CHAPTER 4 PRODUCTION OF BIODIESEL

Size: px
Start display at page:

Download "CHAPTER 4 PRODUCTION OF BIODIESEL"

Transcription

1 56 CHAPTER 4 PRODUCTION OF BIODIESEL 4.1 INTRODUCTION Biodiesel has been produced on a large scale in the European Union (EU) since 1992 (European Biodiesel Board 2008) and in the United States of America (USA) since 1993 (National Biodiesel Board 2008). Today, there are 120 plants in the EU and 165 plants in the USA, annually producing almost 6900 and 7100 million liters of biodiesel, respectively. The most common feedstock of biodiesel is rapeseed oil in Europe and soybean oil in the USA (Canakci 2007). The feedstock, alcohol and catalyst used in biodiesel production affect the biodiesel fuel properties. The fuel properties of biodiesel must meet EN specifications in Europe and American Society of Testing and Materials (ASTM) D-6751 specifications in the USA, shown in Table 4.1. No separate ASTM quality specifications currently exist for biodiesel when blended with fossil-derived fuels (Terry et al 2006). When these limits are met, biodiesel can be used in the most modern engines without any modification while maintaining the engine s durability and reliability (Gerpen 2005). 4.2 BIODIESEL PRODUCTION METHODS Neat vegetable oils are not suitable as fuel for diesel engines; hence they have to be modified to bring their combustion-related properties closer to those of mineral diesel. The fuel modification is mainly aimed at reducing the viscosity to get rid of flow and combustion-related problems. Considerable

2 57 efforts have been made so far to develop vegetable oil derivatives that approximate the properties and performance of hydrocarbon based fuels. In this section the various possible methods of producing biodiesel from vegetable oils are discussed. Table 4.1 Biodiesel standards, test methods and limits Property (units) ASTM 6751 test Methods ASTM 6751 Limits IS15607 test Methods IS15607 limits Flash point ( C) D-93 Min130 IS 1448 P:21 Min C (cst) D IS 1448 P: Sulfated ash (% mass) D-874 Max0.02 IS 1448 P:4 Max0.02 Sulfur (% mass) D-5453 Max0.05 ASTM D 5453 Max0.005 Cloud point ( C) D N.A IS 1448 P:10 N.A Cu corrosion D-130 Max 3 IS 1448 P: 15 Max 1 Cetane number D-630 Min 47 IS 1448 P:9 Min 51 Water, sediment (vol. %) D-2709 Max 0.05 D-2709 Max 0.05 CCR 100% (% mass) D-4530 Max 0.05 D-4530 Max 0.05 Neutralization value (mgkoh/g) D-664 Max 0.80 IS 1448 P:1 Max 0.50 Free glycerin (% mass) D-6584 Max 0.02 D-6584 Max 0.02 Total glycerin (% mass) D-6584 Max 0.24 D-6584 Max 0.25 Phosphorus (% mass) D-4951 Max0.001 D-4951 Max0.001 Distillation temperature C D % at 360 C Oxidation stability (hrs) N.A N.A EN Min 6h Thermal Cracking Thermal cracking or pyrolysis is the conversion of one substance into another by means of applying heat i.e. heating in the absence of air or oxygen with temperatures ranging from 450 to 850 o C. In some situations a catalyst is used as an aid to the reaction leading to the cleavage of chemical

3 58 bonds to yield smaller molecules. Unlike direct blending, fats can be pyrolysised (Demirbas 2000). The pyrolysis of fats has been investigated for over a hundred years, especially in countries where there is a shortage of petroleum deposits. Typical catalysts that can be employed in pyrolysis are SiO 2 and Al 2 O 3. Although, the products are chemically similar to pyro chemically based diesel, oxygen removal from the process decreases the products benefit of being an oxygenated fuel. This decreases its environment benefits and generally produces fuel more similar in properties to gasoline than diesel, with the addition of some low value materials Hydrolysis The hydrolysis of lipids forms a heterogeneous reaction system made up of two liquid phases. The dispersed aqueous phase consists of water and glycerol and the homogenous lipid phase consists of fatty acids and glycerides. The hydrolysis of glycerides takes place in the lipid phase in several stages via partial glycerides (di-glycerides and mono-glycerides). Zinc oxide in its soap form has been suggested to be the most active catalyst for hydrolysis reactions. Reaction without a catalyst is not economical below 210 o C, thus requiring the implication of high temperature, pressure techniques (Minami and Saka 2006). Modern continuous plants operate at pressures between 0.6 MPa and 1.2 MPa at 210 o C to 260 o C without a catalyst. This increased pressure allows the mutual solubility of the two phases Using Biocatalysts Biocatalysts are usually lipases; however, conditions need to be well controlled to maintain the activity of the catalyst (Rathore and Madras 2007, Modi et al 2007). Hydrolytic enzymes are generally used as biocatalysts as they are readily available and are easily handled. They are stable, do not

4 59 require co-enzymes and will often tolerate organic solvents, their potential for region-selective and especially for enantio-selective synthesis makes them valuable tools. Recent patents and articles have shown that reaction yields and times are still unfavorable compared to base-catalyzed transesterification for commercial application Catalyst Free Process Transesterification will occur without the aid of a catalyst; however, at temperatures below 300 o C, the reaction rate is very low (Ma et al 1998). It has been said that there are, from a broad perspective, two methods for producing biodiesel and that is with and without a catalyst Supercritical Methanol The study of the transesterification of rapeseed oil with supercritical methanol was found to be very effective (Hansen and Jasen 1997, Bala 2001, Saka and Kusdiana 2001, Demirbas 2003) and gave a conversion of about 95% within 4 minutes. A reaction temperature of 350 o C, pressure of 30 MPa and a ratio of 42:1 of methanol to oil for 4 min were found to be the best reaction conditions. The rate was substantially high from 300 to 500 o C but at temperatures above 400 o C it was found that thermal degradation takes place. Supercritical treatment of lipids with a suitable solvent such as methanol relies on the relationship between temperature, pressure and the thermo physical properties such as dielectric constant, viscosity, specific weight and polarity (Kusdiana and Saka 2001, Demirbas 2005, Bala 2005) Transesterification of Raw Oil Transesterification is the general term used to describe the important class of organic reactions, where the triglyceride reacts with an alcohol to

5 60 form esters and glycerol as shown in Figure 4.1, which is also called as alcoholysis. The transesterification is an equilibrium reaction and the transformation occurs by mixing the reactants. However, the presence of a catalyst accelerates considerably the adjustment of the equilibrium. The basic constituent of vegetable oil is triglyceride. Vegetable oils comprise of 90 to 98% triglycerides and small amounts of mono-glycerides, di-glycerides and free fatty acids. In the transesterification of vegetable oils, a triglyceride reacts with an alcohol in the presence of a strong acid or base, producing a mixture of fatty acid alkyl esters and glycerol. The overall process is a sequence of three consecutive and reversible reactions in which di-glycerides and monoglycerides are formed as intermediates. The stoichiometric reaction requires one mole of triglyceride and three moles of alcohol. However, an excess of alcohol is used to increase the yields of alkyl esters and to allow phase separation from the glycerol formed. CH 2 OCOR 1 CH 2 OH R 1 COOCH 3 CHOCOR 2 3CH 3 OH Catalyst CHOH R 2 COOCH 3 CH 2 OCOR 3 CH 2 OH R 3 COOCH 3 Triglyceride Methanol Glycerol Methyl Figure 4.1 Chemistry of transesterification process Three types of catalysts, such as a strong alkali, a strong acid or an enzyme, can be used in the manufacturing process of the transesterification method. Almost all biodiesel fuels are produced by using base catalyzed transesterification process, as it is a simple process requiring only low temperature (Maa and Hanna 1999, Kalpande and Vikhe 2008), shorter reaction time and lesser amount of required catalyst (Lin and Lin 2006).

6 61 Hence, the strong alkali catalyst is widely used in the transesterification process to produce biodiesel. NaOH, due to its low cost is widely used in large scale transesterification (Agarwal 2007). In contrast, a strong acid catalyst generally needs a longer reaction time, but is adaptable to more kinds of reactant mixtures. For example, reactants containing a small amount of water and free fatty acids can still be transesterified to form biodiesel if a strong acid catalyst is used. The important factor that affects the transesterification reaction is the amount of alcohol and catalyst, reaction temperature and reaction time. A molar ratio of 6:1 is normally used in Figure. 4.2 Flow chart of transesterification process industrial processes to obtain ester yields higher than 98% by weight, because lower molar ratio requires more reaction time. With higher molar ratios,

7 62 conversion increased but recovery decreased due to poor separation of glycerol (Mehar et al 2006). Mostly methanol is used in this chemical reaction due to its superior advantages of high solubility in oil, fast reaction rate, good physical and chemical properties, and low cost (Korbitz 2000, Nagaraja and Kumar 2004, Sinha and Agarwal 2005, Lin and Lin 2006). Figure 4.2 shows the flow chart of the biodiesel production using transesterification process. Most researchers have used 1 to 0.5% NaOH or KOH by weight of oil for biodiesel production. If acid value is greater than 1, more catalyst is required to neutralize free fatty acids (Bala 2001). Many researchers have reported that alkali-catalyzed transesterification is much faster than acid catalyzed one and is more often used commercially (Babu and Devaradjane 2003, Barnwal and Sharma 2004). Veljkovic et al (2006) depicted the biodiesel production from tobacco (nicotiana tabacum L.) seed oil by a two-step process in which the acid-catalyzed esterification was followed by the base-catalyzed methanolysis. The first step reduced the FFA level to less than 2% in 25 min for molar ratio of 18:1. The second step converted the product of the first step into methyl ester and glycerol. Malaya Naik et al (2008) used a two-step process to produce biodiesel from pungamia pinnata oil and studied the effect of FFA level on production of biodiesel. Ester content of pungamia methyl esters was determined by high performance liquid chromatography. Holser and Kuru (2006) investigated milkweed (asclepias) seed oil as an alternative feed stock for the production of a biodiesel fuel. The authors concluded that conversion of this highly unsaturated oil into methyl ester is an easier process than conversion into its ethyl ester.

8 PRODUCTION PROCESS OF BIODIESEL Considering the availability of jatropha, pungamia, neem and other vegetable oil in the local areas, biodiesel processor based on the transesterification process was designed and fabricated which is shown in Figure 4.3. The process employed is the base-catalyzed process, where the transesterification of vegetable oils is faster than the acid-catalyzed reaction, together with the fact that alkaline catalysts are less corrosive than acidic compounds and is most often used commercially. 1. Stirrer 2. Heater 3. Control unit 4. Separating funnel Figure 4.3 Transesterification mini plant Effect of different parameters like temperature, molar ratio of alcohol to oil, catalyst, reaction time have been investigated by several researchers and it was found that for base catalyzed transesterification at atmospheric pressure, 55 to 60 o C temperature, 45 min to 1 hour reaction time and 6:1 molar ratio of alcohol to oil the yield was maximum (Freedman et al 1984, Marshall et al 1995, Akasaka et al 1997, Diasakou et al 1998, Marinkovic and Tomasevic 1998, Murayama et al 2000, Agarwal and Das 2001, Saka and Kustiana 2001, Agarwal et al 2003). Based on this, in the present work a temperature of 60 o C, 0.8% of sodium hydroxide (NaOH) as

9 64 catalyst on mass basis, 50 min as reaction time, and 6:1 molar ratio of methanol to oil was used as optimized parameters and biodiesel yield of 88% to 90% was obtained. Because the acid numbers of the vegetable oils were less than 1 mgkoh/g, there was no necessity to perform a pretreatment to the vegetable oil (Alptekin and Canakci 2008). The molecular weight of jatropha oil and palm oil is g/mol and g/mol. Every kg of jatropha oil requires 220 g of methanol while palm oil requires 230 g of methanol (6:1 molar ratio to oil). 1 kg of raw oil was pre-heated to remove water contents at about 100 o C in an appropriate vessel. After that it was filtered to remove any suspended particles. Required quantity of methanol and 8 g of NaOH were then mixed in a separate vessel to prepare sodium methoxide. Sodium methoxide was added to the pre-heated raw oil. The oil/sodium methoxide mixture was then agitated for 50 min at 60 o C and allowed to settle under gravity in a separating funnel. The methyl ester formed the upper layer in the separating funnel and glycerol formed the lower layer as shown in Figure 4.4. About 320 g of glycerol was separated from the mixture. The remaining separated ester was purified by washing it twice gently with 250 g of warm water and allowed to settle under gravity for 8 hours. The catalyst got dissolved in water, formed the lower layer, and was separated. The biodiesel obtained from raw oil had some impurities which were then separated using bubble washing method which is shown in Figure 4.5. After this final washing the biodiesel was again heated to remove excess alcohol and water at about 100 o C (Alptekin and Canakci 2008). Thus around 900 g of purified ester was obtained finally. The JME and PME thus obtained were then blended with petroleum diesel in various proportions for preparing biodiesel-diesel blends to be used in CI engine which was described in the forthcoming section. The level of blending with petroleum diesel is referred as Bxx, where xx indicates the amount of biodiesel in the blend (i.e. J20 blend means 20% JME and 80% diesel).

10 65 Figure 4.4 Separating funnel Figure 4.5 Bubble washing method 4.4 SUMMARY study: The following conclusions were made from the biodiesel production Out of various methods discussed in this section for the production of biodiesel, transesterification is the simplest and the most effective method that was used to produce JME from jatropha curcas oil. NaOH was used as catalyst due to its cost effectiveness and minimum reaction time. Methanol was used in the chemical reaction due to its high solubility with oil, fast reaction rate and low cost. A molar ratio of 6:1, transesterification temperature of 60 o C, 0.8% NaOH, reaction time of 50 min was used to attain maximum yield of 90%. To ascertain quality of biodiesel produced the important properties were measured and presented in the chapter 5.

SYNTHESIS OF BIODIESEL

SYNTHESIS OF BIODIESEL SYNTHESIS OF BIODIESEL AIM 1. To generate laboratory know-how for the process of production of biodiesel from the given oil feed stock 2. To perform basic mass and energy balance calculations for a large

More information

Optimization of Biodiesel production parameters (Pongamia pinnata oil) by. transesterification process,

Optimization of Biodiesel production parameters (Pongamia pinnata oil) by. transesterification process, Journal of Advanced & Applied Sciences (JAAS) Volume 03, Issue 03, Pages 84-88, 2015 ISSN: 2289-6260 Optimization of Biodiesel production parameters (Pongamia pinnata oil) by transesterification process

More information

Production of Biodiesel from Used Groundnut Oil from Bosso Market, Minna, Niger State, Nigeria

Production of Biodiesel from Used Groundnut Oil from Bosso Market, Minna, Niger State, Nigeria Production of Biodiesel from Used Groundnut Oil from Bosso Market, Minna, Niger State, Nigeria Alabadan B.A. Department of Agricultural and Bioresources Engineering, Federal University, Oye Ekiti. Ajayi

More information

What s s in your Tank?

What s s in your Tank? What s s in your Tank? Biodiesel Could Be The Answer! Matthew Brown Lakewood High School Tom Hersh Golden West Community College Overview What is biodiesel? Chemistry of biodiesel Safety Making Biodiesel

More information

A Renewable Diesel from Algae: Synthesis and Characterization of Biodiesel in Situ Transesterification of Chloro Phycophyta (Green Algea)

A Renewable Diesel from Algae: Synthesis and Characterization of Biodiesel in Situ Transesterification of Chloro Phycophyta (Green Algea) A Renewable Diesel from Algae: Synthesis and Characterization of Biodiesel in Situ Transesterification of Chloro Phycophyta (Green Algea) using Dodecane as a Solvent V.Naresh 1,S.Phabhakar 2, K.Annamalai

More information

JATROPHA AND KARANJ BIO-FUEL: AN ALTERNATE FUEL FOR DIESEL ENGINE

JATROPHA AND KARANJ BIO-FUEL: AN ALTERNATE FUEL FOR DIESEL ENGINE JATROPHA AND KARANJ BIO-FUEL: AN ALTERNATE FUEL FOR DIESEL ENGINE Surendra R. Kalbande and Subhash D. Vikhe College of Agricultural Engineering and Technology, Marathwada Agriculture University, Parbhani

More information

Project Reference No.: 40S_B_MTECH_007

Project Reference No.: 40S_B_MTECH_007 PRODUCTION OF BIODIESEL FROM DAIRY WASH WATER SCUM THROUGH HETEROGENEOUS CATALYST AND PERFORMANCE EVALUATION OF TBC DIESEL ENGINE FOR DIFFERENT DIESEL AND METHANOL BLEND RATIOS Project Reference No.: 40S_B_MTECH_007

More information

CHAPTER - 3 PREPARATION AND CHARACTERIZATION OF

CHAPTER - 3 PREPARATION AND CHARACTERIZATION OF 75 CHAPTER - 3 PREPARATION AND CHARACTERIZATION OF BIODIESEL FROM NON-EDIBLE VEGETABLE OILS Table of Contents Chapter 3: PREPARATION AND CHARACTERIZATION OF BIODIESEL FROM NON-EDIBLE VEGETABLE OILS S.

More information

V.Venkatakranthi Teja. N S Raju Institute of Technology (NSRIT), Sontyam, Visakhapatnam, Andhra Pradesh , India.

V.Venkatakranthi Teja. N S Raju Institute of Technology (NSRIT), Sontyam, Visakhapatnam, Andhra Pradesh , India. Preparation of Waste Cooking Oil as Alternative Fuel and Experimental Investigation Using Bio-Diesel Setup a Comparative Study with Single Cylinder Diesel Engine Mr.S.Sanyasi Rao Pradesh - 531173, India.

More information

Methanol recovery during transesterification of palm oil in a TiO2/Al2O3 membrane reactor: Experimental study and neural network modeling

Methanol recovery during transesterification of palm oil in a TiO2/Al2O3 membrane reactor: Experimental study and neural network modeling University of Malaya From the SelectedWorks of Abdul Aziz Abdul Raman 2010 Methanol recovery during transesterification of palm oil in a TiO2/Al2O3 membrane reactor: Experimental study and neural network

More information

This presentation focuses on Biodiesel, scientifically called FAME (Fatty Acid Methyl Ester); a fuel different in either perspective.

This presentation focuses on Biodiesel, scientifically called FAME (Fatty Acid Methyl Ester); a fuel different in either perspective. Today, we know a huge variety of so-called alternative fuels which are usually regarded as biofuels, even though this is not always true. Alternative fuels can replace fossil fuels in existing combustion

More information

Effects Of Free Fatty Acids, Water Content And Co- Solvent On Biodiesel Production By Supercritical Methanol Reaction

Effects Of Free Fatty Acids, Water Content And Co- Solvent On Biodiesel Production By Supercritical Methanol Reaction Effects Of Free Fatty Acids, Water Content And Co- Solvent On Biodiesel Production By Supercritical Methanol Reaction Kok Tat Tan*, Keat Teong Lee, Abdul Rahman Mohamed School of Chemical Engineering,

More information

PERFORMANCE AND EMISSION CHARACTERISTICS OF DIESEL ENGINE USING RICE BRAN OIL METHYL ESTER BLEND WITH ADITIVE DIETHYL ETHER (DEE)

PERFORMANCE AND EMISSION CHARACTERISTICS OF DIESEL ENGINE USING RICE BRAN OIL METHYL ESTER BLEND WITH ADITIVE DIETHYL ETHER (DEE) International Journal of Science, Engineering and Technology Research (IJSETR), Volume 3, Issue 2, February 214 PERFORMANCE AND EMISSION CHARACTERISTICS OF DIESEL ENGINE USING RICE BRAN OIL METHYL ESTER

More information

NEDO Biodiesel Production Process by Supercritical Methanol Technologies. Shiro Saka

NEDO Biodiesel Production Process by Supercritical Methanol Technologies. Shiro Saka November 22, 2006 (9:30-9:45) The 2nd Joint International Conference on Sustainable Energy and Development (SEE2006) Bangkok, Thailand NEDO Biodiesel Production Process by Supercritical Methanol Technologies

More information

Biodiesel from soybean oil in supercritical methanol with co-solvent

Biodiesel from soybean oil in supercritical methanol with co-solvent Available online at www.sciencedirect.com Energy Conversion and Management 49 (28) 98 912 www.elsevier.com/locate/enconman Biodiesel from soybean oil in supercritical methanol with co-solvent Jian-Zhong

More information

Technologies for Biodiesel Production from Non-edible Oils: A Review

Technologies for Biodiesel Production from Non-edible Oils: A Review Indian Journal of Energy, Vol 2(6), 129 133, June 2013 Technologies for Production from Non-edible ils: A Review V. R. Kattimani 1* and B. M. Venkatesha 2 1 Department of Chemistry, Yuvaraja s College,

More information

CHAPTER 4 BIODIESEL - THEVETIA PERUVIANA SEED OIL

CHAPTER 4 BIODIESEL - THEVETIA PERUVIANA SEED OIL 29 CHAPTER 4 BIODIESEL - THEVETIA PERUVIANA SEED OIL 4.1 INTRODUCTION Under Indian conditions plant varieties, which are non-edible and which can be grown abundantly in large-scale on wastelands, can be

More information

BIODIESEL DEVELOPMENT FROM HIGH FREE FATTY ACID PUNNAKKA OIL

BIODIESEL DEVELOPMENT FROM HIGH FREE FATTY ACID PUNNAKKA OIL BIODIESEL DEVELOPMENT FROM HIGH FREE FATTY ACID PUNNAKKA OIL Ramaraju A. and Ashok Kumar T. V. Department of Mechanical Engineering, National Institute of Technology, Calicut, Kerala, India E-Mail: ashokkumarcec@gmail.com

More information

DAVI DOS SANTOS, STEPHEN MONTGOMERY, ANN NUNNELLEY, MD NURUDDIN BSEN 5540/6540: BIOMASS AND BIOFUELS BIODIESEL PRODUCTION FROM VEGETABLE OIL GROUP:

DAVI DOS SANTOS, STEPHEN MONTGOMERY, ANN NUNNELLEY, MD NURUDDIN BSEN 5540/6540: BIOMASS AND BIOFUELS BIODIESEL PRODUCTION FROM VEGETABLE OIL GROUP: DAVI DOS SANTOS, STEPHEN MONTGOMERY, ANN NUNNELLEY, MD NURUDDIN BSEN 5540/6540: BIOMASS AND BIOFUELS BIODIESEL PRODUCTION FROM VEGETABLE OIL GROUP: POPLAR 13 NOVEMBER, 2015 Table of Contents Introduction

More information

4. Synthesis of Biodiesel from Palm Fatty Acid Distillate. Research Article

4. Synthesis of Biodiesel from Palm Fatty Acid Distillate. Research Article 4. Synthesis of Biodiesel from Palm Fatty Acid Distillate Research Article Abstract Tarun Kataria Third Year Bachelor of Technology Department of Oils, Oleochemicals & Surfactant Technology Palm fatty

More information

What is Biodiesel? Biodiesel consists of alkyl-esters derived from a biological source

What is Biodiesel? Biodiesel consists of alkyl-esters derived from a biological source Biodiesel What is Biodiesel? Biodiesel consists of alkyl-esters derived from a biological source Biodiesel can be used as a fuel in compression ignition engines (i.e. diesels) Can be blended with petroleum

More information

Production of Biodiesel Fuel from Waste Soya bean Cooking Oil by Alkali Trans-esterification Process

Production of Biodiesel Fuel from Waste Soya bean Cooking Oil by Alkali Trans-esterification Process Current World Environment Vol. 11(1), 260-266 (2016) Production of Biodiesel Fuel from Waste Soya bean Cooking Oil by Alkali Trans-esterification Process Ajinkya Dipak Deshpande*, Pratiksinh Dilipsinh

More information

PERFORMANCE OF DIESEL ENGINE USING JATROPHA CURCAS BIO-DIESEL

PERFORMANCE OF DIESEL ENGINE USING JATROPHA CURCAS BIO-DIESEL Journal of KONES Powertrain and Transport, Vol. 15, No. 4 28 PERFORMANCE OF DIESEL ENGINE USING JATROPHA CURCAS BIO-DIESEL Dr (Miss) S L Sinha Mr Vinay Kumar Kar 2 Reader, National Institute of Technology

More information

Use of Sunflower and Cottonseed Oil to prepare Biodiesel by catalyst assisted Transesterification

Use of Sunflower and Cottonseed Oil to prepare Biodiesel by catalyst assisted Transesterification Research Journal of Chemical Sciences ISSN 2231-606X Use of Sunflower and Oil to prepare Biodiesel by catalyst assisted Transesterification Abstract *Patni Neha, Bhomia Chintan, Dasgupta Pallavi and Tripathi

More information

Abstract Process Economics Program Report 251 BIODIESEL PRODUCTION (November 2004)

Abstract Process Economics Program Report 251 BIODIESEL PRODUCTION (November 2004) Abstract Process Economics Program Report 251 BIODIESEL PRODUCTION (November 2004) Biodiesel is an ester of fatty acids produced from renewable resources such as virgin vegetable oil, animal fats and used

More information

Published in Offshore World, April-May 2006 Archived in

Published in Offshore World, April-May 2006 Archived in Published in Offshore World, April-May 2006 Archived in Dspace@nitr, http://dspace.nitrkl.ac.in/dspace Preparation of karanja oil methyl ester. R. K. Singh *, A. Kiran Kumar and S. Sethi Department of

More information

Available online at ScienceDirect. Procedia Engineering 105 (2015 )

Available online at   ScienceDirect. Procedia Engineering 105 (2015 ) Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 15 (215 ) 638 645 6th BSME International Conference on Thermal Engineering (ICTE 214) Production of Biodiesel Using Alkaline

More information

POLLUTION CONTROL AND INCREASING EFFICIENCY OF DIESEL ENGINE USING BIODIESEL

POLLUTION CONTROL AND INCREASING EFFICIENCY OF DIESEL ENGINE USING BIODIESEL POLLUTION CONTROL AND INCREASING EFFICIENCY OF DIESEL ENGINE USING BIODIESEL Deepu T 1, Pradeesh A.R. 2, Vishnu Viswanath K 3 1, 2, Asst. Professors, Dept. of Mechanical Engineering, Ammini College of

More information

Performance and Emission Evaluation of a Diesel Engine Fueled with Methyl Esters of Tobacco Seed Oil

Performance and Emission Evaluation of a Diesel Engine Fueled with Methyl Esters of Tobacco Seed Oil International Performance Journal and Emission of Product Evaluation Design of a Diesel Engine ueled with Methyl... January-June 2011, Volume 1, Number 1, pp. 63 75 Performance and Emission Evaluation

More information

PERFORMANCE AND EMISSION TEST OF CANOLA AND NEEM BIO-OIL BLEND WITH DIESEL

PERFORMANCE AND EMISSION TEST OF CANOLA AND NEEM BIO-OIL BLEND WITH DIESEL PERFORMANCE AND EMISSION TEST OF CANOLA AND NEEM BIO-OIL BLEND WITH DIESEL MR.N.BALASUBRAMANI 1, M.THANASEGAR 2, R.SRIDHAR RAJ 2, K.PRASANTH 2, A.RAJESH KUMAR 2. 1Asst. Professor, Dept. of Mechanical Engineering,

More information

Study of Transesterification Reaction Using Batch Reactor

Study of Transesterification Reaction Using Batch Reactor Study of Transesterification Reaction Using Batch Reactor 1 Mehul M. Marvania, 2 Prof. Milap G. Nayak 1 PG. Student, 2 Assistant professor Chemical engineering department Vishwakarma Government engineering

More information

Biodiesel. As fossil fuels become increasingly expensive to extract and produce, bio-diesel is

Biodiesel. As fossil fuels become increasingly expensive to extract and produce, bio-diesel is Aaron Paternoster CHEM 380 10D Prof. Laurie Grove January 30, 2015 Biodiesel Introduction As fossil fuels become increasingly expensive to extract and produce, bio-diesel is proving to be an economically

More information

Palm Fatty Acids Esterification on Heterogeneous Catalysis

Palm Fatty Acids Esterification on Heterogeneous Catalysis Palm Fatty Acids Esterification on Heterogeneous Catalysis Prof. Donato Aranda,Ph.D Laboratório Greentec Escola Nacional de Química Federal University Rio de Janeiro Tomar, Bioenergy I March, 2006 Fossil

More information

BIODIESEL PRODUCTION BY A CONTINUOUS PROCESS USING A HETEROGENEOUS CATALYST

BIODIESEL PRODUCTION BY A CONTINUOUS PROCESS USING A HETEROGENEOUS CATALYST J. Curr. Chem. Pharm. Sc.: 2(1), 2012, 12-16 ISSN 2277-2871 BIODIESEL PRODUCTION BY A CONTINUOUS PROCESS USING A HETEROGENEOUS CATALYST SHARDA D. NAGE *, K. S. KULKARNI, A. D. KULKARNI and NIRAJ S. TOPARE

More information

Development and Characterization of Biodiesel from Non-edible Vegetable Oils of Indian Origin

Development and Characterization of Biodiesel from Non-edible Vegetable Oils of Indian Origin Development and Characterization of Biodiesel from Non-edible Vegetable ils of Indian rigin Shailendra Sinha, Avinash Kumar Agarwal Y Department of Mechanical Engineering Indian Institute of Technology

More information

8/3/2012 SIF: Energy School 2012,Varenna. Omar Said

8/3/2012 SIF: Energy School 2012,Varenna. Omar Said Omar Said Introduction to myself Name: Omar Said (I am in Petroleum and Petrochemicals Engineering senior student Cairo University). Experience : Schlumberger oil service company trainee (wire line segment).

More information

Cataldo De Blasio, Dr. Sc. (Tech.)

Cataldo De Blasio, Dr. Sc. (Tech.) Biodiesel Cataldo De Blasio, Dr. Sc. (Tech.) Aalto University, School of Engineering. Department of Mechanical Engineering. Laboratory of Energy Engineering and Environmental Protection. Sähkömiehentie

More information

COMPARISON OF TOTAL ENERGY CONSUMPTION NECESSARY FOR SUBCRITICAL AND SUBCRITICAL SYNTHESIS OF BIODIESEL. S. Glisic 1, 2*, D.

COMPARISON OF TOTAL ENERGY CONSUMPTION NECESSARY FOR SUBCRITICAL AND SUBCRITICAL SYNTHESIS OF BIODIESEL. S. Glisic 1, 2*, D. COMPARISON OF TOTAL ENERGY CONSUMPTION NECESSARY FOR SUBCRITICAL AND SUBCRITICAL SYNTHESIS OF BIODIESEL S. Glisic 1, 2*, D. Skala 1, 2 1 Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva

More information

ASTM D Standard Specification for Biodiesel Fuel (B 100) Blend Stock for Distillate Fuels

ASTM D Standard Specification for Biodiesel Fuel (B 100) Blend Stock for Distillate Fuels ASTM D 6751 02 Standard Specification for Biodiesel Fuel (B 100) Blend Stock for Distillate Fuels Summary This module describes the key elements in ASTM Specifications and Standard Test Methods ASTM Specification

More information

Alkaline Catalytic Transesterification for Palm Oil Biodiesel and Characterisation of Palm Oil Biodiesel

Alkaline Catalytic Transesterification for Palm Oil Biodiesel and Characterisation of Palm Oil Biodiesel Journal of Biofuels DOI : 10.5958/j.0976-4763.4.2.010 Vol. 4 Issue 2, July-December 2013 pp. 79-87 Alkaline Catalytic Transesterification for Palm Oil Biodiesel and Characterisation of Palm Oil Biodiesel

More information

Emission Analysis Of The Biodiesel From Papaya And Chicken Blends

Emission Analysis Of The Biodiesel From Papaya And Chicken Blends Research Paper Volume 2 Issue 7 March 2015 International Journal of Informative & Futuristic Research ISSN (Online): 2347-1697 Emission Analysis Of The Biodiesel From Paper ID IJIFR/ V2/ E7/ 059 Page No.

More information

BIODIESEL PRODUCTION FROM JATROPHA CURCAS OIL

BIODIESEL PRODUCTION FROM JATROPHA CURCAS OIL Int. J. Chem. Sci.: 9(4), 2011, 1607-1612 ISSN 0972-768X www.sadgurupublications.com BIDIESEL PRDUCTIN FRM JATRPHA CURCAS IL NIRAJ S. TPARE *, SHRUTI G. CHPADE, SUNITA J. RAUT, V. C. RENGE a, SATISH V.

More information

address: (K. A. Younis), (J. L. Ismail Agha), (K. S.

address: (K. A. Younis), (J. L. Ismail Agha), (K. S. American Journal of Applied Chemistry 2014; 2(6): 105-111 Published online November 28, 2014 (http://www.sciencepublishinggroup.com/j/ajac) doi: 10.11648/j.ajac.20140206.12 ISSN: 2330-8753 (Print); ISSN:

More information

A Novel Non-catalytic Biodiesel Production Process by Supercritical Methanol as NEDO High Efficiency Bioenergy Conversion Project

A Novel Non-catalytic Biodiesel Production Process by Supercritical Methanol as NEDO High Efficiency Bioenergy Conversion Project A Novel Non-catalytic Biodiesel Production Process by Supercritical Methanol as NEDO High Efficiency Bioenergy Conversion Project Shiro Saka * and Eiji Minami Graduate School of Energy Science, Kyoto University,

More information

Emission Analysis of Biodiesel from Chicken Bone Powder

Emission Analysis of Biodiesel from Chicken Bone Powder Research Paper Volume 2 Issue 7 March 2015 International Journal of Informative & Futuristic Research ISSN (Online): 2347-1697 Emission Analysis of Biodiesel from Chicken Paper ID IJIFR/ V2/ E7/ 058 Page

More information

Experimental Analysis of Cotton Seed oil Biodiesel in a Compression Ignition Engine

Experimental Analysis of Cotton Seed oil Biodiesel in a Compression Ignition Engine Volume 6, Issue 3, March 217, ISSN: 2278-7798 Experimental Analysis of Cotton Seed oil Biodiesel in a Compression Ignition Engine Allen Jeffrey.J 1,Kiran Kumar.S 2,Antonynishanthraj.R 3,Arivoli.N 4,Balakrishnan.P

More information

PROJECT REFERENCE NO.: 39S_R_MTECH_1508

PROJECT REFERENCE NO.: 39S_R_MTECH_1508 DEVELOPMENT OF AGRICULTURAL WASTE BASED HETEROGENEOUS CATALYST FOR PRODUCTION OF BIODIESEL FROM MIXED WASTE COOKING OIL AND ITS PERFORMANCE ON DIESEL ENGINE PROJECT REFERENCE NO.: 39S_R_MTECH_1508 COLLEGE

More information

TULSION BIODIESEL PRODUCTION: WET VS. DRY WHICH METHOD SHOULD YOU USE?

TULSION BIODIESEL PRODUCTION: WET VS. DRY WHICH METHOD SHOULD YOU USE? TULSION BIODIESEL PRODUCTION: WET VS. DRY WHICH METHOD SHOULD YOU USE? T-45 BD & T-45 BD Macro Background: Biodiesel fuel, a proven alternative to petroleum diesel, is commonly made via a transesterification

More information

Effect of Catalysts and their Concentrations on Biodiesel Production from Waste Cooking Oil via Ultrasonic-Assisted Transesterification

Effect of Catalysts and their Concentrations on Biodiesel Production from Waste Cooking Oil via Ultrasonic-Assisted Transesterification Paper Code: ee016 TIChE International Conference 2011 Effect of Catalysts and their Concentrations on Biodiesel Production from Waste Cooking Oil via Ultrasonic-Assisted Transesterification Prince N. Amaniampong

More information

Biofuels and characteristics

Biofuels and characteristics Lecture-16 Biofuels and characteristics Biofuels and Ethanol Biofuels are transportation fuels like ethanol and biodiesel that are made from biomass materials. These fuels are usually blended with petroleum

More information

AN EXPERIMENTAL INVESTIGATION ON THE PERFORMANCE CHARACTERISTIC OF C.I ENGINE USING MULTIPLE BLENDS OF METHYL CASTOR OIL IN DIFFERENT PISTON SHAPES

AN EXPERIMENTAL INVESTIGATION ON THE PERFORMANCE CHARACTERISTIC OF C.I ENGINE USING MULTIPLE BLENDS OF METHYL CASTOR OIL IN DIFFERENT PISTON SHAPES AN EXPERIMENTAL INVESTIGATION ON THE PERFORMANCE CHARACTERISTIC OF C.I ENGINE USING MULTIPLE BLENDS OF METHYL CASTOR OIL IN DIFFERENT PISTON SHAPES *Vincent.H.Wilson, **V.Yalini * Dean, Department of Mechanical

More information

Process optimization for production of biodiesel from croton oil using two-stage process

Process optimization for production of biodiesel from croton oil using two-stage process IOSR Journal of Environmental Science, Toxicology and Food Technology (IOSR-JESTFT) e-issn: 2319-2402,p- ISSN: 2319-2399.Volume 8, Issue 11 Ver. III (Nov. 2014), PP 49-54 Process optimization for production

More information

Material Science Research India Vol. 7(1), (2010)

Material Science Research India Vol. 7(1), (2010) Material Science Research India Vol. 7(1), 201-207 (2010) Influence of injection timing on the performance, emissions, combustion analysis and sound characteristics of Nerium biodiesel operated single

More information

CHAPTER 3 VEGETABLE OIL, BIODIESEL AND OXYGENATES AN OVERVIEW

CHAPTER 3 VEGETABLE OIL, BIODIESEL AND OXYGENATES AN OVERVIEW 38 CHAPTER 3 VEGETABLE OIL, BIODIESEL AND OXYGENATES AN OVERVIEW 3.1 VEGETABLE OIL AND ITS BLENDS Vegetable fats and oils are lipid materials derived from plants. Physically, oils are liquid at room temperature,

More information

BIODIESEL PRODUCTION IN A BATCH REACTOR 1. THEORY

BIODIESEL PRODUCTION IN A BATCH REACTOR 1. THEORY BIODIESEL PRODUCTION IN A BATCH REACTOR Date: September-November, 2017. Biodiesel is obtained through transesterification reaction of soybean oil by methanol, using sodium hydroxide as a catalyst. The

More information

Chemistry of Biodiesel: The beauty of Transesterfication

Chemistry of Biodiesel: The beauty of Transesterfication Chemistry of Biodiesel: The beauty of Transesterfication Organic Chemistry Terms & Definitions Acid- A corrosive substance that liberates hydrogen ions (H + ) in water. ph lower than 7. Base- A caustic

More information

An Initial Investigation on Production of Biodiesel from Ayurvedic Waste Oil

An Initial Investigation on Production of Biodiesel from Ayurvedic Waste Oil An Initial Investigation on Production of Biodiesel from Ayurvedic Waste Oil Lakshmi T. R. 1, Shamnamol G. K. 2 P. G. Student, Department of Biotechnology and Biochemical Engineering, Sree Buddha College

More information

JJMIE Jordan Journal of Mechanical and Industrial Engineering

JJMIE Jordan Journal of Mechanical and Industrial Engineering JJMIE Jordan Journal of Mechanical and Industrial Engineering Volume 2, Number 2, Jun. 28 ISSN 199-666 Pages 117-122 Experimental Investigation of, and Methyl Esters as Biodiesel on C.I. Engine T. Venkateswara

More information

Characterization of Crude Glycerol from Biodiesel Produced from Cashew, Melon and Rubber Oils.

Characterization of Crude Glycerol from Biodiesel Produced from Cashew, Melon and Rubber Oils. Characterization of Crude Glycerol from Biodiesel Produced from Cashew, Melon and Rubber Oils. Otu, F.I 1,a ; Otoikhian, S.K. 2,b and Ohiro, E. 3,c 1 Department of Mechanical Engineering, Federal University

More information

Experimental Investigation On Performance And Emission Characteristics Of A Diesel Engine Fuelled With Karanja Oil Methyl Ester Using Additive

Experimental Investigation On Performance And Emission Characteristics Of A Diesel Engine Fuelled With Karanja Oil Methyl Ester Using Additive Experimental Investigation On Performance And Emission Characteristics Of A Engine Fuelled With Karanja Oil Methyl Ester Using Additive Swarup Kumar Nayak 1,*, Sibakanta Sahu 1, Saipad Sahu 1, Pallavi

More information

Effect of Co-solvents on Transesterification of Refined Palm Oil in Supercritical Methanol

Effect of Co-solvents on Transesterification of Refined Palm Oil in Supercritical Methanol Effect of Co-solvents on Transesterification of Refined Palm Oil in Supercritical Methanol Narupon Jomtib 1, Chattip Prommuak 1, Motonobu Goto 2, Mitsuru Sasaki 2, and Artiwan Shotipruk 1, * 1 Department

More information

Biodiesell productionn withh Lewatit GF202 Lewatit GF202

Biodiesell productionn withh Lewatit GF202 Lewatit GF202 Biodiesel production with Lewatit GF202 Lewatit GF202 Biodiesel production with Lewatit GF202 Removal of glycerine & soaps with Lewatit GF202 No water wash necessary Reduces investment and operating costs

More information

Green chemistry in the first year lab: Using biodiesel to teach general chemistry principles. Overview:

Green chemistry in the first year lab: Using biodiesel to teach general chemistry principles. Overview: Green chemistry in the first year lab: Using biodiesel to teach general chemistry principles Richard artmann Nazareth ollege hemistry Department verview:! What is green chemistry?! What is Biodiesel?!

More information

The Purification Feasibilityof GlycerinProduced During

The Purification Feasibilityof GlycerinProduced During The Purification Feasibilityof GlycerinProduced During BiodieselProduction S. Soulayman, F. Mustafa, and A. Hadbah Higher Institute for Applied Sciences and technology, Damascus, P.O. Box 31983, Syria,

More information

CHAPTER 5 FUEL CHARACTERISTICS

CHAPTER 5 FUEL CHARACTERISTICS 66 CHAPTER 5 FUEL CHARACTERISTICS 5.1 EVALUATION OF PROPERTIES OF FUELS TESTED The important properties of biodiesel, biodiesel-diesel blends, biodiesel-ethanol blends, biodiesel-methanol blends and biodiesel-ethanoldiesel

More information

Use of Palm oil Biodiesel Blends as a Fuel for Compression Ignition Engine

Use of Palm oil Biodiesel Blends as a Fuel for Compression Ignition Engine American Journal of Applied Sciences 8 (11): 1154-1158, 2011 ISSN 1546-9239 2011 Science Publications Use of Palm oil Biodiesel Blends as a Fuel for Compression Ignition Engine 1 B. Deepanraj, 1 C. Dhanesh,

More information

KINETIC MODEL OF ALGAL BIODIESEL PRODUCTION UNDER SUPERCRITICAL METHANOLYSIS

KINETIC MODEL OF ALGAL BIODIESEL PRODUCTION UNDER SUPERCRITICAL METHANOLYSIS KINETIC MODEL OF ALGAL BIODIESEL PRODUCTION UNDER SUPERCRITICAL METHANOLYSIS Ashraf Amin, S. A. AboEl-Enin, G. El Diwani and S. Hawash Department of Chemical Engineering and Pilot Plant, National Research

More information

Department of Mechanical Engineering, JSPM s Imperial College of Engineering & Research, Wagholi, Pune-14, India

Department of Mechanical Engineering, JSPM s Imperial College of Engineering & Research, Wagholi, Pune-14, India International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347 5161 2016 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article An experimental

More information

Production and Properties of Biodistillate Transportation Fuels

Production and Properties of Biodistillate Transportation Fuels Production and Properties of Biodistillate Transportation Fuels AWMA International Specialty Conference: Leapfrogging Opportunities for Air Quality Improvement May 10-14, 2010 Xi an, Shaanxi Province,

More information

Production of Methyl Ester from Mixed Oil (Dairy Waste Scum & Karanja Oil)

Production of Methyl Ester from Mixed Oil (Dairy Waste Scum & Karanja Oil) Production of Methyl Ester from Mixed Oil (Dairy Waste Scum & Karanja Oil) Omkaresh B R 1, Yatish K. V. 2, R. Suresh 3 1 Assistant Professor, Department Mechanical Engineering, SIT, Tumakuru, Karnataka,

More information

Comparison of Performance of Castor and Mustard Oil with Diesel in a Single and Twin Cylinder Kirsloskar Diesel Engine

Comparison of Performance of Castor and Mustard Oil with Diesel in a Single and Twin Cylinder Kirsloskar Diesel Engine International Journal of Engineering Research and Technology. ISSN 0974-3154 Volume 6, Number 2 (2013), pp. 237-241 International Research Publication House http://www.irphouse.com Comparison of Performance

More information

Quantitative Analysis of Chemical Compositions from Various Sources of Crude Glycerine

Quantitative Analysis of Chemical Compositions from Various Sources of Crude Glycerine CMU.J.Nat.Sci.Special Issue on Agricultural & Natural Resources (2012) Vol.11 (1) 157 Quantitative Analysis of Chemical Compositions from Various Sources of Crude Glycerine Adisorn Settapong * and Chaiyawan

More information

PRODUCTION OF BIODIESEL USING THE ONE STEP ALKALI-CATALYZED METHOD

PRODUCTION OF BIODIESEL USING THE ONE STEP ALKALI-CATALYZED METHOD PRODUCTION OF BIODIESEL USING THE ONE STEP ALKALI-CATALYZED METHOD SINTEI EBITEI AND TRUST PROSPER GBORIENEMI Department of Chemical Engineering, Federal Polytechnic, Ekowe Bayelsa State, Nigeria. ABSTRACT

More information

Some Basic Questions about Biodiesel Production

Some Basic Questions about Biodiesel Production Some Basic Questions about Biodiesel Production Jon Van Gerpen Department of Biological and Agricultural Engineering University of Idaho 2012 Collective Biofuels Conference Temecula, CA August 17-19, 2012

More information

International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: Vol.8, No.4, pp , 2015

International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: Vol.8, No.4, pp , 2015 International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: 0974-4290 Vol.8, No.4, pp 1695-1700, 2015 Microwave Assisted to Biodiesel Production From Palm Oil In Time And Material Feeding Frequency

More information

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION 1 CHAPTER 1 INTRODUCTION 1.1 GENERAL With a rapid increase in the demand of fossil fuel, decrease in the availability of crude oil supplies and greater environmental stringent norms on pollution has created

More information

Determination of phase diagram of reaction system of biodiesel

Determination of phase diagram of reaction system of biodiesel 324 FEED AND INDUSTRIAL RAW MATERIAL: Industrial Materials and Biofuel Determination of phase diagram of reaction system of biodiesel LIU Ye, YANG Hao, SHE Zhuhua, LIU Dachuan Wuhan Polytechnic University,

More information

Biodiesel as an Alternative Fuel for Diesel Engine An Overview

Biodiesel as an Alternative Fuel for Diesel Engine An Overview International Journal of Applied Engineering Research. ISSN 0973-4562, Volume 9, Number 10 (2014) pp. 1159-1168 Research India Publications http://www.ripublication.com/ijaer.htm Biodiesel as an Alternative

More information

International Journal of Advance Engineering and Research Development PRODUCTION OF AN ALTERNATIVE FUEL FROM A LOW COST FEEDSTOCK- AN ECONOMICAL VIEW

International Journal of Advance Engineering and Research Development PRODUCTION OF AN ALTERNATIVE FUEL FROM A LOW COST FEEDSTOCK- AN ECONOMICAL VIEW Scientific Journal of Impact Factor (SJIF): 5.71 e-issn (O): 2348-4470 p-issn (P): 2348-6406 International Journal of Advance Engineering and Research Development International Conference on Momentous

More information

Biodiesel production by esterification of palm fatty acid distillate

Biodiesel production by esterification of palm fatty acid distillate ARTICLE IN PRESS Biomass and Bioenergy ] (]]]]) ]]] ]]] www.elsevier.com/locate/biombioe Biodiesel production by esterification of palm fatty acid distillate S. Chongkhong, C. Tongurai, P. Chetpattananondh,

More information

Potential vegetable oils of Indian origin as biodiesel feedstock An experimental study

Potential vegetable oils of Indian origin as biodiesel feedstock An experimental study Journal of Scientific AGARWAL & Industrial et al: Research POTENTIAL VEGETABLE OILS OF INDIAN ORIGIN AS BIODIESEL FEEDSTOCK Vol. 71, April 212, pp. 285-289 285 Potential vegetable oils of Indian origin

More information

SIMULATION AND PROCESS DESIGN OF BIODIESEL PRODUCTION

SIMULATION AND PROCESS DESIGN OF BIODIESEL PRODUCTION Proceedings of the International Conference on Mechanical Engineering and Renewable Energy 2015 (ICMERE2015) 26 29 November, 2015, Chittagong, Bangladesh ICMERE2015-PI-049 SIMULATION AND PROCESS DESIGN

More information

[Singh, 2(8): August, 2013] ISSN: Impact Factor: INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY

[Singh, 2(8): August, 2013] ISSN: Impact Factor: INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY Optimization of Cotton Seed Methyl Ester and Mustard Methyl Ester from Transesterification Process Sandeep Singh *1, Sumeet Sharma

More information

EXPERIMENTAL STUDY ON PERFORMANCE OF DIESEL ENGINE USING BIO-DIESEL

EXPERIMENTAL STUDY ON PERFORMANCE OF DIESEL ENGINE USING BIO-DIESEL EXPERIMENTAL STUDY ON PERFORMANCE OF DIESEL ENGINE USING BIO-DIESEL Vishwanath V K 1, Pradhan Aiyappa M R 2, Aravind S Desai 3 1 Graduate student, Dept. of Mechanical Engineering, Nitte Meenakshi Institute

More information

Chapter 2 LITERATURE REVIEW

Chapter 2 LITERATURE REVIEW Chapter 2 LITERATURE REVIEW In this chapter, previous research related to vegetable oils, use of vegetable oils as fiiel, conversion of vegetable oils into biodiesel, performance, emissions and combustion

More information

Where you find solutions. Strategic Biodiesel Decisions

Where you find solutions. Strategic Biodiesel Decisions Strategic Biodiesel Decisions What is Biodiesel? Biodiesel is defined as the mono-alkyl ester of fatty acids derived from vegetable oils or animal fats, commonly referred to as B100. Biodiesel must meet

More information

Biodiesel Business Environment

Biodiesel Business Environment Biodiesel Business Environment By Patum Vegetable Oil co., ltd. February 12, 2008 Innovation on Biofuel in Thailand, Century Park Hotel Agenda Company Profile Biodiesel Technology Country Policy & Regulation

More information

Characterization of Biodiesel Produced from Palm Oil via Base Catalyzed Transesterification

Characterization of Biodiesel Produced from Palm Oil via Base Catalyzed Transesterification Available online at www.sciencedirect.com Procedia Engineering 53 ( 2013 ) 7 12 Malaysian Technical Universities Conference on Engineering & Technology 2012, MUCET 2012 Part 3 - Civil and Chemical Engineering

More information

Non-catalytic alcoholysis process for production of biodiesel fuel by using bubble column reactor

Non-catalytic alcoholysis process for production of biodiesel fuel by using bubble column reactor Journal of Physics: Conference Series OPEN ACCESS Non-catalytic alcoholysis process for production of biodiesel fuel by using bubble column reactor To cite this article: S Hagiwara et al 2015 J. Phys.:

More information

Methanolysis of Jatropha Oil Using Conventional Heating

Methanolysis of Jatropha Oil Using Conventional Heating Science Journal Publication Science Journal of Chemical Engineering Research Methanolysis of Jatropha Oil Using Conventional Heating Susan A. Roces*, Raymond Tan, Francisco Jose T. Da Cruz, Shuren C. Gong,

More information

Automotive Technology

Automotive Technology International Conference on Automotive Technology An Experimental Study on the Performance and Emission Characteristics of a Single Cylinder Diesel Engine Using CME- Diesel Blends. Hari Vasudevan a*,sandip

More information

Keywords: Simarouba Glauca, Heterogeneous base catalyst, Ultrasonic Processor, Phytochemicals.

Keywords: Simarouba Glauca, Heterogeneous base catalyst, Ultrasonic Processor, Phytochemicals. PRODUCTION OF FATTY ACID METHYL ESTERS FROM SIMAROUBA OIL VIA ULTRASONIC IRRADIATION PROCESS, EFFECTIVE UTILIZATION OF BYPRODUCTS. TESTING AND EXTRACTION OF PHYTOCHEMICALS FROM SIMAROUBA OIL AND CAKE COLLEGE

More information

TECHNOLOGICAL CHALLENGES FOR THE PRODUCTION OF BIODIESEL IN ARID LANDS

TECHNOLOGICAL CHALLENGES FOR THE PRODUCTION OF BIODIESEL IN ARID LANDS www.senecagreen.com Universidad de Córdoba BIODIVERSITY FOR BIOFUELS AND BIODIESEL IN ARID LANDS (BIO3) TECHNOLOGICAL CHALLENGES FOR THE PRODUCTION OF BIODIESEL IN ARID LANDS Diego Luna Departamento de

More information

RESEARCH PROJECT REPORT. Trash to Treasure. Clean Diesel Technologies for Air Pollution Reduction. Submitted to. The RET Site. For

RESEARCH PROJECT REPORT. Trash to Treasure. Clean Diesel Technologies for Air Pollution Reduction. Submitted to. The RET Site. For RESEARCH PROJECT REPORT Trash to Treasure Clean Diesel Technologies for Air Pollution Reduction Submitted to The RET Site For Civil Infrastructure Renewal and Rehabilitation Sponsored by The National Science

More information

WASTE TO ENERGY. Commercial Enzymatic Production of Biodiesel

WASTE TO ENERGY. Commercial Enzymatic Production of Biodiesel June 2018 Commercial Enzymatic Production of Biodiesel WASTE TO ENERGY UTILIZING TRANSBIODIESEL'S ENZYMATIC GAME-CHANGING TECHNOLOGY TO YOUR PROFIT OUR ENZYMATIC TECHNOLOGY IS SETTING THE BIODIESEL FUEL

More information

Transesterification, Modeling and Simulation of Batch Kinetics of Non- Edible Vegetable Oils for Biodiesel Production

Transesterification, Modeling and Simulation of Batch Kinetics of Non- Edible Vegetable Oils for Biodiesel Production Transesterification, Modeling and Simulation of Batch Kinetics of Non- Edible Vegetable Oils for Biodiesel Production Pankaj Tiwari, Rajeev Kumar and Sanjeev Garg Department of Chemical Engineering, IIT

More information

APPLICATION OF MICROWAVE RADIATION TECHNIQUE IN PRODUCTION OF BIODIESEL TO ENHANCE THE PROPERTIES AND ECONOMIZATION OF BIODIESEL

APPLICATION OF MICROWAVE RADIATION TECHNIQUE IN PRODUCTION OF BIODIESEL TO ENHANCE THE PROPERTIES AND ECONOMIZATION OF BIODIESEL APPLICATION OF MICROWAVE RADIATION TECHNIQUE IN PRODUCTION OF BIODIESEL TO ENHANCE THE PROPERTIES AND ECONOMIZATION OF BIODIESEL Shaik Rauhon Ahmed 1, Mohd Misbahauddin Junaid 2, Satyanarayana MGV 3 1,2

More information

The Analysis of Biodiesel for Trace Metals and the Development of Certified Biodiesel Standards

The Analysis of Biodiesel for Trace Metals and the Development of Certified Biodiesel Standards The Analysis of Biodiesel for Trace Metals and the Development of Certified Biodiesel Standards CRMMA Workshop Pittcon 2008 New Orleans, LA Author: Thomas Rettberg, Ph.D. VHG Labs, Inc. Manchester, NH

More information

PRODUCTION OF BIODIESEL FROM FISH WASTE

PRODUCTION OF BIODIESEL FROM FISH WASTE MOHAN Y.V et al. PRODUCTION OF BIODIESEL FROM FISH WASTE MOHAN Y.V, PRAJWAL C.R, NITHIN N CHANDAVAR, PRAVEEN H.T 8 th semester, Department of Mechanical, Adichunchanagiri Institute of Technology, Chikmagaluru-577102

More information

Global Journal of Engineering Science and Research Management

Global Journal of Engineering Science and Research Management COMPARISON OF ALMOND OIL, UNDI OIL AND SESAME OIL FOR BIODIESEL: A REVIEW S S Ragit*, Bhoopendra Pandey 1, Nitin Kumar 2 * Assistant Professor, Department of Mechanical Engineering, Thapar University,

More information