Job Sheet 2 Aerodynamics Power Control

Size: px
Start display at page:

Download "Job Sheet 2 Aerodynamics Power Control"

Transcription

1 Job Sheet 2 Aerodynamics Power Control Power Control Power control is an important feature of a wind turbine. It regulates the speed of rotation of the rotor assembly when wind is present. For stand-alone or off-grid direct current (DC) systems, wind speed. For on-grid or alternate current (AC) grid-tie systems, power control can aid in maintaining a constant sinusoidal output to match the phase of the AC distribution network to which the turbine is coupled. Grid-tie turbines can also overspeed if there is a loss of load on the generator (i.e., if the connectivity to the grid is broken). The reduction in generator load reduces the resistance on the turbine hub. This, in turn, can cause a rapid acceleration of the rotor. Power controls can be used to prevent or control this acceleration in order to avoid turbine damage. The need for reliability is common to all control system designs. Many forms of power servicing are preferred. Wind turbine power control is accomplished through a system of passive control, active control, or a combination of both. Passive Power Control Passive control systems that are often found in smaller wind turbines utilize methods such as centrifugal force-controlled tip braking or unique blade designs to reduce the risk of turbine overspeed. They do not require monitoring or a control system to enable power regulation. speed occurs (Figure 2-1). These are often mechanically or electromechanically controlled. They automatically deploy and retract as the blade speed increases and decreases. Often, a sophisticated control system is not required for these systems to operate. Festo Didactic Inc

2 Rotary Bearing Tip Shaft Screw Air Flow Direction of Blade Rotation Tip Brake Deployed Air Flow Compressed Spring Blade Pitch Angle Figure 2-1. Tip Brake Designs. An alternate method of passive braking is utilized in passive stall-control turbines. The wind moment the wind speed becomes too high. This stall prevents the lifting force of the rotor blade from acting on the rotor. It is the result of turbulence on the side of the rotor blade that is not facing the wind (Figure 2-2). Air Flow Figure 2-2. Blade Stall. of passive stall control include the lack of moving parts in the rotor itself and the absence of structural dynamics of the turbine, leading to stall-induced vibrations. Active Power Control Active power control systems are commonly found in larger turbines and are employed in the hub trainer. Active power control systems monitor the wind through instrumentation, and then mechanically adjust the entire blade pitch or tip pitch to respond to variations in wind speed. 20 Festo Didactic Inc

3 rotor hub (Figure 2-3). This allows the blades to pivot into and away from the wind, adjusting the angle of attack. In nearly all large-scale commercial wind turbines, mechanical control systems that employ either hydraulic pistons or electrical servomotors drive the blade pitch to Pitch Angle Plane of Rotation Pitch Angle Plane of Rotation Hydraulic Piston Hub Bearing Servo Motor Hub Bearing Figure 2-3. Pitch Control System. During normal grid-tie in-service operation, the electronic controller checks the power output of the turbine many times per second. This includes the monitoring of shaft speed, pitch angle, wind velocity, and generator output. When the power output becomes too high, the controller signals the blade pitch drive mechanism to turn the rotor blades slightly out of the wind (Figure 2-4). Generator Output Wind Speed V 2 Shaft Speed V 1 Supervisor Control Angle Pitch Control Figure 2-4. Pitch Control Block Diagram. Festo Didactic Inc

4 Conversely, the blades are turned back into the wind whenever the wind drops. During normal operation, the blades pitch a fraction of a degree at a time to keep the rotor turning at a nearconstant speed. If a pitch control system or total wind turbine failure occurs, the hydraulic system is spring-loaded to automatically return the blades to a feathered position. Electronic pitch controls use a backup power supply to feather the blades during a failure. An increasing number of larger wind turbines use a combination of pitch and stall-control systems called active stall control. Unlike the standard pitch control that reduces pitch angle to slow the turbine, an active stall-control turbine increases the angle of attack of the rotor blades and keeps the rotor speed closer to constant. Active stall controls the output power of a turbine rated power at the beginning of a gust of wind. Active stall-control turbines can be run almost go into their designed deeper stall. In a tip pitch power control system, only the tip angle is regulated to control wind speed. This is called partial-span blade pitch control when the tip-to-blade junction is placed closer to the hub. Tip pitch and partial-span pitch control at the blade tip is limited by the reduced tip space, which makes it incorporated bearings and actuators. Although it is less effective than tip control, a partial-span pitch control section allows more space for the incorporated bearings and actuators (Figure 2-5). Therefore, it is easier to access and maintain. Tip pitch power control or partial-span pitch power control turbine are designed for stall control and require a rotor hub. Figure 2-5. Partial-span Blade Pitch Control. 22 Festo Didactic Inc

5 OBJECTIVE In this job, you will determine the basic principles and terminology of power control. You will operate the electrical pitch hub trainer, and observe how the pitch control system responds to changes in wind and power. EQUIPMENT REQUIRED required for this job. SAFETY PROCEDURES Before proceeding with this job, complete the following checklist. You are wearing safety glasses. You are wearing safety shoes. You are not wearing anything that might get caught such as a tie, jewelry, or loose clothes. If your hair is long, tie it out of the way. The working area is clean and free of oil. Your sleeves are rolled up. Instructor initials: PROCEDURE Setup Begin Then, apply power to the training system by turning on the Main power switch (Figure 2-6). Festo Didactic Inc

6 Figure 2-6. ESS and Main Power Switch in On Positions. Figure 2-7. HMI Main Screen. 24 Festo Didactic Inc

7 Clear any alarms that display by pressing the green System Reset button located below the Main power switch on the On-Off panel (Figure 2-8). Figure 2-8. On-Off Panel (Figure 2-9). Figure 2-9. HMI Alarms Screen. Return to the Main screen and press the Start Trainer button. Festo Didactic Inc

8 wind conditions. Figure HMI Simulation Screen. proceed to the Service screen and set the system to SI units before proceding. Return to the Simul screen and set the wind simulation for each step using the values provided in Table 2-1. Use the left and right step control arrows, and tap each parameter indicator to open and Step Duration (sec) Wind Direction (degrees) Wind Speed (m/s) Table 2-1. Wind Simulation Parameters. 26 Festo Didactic Inc

9 Return the step indicator to Step # 1. Press the Start button to start the simulation. Navigate to the Main screen and press the Start Trainer button, if necessary. Then, press the Start Auto button (Figure 2-11). Figure Start Trainer and Start Auto Buttons. Main screen. Allow the trainer to complete the auto initialization and step into the Auto Active Control IP phase of its programming (about 1 to 2 minutes). Automatic Pitch Control Once control begins, observe the changes in physical pitch angle relative to speed changes in the wind indicator. NOTE: If the trainer halts shortly after beginning pitch control, return to step 8 to reset and restart. Festo Didactic Inc

10 display and record the pitch angle displayed in Table 2-2. Allow the trainer to cycle through its program to acquire any missed values and to Wind Speed (m/s) Pitch Angle (degrees) Table 2-2. Pitch Angle Vs. Wind Speed. Plot the values you recorded in Table 2-2 in Graph Festo Didactic Inc

11 Wind Speed vs. Pitch Angle Pitch Angle (degrees) Wind Speed (m/s) Graph 2-1. Wind Speed Vs. Pitch Angle Graph. Based on your graph, what happens to the pitch angle as the wind speed increases? The pitch angle is measured from the plane of blade rotation. As the More Less Use the Main power switch to turn off all system power. Festo Didactic Inc

12 Lockout/Tagout Procedure Review Questions 1. What is the basic function of a power control system? 2. Why is it important to regulate turbine speed on a grid-tie wind turbine when it is connected to the grid? 3. What is the difference between active and passive power control? 30 Festo Didactic Inc

13 4. What are the two primary pitch control systems used in large commercial wind turbines? 5. What is meant by active stall control? Festo Didactic Inc

14 Name: Date: Instructor approval: 32 Festo Didactic Inc

Job Sheet 6 Pitch Control

Job Sheet 6 Pitch Control Job Sheet 6 Pitch Control Not all wind can be captured as energy by the wind turbine. Some wind has to pass by the blades for the rotor system to function properly. There are limits to how fast motors

More information

Job Sheet 5 Hydraulic Unit Circuit

Job Sheet 5 Hydraulic Unit Circuit Job Sheet 5 Hydraulic Unit Circuit The key components involved in the cylinder piston rod actuation (solenoid valves SV1, SV2, SV3A, and SV3B) are within the core components of the hydraulic unit of the

More information

Ex. 1-1 Nacelle Familiarization and Safety Discussion

Ex. 1-1 Nacelle Familiarization and Safety Discussion Exercise 1-1 Nacelle Familiarization and Safety EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with key components and safety aspects of the nacelle trainer. You will be

More information

Job Sheet 1 Electrical Panel Familiarization

Job Sheet 1 Electrical Panel Familiarization Job Sheet 1 Electrical Panel Familiarization The Wind Turbine Training System: Electrical Pitch Hub hardware has an electrical enclosure that houses an electrical panel. As shown in Figure 1-1, this panel

More information

The Discussion of this exercise covers the following points:

The Discussion of this exercise covers the following points: Exercise 3-2 Hydraulic Brakes EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with the hydraulic circuits of the yaw and the rotor brakes. You will control brakes by changing

More information

Exercise 4-1. Nacelle Control System EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. Control and simulation of environmental conditions

Exercise 4-1. Nacelle Control System EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. Control and simulation of environmental conditions Exercise 4-1 Nacelle Control System EXERCISE OBJECTIVE When you have completed this exercise, you will know more about the logic behind the control system. In particular, you will understand alarm management

More information

Exercise 3-1. Basic Hydraulic Circuit EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. Complete hydraulic circuit

Exercise 3-1. Basic Hydraulic Circuit EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. Complete hydraulic circuit Exercise 3-1 Basic Hydraulic Circuit EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with the hydraulic schematic and components of the nacelle trainer. You will identify

More information

Exercise 3-1. Basic Hydraulic Circuit EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. Complete hydraulic circuit

Exercise 3-1. Basic Hydraulic Circuit EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. Complete hydraulic circuit Exercise 3-1 Basic Hydraulic Circuit EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with the hydraulic schematic and components of the nacelle trainer. You will identify

More information

Job Sheet 1 Installing the Net Watt-Hour Meter

Job Sheet 1 Installing the Net Watt-Hour Meter Job Sheet 1 Installing the Net Watt-Hour Meter Net kwh Meter The Grid-Tie Training System optional net meter is a 100 140 V AC, single-phase, two-wire, bidirectional triple element watt-hour (Wh) meter

More information

Exercise 2-1. Hub and Low-Speed Shaft EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. Blade pitch in the nacelle system

Exercise 2-1. Hub and Low-Speed Shaft EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. Blade pitch in the nacelle system Exercise 2-1 Hub and Low-Speed Shaft EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with the portion of the nacelle that extracts mechanical power from the wind and transfers

More information

Job Sheet 6 Installing the Combiner Box

Job Sheet 6 Installing the Combiner Box Job Sheet 6 Installing the Combiner Box The Combiner Box The combiner box used in this course can combine photovoltaic (PV) solar sub-array strings that are up to 150 V DC each and up to 120 A total. Using

More information

Courseware Sample F0

Courseware Sample F0 Career & Technical Education Mechanical Training System Courseware Sample 36891-F0 AB CAREER & TECHNICAL EDUCATION MECHANICAL TRAININ SYSTEM COURSEWARE SAMPLE by the Staff of Lab-Volt (Quebec) Ltd Copyright

More information

Control of wind turbines and wind farms Norcowe 2015 PhD Summer school Single Turbine Control

Control of wind turbines and wind farms Norcowe 2015 PhD Summer school Single Turbine Control of wind and wind farms Norcowe 2015 PhD Summer school Single Turbine August, 2015 Department of Electronic Systems Aalborg University Denmark Outline Single Turbine Why is Historic Stall led in partial

More information

Job Sheet 1 Introduction to Fluid Power

Job Sheet 1 Introduction to Fluid Power Job Sheet 1 Introduction to Fluid Power Fluid Power Basics Fluid power relies on a hydraulic system to transfer energy from a prime mover, or input power source, to an actuator, or output device (Figure

More information

Renewable Energy Systems

Renewable Energy Systems Renewable Energy Systems 8 Buchla, Kissell, Floyd Chapter Outline Wind Turbine Control 8 Buchla, Kissell, Floyd 8-1 PITCH AND YAW CONTROL 8-2 TURBINE ORIENTATION 8-3 DRIVE TRAIN GEARING AND DIRECT DRIVE

More information

Familiarize yourself with the pressure loss phenomenon. The Discussion of this exercise covers the following point:

Familiarize yourself with the pressure loss phenomenon. The Discussion of this exercise covers the following point: Exercise 3-2 Pressure Loss EXERCISE OBJECTIVE Familiarize yourself with the pressure loss phenomenon. DISCUSSION OUTLINE The Discussion of this exercise covers the following point: Pressure loss Major

More information

Electric Drive - Magnetic Suspension Rotorcraft Technologies

Electric Drive - Magnetic Suspension Rotorcraft Technologies Electric Drive - Suspension Rotorcraft Technologies William Nunnally Chief Scientist SunLase, Inc. Sapulpa, OK 74066-6032 wcn.sunlase@gmail.com ABSTRACT The recent advances in electromagnetic technologies

More information

On Control Strategies for Wind Turbine Systems

On Control Strategies for Wind Turbine Systems On Control Strategies for Wind Turbine Systems Niall McMahon December 21, 2011 More notes to follow at: http://www.niallmcmahon.com/msc_res_notes.html 1 Calculations for Peak Tip Speed Ratio Assuming that

More information

Industrial Maintenance. Belt Drives 2. Job Sheets - Courseware Sample F0

Industrial Maintenance. Belt Drives 2. Job Sheets - Courseware Sample F0 Industrial Maintenance Belt Drives 2 Job Sheets - Courseware Sample 36963-F0 Order no.: 36963-30 First Edition Revision level: 05/2015 By the staff of Festo Didactic Festo Didactic Ltée/Ltd, Quebec, Canada

More information

Industrial Maintenance. Gear Drives 1. Courseware Sample F0

Industrial Maintenance. Gear Drives 1. Courseware Sample F0 Industrial Maintenance Gear Drives 1 Courseware Sample 36893-F0 Order no.: 36893-70 First Edition Revision level: 08/2015 By the staff of Festo Didactic Festo Didactic Ltée/Ltd, Quebec, Canada 2005 Internet:

More information

EE 742 Chap. 7: Wind Power Generation. Y. Baghzouz Fall 2011

EE 742 Chap. 7: Wind Power Generation. Y. Baghzouz Fall 2011 EE 742 Chap. 7: Wind Power Generation Y. Baghzouz Fall 2011 Overview Environmental pressures have led many countries to set ambitious goals of renewable energy generation. Wind energy is the dominant renewable

More information

Session 5 Wind Turbine Scaling and Control W. E. Leithead

Session 5 Wind Turbine Scaling and Control W. E. Leithead SUPERGEN Wind Wind Energy Technology Session 5 Wind Turbine Scaling and Control W. E. Leithead Supergen 2 nd Training Seminar 24 th /25 th March 2011 Wind Turbine Scaling and Control Outline Introduction

More information

EE 742 Chap. 7: Wind Power Generation. Y. Baghzouz

EE 742 Chap. 7: Wind Power Generation. Y. Baghzouz EE 742 Chap. 7: Wind Power Generation Y. Baghzouz Wind Energy 101: See Video Link Below http://energy.gov/eere/videos/energy-101- wind-turbines-2014-update Wind Power Inland and Offshore Growth in Wind

More information

What is Wear? Abrasive wear

What is Wear? Abrasive wear What is Wear? Written by: Steffen D. Nyman, Education Coordinator, C.C.JENSEN A/S It is generally recognized that contamination of lubricating and hydraulic oils are the primary cause of wear and component

More information

Active limitation of extreme loads of large-scale wind turbines: A study on detection and response dynamics

Active limitation of extreme loads of large-scale wind turbines: A study on detection and response dynamics Active limitation of extreme loads of large-scale wind turbines: A study on detection and response dynamics P. Brosche, B. Fischer, P. Loepelmann, M. Shan {philipp.brosche, boris.fischer, peter.loepelmann,

More information

Exercise 4-1. Flowmeters EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. Rotameters. How do rotameter tubes work?

Exercise 4-1. Flowmeters EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. Rotameters. How do rotameter tubes work? Exercise 4-1 Flowmeters EXERCISE OBJECTIVE Learn the basics of differential pressure flowmeters via the use of a Venturi tube and learn how to safely connect (and disconnect) a differential pressure flowmeter

More information

Application Note : Comparative Motor Technologies

Application Note : Comparative Motor Technologies Application Note : Comparative Motor Technologies Air Motor and Cylinders Air Actuators use compressed air to move a piston for linear motion or turn a turbine for rotary motion. Responsiveness, speed

More information

GOLDWIND 2.5MW PERMANENT MAGNET DIRECT-DRIVE (PMDD) WIND TURBINE

GOLDWIND 2.5MW PERMANENT MAGNET DIRECT-DRIVE (PMDD) WIND TURBINE Rotor Blade Rotor/Generator Bearing Cast Hub Auxiliary Crane Wind Measurement Equipment Pitch System Heat Exchanger Yaw System Base Frame PMDD Generator GOLDWIND 2.5MW PERMANENT MAGNET DIRECT-DRIVE (PMDD)

More information

WIND ENERGY MODULAR TRAINER WITH CONNECTION TO MAINS DL WIND-A1G

WIND ENERGY MODULAR TRAINER WITH CONNECTION TO MAINS DL WIND-A1G WIND ENERGY MODULAR TRAINER WITH CONNECTION TO MAINS INDEX UNIT 01 - BASIC PRINCIPLES AND CONCEPTS OF WIND ENERGY.. 7 1.1 HISTORY... 7 1.2 BASIC EOLIC ENERGY... 8 1.3 PICKING GUIDELINE...10 1.4 WIND TURBINE...11

More information

ned100 Wind Turbine Generator a step towards your energy independence

ned100 Wind Turbine Generator a step towards your energy independence ned100 Wind Turbine Generator a step towards your energy independence Energy production 450 Ø22 Ø24 4.5 138 155 5.0 183 203 5.5 230 252 6.0 276 300 6.5 321 346 7.0 363 388 7.5 401 425 8.0 435 ---- 8.5

More information

T701 (240 VAC, 1-phase, 60 Hz)

T701 (240 VAC, 1-phase, 60 Hz) SWCC Summary Report Manufacturer: Wind Turbine: Certification Number: Pika Energy Inc. T701 (240 VAC, 1-phase, 60 Hz) SWCC-13-03 The above-identified Small Wind Turbine is certified by the Small Wind Certification

More information

RW-30kW variable pitch wind turbine

RW-30kW variable pitch wind turbine RW-30kW variable pitch wind turbine 2018 www.instrumentsgroup.c o.za 1. RW-30kw variable pitch wind turbine parameter 1.1 RW-30kW parameter RW-30kw variable pitch Technical parameters 13.5V Wind rotor

More information

Wind Turbine Emulation Experiment

Wind Turbine Emulation Experiment Wind Turbine Emulation Experiment Aim: Study of static and dynamic characteristics of wind turbine (WT) by emulating the wind turbine behavior by means of a separately-excited DC motor using LabVIEW and

More information

Technical Documentation Wind Turbine Generator Systems /60 Hz

Technical Documentation Wind Turbine Generator Systems /60 Hz Technical Documentation Wind Turbine Generator Systems 3.8-130 - 50/60 Hz imagination at work www.gepower.com Visit us at https://renewable.gepower.com Copyright and patent rights All documents are copyrighted

More information

Waterous S100 Single Stage Pump

Waterous S100 Single Stage Pump The S100 Series end suction fire pump provides versatility in a smaller package. With a capacity of 2000 GPM (7570 L/min), the S100 Features a dynamic yet compact design, incorporating a ductile iron body

More information

How Do Helicopters Fly? An Introduction to Rotor Aeromechanics

How Do Helicopters Fly? An Introduction to Rotor Aeromechanics Audience: Grades 9-10 Module duration: 75 minutes How Do Helicopters Fly? An Introduction to Rotor Aeromechanics Instructor Guide Concepts: Airfoil lift, angle of attack, rotary wing aerodynamics, hover

More information

CHAPTER 4 MODELING OF PERMANENT MAGNET SYNCHRONOUS GENERATOR BASED WIND ENERGY CONVERSION SYSTEM

CHAPTER 4 MODELING OF PERMANENT MAGNET SYNCHRONOUS GENERATOR BASED WIND ENERGY CONVERSION SYSTEM 47 CHAPTER 4 MODELING OF PERMANENT MAGNET SYNCHRONOUS GENERATOR BASED WIND ENERGY CONVERSION SYSTEM 4.1 INTRODUCTION Wind energy has been the subject of much recent research and development. The only negative

More information

The Discussion of this exercise covers the following points:

The Discussion of this exercise covers the following points: Exercise 3-3 Venturi Tubes EXERCISE OBJECTIVE In this exercise, you will study the relationship between the flow rate and the pressure drop produced by a venturi tube. You will describe the behavior of

More information

Mechanical Considerations for Servo Motor and Gearhead Sizing

Mechanical Considerations for Servo Motor and Gearhead Sizing PDHonline Course M298 (3 PDH) Mechanical Considerations for Servo Motor and Gearhead Sizing Instructor: Chad A. Thompson, P.E. 2012 PDH Online PDH Center 5272 Meadow Estates Drive Fairfax, VA 22030-6658

More information

CHAPTER 4 PITCH CONTROL OF WIND TURBINE GENERATORS

CHAPTER 4 PITCH CONTROL OF WIND TURBINE GENERATORS 62 CHAPTER 4 PITCH CONTROL OF WIND TURBINE GENERATORS 4.1 INTRODUCTION The use of wind power has in the last decade increased in the central parts of Europe and at the west coast of the U.S. The rest of

More information

Anupam *1, Prof. S.U Kulkarni 2 1 ABSTRACT I. INTRODUCTION II. MODELLING OF WIND SPEED

Anupam *1, Prof. S.U Kulkarni 2 1 ABSTRACT I. INTRODUCTION II. MODELLING OF WIND SPEED 2017 IJSRSET Volume 3 Issue 3 Print ISSN: 2395-1990 Online ISSN : 2394-4099 Themed Section: Engineering and Technology PMSG Based Wind Farm Analysis in ETAP Software Anupam *1, Prof. S.U Kulkarni 2 1 Department

More information

SHAFT ALIGNMENT FORWARD

SHAFT ALIGNMENT FORWARD Service Application Manual SAM Chapter 630-76 Section 24 SHAFT ALIGNMENT FORWARD One of the basic problems of any installation is aligning couplings or shafts. Therefore, this section will endeavor to

More information

Understand how soft starters operate.

Understand how soft starters operate. Exercise 5-2 Soft Starters EXERCISE OBJECTIVE Understand how soft starters operate. DISCUSSION Soft starters are solid-state devices providing gradual voltage increase, for the purpose of starting a motor

More information

Creating Linear Motion One Step at a Time

Creating Linear Motion One Step at a Time Creating Linear Motion One Step at a Time In classic mechanical engineering, linear systems are typically designed using conventional mechanical components to convert rotary into linear motion. Converting

More information

Wind turbine aerodynamics, continued (Part 4/4)

Wind turbine aerodynamics, continued (Part 4/4) Wind turbine aerodynamics, continued (Part 4/4) Ene-47.5140 Wind Energy Ville Lehtomäki, VTT Wind 2 Content Recap: lift & drag and their coefficients Blade & rotor terminology Rotor aerodynamics: BEM-method

More information

three different ways, so it is important to be aware of how flow is to be specified

three different ways, so it is important to be aware of how flow is to be specified Flow-control valves Flow-control valves include simple s to sophisticated closed-loop electrohydraulic valves that automatically adjust to variations in pressure and temperature. The purpose of flow control

More information

Vibration studies and on-site balancing of GT-1 assembly

Vibration studies and on-site balancing of GT-1 assembly Page 1 of 32 Fig-1 showing the bump test measurements made on exciter rear end. A predominant frequency at 220 Hz was seen in the spectrum Page 2 of 32 Fig-2 showing bump test measurements made on generator

More information

MECHATRONICS LAB MANUAL

MECHATRONICS LAB MANUAL MECHATRONICS LAB MANUAL T.E.(Mechanical) Sem-VI Department of Mechanical Engineering SIESGST, Nerul, Navi Mumbai LIST OF EXPERIMENTS Expt. No. Title Page No. 1. Study of basic principles of sensing and

More information

Copyright 2016 Surya Powerfarad Energies Limited. P a g e 1

Copyright 2016 Surya Powerfarad Energies Limited.     P a g e 1 P a g e 1 Introduction: Wind Pitch Control systems dynamically adjust blade position relative to wind speed in order to maximize the efficiency for power generation and to minimize the effect of tower

More information

Compressor Noise Control

Compressor Noise Control Purdue University Purdue e-pubs International Compressor Engineering Conference School of Mechanical Engineering 1972 Compressor Noise Control G. M. Diehl Ingersoll-Rand Research Follow this and additional

More information

Standard Uncertainty in AEP (kwh)

Standard Uncertainty in AEP (kwh) SWCC Summary Report Manufacturer: Wind Turbine: Certification Number: The above-identified Small Wind Turbine is certified by the Small Wind Certification Council to be in conformance with the AWEA Small

More information

Test Summary Report for the Solid Wind Power SWP25-14TG20 Small Wind Turbine

Test Summary Report for the Solid Wind Power SWP25-14TG20 Small Wind Turbine Cleeve Road, Leatherhead Surrey, KT22 7SB UK Telephone: +44 (0) 1372 370900 Facsimile: +44 (0) 1372 370999 www.intertek.com Test Summary Report for the Solid Wind Power SWP25-14TG20 Small Wind Turbine

More information

SOME FACTORS THAT INFLUENCE THE PERFORMANCE OF

SOME FACTORS THAT INFLUENCE THE PERFORMANCE OF SOME FACTORS THAT INFLUENCE THE PERFORMANCE OF Authored By: Robert Pulford Jr. and Engineering Team Members Haydon Kerk Motion Solutions There are various parameters to consider when selecting a Rotary

More information

Long Transfer Lines Enabling Large Separations between Compressor and Coldhead for High- Frequency Acoustic-Stirling ( Pulse-Tube ) Coolers

Long Transfer Lines Enabling Large Separations between Compressor and Coldhead for High- Frequency Acoustic-Stirling ( Pulse-Tube ) Coolers Long Transfer Lines Enabling Large Separations between Compressor and Coldhead for High- Frequency Acoustic-Stirling ( Pulse-Tube ) Coolers P. S. Spoor and J. A. Corey CFIC-Qdrive Troy, NY 12180 ABSTRACT

More information

Power Control of a PMSG based Wind Turbine System Above Rated Wind Speed

Power Control of a PMSG based Wind Turbine System Above Rated Wind Speed International Renewable Energy Congress November 5-7, 010 Sousse, Tunisia Power Control of a PMSG based Wind Turbine System Above Rated Wind Speed M. Kesraoui 1, O. Bencherouda and Z. Mesbahi 1 Laboratory

More information

Velocity vs Time. Velocity vs Time

Velocity vs Time. Velocity vs Time Chapter : One Dimensional Motion Graphical Interpretation of Instantaneous and Average Acceleration Explain what happens in each of these graphs. Make sure to record the change in displacement, change

More information

ACTUATORS POSITION SENSOR

ACTUATORS POSITION SENSOR POSITION SENSOR 1 2 SUMMARY P INTRODUCTION PAGE 4 P LTS POSITION SENSOR PAGE 5 P LTL POSITION SENSOR PAGE 9 SUMMARY P LTE POSITION SENSOR PAGE 12 3 INTRODUCTION INTRODUCTION Magnetic position sensors are

More information

What does pressure refer to in relation to hydrostatics and what is it dependent on?

What does pressure refer to in relation to hydrostatics and what is it dependent on? Question 1 [3 Marks] What does pressure refer to in relation to hydrostatics and what is it dependent on? Question 2 [14 Marks] Make a circuit diagram of a regular hydraulic plant that is used to control

More information

Agenda 10/4/2016. Servo Technology Experience 2016 TO (Nashville) SERVE, TO STRIVE, WITHOUT COMPROMISE.

Agenda 10/4/2016. Servo Technology Experience 2016 TO (Nashville) SERVE, TO STRIVE, WITHOUT COMPROMISE. Servo Technology Experience 2016 (Nashville) Agenda Why transfers? Transfer Technology History How Transfer s Integrate with Presses Transfer Tooling Options Auxiliary Tooling & Die Options New Technologies

More information

Principles of Doubly-Fed Induction Generators (DFIG)

Principles of Doubly-Fed Induction Generators (DFIG) Renewable Energy Principles of Doubly-Fed Induction Generators (DFIG) Courseware Sample 86376-F0 A RENEWABLE ENERGY PRINCIPLES OF DOUBLY-FED INDUCTION GENERATORS (DFIG) Courseware Sample by the staff

More information

Lab 6: Wind Turbine Generators

Lab 6: Wind Turbine Generators Lab 6: Wind Turbine Generators Name: Pre Lab Tip speed ratio: Tip speed ratio (TSR) is defined as: Ω, where Ω=angular velocity of wind, and R=radius of rotor (blade length). If the rotational speed of

More information

SWCC Summary Report. Eveready Diversified Products (Pty) Ltd T/A Kestrel Renewable Energy. Certification Number: SWCC (240 VAC, 1-phase, 60 Hz)

SWCC Summary Report. Eveready Diversified Products (Pty) Ltd T/A Kestrel Renewable Energy. Certification Number: SWCC (240 VAC, 1-phase, 60 Hz) SWCC Summary Report Manufacturer: Wind Turbine Model: Eveready Diversified Products (Pty) Ltd T/A Kestrel Renewable Energy Kestrel e400nb (240 VAC, 1-phase, 60 Hz) Certification Number: SWCC-10-16 The

More information

Test Which component has the highest Energy Density? A. Accumulator. B. Battery. C. Capacitor. D. Spring.

Test Which component has the highest Energy Density? A. Accumulator. B. Battery. C. Capacitor. D. Spring. Test 1 1. Which statement is True? A. Pneumatic systems are more suitable than hydraulic systems to drive powerful machines. B. Mechanical systems transfer energy for longer distances than hydraulic systems.

More information

Chapter 5: DC Motors. 9/18/2003 Electromechanical Dynamics 1

Chapter 5: DC Motors. 9/18/2003 Electromechanical Dynamics 1 Chapter 5: DC Motors 9/18/2003 Electromechanical Dynamics 1 Reversing the Rotation Direction The direction of rotation can be reversed by reversing the current flow in either the armature connection the

More information

Step Motor. Mechatronics Device Report Yisheng Zhang 04/02/03. What Is A Step Motor?

Step Motor. Mechatronics Device Report Yisheng Zhang 04/02/03. What Is A Step Motor? Step Motor What is a Step Motor? How Do They Work? Basic Types: Variable Reluctance, Permanent Magnet, Hybrid Where Are They Used? How Are They Controlled? How To Select A Step Motor and Driver Types of

More information

Design and Test of Transonic Compressor Rotor with Tandem Cascade

Design and Test of Transonic Compressor Rotor with Tandem Cascade Proceedings of the International Gas Turbine Congress 2003 Tokyo November 2-7, 2003 IGTC2003Tokyo TS-108 Design and Test of Transonic Compressor Rotor with Tandem Cascade Yusuke SAKAI, Akinori MATSUOKA,

More information

Jogging and Plugging of AC and DC Motors. Prepared by Engr. John Paul Timola, LPT

Jogging and Plugging of AC and DC Motors. Prepared by Engr. John Paul Timola, LPT Jogging and Plugging of AC and DC Motors Prepared by Engr. John Paul Timola, LPT Jogging sometimes called inching momentary operation of a motor for the purpose of accomplishing small movements of the

More information

Doubly fed electric machine

Doubly fed electric machine Doubly fed electric machine Doubly fed electric machines are electric motors or electric generators that have windings on both stationary and rotating parts, where both windings transfer significant power

More information

Chapter 5. Design of Control Mechanism of Variable Suspension System. 5.1: Introduction: Objective of the Mechanism:

Chapter 5. Design of Control Mechanism of Variable Suspension System. 5.1: Introduction: Objective of the Mechanism: 123 Chapter 5 Design of Control Mechanism of Variable Suspension System 5.1: Introduction: Objective of the Mechanism: In this section, Design, control and working of the control mechanism for varying

More information

Introduction to hmtechnology

Introduction to hmtechnology Introduction to hmtechnology Today's motion applications are requiring more precise control of both speed and position. The requirement for more complex move profiles is leading to a change from pneumatic

More information

Domestic Wind Turbines and Componets

Domestic Wind Turbines and Componets Domestic Wind Turbines and Componets Attila Sáfár BMF-KVK-SZGTI, H-8000, Székesfehérvár, Budai út 45., safar.attila@szgti.bmf.hu Abstract: The following study introduce the componets and opreration of

More information

The pneumatic circuit and parts' list needed to perform this operation are shown by Figure C.1.

The pneumatic circuit and parts' list needed to perform this operation are shown by Figure C.1. Introduction In session 1 you have learned about pneumatic systems and their main components. In addition to that your lab instructor has introduced to you how to use FluidSIM software. During this appendix

More information

Anti-Cog Technology. Introduction

Anti-Cog Technology. Introduction Anti-Cog Technology Introduction Ironcore linear motors have traditionally suffered from a phenomenon known as cogging. This is seen as a periodically varying resistive force when the motor is pushed by

More information

Rotor imbalance cancellation

Rotor imbalance cancellation White paper Rotor imbalance cancellation Imbalance in a wind turbine rotor is a typical problem of both new and older wind turbines. This paper describes an approach for minimizing rotor imbalance using

More information

Wind Turbine Configuration for the Offshore Environment. Simon Watson Loughborough University

Wind Turbine Configuration for the Offshore Environment. Simon Watson Loughborough University Wind Turbine Configuration for the Offshore Environment Simon Watson Loughborough University Overview The Issues Rotor Drive Train Control Electricals Summary Issues Higher winds Wind shear Wave loading

More information

Y. Lemmens, T. Benoit, J. de Boer, T. Olbrechts LMS, A Siemens Business. Real-time Mechanism and System Simulation To Support Flight Simulators

Y. Lemmens, T. Benoit, J. de Boer, T. Olbrechts LMS, A Siemens Business. Real-time Mechanism and System Simulation To Support Flight Simulators Y. Lemmens, T. Benoit, J. de Boer, T. Olbrechts LMS, A Siemens Business Real-time Mechanism and System Simulation To Support Flight Simulators Smarter decisions, better products. Contents Introduction

More information

Flight Safety Information Journal

Flight Safety Information Journal Flight Safety Information Journal May 2, 2006 IN THIS ISSUE Helicopter Ground Resonance Curt Lewis, P.E., CSP, ATP John H. Darbo ATP, CFI, A&P www.fsinfo.org Ground resonance is one of the most dangerous

More information

HELICOPTER TAIL ROTOR ANALYSIS: EXPERIENCE IN AGUSTA WITH ADAMS

HELICOPTER TAIL ROTOR ANALYSIS: EXPERIENCE IN AGUSTA WITH ADAMS HELICOPTER TAIL ROTOR ANALYSIS: EXPERIENCE IN AGUSTA WITH ADAMS Bianchi F., Agusta Sp.a. Via G.Agusta, 520 - Cascina Costa di Samarate,Varese - Italy - e-mail: atr@agusta.it Abstract The purpose of the

More information

V MW & 2.0 MW Built on experience

V MW & 2.0 MW Built on experience V90-1.8 MW & 2.0 MW Built on experience Innovations in blade technology Optimal efficiency The OptiSpeed * generators in the V90-1.8 MW and the V90-2.0 MW have been adapted from those in Vestas highly

More information

Application Information

Application Information Moog Components Group manufactures a comprehensive line of brush-type and brushless motors, as well as brushless controllers. The purpose of this document is to provide a guide for the selection and application

More information

EFFECT OF SURFACE ROUGHNESS ON PERFORMANCE OF WIND TURBINE

EFFECT OF SURFACE ROUGHNESS ON PERFORMANCE OF WIND TURBINE Chapter-5 EFFECT OF SURFACE ROUGHNESS ON PERFORMANCE OF WIND TURBINE 5.1 Introduction The development of modern airfoil, for their use in wind turbines was initiated in the year 1980. The requirements

More information

Analysis of Multistage Linkage Based Eclipse Gearbox for Wind Mill Applications

Analysis of Multistage Linkage Based Eclipse Gearbox for Wind Mill Applications Analysis of Multistage Linkage Based Eclipse Gearbox for Wind Mill Applications 1 Shrutika Patil, 2 J. G. Patil, 3 R. Y. Patil 1 M.E. Student, 2 Associate Professor, 3 Head of Department, Department of

More information

Exercise 4-1. Friction Brakes EXERCISE OBJECTIVE DISCUSSION. Understand the construction and operation of friction brakes.

Exercise 4-1. Friction Brakes EXERCISE OBJECTIVE DISCUSSION. Understand the construction and operation of friction brakes. Exercise 4-1 Friction Brakes EXERCISE OBJECTIVE Understand the construction and operation of friction brakes. DISCUSSION Friction brakes, or magnetic brakes, are used to secure (hold) the position of a

More information

Synthetic Inertia from Wind Turbine Generation

Synthetic Inertia from Wind Turbine Generation Synthetic Inertia from Wind Turbine Generation Midwest Reliability Organization 2017 Fall Reliability Conference St. Paul, MN October 25, 2017 Sr Grid Interfaces Engineer Schenectady, NY USA randal.voges@ge.com

More information

Power Control in AC Isolated Microgrids with Renewable Energy Sources and Energy Storage Systems

Power Control in AC Isolated Microgrids with Renewable Energy Sources and Energy Storage Systems Power Control in AC Isolated Microgrids with Renewable Energy Sources and Energy Storage Systems Abstract Introduction: The supply of electricity to these communities in several developing countries, in

More information

Fluid Flow Conditioning

Fluid Flow Conditioning Fluid Flow Conditioning March 2014 Flow Conditioning There is no flow meter on the market that needs flow conditioning. All flow meters are effective without any type of flow conditioning. 1 Flow Conditioning

More information

Identifying the Motorized RGS part number codes when ordering

Identifying the Motorized RGS part number codes when ordering RGS04 Motorized with 28000 Series Size11 DS RGS04 Linear Rail for Hybird 28000 Series Size 11 Double Stacks and RGS04 for 43000 Series Size 17 Single and Double Stacks (See Page 4) RGS04 Linear Rail with

More information

ROYAL CANADIAN AIR CADETS PROFICIENCY LEVEL FOUR INSTRUCTIONAL GUIDE SECTION 2 EO M DESCRIBE PROPELLER SYSTEMS PREPARATION

ROYAL CANADIAN AIR CADETS PROFICIENCY LEVEL FOUR INSTRUCTIONAL GUIDE SECTION 2 EO M DESCRIBE PROPELLER SYSTEMS PREPARATION ROYAL CANADIAN AIR CADETS PROFICIENCY LEVEL FOUR INSTRUCTIONAL GUIDE SECTION 2 EO M432.02 DESCRIBE PROPELLER SYSTEMS Total Time: 30 min PREPARATION PRE-LESSON INSTRUCTIONS Resources needed for the delivery

More information

BLADEcontrol Greater output less risk

BLADEcontrol Greater output less risk BLADEcontrol Greater output less risk 2 Expensive surprises? Unnecessary downtime? Rotor blade monitoring increases the output of your wind turbine generator system 3 Detect damage at an early stage For

More information

Wind Turbine Generator System. General Specification for HQ2000

Wind Turbine Generator System. General Specification for HQ2000 Wind Turbine Generator System General Specification for HQ2000 April 15, 2010 Hyundai Heavy Industries Co., Ltd Electro Electric Systems h t t p : / / w w w. h y u n d a i - e l e c. c o. k r 1. General

More information

Christof Deckmyn DEVELOPING AND TESTING POWER CONTROL FOR A WIND POWER STATION MODEL

Christof Deckmyn DEVELOPING AND TESTING POWER CONTROL FOR A WIND POWER STATION MODEL Christof Deckmyn DEVELOPING AND TESTING POWER CONTROL FOR A WIND POWER STATION MODEL Unit Technology and Communication 2011 VAASAN AMMATTIKORKEAKOULU UNIVERSITY OF APPLIED SCIENCES Master in Renewable

More information

TORQUE CONVERTER. Section 2. Lesson Objectives. 6 TOYOTA Technical Training

TORQUE CONVERTER. Section 2. Lesson Objectives. 6 TOYOTA Technical Training Section 2 TORQUE CONVERTER Lesson Objectives 1. Describe the function of the torque converter. 2. Identify the three major components of the torque converter that contribute to the multiplication of torque.

More information

Electric cars: Technology

Electric cars: Technology In his lecture, Professor Pavol Bauer explains all about how power is converted between the various power sources and power consumers in an electric vehicle. This is done using power electronic converters.

More information

Interlocks 200 Series

Interlocks 200 Series rd 12070 43 St. NE, St. Michael, MN 55376 763-497-7000 www.tcamerican.com sales@tcamerican.com Installation Instructions Interlocks 200 Series 2I-515; 2I-930 2I-513; 2I-850 Crane Interlock and Operating

More information

FLUID POWER P&IDs. IDENTIFY the symbols used on engineering fluid power drawings for the following components:

FLUID POWER P&IDs. IDENTIFY the symbols used on engineering fluid power drawings for the following components: FLUID POWER P&IDs Fluid power diagrams and schematics require an independent review because they use a unique set of symbols and conventions. EO 1.11 IDENTIFY the symbols used on engineering fluid power

More information

Battery Capacity Versus Discharge Rate

Battery Capacity Versus Discharge Rate Exercise 2 Battery Capacity Versus Discharge Rate EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with the effects of the discharge rate and battery temperature on the capacity

More information

Module 6 Assignment Part A

Module 6 Assignment Part A Module 6 Assignment Part A TOTAL MARKS Part A = 192 TOTAL QUESTIONS Part A = 36 Question 1 [3 Marks] What does pressure refer to in relation to hydrostatics and what is it dependent on? Question 2 [14

More information

CHAPTER 5 ROTOR RESISTANCE CONTROL OF WIND TURBINE GENERATORS

CHAPTER 5 ROTOR RESISTANCE CONTROL OF WIND TURBINE GENERATORS 88 CHAPTER 5 ROTOR RESISTANCE CONTROL OF WIND TURBINE GENERATORS 5.1 INTRODUCTION The advances in power electronics technology have enabled the use of variable speed induction generators for wind energy

More information

9/7/2010. Chapter , The McGraw-Hill Companies, Inc. MOTOR CLASSIFICATION. 2010, The McGraw-Hill Companies, Inc.

9/7/2010. Chapter , The McGraw-Hill Companies, Inc. MOTOR CLASSIFICATION. 2010, The McGraw-Hill Companies, Inc. Chapter 2 MOTOR CLASSIFICATION 1 In general, motors are classified according to the type of power used (AC or DC) and the motor's principle of operation. AC DC Motor Family Tree 2 DC MOTOR CONNECTIONS

More information

Product manual Oil Streak Sensor INTRODUCTION CONSTRUCTION. Master Sensor

Product manual Oil Streak Sensor INTRODUCTION CONSTRUCTION. Master Sensor Product manual Oil Streak Sensor INTRODUCTION Oil streak sensors are designed to detect traces of oil travelling through air tubes, down to flows as low as 5mm 3 /min. The product utilizes a master and

More information