CHAPTER 3 EXPERIMENTAL METHODS AND ANALYSIS

Size: px
Start display at page:

Download "CHAPTER 3 EXPERIMENTAL METHODS AND ANALYSIS"

Transcription

1 37 CHAPTER 3 EXPERIMENTAL METHODS AND ANALYSIS 3.1 MATERIALS H-Mordenite (MOR) (Si /Al ratio= 19), - zeolite ( ) (Al /Si ratio= 25), silica gels with two different mesh sizes, (S 1 ) and (S 2 ) were obtained from Sud-Chemie India Ltd, Mumbai, India. Commercial non-edible grade neem oil (average molecular weight = 815) and pinnai oil (853) were obtained from local market. Phosphoric acid and 3-aminopropyltriethoxysilane, used for modifications were purchased from Ranchem Fine chemicals ltd., New Delhi, India. Phenolphthalein, potassium hydroxide (KOH) and ethanol used for the determination of acid value were purchased from Qualigens Fine Chemicals Ltd, India. Oleic acid, ethyl oleate and methanol, used for esterification and transesterification studies were purchased from SRL, Mumbai, India. All the chemicals used in the experimental studies were analytical grade and used as purchased. 3.2 PREPARATION OF PHOSPHORIC ACID MODIFIED ZEOLITES Preliminary trails were carried out to find the suitable concentration of phosphoric acid (wt%) for the modification of zeolites. About 2.25 g of MOR in 25 ml of double distilled water was mixed with 0.75 g of phosphoric acid. The mixture was kept under vigorous stirring at room temperature for 12 h then evaporated and dried in an air oven at 120 C. The obtained white

2 38 colored powder was abbreviated as PMOR. Similar treatment was given to -zeolite and the product was abbreviated as P. 3.3 PREPARATION OF SILANE MODIFIED SILICA The solid base catalyst used for transesterification was prepared by modifying the surface of silica gel with the help of a modifying agent 3-aminopropyltriethoxysilane. A solution containing 3 parts of the modifier was prepared in acetone solvent and is used to modify 100 parts by mass of SiO 2 gel (S 1 ). The volume of the modifier solution was adjusted so that a uniform wetting of the silica surface. The modification was performed in a magnetic stirrer. The modifier solution was added drop wise to the silica containing round bottom and stirred for 1 h at room temperature. The resultant silica solution was dried at 100 C. The product obtained is silane modified silica (SMS 1 ). Similar producer was followed for silica gel (S 2 ) and the product was abbreviated as (SMS 2 ). 3.4 CHARACTERIZATION For better understanding of the properties of modified and unmodified catalysts composition and important characteristics of non-edible oils and the obtained biodiesel, various analytical techniques were used Characterization of MOR,, PMOR and P X-ray diffraction analysis In powder diffraction characterization of materials, the diffraction pattern is the fingerprint of any crystalline phase and to identify the mixture of phases. The sample was packed on the surface of the sample holder. XRD patterns of the zeolites were recorded on an X-ray diffractometer (Rigaku D/Max Ultima III) operating less than 40 KV and 40 ma with the scan rate of

3 39 2 / min. Cu k X-ray was nickel filtered ( = A ). The amorphous nature of silica was examined using XRD. The samples were recorded in the range of 2 between Scanning Electron Microscope analysis SEM measurements were carried out using JEOL, JSM The images are taken with an emission current = 100µA by the Tungsten filament and an accelerator voltage =12 Kv. The samples were secured onto brass stub with carbon conductive tape, sputter coated with gold and viewed in JEOL, JSM-6360 microscope. The pre-treatment of the samples consisted of coating with an evaporated Au film in a polaron SC 500 sputter Coater metallizator to increase electric conductivity Fourier Transform Infra Red analysis Fourier Transform Infrared spectra of the zeolites and silica gels were recorded on a Nicolet (AVATAR 360) instrument using KBr pellet technique. About 10 g of the sample was ground with 200 mg of spectral grade KBr to form a mixture, which was then made as a pellet. This pellet was used to record infrared spectra in the range of cm NH 3 - Temperature Programmed Desorption studies The acidity of zeolites was analyzed by NH 3 Temperature Programmed Desorption method. Adsorption of ammonia was carried out on each sample in a quartz tube packed with 100 mg of the sample. The initial flushing was carried out with pure Helium (at 25cc/ min flow) for 1 h and cooled to 115 C. Ammonia adsorption was performed by passing the ammonia vapors over the catalyst bed. Later, helium was passed to remove the physisorbed ammonia.

4 Thermogravimetric analysis Thermogravimetric Analysis is a technique for characterizing thermal stability of a material by measuring changes in its physicochemical properties expressed as weight change as a function of increasing temperature. Thermograms were recorded using a Thermo gravimetric analyzer (TGA Q 50 V 20.6 Build 31 instrument) Characterization of Non-edible oils The non-edible oils chosen for biodiesel production were neem (Azadirachta indica) and pinnai (Calophyllum inophyllum) and their properties were analyzed using the following techniques Gas Chromatographic analysis (GC) The fatty acid profile of the two non-edible oils was determined by gas chromatography. The fatty acid compositions of three non-edible vegetable oils have been analyzed by a CN Gas Chromatography with a flame-ionization detector. The used capillary has a length of 30 m with an internal diameter of 0.25 mm. Carrier gas is nitrogen at a flow rate of 1 ml/min. The injection port temperature is 150 C and ionization detector temperature is 170 C Physico chemical properties of oils. The physico-chemical properties of these two non- edibile oils were determined by ASTM methods. Iodine values were determined using Wiji s method based on ASTM D Acid values were determined using ASTM D974. Saponification value was calculated based on ASTM D5558. Specific gravity was measured using ASTM D5355.

5 Nuclear Magnetic resonance spectroscopy The spectra were recorded on a Bruker AVIII spectrometer operating at 500 MHz at room temperature. 1 H spectra were recorded with pulse duration of 45, a recycle delay of 2 s and 16 scans. The spectra were referenced to dimethyl sulfoxide (DMSO). 3.5 ANALYSIS AND FUEL PROPERTIES OF BIODIESEL Physical and chemical properties of fatty acid methyl esters were analyzed by ASTM standard procedures. The flash point and fire point were determined by a Pensky Martens closed-cup tester (ISL, Model FP93 5G2), using ASTM D 93. Cloud point and pour point determinations were made using ASTM D 2500 and ASTM D 97. The kinematic viscosities were determined at C, using a Viscometer (Anton Parr, Stabinger, Model SVM3000). The procedure of ASTM D 7042 was followed. The water contents were determined following ASTM D ATOMIC ABSORPTION SPECTROSCOPY (AAS) The esterified product was checked for the presence of P, Al and Si using AAS (Shimadzu AA-6300) to confirm there is no catalyst leaching into the product. The transesterified product was also checked for the presence of Si and N. 3.7 TWO-STEP BIODIESEL PRODUCTION Both the steps of biodiesel production were carried out in a three necked round bottom flask equipped with a reflux condenser to avoid alcohol evaporation. Stirring was performed with the help of a mechanical stirrer. The rate of stirring was maintained at 200 rpm. The temperature of the flask was maintained at different levels using silicon oil bath, which was in connection

6 42 with the dimmer stat. Thermometer inserted in the three necked flask was used to monitor the temperature maintained inside Acid catalyzed pre-treatment Non-edible oil was poured into the flask and solid acid catalyst was added followed by methanol. The progress of the reaction was monitored by measuring the acidity value. Acid value is the mass of potassium hydroxide (KOH) in milligrams that is required to neutralize one gram of chemical substance. The acid number is a measure of the amount of carboxylic acid groups in a chemical compound such as a fatty acid. In a typical procedure, a known amount of sample dissolved in ethanol is titrated with a standard solution of KOH and phenolphthalein as a colour indicator. The acid value, A was calculated using the equation, 1000VMC A (3.1) W Where W - Weight of the sample, g. V - C - M - Volume of KOH consumed, ml Concentration of the solution, mol/l Molecular weight of the solution, g/gmol Acid value of oils was determined before commencing the reaction and the samples were withdrawn from the reaction mixture at regular intervals and the acid value was determined. From the results conversion efficiency was calculated. Conversion efficiency is the percentage of FFA converted into their corresponding methyl esters during the esterification reaction of nonedible oils. It is calculated from the residual acid value during or after the esterification reaction under a set of reaction conditions. The acid value of the

7 43 non-edible oil before the start of the reaction and at any instant of time is found by titrimetric method. X FFA ai a t a i 100 where X FFA - percentage conversion (3.2) a i - initial FFA content of oil a t - FFA content at time, t The final reaction mixture was centrifuged at 8000 rpm and the supernatant methanol was removed. From the remaining residue, solid acid catalyst was separated and the pre-treated oil was processed by base catalyzed reaction Esterification of neem and pinnai oil with MOR and PMOR The objective of esterification is to reduce the FFA content in the neem and pinnai oil. FFA present in neem and pinnai oil was esterified with methanol in presence of both MOR and PMOR and the results were studied. The reaction regulatory parameters which can affect the efficiency of FFA reduction were studied. To obtain high FFA reduction, it is important to understand the relationship between these parameters and to optimize the suitable conditions accordingly. The reduction of FFA is influenced by factors such as reaction temperature, catalyst amount and methanol to oil ratio. Temperature clearly influenced the reaction rate and yield (Ma et al 1999). The methanol to oil molar ratio was studied because it is one of the most important factors affecting the ester yield. Catalyst concentration decides the esterification reaction and plays a major role in reduction of FFA.

8 44 In this work, the esterification of neem and pinnai oil in presence of MOR and PMOR were studied. The reactions were carried out in a round bottom flask, neem and pinnai oil was taken separately and to which calculated amount of methanol was added followed by the addition of MOR as catalyst and the reaction was carried out for a period of 70 min. The experimental factors for the present study are catalyst concentration (0.5-2 wt%), methanol to oil molar ratio (3:1 12:1) and temperature in the range of C. The same experiments were carried out with neem and pinnai oil in the presence of catalyst PMOR. Kinetic studies for the esterification of neem and pinnai oil with MOR and PMOR were done. During the esterification reaction of FFA in neem and pinnai oil with varying methanol to oil ratios and with different catalyst loading at 60 C, the samples were withdrawn at an interval of 10 min and analyzed for their acid values. To scrutinize the effect of phosphoric acid modification on MOR, esterification reactions were carried out with neem and pinnai oil in presence of both MOR and PMOR under a set of optimized conditions. Influence of catalyst activity on the conversion of FFA was evaluated and a comparison was made. For better comparison esterification of oleic acid was also carried out with both MOR and PMOR under optimum conditions Esterification of neem and pinnai oil with and P The esterification of neem oil and pinnai oil in presence of both and P were studied. The reactions were carried out in a round bottom flask, neem and pinnai oil was taken separately and to which calculated amount of methanol was added followed by the addition of as catalyst and the reaction was carried out for a period of 70 min. The experimental factors for the present study are catalyst concentration (0.5-2 wt%), methanol to oil molar ratio (3:1 12:1) and temperature; C. The same experiments were carried out with both the oils in the presence of catalyst P. Kinetic studies

9 45 were conducted for the esterification of neem and pinnai oil in the presence of both and P catalysts. During the esterification reaction catalyzed by and with varying methanol to oil ratios and different catalyst loading at 60 C, the samples were taken at an interval of 10 min and analyzed for their acid values. Esterification of FFA present in neem and pinnai oil was carried under optimum conditions in presence of and P catalysts separately to study the effect of phosphoric acid modification of zeolites and a comparison was also made. For better comparison esterification of oleic acid was also carried out with both and P under optimum conditions Base catalyzed transesterification After esterification of free fatty acids present in neem and pinnai oil, the acid value was reduced below 2 mgkoh/g of oil. These pre-treated oils were subjected to base catalyst transesterification. SMS 1 and SMS 2 were used as solid base catalyst for transesterification. In a typical reaction the pre-treated oil was added in a thin stream on to the mixture of solid base catalyst and methanol. The contents were refluxed under mechanical stirring. Several reaction parameters were studied to find out the optimum reaction conditions. After completion, the reaction was stopped and the contents were poured into a separating funnel. The lower layer, containing glycerol and other impurities were drained off. The upper layer biodiesel was washed with hot distilled water thrice, lower layer was discarded and the upper layer after the third wash is the final FAME product. The final reaction mixture was centrifuged at 8000 rpm for 10 min and the supernatant, excess methanol was removed. The progress of the reaction was monitored by 1 H NMR. The protons of the methylene group adjacent to the ester moiety in triglycerides and the protons in the alcohol moiety of the product methyl esters were used to monitor the yield. The conversion can be calculated using the following formula,

10 46 C 100 (2A / 3A ) (3.3) ME CH 2 where C is the conversion of triglycerides to corresponding methyl ester, A ME is the integration value of the protons of the methyl ester and A -CH2 is the integration value of methylene protons. The factors 2 and 3 derived from the fact that the methylene carbon possesses two protons and the alcohol (methanol-derived) carbon has three attached protons Transesterification of pre-treated neem and pinnai oil with S 1 and SMS 1 The objective of transesterification is to convert the triglycerides into fatty acids methyl esters in the neem and pinnai oil. Pre-treated neem and pinnai oil were transesterified with methanol in presence of both S 1 and SMS 1 and the results were studied. To attain the high triglyceride conversion, it is important to understand the relationship between these parameters and to optimize the suitable conditions accordingly. The conversion of triglycerides is influenced by factors such as reaction temperature, catalyst amount and methanol to ratio. In the present work, the transesterification of pre-treated neem and pinnai oil in presence of both S 1 and SMS 1 were studied. Pre-treated neem and pinnai oil were taken in a round bottom flask and to which calculated amount of methanol was added followed by the addition of S 1 as solid base catalyst and the reactions were carried out for a period of 135 min. The experimental factors for the present study are catalyst concentration (1-5 wt%), methanol to oil molar ratio (3:1 12:1) and temperature in the range of C. The same experiments were carried out with both the oils in the presence of catalyst SMS 1. Kinetic studies for the transesterification of neem and pinnai oil with S 1 and SMS 1 were done. During the transesterification process, pre-treated neem and pinnai oil with varying methanol to oil ratios and with different

11 47 catalyst loading at 60 C, the samples were withdrawn at an interval of 15 min and analyzed for methyl ester content. To evaluate the effect of silane modification on silica gel, transesterification reactions were carried out both S 1 and SMS 1 under a set of optimized conditions by taking Pre-treated neem and pinnai oil and a comparison was made. For better comparison transesterification of ethyl oleate was also carried out with both S 1 and SMS 1 at optimum conditions Transesterification of pre-treated neem and pinnai oil with S 2 and SMS 2 The transesterification of neem oil and pinnai oil in presence of both S 2 and SMS 2 were studied. The transesterification reactions of neem and pinnai were carried out in a round bottom flask. Neem and pinnai oil were taken separately to which calculated amount of methanol was added. S 2 was added as catalyst to the reaction mixture and the reaction was carried out for a period of 135 min. The experimental factors for the present study are catalyst concentration (1-5 wt%), methanol to oil molar ratio (3:1 12:1) and temperature; C. The same experiments were carried out with both the oils in the presence of catalyst SMS 2. Kinetic studies were performed for all the runs with different methanol to oil ratios and different catalyst loading for pre-treated neem and pinnai oil in the presence of both S 2 and SMS 2 catalysts. Production of methyl ester was monitored by subjecting samples to NMR analysis. The influence of modified silica gel over transesterification of pre-treated neem and pinnai oil were also studied by carrying out the reaction with SMS 2 and a comparison was made with that of reaction of S 2. A comparison of the activity of the catalysts under optimum conditions was done by carrying out the esterification reaction of ethyl oleate with S 2 and SMS 2.

12 Catalyst recovery and reuse The catalysts separated from the reaction mixture by centrifugation were initially washed with hexane in order to remove the polar compounds like methyl esters followed by washing with methanol to remove the polar compounds such as glycerol. The obtained catalysts were finally dried at 100 C overnight. The recovered solid acid and base catalysts were reused for esterification and transesterification studies repeatedly.

CHAPTER 2 LITERATURE REVIEW AND SCOPE OF THE PRESENT STUDY

CHAPTER 2 LITERATURE REVIEW AND SCOPE OF THE PRESENT STUDY 57 CHAPTER 2 LITERATURE REVIEW AND SCOPE OF THE PRESENT STUDY 2.1 LITERATURE REVIEW Biodiesel have been processed from various plant derived oil sources including both Edible and Non-Edible oils. But,

More information

SYNTHESIS OF BIODIESEL

SYNTHESIS OF BIODIESEL SYNTHESIS OF BIODIESEL AIM 1. To generate laboratory know-how for the process of production of biodiesel from the given oil feed stock 2. To perform basic mass and energy balance calculations for a large

More information

PROJECT REFERENCE NO.: 39S_R_MTECH_1508

PROJECT REFERENCE NO.: 39S_R_MTECH_1508 DEVELOPMENT OF AGRICULTURAL WASTE BASED HETEROGENEOUS CATALYST FOR PRODUCTION OF BIODIESEL FROM MIXED WASTE COOKING OIL AND ITS PERFORMANCE ON DIESEL ENGINE PROJECT REFERENCE NO.: 39S_R_MTECH_1508 COLLEGE

More information

4001 Transesterification of castor oil to ricinoleic acid methyl ester

4001 Transesterification of castor oil to ricinoleic acid methyl ester 4001 Transesterification of castor oil to ricinoleic acid methyl ester castor oil + MeH Na-methylate H Me CH 4 (32.0) C 19 H 36 3 (312.5) Classification Reaction types and substance classes reaction of

More information

Project Reference No.: 40S_B_MTECH_007

Project Reference No.: 40S_B_MTECH_007 PRODUCTION OF BIODIESEL FROM DAIRY WASH WATER SCUM THROUGH HETEROGENEOUS CATALYST AND PERFORMANCE EVALUATION OF TBC DIESEL ENGINE FOR DIFFERENT DIESEL AND METHANOL BLEND RATIOS Project Reference No.: 40S_B_MTECH_007

More information

Production of Biodiesel from Used Groundnut Oil from Bosso Market, Minna, Niger State, Nigeria

Production of Biodiesel from Used Groundnut Oil from Bosso Market, Minna, Niger State, Nigeria Production of Biodiesel from Used Groundnut Oil from Bosso Market, Minna, Niger State, Nigeria Alabadan B.A. Department of Agricultural and Bioresources Engineering, Federal University, Oye Ekiti. Ajayi

More information

KF-loaded mesoporous Mg-Fe bi-metal oxides: high performance transesterification catalysts for biodiesel production

KF-loaded mesoporous Mg-Fe bi-metal oxides: high performance transesterification catalysts for biodiesel production Electronic Supplementary Information (ESI) KF-loaded mesoporous Mg-Fe bi-metal oxides: high performance transesterification catalysts for biodiesel production Guiju Tao, a Zile Hua,* a Zhe Gao, b Yan Zhu,

More information

Published in Offshore World, April-May 2006 Archived in

Published in Offshore World, April-May 2006 Archived in Published in Offshore World, April-May 2006 Archived in Dspace@nitr, http://dspace.nitrkl.ac.in/dspace Preparation of karanja oil methyl ester. R. K. Singh *, A. Kiran Kumar and S. Sethi Department of

More information

Biodiesel. As fossil fuels become increasingly expensive to extract and produce, bio-diesel is

Biodiesel. As fossil fuels become increasingly expensive to extract and produce, bio-diesel is Aaron Paternoster CHEM 380 10D Prof. Laurie Grove January 30, 2015 Biodiesel Introduction As fossil fuels become increasingly expensive to extract and produce, bio-diesel is proving to be an economically

More information

Keywords: Simarouba Glauca, Heterogeneous base catalyst, Ultrasonic Processor, Phytochemicals.

Keywords: Simarouba Glauca, Heterogeneous base catalyst, Ultrasonic Processor, Phytochemicals. PRODUCTION OF FATTY ACID METHYL ESTERS FROM SIMAROUBA OIL VIA ULTRASONIC IRRADIATION PROCESS, EFFECTIVE UTILIZATION OF BYPRODUCTS. TESTING AND EXTRACTION OF PHYTOCHEMICALS FROM SIMAROUBA OIL AND CAKE COLLEGE

More information

Conventional Homogeneous Catalytic Process with Continuous-typed Microwave and Mechanical Stirrer for Biodiesel Production from Palm Stearin

Conventional Homogeneous Catalytic Process with Continuous-typed Microwave and Mechanical Stirrer for Biodiesel Production from Palm Stearin 2012 4th International Conference on Chemical, Biological and Environmental Engineering IPCBEE vol.43 (2012) (2012) IACSIT Press, Singapore DOI: 10.7763/IPCBEE. 2012. V43. 2 Conventional Homogeneous Catalytic

More information

4. Synthesis of Biodiesel from Palm Fatty Acid Distillate. Research Article

4. Synthesis of Biodiesel from Palm Fatty Acid Distillate. Research Article 4. Synthesis of Biodiesel from Palm Fatty Acid Distillate Research Article Abstract Tarun Kataria Third Year Bachelor of Technology Department of Oils, Oleochemicals & Surfactant Technology Palm fatty

More information

The preparation of biodiesel from rape seed oil or other suitable vegetable oils

The preparation of biodiesel from rape seed oil or other suitable vegetable oils The preparation of biodiesel from rape seed oil or other suitable vegetable oils Method Note This method produces biodiesel relatively quickly, though the product is not pure enough to burn in an engine.

More information

Optimization for Community Biodiesel Production from Waste Palm Oil via Two-Step Catalyzed Process

Optimization for Community Biodiesel Production from Waste Palm Oil via Two-Step Catalyzed Process Journal of Materials Science and Engineering A 5 (5-6) (2015) 238-244 doi: 10.17265/2161-6213/2015.5-6.008 D DAVID PUBLISHING Optimization for Community Biodiesel Production from Waste Palm Oil via Two-Step

More information

Chapter 3 FUEL DEVELOPMENT AND CHARACTERIZATION

Chapter 3 FUEL DEVELOPMENT AND CHARACTERIZATION Chapter 3 FUEL DEVELOPMENT AND CHARACTERIZATION Chapter 3 FUEL DEVELOPMENT AND CHARACTERIZATION 3.1 Introduction It is the primary and most important part of any experimental activity involving engine

More information

PERFORMANCE OF DIESEL ENGINE USING JATROPHA CURCAS BIO-DIESEL

PERFORMANCE OF DIESEL ENGINE USING JATROPHA CURCAS BIO-DIESEL Journal of KONES Powertrain and Transport, Vol. 15, No. 4 28 PERFORMANCE OF DIESEL ENGINE USING JATROPHA CURCAS BIO-DIESEL Dr (Miss) S L Sinha Mr Vinay Kumar Kar 2 Reader, National Institute of Technology

More information

Production of Biodiesel Fuel from Waste Soya bean Cooking Oil by Alkali Trans-esterification Process

Production of Biodiesel Fuel from Waste Soya bean Cooking Oil by Alkali Trans-esterification Process Current World Environment Vol. 11(1), 260-266 (2016) Production of Biodiesel Fuel from Waste Soya bean Cooking Oil by Alkali Trans-esterification Process Ajinkya Dipak Deshpande*, Pratiksinh Dilipsinh

More information

Proposal to Determine Various Properties of Biodiesel Fuels Based on Methyl Ester. Composition. Jason Freischlag. Dr. Porter Chem /25/2013

Proposal to Determine Various Properties of Biodiesel Fuels Based on Methyl Ester. Composition. Jason Freischlag. Dr. Porter Chem /25/2013 1 Proposal to Determine Various Properties of Biodiesel Fuels Based on Methyl Ester Composition Jason Freischlag Dr. Porter Chem 402 11/25/2013 2 Specific Aims Biodiesel is an alternative fuel source that

More information

BIODIESEL DEVELOPMENT FROM HIGH FREE FATTY ACID PUNNAKKA OIL

BIODIESEL DEVELOPMENT FROM HIGH FREE FATTY ACID PUNNAKKA OIL BIODIESEL DEVELOPMENT FROM HIGH FREE FATTY ACID PUNNAKKA OIL Ramaraju A. and Ashok Kumar T. V. Department of Mechanical Engineering, National Institute of Technology, Calicut, Kerala, India E-Mail: ashokkumarcec@gmail.com

More information

International Journal of Advance Engineering and Research Development PRODUCTION OF AN ALTERNATIVE FUEL FROM A LOW COST FEEDSTOCK- AN ECONOMICAL VIEW

International Journal of Advance Engineering and Research Development PRODUCTION OF AN ALTERNATIVE FUEL FROM A LOW COST FEEDSTOCK- AN ECONOMICAL VIEW Scientific Journal of Impact Factor (SJIF): 5.71 e-issn (O): 2348-4470 p-issn (P): 2348-6406 International Journal of Advance Engineering and Research Development International Conference on Momentous

More information

PERFORMANCE AND EMISSION CHARACTERISTICS OF DIESEL ENGINE USING RICE BRAN OIL METHYL ESTER BLEND WITH ADITIVE DIETHYL ETHER (DEE)

PERFORMANCE AND EMISSION CHARACTERISTICS OF DIESEL ENGINE USING RICE BRAN OIL METHYL ESTER BLEND WITH ADITIVE DIETHYL ETHER (DEE) International Journal of Science, Engineering and Technology Research (IJSETR), Volume 3, Issue 2, February 214 PERFORMANCE AND EMISSION CHARACTERISTICS OF DIESEL ENGINE USING RICE BRAN OIL METHYL ESTER

More information

PERFORMANCE AND EMISSION TEST OF CANOLA AND NEEM BIO-OIL BLEND WITH DIESEL

PERFORMANCE AND EMISSION TEST OF CANOLA AND NEEM BIO-OIL BLEND WITH DIESEL PERFORMANCE AND EMISSION TEST OF CANOLA AND NEEM BIO-OIL BLEND WITH DIESEL MR.N.BALASUBRAMANI 1, M.THANASEGAR 2, R.SRIDHAR RAJ 2, K.PRASANTH 2, A.RAJESH KUMAR 2. 1Asst. Professor, Dept. of Mechanical Engineering,

More information

Effect of Mesh Size Variations on Glycerin Adsorption by Silica from Rice Husk Ash in Biodiesel Purification

Effect of Mesh Size Variations on Glycerin Adsorption by Silica from Rice Husk Ash in Biodiesel Purification 2012 International Conference on Life Science and Engineering IPCEE vol.45 (2012) (2012) ICSIT Press, Singapore DOI: 10.7763/IPCEE. 2012. V45. 4 Effect of Mesh Size Variations on Glycerin dsorption by

More information

Biodiesel production by esterification of palm fatty acid distillate

Biodiesel production by esterification of palm fatty acid distillate ARTICLE IN PRESS Biomass and Bioenergy ] (]]]]) ]]] ]]] www.elsevier.com/locate/biombioe Biodiesel production by esterification of palm fatty acid distillate S. Chongkhong, C. Tongurai, P. Chetpattananondh,

More information

BIODIESEL PRODUCTION IN A BATCH REACTOR 1. THEORY

BIODIESEL PRODUCTION IN A BATCH REACTOR 1. THEORY BIODIESEL PRODUCTION IN A BATCH REACTOR Date: September-November, 2017. Biodiesel is obtained through transesterification reaction of soybean oil by methanol, using sodium hydroxide as a catalyst. The

More information

Biodiesel production from waste vegetable oils over MgO/Al 2 O 3 catalyst

Biodiesel production from waste vegetable oils over MgO/Al 2 O 3 catalyst Biodiesel production from waste vegetable oils over MgO/Al 2 O 3 catalyst Thembi Sithole 1, a, Kalala Jalama 1,b and Reinout Meijboom 2,c 1 Department of Chemical Engineering, University of Johannesburg,

More information

Transesterification of Waste Cooking Oil with Methanol and Characterization of the Fuel Properties of the Resulting Methyl Ester and its Blends

Transesterification of Waste Cooking Oil with Methanol and Characterization of the Fuel Properties of the Resulting Methyl Ester and its Blends International Journal of Innovation and Applied Studies ISSN 2028-9324 Vol. 22 No. 1 Dec. 2017, pp. 44-53 2017 Innovative Space of Scientific Research Journals http://www.ijias.issr-journals.org/ Transesterification

More information

Annex to the Accreditation Certificate D-PL according to DIN EN ISO/IEC 17025:2005

Annex to the Accreditation Certificate D-PL according to DIN EN ISO/IEC 17025:2005 Deutsche Akkreditierungsstelle GmbH Annex to the Accreditation Certificate D-PL-17640-01-00 according to DIN EN ISO/IEC 17025:2005 Period of validity: 18.12.2017 to 04.11.2018 Holder of certificate: Haltermann

More information

Study on the Production of Biodiesel from Sunflower Oil

Study on the Production of Biodiesel from Sunflower Oil 33 Study on the Production of Biodiesel from Sunflower Oil Aye Hnin Khine 1, Aye Aye Tun 2 1 Department of Chemistry, Yangon University, Myanmar; ahkhine2012@gmail.com 2 Dagon University, Myanmar; ayeayetun1961@gmail.com

More information

International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: Vol.8, No.4, pp , 2015

International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: Vol.8, No.4, pp , 2015 International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: 0974-4290 Vol.8, No.4, pp 1695-1700, 2015 Microwave Assisted to Biodiesel Production From Palm Oil In Time And Material Feeding Frequency

More information

BIODIESEL DEVELOPMENT FROM HIGH FREE FATTY ACID MAROTTI OIL

BIODIESEL DEVELOPMENT FROM HIGH FREE FATTY ACID MAROTTI OIL International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 6340(Print) ISSN 0976 6359(Online) Volume 1 Number 1, July - Aug (2010), pp. 227-237 IAEME, http://www.iaeme.com/ijmet.html

More information

Alkaline Catalytic Transesterification for Palm Oil Biodiesel and Characterisation of Palm Oil Biodiesel

Alkaline Catalytic Transesterification for Palm Oil Biodiesel and Characterisation of Palm Oil Biodiesel Journal of Biofuels DOI : 10.5958/j.0976-4763.4.2.010 Vol. 4 Issue 2, July-December 2013 pp. 79-87 Alkaline Catalytic Transesterification for Palm Oil Biodiesel and Characterisation of Palm Oil Biodiesel

More information

Synthesis and Characterization of Fatty Acid Methyl Ester by In-Situ Transesterification in Capparis Deciduas Seed

Synthesis and Characterization of Fatty Acid Methyl Ester by In-Situ Transesterification in Capparis Deciduas Seed Synthesis and Characterization of Fatty Acid Methyl Ester by In-Situ Transesterification in Capparis Deciduas Seed Raghunath D POKHARKAR, Prasad E FUNDE, Shripad S JOSHI Shirish S PINGALE Jain irrigation

More information

4025 Synthesis of 2-iodopropane from 2-propanol

4025 Synthesis of 2-iodopropane from 2-propanol 4025 Synthesis of 2-iodopropane from 2-propanol OH I + 1/2 I 2 + 1/3 P x + 1/3 P(OH) 3 C 3 H 8 O (60.1) (253.8) (31.0) C 3 H 7 I (170.0) (82.0) Classification Reaction types and substance classes nucleophilic

More information

What s s in your Tank?

What s s in your Tank? What s s in your Tank? Biodiesel Could Be The Answer! Matthew Brown Lakewood High School Tom Hersh Golden West Community College Overview What is biodiesel? Chemistry of biodiesel Safety Making Biodiesel

More information

Material Science Research India Vol. 7(1), (2010)

Material Science Research India Vol. 7(1), (2010) Material Science Research India Vol. 7(1), 201-207 (2010) Influence of injection timing on the performance, emissions, combustion analysis and sound characteristics of Nerium biodiesel operated single

More information

CHAPTER - 3 PREPARATION AND CHARACTERIZATION OF

CHAPTER - 3 PREPARATION AND CHARACTERIZATION OF 75 CHAPTER - 3 PREPARATION AND CHARACTERIZATION OF BIODIESEL FROM NON-EDIBLE VEGETABLE OILS Table of Contents Chapter 3: PREPARATION AND CHARACTERIZATION OF BIODIESEL FROM NON-EDIBLE VEGETABLE OILS S.

More information

International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: Vol.7, No.4, pp ,

International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: Vol.7, No.4, pp , International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: 0974-4290 Vol.7, No.4, pp 2112-2116, 2014-2015 Production of Biodiesel by Transesterification of Algae Oil with an assistance of Nano-CaO

More information

Potential vegetable oils of Indian origin as biodiesel feedstock An experimental study

Potential vegetable oils of Indian origin as biodiesel feedstock An experimental study Journal of Scientific AGARWAL & Industrial et al: Research POTENTIAL VEGETABLE OILS OF INDIAN ORIGIN AS BIODIESEL FEEDSTOCK Vol. 71, April 212, pp. 285-289 285 Potential vegetable oils of Indian origin

More information

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION 1 CHAPTER 1 INTRODUCTION 1.1 GENERAL With a rapid increase in the demand of fossil fuel, decrease in the availability of crude oil supplies and greater environmental stringent norms on pollution has created

More information

Effects Of Free Fatty Acids, Water Content And Co- Solvent On Biodiesel Production By Supercritical Methanol Reaction

Effects Of Free Fatty Acids, Water Content And Co- Solvent On Biodiesel Production By Supercritical Methanol Reaction Effects Of Free Fatty Acids, Water Content And Co- Solvent On Biodiesel Production By Supercritical Methanol Reaction Kok Tat Tan*, Keat Teong Lee, Abdul Rahman Mohamed School of Chemical Engineering,

More information

PERFORMANCE AND ANALYSIS OF DIESEL ENGINE USING CHICKEN OIL WITH DIESEL AS A BIOFUEL

PERFORMANCE AND ANALYSIS OF DIESEL ENGINE USING CHICKEN OIL WITH DIESEL AS A BIOFUEL PERFORMANCE AND ANALYSIS OF DIESEL ENGINE USING CHICKEN OIL WITH DIESEL AS A BIOFUEL Prakash T 1 Suraj S 2, Mayilsamy E 3,Vasanth Kumar R 4, Vinoth S V 5 1 Assistant Professor, Mechanical Engineering,

More information

CHAPTER 3 MATERIALS AND EXPERIMENTAL WORKS

CHAPTER 3 MATERIALS AND EXPERIMENTAL WORKS 66 CHAPTER 3 MATERIALS AND EXPERIMENTAL WORKS 3.1 MATERIALS AND METHODS 3.1.1 Materials The material sources were: waste cooking palm oil is collected from local restaurants with high FFA content and fresh

More information

Experimental Analysis of Bio Oil under Transestrification Process by Using Babool Tree Seeds

Experimental Analysis of Bio Oil under Transestrification Process by Using Babool Tree Seeds Experimental Analysis of Bio Oil under Transestrification Process by Using Babool Tree Seeds Radhakrishnan.C 1, Yogeshwaran.K 1, Karunaraja.N 1, Tamilselvan.R 2, Sriram Gopal 2, Kavin Prasanth.K 2, Assistant

More information

JATROPHA AND KARANJ BIO-FUEL: AN ALTERNATE FUEL FOR DIESEL ENGINE

JATROPHA AND KARANJ BIO-FUEL: AN ALTERNATE FUEL FOR DIESEL ENGINE JATROPHA AND KARANJ BIO-FUEL: AN ALTERNATE FUEL FOR DIESEL ENGINE Surendra R. Kalbande and Subhash D. Vikhe College of Agricultural Engineering and Technology, Marathwada Agriculture University, Parbhani

More information

COMPARISON OF TOTAL ENERGY CONSUMPTION NECESSARY FOR SUBCRITICAL AND SUBCRITICAL SYNTHESIS OF BIODIESEL. S. Glisic 1, 2*, D.

COMPARISON OF TOTAL ENERGY CONSUMPTION NECESSARY FOR SUBCRITICAL AND SUBCRITICAL SYNTHESIS OF BIODIESEL. S. Glisic 1, 2*, D. COMPARISON OF TOTAL ENERGY CONSUMPTION NECESSARY FOR SUBCRITICAL AND SUBCRITICAL SYNTHESIS OF BIODIESEL S. Glisic 1, 2*, D. Skala 1, 2 1 Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva

More information

Methanolysis of Jatropha Oil Using Conventional Heating

Methanolysis of Jatropha Oil Using Conventional Heating Science Journal Publication Science Journal of Chemical Engineering Research Methanolysis of Jatropha Oil Using Conventional Heating Susan A. Roces*, Raymond Tan, Francisco Jose T. Da Cruz, Shuren C. Gong,

More information

Biodiesel Plant 30 Million Gal/Year

Biodiesel Plant 30 Million Gal/Year Biodiesel Plant 30 Million Gal/Year Plant Capacity: 30 million gal/year (30,000,000 gal/year). The plant is large in size because it is built on gravity transfer basis, which saves energy resulting in

More information

Synthesis and Evaluation of Alternative Fuels. The notion of using vegetable oil as a fuel source is as almost as old as the internal combustion

Synthesis and Evaluation of Alternative Fuels. The notion of using vegetable oil as a fuel source is as almost as old as the internal combustion Synthesis and Evaluation of Alternative Fuels The notion of using vegetable oil as a fuel source is as almost as old as the internal combustion engine itself. At the 1900 World's fair in Paris, a Diesel

More information

Department of Mechanical Engineering, JSPM s Imperial College of Engineering & Research, Wagholi, Pune-14, India

Department of Mechanical Engineering, JSPM s Imperial College of Engineering & Research, Wagholi, Pune-14, India International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347 5161 2016 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article An experimental

More information

Comparative Analysis of Jatropha-Methanol Mixture and Diesel on Direct Injection Diesel Engine

Comparative Analysis of Jatropha-Methanol Mixture and Diesel on Direct Injection Diesel Engine Volume 119 No. 16 218, 4947-4961 ISSN: 1314-3395 (on-line version) url: http://www.acadpubl.eu/hub/ http://www.acadpubl.eu/hub/ Comparative Analysis of Jatropha-Methanol Mixture and on Direct Injection

More information

Optimized Method for Analysis of Commercial and Prepared Biodiesel using UltraPerformance Convergence Chromatography (UPC 2 )

Optimized Method for Analysis of Commercial and Prepared Biodiesel using UltraPerformance Convergence Chromatography (UPC 2 ) Optimized Method for Analysis of Commercial and Prepared Biodiesel using UltraPerformance Convergence Chromatography (UPC 2 ) Mehdi Ashraf-Khorassani, 1 Giorgis Isaac, 2 and Larry T. Taylor 1 1 Department

More information

Introduction During a time of foreign fuel dependency and high green house gas emissions, it is

Introduction During a time of foreign fuel dependency and high green house gas emissions, it is University of Tennessee at Chattanooga MOLAR RATIO STUDY FOR THE REACTION OF FREE FATTY ACIDS WITH METHANOL TO FORM FATTY ACID METHYL ESTERS OR BIODIESEL FUEL by Trip Dacus ENCH 435 Course: Ench435 Section:

More information

Determination of phase diagram of reaction system of biodiesel

Determination of phase diagram of reaction system of biodiesel 324 FEED AND INDUSTRIAL RAW MATERIAL: Industrial Materials and Biofuel Determination of phase diagram of reaction system of biodiesel LIU Ye, YANG Hao, SHE Zhuhua, LIU Dachuan Wuhan Polytechnic University,

More information

Homogeneous Catalysis of High Free Fatty Acid Waste Cooking Oil to Fatty Acid Methyl Esters (Biodiesel)

Homogeneous Catalysis of High Free Fatty Acid Waste Cooking Oil to Fatty Acid Methyl Esters (Biodiesel) Volume 1, Issue 1, August 2012 pp.31-36 ISSN(online): 2169-4931 ISSN(print): 2169-4915 www.ijep.org Homogeneous Catalysis of High Free Fatty Acid Waste Cooking Oil to Fatty Acid Methyl Esters (Biodiesel)

More information

RESEARCH PROJECT REPORT. Trash to Treasure. Clean Diesel Technologies for Air Pollution Reduction. Submitted to. The RET Site. For

RESEARCH PROJECT REPORT. Trash to Treasure. Clean Diesel Technologies for Air Pollution Reduction. Submitted to. The RET Site. For RESEARCH PROJECT REPORT Trash to Treasure Clean Diesel Technologies for Air Pollution Reduction Submitted to The RET Site For Civil Infrastructure Renewal and Rehabilitation Sponsored by The National Science

More information

Palm Fatty Acid Biodiesel: Process Optimization and Study of Reaction Kinetics

Palm Fatty Acid Biodiesel: Process Optimization and Study of Reaction Kinetics Journal of Oleo Science Copyright 2010 by Japan Oil Chemists Society Palm Fatty Acid Biodiesel: Process Optimization and Study of Reaction Kinetics Praveen K. S. Yadav 1, Onkar Singh 2 and R. P. Singh

More information

Experimental Investigation and Modeling of Liquid-Liquid Equilibria in Biodiesel + Glycerol + Methanol

Experimental Investigation and Modeling of Liquid-Liquid Equilibria in Biodiesel + Glycerol + Methanol 11 2nd International Conference on Chemical Engineering and Applications IPCBEE vol. 23 (11) (11) IACSIT Press, Singapore Experimental Investigation and Modeling of Liquid-Liquid Equilibria in + + Methanol

More information

Biodiesel Fundamentals for High School Chemistry Classes. Laboratory 7: Using Differences in Solubility to Remove Contaminants from Biodiesel

Biodiesel Fundamentals for High School Chemistry Classes. Laboratory 7: Using Differences in Solubility to Remove Contaminants from Biodiesel Laboratory 7: Using Differences in Solubility to Remove Contaminants from Biodiesel Topics Covered Solubility Polarity Like dissolves like Partition Ratio Equipment Needed (per pair or group) One graduated

More information

PREPARATION OF BIODIESEL AND SEPARATION OF HEMICELLULOSE FROM SOAP SKIMMINGS

PREPARATION OF BIODIESEL AND SEPARATION OF HEMICELLULOSE FROM SOAP SKIMMINGS CELLULOSE CHEMISTRY AND TECHNOLOGY PREPARATION OF BIODIESEL AND SEPARATION OF HEMICELLULOSE FROM SOAP SKIMMINGS HAO REN, * XIN DAI * and SHIGETOSHI OMORI ** * Nanjing Forestry University, Department of

More information

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2005

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2005 SCOPE OF ACCREDITATION TO ISO/IEC 17025:2005 SOUTHWEST RESEARCH INSTITUTE Office of Automotive Engineering Fuels and Lubricants Research Division 6220 Culebra Road, P.O. Drawer 28510 San Antonio, TX 78228-0510

More information

Tallow waste utilization from leather tanning industry for biodiesel production

Tallow waste utilization from leather tanning industry for biodiesel production International Journal of Renewable Energy, Vol. 8, No. 1, January June 2013 ABSTRACT Tallow waste utilization from leather tanning industry for biodiesel production Sujinna Karnasuta a,*, Vittaya Punsuvon

More information

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2005

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2005 SCOPE OF ACCREDITATION TO ISO/IEC 17025:2005 SOUTHWEST RESEARCH INSTITUTE Office of Automotive Engineering Fuels and Lubricants Research Division 6220 Culebra Road, P.O. Drawer 28510 San Antonio, TX 78228-0510

More information

Effect of the Variation of Reaction Parameters and Kinetic Study for Preparation of Biodiesel from Karanza Oil

Effect of the Variation of Reaction Parameters and Kinetic Study for Preparation of Biodiesel from Karanza Oil Effect of the Variation of Reaction Parameters and Kinetic Study for Preparation of Biodiesel from Karanza Oil Debarpita Ghosal 1, Ranjan R. Pradhan 2 1 Assistant Professor, 2 Associate Professor, Department

More information

URB '-carbamoylbiphenyl-3-yl cyclohexylcarbamate. DEA Reference Material Collection. Form Chemical Formula Molecular Weight Melting Point ( o C)

URB '-carbamoylbiphenyl-3-yl cyclohexylcarbamate. DEA Reference Material Collection. Form Chemical Formula Molecular Weight Melting Point ( o C) O NH O NH O. GENERAL INFORMATION IUPAC Name: 3'-carbamoylbiphenyl-3-yl cyclohexylcarbamate CAS#: 56-08-6 Synonyms: Source: Appearance: UV max (nm): KDS-03 DEA Reference Material Collection White powder

More information

ASTM D Standard Specification for Biodiesel Fuel (B 100) Blend Stock for Distillate Fuels

ASTM D Standard Specification for Biodiesel Fuel (B 100) Blend Stock for Distillate Fuels ASTM D 6751 02 Standard Specification for Biodiesel Fuel (B 100) Blend Stock for Distillate Fuels Summary This module describes the key elements in ASTM Specifications and Standard Test Methods ASTM Specification

More information

Biodiesel Production from Palm Fatty Acids by Esterification using Solid Acid Catalysts

Biodiesel Production from Palm Fatty Acids by Esterification using Solid Acid Catalysts Biodiesel Production from Palm Fatty Acids by Esterification using Solid Acid Catalysts Tanapon Tanapitak 1,3, Nawin Viriya-empikul 2,* and Navadol Laosiripojana 1,3 1 The Joint Graduate School of Energy

More information

Optimization of Karanja oil transesterification

Optimization of Karanja oil transesterification Indian Journal of Chemical Technology Vol. 13, September 2006, pp. 505-509 Optimization of Karanja oil transesterification N Prakash*, A Arul Jose, M G Devanesan & T Viruthagiri Department of Chemical

More information

CHAPTER 4 BIODIESEL - THEVETIA PERUVIANA SEED OIL

CHAPTER 4 BIODIESEL - THEVETIA PERUVIANA SEED OIL 29 CHAPTER 4 BIODIESEL - THEVETIA PERUVIANA SEED OIL 4.1 INTRODUCTION Under Indian conditions plant varieties, which are non-edible and which can be grown abundantly in large-scale on wastelands, can be

More information

Characterization of Crude Glycerol from Biodiesel Produced from Cashew, Melon and Rubber Oils.

Characterization of Crude Glycerol from Biodiesel Produced from Cashew, Melon and Rubber Oils. Characterization of Crude Glycerol from Biodiesel Produced from Cashew, Melon and Rubber Oils. Otu, F.I 1,a ; Otoikhian, S.K. 2,b and Ohiro, E. 3,c 1 Department of Mechanical Engineering, Federal University

More information

Application Note. Author. Introduction. Energy and Fuels

Application Note. Author. Introduction. Energy and Fuels Analysis of Free and Total Glycerol in B-100 Biodiesel Methyl Esters Using Agilent Select Biodiesel for Glycerides Application Note Energy and Fuels Author John Oostdijk Agilent Technologies, Inc. Introduction

More information

Performance Emission and Combustion Characteristics of Honne Oil Biodiesel Blends in Diesel Engine

Performance Emission and Combustion Characteristics of Honne Oil Biodiesel Blends in Diesel Engine Performance Emission and Combustion Characteristics of Honne Oil Biodiesel Blends in Diesel Engine Varathan R PG scholar, M E Thermal engineering Regional Centre of Anna University Tirunelveli, India varathan5818@gmail.com

More information

The Purification Feasibilityof GlycerinProduced During

The Purification Feasibilityof GlycerinProduced During The Purification Feasibilityof GlycerinProduced During BiodieselProduction S. Soulayman, F. Mustafa, and A. Hadbah Higher Institute for Applied Sciences and technology, Damascus, P.O. Box 31983, Syria,

More information

A R DIGITECH International Journal Of Engineering, Education And Technology (ARDIJEET) X, VOLUME 2 ISSUE 1, 01/01/2014

A R DIGITECH International Journal Of Engineering, Education And Technology (ARDIJEET) X, VOLUME 2 ISSUE 1, 01/01/2014 Investigation of Diesel Engine Performance with the help of Preheated Transesterfied Cotton Seed Oil Mr. Pankaj M.Ingle*1,Mr.Shubham A.Buradkar*2,Mr.Sagar P.Dayalwar*3 *1(Student of Dr.Bhausaheb Nandurkar

More information

Process optimization for production of biodiesel from croton oil using two-stage process

Process optimization for production of biodiesel from croton oil using two-stage process IOSR Journal of Environmental Science, Toxicology and Food Technology (IOSR-JESTFT) e-issn: 2319-2402,p- ISSN: 2319-2399.Volume 8, Issue 11 Ver. III (Nov. 2014), PP 49-54 Process optimization for production

More information

OPTIMIZATION OF BIODIESEL PRODCUTION FROM TRANSESTERIFICATION OF WASTE COOKING OILS USING ALKALINE CATALYSTS

OPTIMIZATION OF BIODIESEL PRODCUTION FROM TRANSESTERIFICATION OF WASTE COOKING OILS USING ALKALINE CATALYSTS OPTIMIZATION OF BIODIESEL PRODCUTION FROM TRANSESTERIFICATION OF WASTE COOKING OILS USING ALKALINE CATALYSTS M.M. Zamberi 1,2 a, F.N.Ani 1,b and S. N. H. Hassan 2,c 1 Department of Thermodynamics and Fluid

More information

Optimization of the Temperature and Reaction Duration of One Step Transesterification

Optimization of the Temperature and Reaction Duration of One Step Transesterification Optimization of the Temperature and Reaction Duration of One Step Transesterification Ding.Z 1 and Das.P 2 Department of Environmental Science and Engineering, School of Engineering, National university

More information

Free and Total Glycerol in B100 Biodiesel by Gas Chromatography According to Methods EN and ASTM D6584

Free and Total Glycerol in B100 Biodiesel by Gas Chromatography According to Methods EN and ASTM D6584 Free and Total Glycerol in B100 Biodiesel by Gas Chromatography According to Methods EN 14105 and ASTM D6584 Introduction With today s increasing concern for the environment and the depletion of fossil

More information

A Renewable Diesel from Algae: Synthesis and Characterization of Biodiesel in Situ Transesterification of Chloro Phycophyta (Green Algea)

A Renewable Diesel from Algae: Synthesis and Characterization of Biodiesel in Situ Transesterification of Chloro Phycophyta (Green Algea) A Renewable Diesel from Algae: Synthesis and Characterization of Biodiesel in Situ Transesterification of Chloro Phycophyta (Green Algea) using Dodecane as a Solvent V.Naresh 1,S.Phabhakar 2, K.Annamalai

More information

ComparativeStudyonPropertiesofMethylEsterofCottonSeedOilandMethylEsterofMangoSeedOilwithDiesel

ComparativeStudyonPropertiesofMethylEsterofCottonSeedOilandMethylEsterofMangoSeedOilwithDiesel Global Journal of Researches in Engineering: Automotive Engineering Volume 14 Issue 2 Version 1.0 Year 2014 Type: Double Blind Peer Reviewed International Research Journal Publisher: Global Journals Inc.

More information

TESIGNG OF FUELS: VISCOSITY OF LIQUID FUELS

TESIGNG OF FUELS: VISCOSITY OF LIQUID FUELS Department of Mechanical Engineering Indian Institute of Technology New Delhi II Semester -- 2017 2018 MCL 241 Energy systems and Technologies TESIGNG OF FUELS: VISCOSITY OF LIQUID FUELS 1. Introduction

More information

NEDO Biodiesel Production Process by Supercritical Methanol Technologies. Shiro Saka

NEDO Biodiesel Production Process by Supercritical Methanol Technologies. Shiro Saka November 22, 2006 (9:30-9:45) The 2nd Joint International Conference on Sustainable Energy and Development (SEE2006) Bangkok, Thailand NEDO Biodiesel Production Process by Supercritical Methanol Technologies

More information

Chemistry of Biodiesel: The beauty of Transesterfication

Chemistry of Biodiesel: The beauty of Transesterfication Chemistry of Biodiesel: The beauty of Transesterfication Organic Chemistry Terms & Definitions Acid- A corrosive substance that liberates hydrogen ions (H + ) in water. ph lower than 7. Base- A caustic

More information

Methanol recovery during transesterification of palm oil in a TiO2/Al2O3 membrane reactor: Experimental study and neural network modeling

Methanol recovery during transesterification of palm oil in a TiO2/Al2O3 membrane reactor: Experimental study and neural network modeling University of Malaya From the SelectedWorks of Abdul Aziz Abdul Raman 2010 Methanol recovery during transesterification of palm oil in a TiO2/Al2O3 membrane reactor: Experimental study and neural network

More information

Biodiesel Production from Mahua Oil by using Two-Step Trans-esterification Process

Biodiesel Production from Mahua Oil by using Two-Step Trans-esterification Process Research Article Biodiesel Production from Mahua Oil by using Two-Step Trans-esterification Process Kandasamy Sabariswaran, Sundararaj Selvakumar, Alagupandian Kathirselvi Department of Natural Resources

More information

CHAPTER 4 PRODUCTION OF BIODIESEL

CHAPTER 4 PRODUCTION OF BIODIESEL 56 CHAPTER 4 PRODUCTION OF BIODIESEL 4.1 INTRODUCTION Biodiesel has been produced on a large scale in the European Union (EU) since 1992 (European Biodiesel Board 2008) and in the United States of America

More information

TRANSESTERIFICATION OF VEGETABLE OILS FOR BIODIESEL SYNTHESIS USING MIXED OXIDES AS CATALYSTS.

TRANSESTERIFICATION OF VEGETABLE OILS FOR BIODIESEL SYNTHESIS USING MIXED OXIDES AS CATALYSTS. TRANSESTERIFICATION OF VEGETABLE OILS FOR BIODIESEL SYNTHESIS USING MIXED OXIDES AS CATALYSTS. 3.1 INTRODUCTION The increased demand of the diesel fuel has resulted in the scarcity of fossil reserves [1].

More information

Role of the Castor Oil Extracted from Seeds of Ricinus Communis for Biodiesel Formation using Novozym 435

Role of the Castor Oil Extracted from Seeds of Ricinus Communis for Biodiesel Formation using Novozym 435 Role of the Castor Oil Extracted from Seeds of Ricinus Communis for Biodiesel Formation using Novozym 435 Mohamad Hajar a, Soheila Shokrollahzadeh b, Farzaneh Vahabzadeh a * a Department of Chemical Engineering,

More information

Comparative Study of Biodiesel Preparation Methods

Comparative Study of Biodiesel Preparation Methods SUST Journal of Science and Technology, Vol. 19, No. 5, 2012; P:19-26 Comparative Study of Biodiesel Preparation Methods (Submitted: June 10, 2012; Accepted for Publication: November 29, 2012) Kaniz Ferdous*

More information

PRODUCTION OF BIODIESEL FROM NON-EDIBLE TREE-BORNE OILS AND ITS FUEL CHARACTERIZATION

PRODUCTION OF BIODIESEL FROM NON-EDIBLE TREE-BORNE OILS AND ITS FUEL CHARACTERIZATION ISSN: 2250-0138 (Online) PRODUCTION OF BIODIESEL FROM NON-EDIBLE TREE-BORNE OILS AND ITS FUEL CHARACTERIZATION NABNIT PANIGRAHI a1, AMAR KUMAR DAS b AND KEDARNATH HOTA c abc Gandhi Institute For Technology

More information

Quantitative Analysis of Chemical Compositions from Various Sources of Crude Glycerine

Quantitative Analysis of Chemical Compositions from Various Sources of Crude Glycerine CMU.J.Nat.Sci.Special Issue on Agricultural & Natural Resources (2012) Vol.11 (1) 157 Quantitative Analysis of Chemical Compositions from Various Sources of Crude Glycerine Adisorn Settapong * and Chaiyawan

More information

Application of CaO from Psammotaea elongata Shell as Catalyst in Conversion the Beef Tallow to Biodiesel

Application of CaO from Psammotaea elongata Shell as Catalyst in Conversion the Beef Tallow to Biodiesel International Journal of Materials Science and Applications 2015; 4(3): 219-224 Published online May 26, 2015 (http://www.sciencepublishinggroup.com/j/ijmsa) doi: 10.11648/j.ijmsa.20150403.21 ISSN: 2327-2635

More information

Investigation of Hevea Brasiliensis Blends with an Aid of Rancimat Apparatus and FTIR Spectroscopy

Investigation of Hevea Brasiliensis Blends with an Aid of Rancimat Apparatus and FTIR Spectroscopy Investigation of Hevea Brasiliensis Blends with an Aid of Rancimat Apparatus and FTIR Spectroscopy Muhammad Irfan A A #1, Periyasamy S #2 # Department of Mechanical Engineering, Government College of Technology,

More information

CHARACTERISTICS OF METHYL ESTERS DERIVED FROM ENZYME ASSISTED EXTRACTS OF BARRINGTONIA ASIATICA AND RICINUS COMMUNIS

CHARACTERISTICS OF METHYL ESTERS DERIVED FROM ENZYME ASSISTED EXTRACTS OF BARRINGTONIA ASIATICA AND RICINUS COMMUNIS CHARACTERISTICS OF METHYL ESTERS DERIVED FROM ENZYME ASSISTED EXTRACTS OF BARRINGTONIA ASIATICA AND RICINUS COMMUNIS Alyssandra Janine B. Baylon, Rachel Anne F. Yadao and Lourdes P. Guidote Chemistry Department,

More information

Automotive Technology

Automotive Technology International Conference on Automotive Technology An Experimental Study on the Performance and Emission Characteristics of a Single Cylinder Diesel Engine Using CME- Diesel Blends. Hari Vasudevan a*,sandip

More information

SCOPE OF ACCREDITATION

SCOPE OF ACCREDITATION Standards Council of Canada 600-55 Metcalfe Street Ottawa, ON K1P 6L5 Canada Conseil canadien des normes 55, rue Metcalfe, bureau 600 Ottawa, ON K1P 6L5 Canada SCOPE OF ACCREDITATION InnoTech Alberta Inc.

More information

The Optimized Conditions of Ethanolysis Reaction of Palm Oil to Biodiesel Product Using Eggshells-Derived CaO as a Solid Heterogeneous Catalyst

The Optimized Conditions of Ethanolysis Reaction of Palm Oil to Biodiesel Product Using Eggshells-Derived CaO as a Solid Heterogeneous Catalyst The Optimized Conditions of Ethanolysis Reaction of Palm Oil to Biodiesel Product Using Eggshells-Derived CaO as a Solid Heterogeneous Catalyst Wuttichai Roschat a, b, *, Sunti Phewphong b, Kanokwan Najai

More information

TULSION BIODIESEL PRODUCTION: WET VS. DRY WHICH METHOD SHOULD YOU USE?

TULSION BIODIESEL PRODUCTION: WET VS. DRY WHICH METHOD SHOULD YOU USE? TULSION BIODIESEL PRODUCTION: WET VS. DRY WHICH METHOD SHOULD YOU USE? T-45 BD & T-45 BD Macro Background: Biodiesel fuel, a proven alternative to petroleum diesel, is commonly made via a transesterification

More information

PERFORMANCE EVALUATION OF C.I. ENGINE WITH COTTON SEED OIL

PERFORMANCE EVALUATION OF C.I. ENGINE WITH COTTON SEED OIL PERFORMANCE EVALUATION OF C.I. ENGINE WITH COTTON SEED OIL SHYAM KUMAR RANGANATHAN 1, ANIL GANDAMWAD 2 & MAYUR BAWANKURE 3 1,2&3 Mechanical Engineering, Jawaharlal Darda Engineering College, Yavatmal,

More information

Production and Comparative Characterization of Castor Biodiesel as Alternative Fuel for Diesel Engines

Production and Comparative Characterization of Castor Biodiesel as Alternative Fuel for Diesel Engines Production and Comparative Characterization of Castor Biodiesel as Alternative Fuel for Diesel Engines Dishika Jagga 1, S.K. Mahla 2 1 M.Tech student at Thapar University, Patiala 2 Thapar University,

More information