3) 1,000 s 2) 100 s 4) 100,000 s 1. Which quantity must be the same for each component in any series circuit? 1) power 3) current 2) resistance 4) voltage 2. A student needs a 4-ohm resistor to complete a circuit. Only a large quantity

More information

Magnetism and Electricity

Magnetism and Electricity Magnetism and Electricity Way back in the first lesson of this magnetism block, we talked about the fact that magnetic fields are caused by electrons moving in the same direction. Up to this point, we

More information

2006 MINI Cooper S GENINFO Starting - Overview - MINI

2006 MINI Cooper S GENINFO Starting - Overview - MINI MINI STARTING SYSTEM * PLEASE READ THIS FIRST * 2002-07 GENINFO Starting - Overview - MINI For information on starter removal and installation, see the following articles. For Cooper, see STARTER WITH

More information

Phys102 Lecture 20/21 Electromagnetic Induction and Faraday s Law

Phys102 Lecture 20/21 Electromagnetic Induction and Faraday s Law Phys102 Lecture 20/21 Electromagnetic Induction and Faraday s Law Key Points Induced EMF Faraday s Law of Induction; Lenz s Law References SFU Ed: 29-1,2,3,4,5,6. 6 th Ed: 21-1,2,3,4,5,6,7. Induced EMF

More information

Electromagnetic Induction (approx. 1.5 h) (11/9/15)

Electromagnetic Induction (approx. 1.5 h) (11/9/15) (approx. 1.5 h) (11/9/15) Introduction In 1819, during a lecture demonstration, the Danish scientist Hans Christian Oersted noticed that the needle of a compass was deflected when placed near a current-carrying

More information

EE6352-ELECTRICAL ENGINEERING AND INSTRUMENTATION UNIT I D.C. MACHINES PART A

EE6352-ELECTRICAL ENGINEERING AND INSTRUMENTATION UNIT I D.C. MACHINES PART A EE6352-ELECTRICAL ENGINEERING AND INSTRUMENTATION 1. What is prime mover? UNIT I D.C. MACHINES PART A The basic source of mechanical power which drives the armature of the generator is called prime mover.

More information

Working Principle of Earth Leakage Circuit Breaker (ELCB) and Residual Current Device (RCD)

Working Principle of Earth Leakage Circuit Breaker (ELCB) and Residual Current Device (RCD) Working Principle of Earth Leakage Circuit Breaker (ELCB) and Residual Current Device (RCD) Schneider Electric RCBO Earth Leakage Circuit Breaker (ELCB) An Earth Leakage Circuit Breaker (ELCB) is a device

More information

9.2. The Power of Electricity. Did You Know? Words to Know

9.2. The Power of Electricity. Did You Know? Words to Know 9.2 The Power of Electricity Electrical power is the rate at which electric potential energy is being transformed. One joule (J) of electric potential energy transformed in one second is one watt (W) of

More information

Electricity. Teacher/Parent Notes.

Electricity. Teacher/Parent Notes. Electricity. Teacher/Parent Notes. Caution. The yellow fan. If this is used with 6 Volts, the fan will fly into the air with some force so it is advisable to keep faces well away from it! Batteries. Please

More information

Q1. (a) A science technician sets up the apparatus shown below to demonstrate the motor effect. He uses a powerful permanent magnet.

Q1. (a) A science technician sets up the apparatus shown below to demonstrate the motor effect. He uses a powerful permanent magnet. Q. (a) A science technician sets up the apparatus shown below to demonstrate the motor effect. He uses a powerful permanent magnet. The copper roller is placed across the metal rails. When the switch is

More information

POWER METER. my2010 (c)

POWER METER. my2010 (c) POWER METER ELECTRIC POWER Electric power is the rate at which electric energy is transferred by an electric circuit. The SI unit of power is the watt. When electric current flows in a circuit, it can

More information

Experiment P-16 Basic Electromagnetism

Experiment P-16 Basic Electromagnetism 1 Experiment P-16 Basic Electromagnetism Objectives To learn about electromagnets. To build an electromagnet with a nail, a wire and additional electrical elements. To investigate how the number of winds

More information

Circuits-Circuit Analysis

Circuits-Circuit Analysis Base your answers to questions 1 through 3 on the information and diagram below. 4. A 9-volt battery is connected to a 4-ohm resistor and a 5-ohm resistor as shown in the diagram below. A 3.0-ohm resistor,

More information

4. ELECTRICITY AND MAGNETS

4. ELECTRICITY AND MAGNETS 4. ELECTRICITY AND MAGNETS 4.1 INTRODUCING ELECTRICITY AND MAGNETS Today almost everyone uses electricity. Electricity gives us light when we switch on a torch (flashlight), and sound when we switch on

More information

INDUCED ELECTROMOTIVE FORCE (1)

INDUCED ELECTROMOTIVE FORCE (1) INDUCED ELECTROMOTIVE FORCE (1) Michael Faraday showed in the 19 th Century that a magnetic field can produce an electric field To show this, two circuits are involved, the first of which is called the

More information

COMPARING SLOTTED vs. SLOTLESS BRUSHLESS DC MOTORS

COMPARING SLOTTED vs. SLOTLESS BRUSHLESS DC MOTORS COMPARING SLOTTED vs. SLOTLESS Authored By: Engineering Team Members Pittman Motors Slotless brushless DC motors represent a unique and compelling subset of motors within the larger category of brushless

More information

Electrical Motor Controls Chapter 4 (Fourth Edition) Chapter 2 (Fifth Edition)

Electrical Motor Controls Chapter 4 (Fourth Edition) Chapter 2 (Fifth Edition) Electrical Motor Controls Chapter 4 (Fourth Edition) Chapter 2 (Fifth Edition) 1. Which drawing type shows physical details as seen by the eye? 2. Which drawing is similar to a pictorial drawing but has

More information

To discover the factors affecting the direction of rotation and speed of three-phase motors.

To discover the factors affecting the direction of rotation and speed of three-phase motors. EXPERIMENT 12 Direction of Rotation of Three-Phase Motor PURPOSE: To discover the factors affecting the direction of rotation and speed of three-phase motors. BRIEFING: The stators of three-phase motors

More information

Electrical machines - generators and motors

Electrical machines - generators and motors Electrical machines - generators and motors We have seen that when a conductor is moved in a magnetic field or when a magnet is moved near a conductor, a current flows in the conductor. The amount of current

More information