Control of wind turbines and wind farms Norcowe 2015 PhD Summer school Single Turbine Control

Size: px
Start display at page:

Download "Control of wind turbines and wind farms Norcowe 2015 PhD Summer school Single Turbine Control"

Transcription

1 of wind and wind farms Norcowe 2015 PhD Summer school Single Turbine August, 2015 Department of Electronic Systems Aalborg University Denmark

2 Outline Single Turbine Why is Historic Stall led in partial Why is Historic Stall led in partial

3 Single Turbine Why is Historic Stall led in partial 2 Objectives for the lecture This part of the course should give understanding of: Why wind turbine is? How the dierent methods work. The dierent possibilities modern wind turbine oers.

4 Why is Historic Stall led in partial 3 Subject for the lecture The subject here is top level of turbine speed and power. Many other single turbine task exist which is not covered here e.g. Yaw. Internal generator power electronic. Internal pitch

5 Why is Historic Stall led in partial 4 Approach Focus on horizontal axis wind (HAWT). Take a historical perspective moving from Dutch wind mills to modern wind. Avoid all the physical and mathematical details. Explain the the basic functionality/physics. Skip the actual modeling and design part.

6 Why is Single Turbine Why is Historic Stall led in partial 5 Basic turbine physics - one inertia model The wind gives a driving torque in the front end of the rotor. In the back end of the drive train a generator, grinder or similar gives a braking torque. Breaking torque T g Inertia I I ω = T r T g, Rotational speed ω Driving wind torque T r P w = 1 ρav 3, T r = P w C P

7 Why is Historic Stall led 6 With no active This will not give a safe rotational speed at all wind conditions (except for stall led ). Especially in high wind over-speed will occur. The basic task for wind turbine is to: secure a suitable rotational speed under all wind and load conditions. in partial

8 Historic Single Turbine Why is Historic Stall led in partial 7 Dutch wind mill ( ) The Dutch wind mill had sails on the blade. The rotor most be stopped for the sails to be manually led.

9 Single Turbine The Danish klapsejler ( ) Why is Historic 8 Stall led led the blade via connected aps (klap in Danish). I These aps (klapper) was in partial collectively led in with the connection though the hub. I The Danish klapsejler

10 Stall led - the Danish turbine Single Turbine Why is Historic Stall led in partial 9 Passive stall (1973-now) The generator is a asynchronous generator with short circuited rotor resulting in constant speed within a few percent. The rotor is geometrically designed to stall at rated generator power thus limiting the power in wind above rated.

11 Why is Historic Stall led in partial 10 Stall explained from aerodynamic When the pitch β and rotational speed ω r is constant the angle of attack θ b is increasing with wind speed v a. Lift L and driving force F t increases with angle of attack from below zero to approximately 10 degrees where it suddenly drops when the blade stalls. L v bt = ω r r(1 + a t) F t v ba = va(1 aa) v b F a D θ b β φ

12 Why is Historic Stall led in partial 11 Active stall (1990?-now) With passive stall the power curve is hard to get straight. The air density is varying up to approximately 25%. Therefore a passive stall turbine will have a power curve that is mostly under rated generator power. The power curve can be straightened out by slowly varying pitch to adjust the stall level.

13 Single Turbine Why is Historic Stall led in partial 12 constant speed ( ) The rst variable pitch was really a stall led turbine with pitching blades. The asynchronous generator with few percent slip compared with the pitching rates resulted in to large variation in load and power.

14 Why is Historic Stall led in partial 13 variable speed (1995-now) Variable speed was a revolution in wind turbine technology. The generator power is made lable independent of generator speed in a speed rage. In full load, the speed variation can be increased from e.g. 1% for asynchronous generators to e.g. 10% for variable speed machines. This speed variation can be achieved with the pitch ler. Also variable speed gives the opportunity to run more on maximum eciency in partial load.

15 Why is Historic Stall led in partial 14 Variable speed technology Variable speed can be realized in a number of ways. ling a resistor in the generator rotor using light communication thus avoiding a physical link. The most common is to use the double fed induction generator (DFIG) technology.

16 Why is Historic Stall led in partial 15 Full stator power conversion can also be used. Presently (2015) the latest technology is a permanent magnet generator combined with a gear-less design.

17 Single Turbine Why is Historic Stall led in partial 16 Basic : Keep high energy production while maintaining safe within the basic bonds: keep generator speed and power between minimum and maximum. overview from low to high wind No power production, generator oine Idling Start up Partial load Constant minimum speed Variable speed to achieve optimal Cp tracking Constant maximum speed Full load Constant maximum speed and generator torque or power Shot down/derate in high winds

18 C P surface limited by 0 Why is 0.5 Historic Stall led C P in partial Pitch β 0 0 TSR λ Figure : C p curves for NREL5MW

19 Why is Historic Stall led in partial 18 Q a (Nm) x v (m/s) 10 Aerodynamic torque at rpm β (deg) Figure : Rotor torque curves for NREL5MW

20 Why is Historic Stall led in partial x 106 Gradient of aerodynamic torque at steady state δ Q a /δ β δ Q a /δ v δ Q a /δ ω r * v (m/s)

21 Why is Historic Stall led in partial 20 Q g (Nm) x ω (rad/s) Steady state curve β (deg) Figure : Plot of steady state al curves for NREL5MW

22 in partial Single Turbine Why is Historic Stall led in partial 21 Basic speed and power Partial load Full load Constant optimal pitch Optimal Cp tracking using Feedforward with T g ω 2 or Feedback using the speed reference ω ref v a Constant generator torque or power. Constant maximum speed reference obtained using pitch based on feedback of generator speed. Switching between partial is a challenge. Starting pitching before nominal power and speed is obtained loses energy production. Newer pitching before nominal power and speed is obtained can lead to overspeed in extreme gust situations.

23 β Pitch β ref Why is Historic Stall led in partial 22 β ref T g,ref T g,rated Gen torque T g,ref Wind Turbine Partial load Full load Power P Speed ω Figure : Simplifyed diagram where either partial or full load is active.

24 Single Turbine Why is Historic Stall led in partial 23 c:, r: redundancy, s:supervision Minimal Standard Advanced Futuristic Generator torque c c c c Collective pitch c c c c Cyclic pitch c c Individual pitch r r c Local ow c Generator speed c c c c Nacelle wind speed s s s s Tower acceleration s c c Rotor speed s s c Rotor position s c Blade loading c c Tower position c Blade position c Blade angle attack c Gear stage speeds c LIDAR c

25 Why is Historic Stall led in partial 24 Local ow devices - possibilities Trailing edge aps: Like on airplanes. Vortex generators: Small devices on leeward front end of blade which can move ow closer to the blade and increase lift. Blowing/Suction: Transporting air in/out from the blade surface. Micro tabs: Small spoilers that change the lift and drag.

26 Why is Historic Stall led in partial 25 Figure : Trailing edge aps.

27 Single Turbine Why is Historic Stall led in partial 26 There are many other important besides keeping speed and power at suitable levels. Fatigue Reducing fatigue load is also very important Drive train damping using the generator torque. Tower damping using collective pitch. Blade damping using Cyclic pitch for e.g. yaw error. Individual pitch for spatial variations in general. Trailing edge aps can be used for faster actuation compared to full span pitch.

28 Why is Historic Stall led in partial 27 Noise For onshore wind noise modeling and can be important. Noise increases with turbine loading. Aerodynamic noise is dominating. Low wind gives low noise. Turbines can not be heard in wind above rated because of background noise. Just below rated is the worst case. Here noise can be reduced at the cost of reduced energy production.

29 Why is Historic Stall led in partial 28 Low voltage ride through (LVRT) A short circuit on the transmission net can give low voltage which completely unload the generator. Most net operators demand to keep spinning and connected for short faults e.g. less than 3 seconds. The turbine needs to pitch very fast to avoid over-speeding. At the same time tower oscillations due to sudden tower trust decrease must be avoided.

30 Why is Historic Stall led in partial 29 High wind ride through (HWRT) Many simply shot down completely when wind exceeds some speed typically 25 m/s. This is a problem if a whole farm shots down within a few minutes. This can be avoided by a decreasing the set points for power and perhaps speed above normal shot down. Then the wind speed for complete shot down can be increase to e.g. m/s.

31 Why is Historic Stall led in partial Concurrent Aero-Servo-Elastic Design of wind Increased integration of and design to optimize the COE for example by obtaining more slender. Interesting topics for potential improvement: Wind eld estimation and prediction. LIDAR. Local blade actuators. Active blade and tower. Avoid blade tower collision. Adapting ler tuning to level of turbulence and shear.

32 Thank you for listening Questions are welcome

EE 742 Chap. 7: Wind Power Generation. Y. Baghzouz Fall 2011

EE 742 Chap. 7: Wind Power Generation. Y. Baghzouz Fall 2011 EE 742 Chap. 7: Wind Power Generation Y. Baghzouz Fall 2011 Overview Environmental pressures have led many countries to set ambitious goals of renewable energy generation. Wind energy is the dominant renewable

More information

EE 742 Chap. 7: Wind Power Generation. Y. Baghzouz

EE 742 Chap. 7: Wind Power Generation. Y. Baghzouz EE 742 Chap. 7: Wind Power Generation Y. Baghzouz Wind Energy 101: See Video Link Below http://energy.gov/eere/videos/energy-101- wind-turbines-2014-update Wind Power Inland and Offshore Growth in Wind

More information

Squirrel cage induction generator based wind farm connected with a single power converter to a HVDC grid. Lluís Trilla PhD student

Squirrel cage induction generator based wind farm connected with a single power converter to a HVDC grid. Lluís Trilla PhD student Squirrel cage induction generator based wind farm connected with a single power converter to a HVDC grid Lluís Trilla PhD student Current topology of wind farm Turbines are controlled individually Wind

More information

Wind Generation and its Grid Conection

Wind Generation and its Grid Conection Wind Generation and its Grid Conection J.B. Ekanayake PhD, FIET, SMIEEE Department of Electrical and Electronic Eng., University of Peradeniya Content Wind turbine basics Wind generators Why variable speed?

More information

Wind Turbine Generator System. General Specification for HQ2000

Wind Turbine Generator System. General Specification for HQ2000 Wind Turbine Generator System General Specification for HQ2000 April 15, 2010 Hyundai Heavy Industries Co., Ltd Electro Electric Systems h t t p : / / w w w. h y u n d a i - e l e c. c o. k r 1. General

More information

Fault-Tolerant Control of a Blade-pitch Wind Turbine With Inverter-fed Generator

Fault-Tolerant Control of a Blade-pitch Wind Turbine With Inverter-fed Generator Fault-Tolerant Control of a Blade-pitch Wind Turbine With Inverter-fed Generator V. Lešić 1, M. Vašak 1, N. Perić 1, T. Wolbank 2 and G. Joksimović 3 1 Faculty of Electrical Engineering and Computing,

More information

Job Sheet 2 Aerodynamics Power Control

Job Sheet 2 Aerodynamics Power Control Job Sheet 2 Aerodynamics Power Control Power Control Power control is an important feature of a wind turbine. It regulates the speed of rotation of the rotor assembly when wind is present. For stand-alone

More information

Power Control of a PMSG based Wind Turbine System Above Rated Wind Speed

Power Control of a PMSG based Wind Turbine System Above Rated Wind Speed International Renewable Energy Congress November 5-7, 010 Sousse, Tunisia Power Control of a PMSG based Wind Turbine System Above Rated Wind Speed M. Kesraoui 1, O. Bencherouda and Z. Mesbahi 1 Laboratory

More information

Renewable Energy Systems

Renewable Energy Systems Renewable Energy Systems 8 Buchla, Kissell, Floyd Chapter Outline Wind Turbine Control 8 Buchla, Kissell, Floyd 8-1 PITCH AND YAW CONTROL 8-2 TURBINE ORIENTATION 8-3 DRIVE TRAIN GEARING AND DIRECT DRIVE

More information

Autonomous Mobile Robot Design

Autonomous Mobile Robot Design Autonomous Mobile Robot Design Topic: Propulsion Systems for Robotics Dr. Kostas Alexis (CSE) Propulsion Systems for Robotics How do I move? Understanding propulsion systems is about knowing how a mobile

More information

GE Renewable Energy. GE s 3 MW Platform POWERFUL AND EFFICIENT.

GE Renewable Energy. GE s 3 MW Platform POWERFUL AND EFFICIENT. GE Renewable Energy GE s 3 MW Platform POWERFUL AND EFFICIENT www.gerenewableenergy.com GE S 3 MW PLATFORM PITCH Since entering the wind industry in 2002, GE Renewable Energy has invested more than $2.5

More information

Modeling, Simulation & Control of Induction Generators Used in Wind Energy Conversion

Modeling, Simulation & Control of Induction Generators Used in Wind Energy Conversion Chapter-3 Principles of Electrical Energy Conversion 3. 1 Introduction Several forms of energy can be converted into electrical energy basically by two methods known as direct or indirect conversion. In

More information

On Control Strategies for Wind Turbine Systems

On Control Strategies for Wind Turbine Systems On Control Strategies for Wind Turbine Systems Niall McMahon December 21, 2011 More notes to follow at: http://www.niallmcmahon.com/msc_res_notes.html 1 Calculations for Peak Tip Speed Ratio Assuming that

More information

GRAND RENEWABLE ENERGY PARK PROJECT DESCRIPTION REPORT. Attachment C. Turbine Specifications

GRAND RENEWABLE ENERGY PARK PROJECT DESCRIPTION REPORT. Attachment C. Turbine Specifications GRAND RENEWABLE ENERGY PARK PROJECT DESCRIPTION REPORT Attachment C Turbine Specifications Published by and copyright 2009: Siemens AG Energy Sector Freyeslebenstrasse

More information

Optimum combined pitch and trailing edge flap control

Optimum combined pitch and trailing edge flap control Optimum combined pitch and trailing edge flap control Lars Christian Henriksen, DTU Wind Energy Leonardo Bergami, DTU Wind Energy Peter Bjørn Andersen, DTU Wind Energy Session 5.3 Aerodynamics Danish Wind

More information

Session 5 Wind Turbine Scaling and Control W. E. Leithead

Session 5 Wind Turbine Scaling and Control W. E. Leithead SUPERGEN Wind Wind Energy Technology Session 5 Wind Turbine Scaling and Control W. E. Leithead Supergen 2 nd Training Seminar 24 th /25 th March 2011 Wind Turbine Scaling and Control Outline Introduction

More information

Drones Demystified! Topic: Propulsion Systems

Drones Demystified! Topic: Propulsion Systems Drones Demystified! K. Alexis, C. Papachristos, Autonomous Robots Lab, University of Nevada, Reno A. Tzes, Autonomous Robots & Intelligent Systems Lab, NYU Abu Dhabi Drones Demystified! Topic: Propulsion

More information

CHAPTER 4 PITCH CONTROL OF WIND TURBINE GENERATORS

CHAPTER 4 PITCH CONTROL OF WIND TURBINE GENERATORS 62 CHAPTER 4 PITCH CONTROL OF WIND TURBINE GENERATORS 4.1 INTRODUCTION The use of wind power has in the last decade increased in the central parts of Europe and at the west coast of the U.S. The rest of

More information

Modelling and Design of a 3 kw Permanent Magnet Synchronous Generator suitable for Variable Speed Small Wind Turbines

Modelling and Design of a 3 kw Permanent Magnet Synchronous Generator suitable for Variable Speed Small Wind Turbines Modelling and Design of a 3 kw Permanent Magnet Synchronous Generator suitable for Variable Speed Small Wind Turbines Acharya Parash 1,a, Papadakis Antonis 2, Shaikh Muhammad Naveed 3 1 Lecturer, Department

More information

Anupam *1, Prof. S.U Kulkarni 2 1 ABSTRACT I. INTRODUCTION II. MODELLING OF WIND SPEED

Anupam *1, Prof. S.U Kulkarni 2 1 ABSTRACT I. INTRODUCTION II. MODELLING OF WIND SPEED 2017 IJSRSET Volume 3 Issue 3 Print ISSN: 2395-1990 Online ISSN : 2394-4099 Themed Section: Engineering and Technology PMSG Based Wind Farm Analysis in ETAP Software Anupam *1, Prof. S.U Kulkarni 2 1 Department

More information

Module 3: Types of Wind Energy Systems

Module 3: Types of Wind Energy Systems Module 3: Types of Wind Energy Systems Mohamed A. El-Sharkawi Department of Electrical Engineering University of Washington Seattle, WA 98195 http://smartenergylab.com Email: elsharkawi@ee.washington.edu

More information

Studies regarding the modeling of a wind turbine with energy storage

Studies regarding the modeling of a wind turbine with energy storage Studies regarding the modeling of a wind turbine with energy storage GIRDU CONSTANTIN CRISTINEL School Inspectorate of County Gorj, Tg.Jiu, Meteor Street, nr. ROMANIA girdu23@yahoo.com Abstract: This paper

More information

CHAPTER 4 MODELING OF PERMANENT MAGNET SYNCHRONOUS GENERATOR BASED WIND ENERGY CONVERSION SYSTEM

CHAPTER 4 MODELING OF PERMANENT MAGNET SYNCHRONOUS GENERATOR BASED WIND ENERGY CONVERSION SYSTEM 47 CHAPTER 4 MODELING OF PERMANENT MAGNET SYNCHRONOUS GENERATOR BASED WIND ENERGY CONVERSION SYSTEM 4.1 INTRODUCTION Wind energy has been the subject of much recent research and development. The only negative

More information

Rotor imbalance cancellation

Rotor imbalance cancellation White paper Rotor imbalance cancellation Imbalance in a wind turbine rotor is a typical problem of both new and older wind turbines. This paper describes an approach for minimizing rotor imbalance using

More information

Wind Turbine Configuration for the Offshore Environment. Simon Watson Loughborough University

Wind Turbine Configuration for the Offshore Environment. Simon Watson Loughborough University Wind Turbine Configuration for the Offshore Environment Simon Watson Loughborough University Overview The Issues Rotor Drive Train Control Electricals Summary Issues Higher winds Wind shear Wave loading

More information

Control of a wind turbine equipped with a variable rotor resistance

Control of a wind turbine equipped with a variable rotor resistance Control of a wind turbine equipped with a variable rotor resistance HÉCTOR A. LÓPEZ CARBALLIDO Department of Computer Science and Engineering CHALMERS UNIVERSITY OF TECHNOLOGY UNIVERSITY OF GOTHENBURG

More information

Job Sheet 6 Pitch Control

Job Sheet 6 Pitch Control Job Sheet 6 Pitch Control Not all wind can be captured as energy by the wind turbine. Some wind has to pass by the blades for the rotor system to function properly. There are limits to how fast motors

More information

Mathematical Modeling of Wind Energy System for Designing Fault Tolerant Control

Mathematical Modeling of Wind Energy System for Designing Fault Tolerant Control Mamatical Modeling of Wind Energy System for Designing Fault Tolerant Control Patil Ashwini, Archana Thosar Abstract This paper addresses mamatical model of energy system useful for designing fault tolerant

More information

V MW Creating more from less

V MW Creating more from less V82-1.65 MW Creating more from less Grid compliance As wind turbines capture more of the electricity market each year, they have an increasingly significant role to play in grid management. Fortunately,

More information

ned100 Wind Turbine Generator a step towards your energy independence

ned100 Wind Turbine Generator a step towards your energy independence ned100 Wind Turbine Generator a step towards your energy independence Energy production 450 Ø22 Ø24 4.5 138 155 5.0 183 203 5.5 230 252 6.0 276 300 6.5 321 346 7.0 363 388 7.5 401 425 8.0 435 ---- 8.5

More information

Aero-Elastic Optimization of a 10 MW Wind Turbine

Aero-Elastic Optimization of a 10 MW Wind Turbine Frederik Zahle, Carlo Tibaldi David Verelst, Christian Bak Robert Bitsche, José Pedro Albergaria Amaral Blasques Wind Energy Department Technical University of Denmark IQPC Workshop for Advances in Rotor

More information

Introduction to Present Day Wind Energy Technology, The Wind Power Station

Introduction to Present Day Wind Energy Technology, The Wind Power Station Introduction to Present Day Wind Energy Technology, The Wind Power Station P. J. Tavner, Professor of New & Renewable Energy Energy Group History of Wind 2 of 54 History Man has been using the wind for

More information

Using energy storage for modeling a stand-alone wind turbine system

Using energy storage for modeling a stand-alone wind turbine system INTERNATIONAL JOURNAL OF ENERGY and ENVIRONMENT Volume, 27 Using energy storage for modeling a stand-alone wind turbine system Cornel Bit Abstract This paper presents the modeling in Matlab-Simulink of

More information

Control of a wind turbine equipped with a variable rotor resistance

Control of a wind turbine equipped with a variable rotor resistance Control of a wind turbine equipped with a variable rotor resistance HÉCTOR A. LÓPEZ CARBALLIDO Department of Computer Science and Engineering CHALMERS UNIVERSITY OF TECHNOLOGY UNIVERSITY OF GOTHENBURG

More information

Vestas Product Offering V MW at a Glance. Renato Loureiro Gonçalves Wind & Site Engineer

Vestas Product Offering V MW at a Glance. Renato Loureiro Gonçalves Wind & Site Engineer Vestas Product Offering V150-4.2 MW at a Glance Renato Loureiro Gonçalves Wind & Site Engineer Content Introduction 3-5 4 MW Platform 6-9 Track Record 10-14 Performance Upgrades 15-22 Time to Market 23-24

More information

Technical Documentation Wind Turbine Generator Systems /60 Hz

Technical Documentation Wind Turbine Generator Systems /60 Hz Technical Documentation Wind Turbine Generator Systems 3.8-130 - 50/60 Hz imagination at work www.gepower.com Visit us at https://renewable.gepower.com Copyright and patent rights All documents are copyrighted

More information

New dimensions. Siemens Wind Turbine SWT Answers for energy.

New dimensions. Siemens Wind Turbine SWT Answers for energy. New dimensions Siemens Wind Turbine SWT-3.6-107 Answers for energy. 2 New dimensions The SWT-3.6-107 wind turbine is the largest model in the Siemens Wind Po wer product portfolio. It was specifically

More information

ANALYSIS OF WIND AND PV SYSTEMS 4.1 Wind Energy Conversion Systems (WECS)

ANALYSIS OF WIND AND PV SYSTEMS 4.1 Wind Energy Conversion Systems (WECS) ANALYSIS OF WIND AND PV SYSTEMS 4.1 Wind Energy Conversion Systems (WECS) A wind energy conversion system (WECS) is composed of blades, an electric generator, a power electronic converter, and a control

More information

DeepWind-from idea to 5 MW concept

DeepWind-from idea to 5 MW concept DeepWind 2014-11 th Deep Sea Offshore Wind R&D Conference 22-24 January 2014 Trondheim, No Uwe Schmidt Paulsen a uwpa@dtu.dk b Helge Aa. Madsen, Per H. Nielsen,Knud A. Kragh c Ismet Baran,Jesper H. Hattel

More information

GOLDWIND 2.5MW PERMANENT MAGNET DIRECT-DRIVE (PMDD) WIND TURBINE

GOLDWIND 2.5MW PERMANENT MAGNET DIRECT-DRIVE (PMDD) WIND TURBINE Rotor Blade Rotor/Generator Bearing Cast Hub Auxiliary Crane Wind Measurement Equipment Pitch System Heat Exchanger Yaw System Base Frame PMDD Generator GOLDWIND 2.5MW PERMANENT MAGNET DIRECT-DRIVE (PMDD)

More information

Wind Turbine Emulation Experiment

Wind Turbine Emulation Experiment Wind Turbine Emulation Experiment Aim: Study of static and dynamic characteristics of wind turbine (WT) by emulating the wind turbine behavior by means of a separately-excited DC motor using LabVIEW and

More information

SWT Turning moderate wind into maximum results

SWT Turning moderate wind into maximum results SWT - 2.3-113 Turning moderate wind into maximum results At the leading edge of evolution The new Siemens SWT-2.3-113 wind turbine is the ultimate choice for low to moderate wind conditions. The revolutionary

More information

A brief History of Unmanned Aircraft

A brief History of Unmanned Aircraft A brief History of Unmanned Aircraft Technological Background Dr. Bérénice Mettler University of Minnesota Jan. 22-24, 2012 (v. 1/15/13) Dr. Bérénice Mettler (University of Minnesota) A brief History of

More information

WindLab TM Wind Turbine Power System Sample Laboratory Procedure Manual

WindLab TM Wind Turbine Power System Sample Laboratory Procedure Manual WindLab TM Wind Turbine Power System Sample Laboratory Procedure Manual WindLab TM is a scaled Wind Turbine Electrical Generation System, designed to function like a full-sized wind turbine system. It

More information

Modeling of doubly fed induction generator (DFIG) equipped wind turbine for dynamic studies

Modeling of doubly fed induction generator (DFIG) equipped wind turbine for dynamic studies Modeling of doubly fed induction generator (DFIG) equipped wind turbine for dynamic studies Mattia Marinelli, Andrea Morini, Andrea Pitto, Federico Silvestro Department of Electric Engineering, University

More information

A Wind Turbine Benchmark Model for a Fault Detection and Isolation Competition

A Wind Turbine Benchmark Model for a Fault Detection and Isolation Competition A Wind Turbine Benchmark Model for a Fault Detection and Isolation Competition Silvio Simani Department of Engineering, University of Ferrara Via Saragat 1E 44123 Ferrara (FE), ITALY Ph./Fax:+390532974844

More information

VENSYS. Vensys 62 The next Generation of Gearless Wind Turbines goes into Production

VENSYS. Vensys 62 The next Generation of Gearless Wind Turbines goes into Production Vensys 62 The next Generation of Gearless Wind Turbines goes into Production F. Klinger, INNOWIND GmbH J. Rinck, Vensys GmbH S. Balzert, FG Windenergie S. Jöckel, INNOWIND GmbH S. Jöckel: Vensys 62 Next

More information

Development of Trailing Edge Flap Technology at DTU Wind

Development of Trailing Edge Flap Technology at DTU Wind Development of Trailing Edge Flap Technology at DTU Wind Helge Aagaard Madsen Christina Beller Tom Løgstrup Andersen DTU Wind Technical University of Denmark (former Risoe National Laboratory) P.O. 49,

More information

Christof Deckmyn DEVELOPING AND TESTING POWER CONTROL FOR A WIND POWER STATION MODEL

Christof Deckmyn DEVELOPING AND TESTING POWER CONTROL FOR A WIND POWER STATION MODEL Christof Deckmyn DEVELOPING AND TESTING POWER CONTROL FOR A WIND POWER STATION MODEL Unit Technology and Communication 2011 VAASAN AMMATTIKORKEAKOULU UNIVERSITY OF APPLIED SCIENCES Master in Renewable

More information

Maxwell Technologies GmbH Brucker Strasse 21 D Gilching Germany Phone: +49 (0) Fax: +49 (0)

Maxwell Technologies GmbH Brucker Strasse 21 D Gilching Germany Phone: +49 (0) Fax: +49 (0) WHITE PAPER ULTRACAPACITORS IMPROVE RELIABILITY FOR WIND TURBINE PITCH SYSTEMS Adrian Schneuwly Introduction Today s advanced wind turbines are three-bladed, variable speed turbines. The rotor blades are

More information

RW-30kW variable pitch wind turbine

RW-30kW variable pitch wind turbine RW-30kW variable pitch wind turbine 2018 www.instrumentsgroup.c o.za 1. RW-30kw variable pitch wind turbine parameter 1.1 RW-30kW parameter RW-30kw variable pitch Technical parameters 13.5V Wind rotor

More information

Product Presentation. September 09

Product Presentation. September 09 Product Presentation September 09 Corporate History 1993: founded by a local engineering cooperative in Århus, DK 1994: first commercial turbine deployed; participates in RISØ testing program for small

More information

ELEN 236 DC Motors 1 DC Motors

ELEN 236 DC Motors 1 DC Motors ELEN 236 DC Motors 1 DC Motors Pictures source: http://hyperphysics.phy-astr.gsu.edu/hbase/magnetic/mothow.html#c1 1 2 3 Some DC Motor Terms: 1. rotor: The movable part of the DC motor 2. armature: The

More information

Frequency Control of Isolated Network with Wind and Diesel Generators by Using Frequency Regulator

Frequency Control of Isolated Network with Wind and Diesel Generators by Using Frequency Regulator Frequency Control of Isolated Network with Wind and Diesel Generators by Using Frequency Regulator Dr.Meenakshi mataray,ap Department of Electrical Engineering Inderprastha Engineering college (IPEC) Abstract

More information

Workshop on Grid Integration of Variable Renewable Energy: Part 1

Workshop on Grid Integration of Variable Renewable Energy: Part 1 Workshop on Grid Integration of Variable Renewable Energy: Part 1 System Impact Studies March 13, 2018 Agenda Introduction Methodology Introduction to Generators 2 Introduction All new generators have

More information

Statcom Operation for Wind Power Generator with Improved Transient Stability

Statcom Operation for Wind Power Generator with Improved Transient Stability Advance in Electronic and Electric Engineering. ISSN 2231-1297, Volume 4, Number 3 (2014), pp. 259-264 Research India Publications http://www.ripublication.com/aeee.htm Statcom Operation for Wind Power

More information

Data Sheet. Size 1 and 2 Stepper Motors. 7.5 stepper motors Size 1 (RS stock no ) Size 2 (RS stock no ) Data Pack B

Data Sheet. Size 1 and 2 Stepper Motors. 7.5 stepper motors Size 1 (RS stock no ) Size 2 (RS stock no ) Data Pack B Data Pack B Issued November 005 1504569 Data Sheet Size 1 and Stepper Motors 7.5 stepper motors Size 1 (S stock no. 33-947) Size (S stock no. 33-953) Two 7.5 stepper motors each with four 1Vdc windings

More information

Faults Mitigation Control Design for Grid Integration of Offshore Wind Farms and Oil & Gas Installations Using VSC HVDC

Faults Mitigation Control Design for Grid Integration of Offshore Wind Farms and Oil & Gas Installations Using VSC HVDC SPEEDAM 2010 International Symposium on Power Electronics, Electrical Drives, Automation and Motion Faults Mitigation Control Design for Grid Integration of Offshore Wind Farms and Oil & Gas Installations

More information

V MW The future for low wind sites

V MW The future for low wind sites V0-2.75 MW The future for low wind sites Knowing which way the wind blows The V0-2.75 MW turbine know which way the wind blows, and is designed to follow it. A significant advance in wind turbine efficiency,

More information

Vertical axes wind turbine with permanent magnet generator emergency brake system simulation in MATLAB Simulink

Vertical axes wind turbine with permanent magnet generator emergency brake system simulation in MATLAB Simulink Vertical axes wind turbine with permanent magnet generator emergency brake system simulation in MATLAB Simulink Komass T. Institute of Energetic, Latvia University of Agriculture tf11198@llu.lv Abstract

More information

Application Information

Application Information Moog Components Group manufactures a comprehensive line of brush-type and brushless motors, as well as brushless controllers. The purpose of this document is to provide a guide for the selection and application

More information

Temporary Rotor Inertial Control of Wind Turbine to Support the Grid Frequency Regulation

Temporary Rotor Inertial Control of Wind Turbine to Support the Grid Frequency Regulation Temporary Rotor Inertial Control of Wind Turbine to Support the Grid Frequency Regulation Bing Liu, Kjetil Uhlen, Tore Undeland Department of Electric Power Engineering, NTNU The 9th Deep Sea Offshore

More information

Green energy conversion

Green energy conversion Green energy conversion Prof. Dr.-Ing. habil. Andreas Binder Department of Electrical Energy Conversion Darmstadt University of Technology abinder@ew.tu-darmstadt.de Prof. A. Binder 1.1/1 Contents of lecture

More information

AGN Unbalanced Loads

AGN Unbalanced Loads Application Guidance Notes: Technical Information from Cummins Generator Technologies AGN 017 - Unbalanced Loads There will inevitably be some applications where a Generating Set is supplying power to

More information

Friction Characteristics Analysis for Clamping Force Setup in Metal V-belt Type CVTs

Friction Characteristics Analysis for Clamping Force Setup in Metal V-belt Type CVTs 14 Special Issue Basic Analysis Towards Further Development of Continuously Variable Transmissions Research Report Friction Characteristics Analysis for Clamping Force Setup in Metal V-belt Type CVTs Hiroyuki

More information

Siemens Gamesa AEP increase Solution

Siemens Gamesa AEP increase Solution Siemens Gamesa AEP increase Solution August 2017 Service Product portfolio - Optimization Reliability To keep turbines up and running Maintenance: Scheduled service, trouble shooting, Standard and major

More information

9kW Multi Wind-Lens Turbine Specification (3kW WL turbine x 3 units)

9kW Multi Wind-Lens Turbine Specification (3kW WL turbine x 3 units) 9kW Multi Wind-Lens Turbine Specification (3kW WL turbine x 3 units) * WL : Wind-Lens Type name: RW9K-M-JA-04 Destination: For authentication testing at Hibiki-nada Contents (1) Contents P1 (2) General

More information

APPENDIX J V90 3.0MW Turbine Specifications

APPENDIX J V90 3.0MW Turbine Specifications APPENDIX J V90 3.0MW Turbine Specifications V90-3.0 MW An efficient way to more power Innovations in blade technology 3 44 meters of leading edge In our quest to boost the efficiency of the V90, we made

More information

CHAPTER 5 ROTOR RESISTANCE CONTROL OF WIND TURBINE GENERATORS

CHAPTER 5 ROTOR RESISTANCE CONTROL OF WIND TURBINE GENERATORS 88 CHAPTER 5 ROTOR RESISTANCE CONTROL OF WIND TURBINE GENERATORS 5.1 INTRODUCTION The advances in power electronics technology have enabled the use of variable speed induction generators for wind energy

More information

Department of Electrical and Computer Engineering

Department of Electrical and Computer Engineering Page 1 of 1 Faculty of Engineering, Architecture and Science Department of Electrical and Computer Engineering Course Number EES 612 Course Title Electrical Machines and Actuators Semester/Year Instructor

More information

Pitch Systems. Siemens AG All Rights Reserved.

Pitch Systems. Siemens AG All Rights Reserved. Pitch Systems Motion Control Equipment for Wind SINAMICS Pitch & Yaw Solutions SINAMICS Pitch Solutions Application Positioning of rotor blades at perfect angle Dynamic operation depending on Wind speed

More information

Control of Grid Voltage and Power of Doubly Fed Induction Generator wind turbines during grid faults

Control of Grid Voltage and Power of Doubly Fed Induction Generator wind turbines during grid faults IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 9, Issue 4 Ver. V (Jul Aug. 2014), PP 12-21 Control of Grid Voltage and Power of Doubly Fed

More information

ing. A. Kragten February 2010 KD 437

ing. A. Kragten February 2010 KD 437 Ideas about a pitch control system for the VIRYA-15 windmill ( d = 8, Gö 711 airfoil) ing. A. Kragten February 2010 KD 437 It is allowed to copy this report for private use. Engineering office Kragten

More information

ATLAS Principle to Product

ATLAS Principle to Product ATLAS Principle to Product SUPERGEN 26th May 2016 Wind and tidal energy control experts SgurrControl Experts in wind and tidal energy control Engineering organisation providing control solutions to wind

More information

Wind turbine aerodynamics, continued (Part 4/4)

Wind turbine aerodynamics, continued (Part 4/4) Wind turbine aerodynamics, continued (Part 4/4) Ene-47.5140 Wind Energy Ville Lehtomäki, VTT Wind 2 Content Recap: lift & drag and their coefficients Blade & rotor terminology Rotor aerodynamics: BEM-method

More information

Wind Farm Evaluation and Control

Wind Farm Evaluation and Control International society of academic and industrial research www.isair.org IJARAS International Journal of Academic Research in Applied Science (2): 2-28, 202 ijaras.isair.org Wind Farm Evaluation and Control

More information

Technology Requirements for Cold and Tropical Wind-Diesel Applications. Chris McKay Product Manager Northwind 100 Ottawa 2009

Technology Requirements for Cold and Tropical Wind-Diesel Applications. Chris McKay Product Manager Northwind 100 Ottawa 2009 Technology Requirements for Cold and Tropical Wind-Diesel Applications Chris McKay Product Manager Northwind 100 Ottawa 2009 Wind-Diesel Technology Needs Low maintenance High reliability Diesel grid friendly

More information

March Powerhouse Wind Ltd. Document Technical Summary for Thinair 102.

March Powerhouse Wind Ltd. Document Technical Summary for Thinair 102. Powerhouse Wind Ltd Document 1000037 Technical Summary for Thinair 102. 1 Thinair 102 Mechanical Specification Turbine type downwind, variable speed, stall regulated, direct drive, passive yaw Rotor diameter,

More information

Wind Kids Series Wind Turbine Specification

Wind Kids Series Wind Turbine Specification Wind Kids Series Wind Turbine Specification Features: High quality permanent magnet High quality and high strength aluminum alloy to ensure light weight and easy installation Blades adopt fiber-glass reinforced

More information

EFFECT OF SURFACE ROUGHNESS ON PERFORMANCE OF WIND TURBINE

EFFECT OF SURFACE ROUGHNESS ON PERFORMANCE OF WIND TURBINE Chapter-5 EFFECT OF SURFACE ROUGHNESS ON PERFORMANCE OF WIND TURBINE 5.1 Introduction The development of modern airfoil, for their use in wind turbines was initiated in the year 1980. The requirements

More information

The X-Rotor Offshore Wind Turbine Concept

The X-Rotor Offshore Wind Turbine Concept DeepWind 2019 The X-Rotor Offshore Wind Turbine Concept Bill Leithead Arthur Camciuc, Abbas Kazemi Amiri and James Carroll University of Strathclyde Outline 1. X-Rotor Concept 2. X- Rotor Potential Benefits

More information

Technical specifications. Wind Turbine GS 21 S. Power 60 kwp

Technical specifications. Wind Turbine GS 21 S. Power 60 kwp Technical specifications Wind Turbine GS 21 S Power 60 kwp GS 21 S - 60 kwp The best wind turbines, without compromise. In order to exploit the kinetic energy contained in the wind and convert it into

More information

Doubly fed electric machine

Doubly fed electric machine Doubly fed electric machine Doubly fed electric machines are electric motors or electric generators that have windings on both stationary and rotating parts, where both windings transfer significant power

More information

APRS World s early-2017 Wind Turbine Update. James Jarvis APRS World, LLC

APRS World s early-2017 Wind Turbine Update. James Jarvis APRS World, LLC APRS World s early-2017 Wind Turbine Update James Jarvis APRS World, LLC www.aprsworld.com History APRS World was founded in 2006 with focus on designing and manufacturing small wind resource assessment

More information

Application Note : Comparative Motor Technologies

Application Note : Comparative Motor Technologies Application Note : Comparative Motor Technologies Air Motor and Cylinders Air Actuators use compressed air to move a piston for linear motion or turn a turbine for rotary motion. Responsiveness, speed

More information

CHAPTER 5 FAULT AND HARMONIC ANALYSIS USING PV ARRAY BASED STATCOM

CHAPTER 5 FAULT AND HARMONIC ANALYSIS USING PV ARRAY BASED STATCOM 106 CHAPTER 5 FAULT AND HARMONIC ANALYSIS USING PV ARRAY BASED STATCOM 5.1 INTRODUCTION Inherent characteristics of renewable energy resources cause technical issues not encountered with conventional thermal,

More information

Making wind even more profitable V MW M. Reliable technology added new innovations. Large rotor diameter expands your

Making wind even more profitable V MW M. Reliable technology added new innovations. Large rotor diameter expands your V112-3.0 MW Making wind even more profitable Large rotor diameter expands your opportunities The impressive 54.65 m blades set completely new standards, making it possible to produce more energy from the

More information

Analysis and Design of Independent Pitch Control System

Analysis and Design of Independent Pitch Control System 5th International Conference on Civil Engineering and Transportation (ICCET 2015) Analysis and Design of Independent Pitch Control System CHU Yun Kai1, a *, MIAO Qiang2,b, DU Jin Song1,c, LIU Yi Yang 1,d

More information

MAJOR SYSTEM FUNCTIONS

MAJOR SYSTEM FUNCTIONS MAJOR SYSTEM FUNCTIONS The ROTOR converts the aerodynamic energy in the wind to mechanical shaft torque. It also provides a lightning path from the blade tips to the main shaft. The GENERATOR converts

More information

GENERAL SPECIFICATIONS

GENERAL SPECIFICATIONS GENERAL SPECIFICATIONS The GP Yonval 40-16 is designed to generate high levels of energy, in accordance with the IEC 61400-2 standards and manufactured with reliable European components. The variable speed

More information

V MW Making wind even more profitable

V MW Making wind even more profitable V112-3.0 MW Making wind even more profitable Large rotor diameter expands your opportunities The impressive 54.65 m blades set completely new standards, making it possible to produce more energy from the

More information

Test Summary Report for the Solid Wind Power SWP25-14TG20 Small Wind Turbine

Test Summary Report for the Solid Wind Power SWP25-14TG20 Small Wind Turbine Cleeve Road, Leatherhead Surrey, KT22 7SB UK Telephone: +44 (0) 1372 370900 Facsimile: +44 (0) 1372 370999 www.intertek.com Test Summary Report for the Solid Wind Power SWP25-14TG20 Small Wind Turbine

More information

Multi Rotor Solution for Large Scale Offshore Wind Power

Multi Rotor Solution for Large Scale Offshore Wind Power Multi Rotor Solution for Large Scale Offshore Wind Power Peter Jamieson Deepwind, Trondheim 2017 History of Multi Rotor Systems Honnef 1926 Heronemus 1976 Vestas 2016 Lagerwey 1995 2 MRS today Vestas Wind

More information

ABS. Prof. R.G. Longoria Spring v. 1. ME 379M/397 Vehicle System Dynamics and Control

ABS. Prof. R.G. Longoria Spring v. 1. ME 379M/397 Vehicle System Dynamics and Control ABS Prof. R.G. Longoria Spring 2002 v. 1 Anti-lock Braking Systems These systems monitor operating conditions and modify the applied braking torque by modulating the brake pressure. The systems try to

More information

Aspects of Permanent Magnet Machine Design

Aspects of Permanent Magnet Machine Design Aspects of Permanent Magnet Machine Design Christine Ross February 7, 2011 Grainger Center for Electric Machinery and Electromechanics Outline Permanent Magnet (PM) Machine Fundamentals Motivation and

More information

Modeling the Neuro-Fuzzy Control with the Dynamic Model of the Permanent Magnet DC Motor

Modeling the Neuro-Fuzzy Control with the Dynamic Model of the Permanent Magnet DC Motor SISY 2006 4 th Serbian-Hungarian Joint Symposium on Intelligent Systems Modeling the Neuro-Fuzzy Control with the Dynamic Model of the Permanent Magnet DC Motor Ottó Búcsú, Gábor Kávai, István Kecskés,

More information

CHAPTER 5 ACTIVE AND REACTIVE POWER CONTROL OF DOUBLY FED INDUCTION GENERATOR WITH BACK TO BACK CONVERTER USING DIRECT POWER CONTROL

CHAPTER 5 ACTIVE AND REACTIVE POWER CONTROL OF DOUBLY FED INDUCTION GENERATOR WITH BACK TO BACK CONVERTER USING DIRECT POWER CONTROL 123 CHAPTER 5 ACTIVE AND REACTIVE POWER CONTROL OF DOUBLY FED INDUCTION GENERATOR WITH BACK TO BACK CONVERTER USING DIRECT POWER CONTROL 5.1 INTRODUCTION Wind energy generation has attracted much interest

More information

QUESTION BANK SPECIAL ELECTRICAL MACHINES

QUESTION BANK SPECIAL ELECTRICAL MACHINES SEVENTH SEMESTER EEE QUESTION BANK SPECIAL ELECTRICAL MACHINES TWO MARK QUESTIONS 1. What is a synchronous reluctance 2. What are the types of rotor in synchronous reluctance 3. Mention some applications

More information

Lab 6: Wind Turbine Generators

Lab 6: Wind Turbine Generators Lab 6: Wind Turbine Generators Name: Pre Lab Tip speed ratio: Tip speed ratio (TSR) is defined as: Ω, where Ω=angular velocity of wind, and R=radius of rotor (blade length). If the rotational speed of

More information

V MW & 2.0 MW Built on experience

V MW & 2.0 MW Built on experience V90-1.8 MW & 2.0 MW Built on experience Innovations in blade technology Optimal efficiency The OptiSpeed * generators in the V90-1.8 MW and the V90-2.0 MW have been adapted from those in Vestas highly

More information