Chapter 3 FUEL DEVELOPMENT AND CHARACTERIZATION

Size: px
Start display at page:

Download "Chapter 3 FUEL DEVELOPMENT AND CHARACTERIZATION"

Transcription

1 Chapter 3 FUEL DEVELOPMENT AND CHARACTERIZATION

2 Chapter 3 FUEL DEVELOPMENT AND CHARACTERIZATION 3.1 Introduction It is the primary and most important part of any experimental activity involving engine research. A slightly change in composition or quantity of any specific fuel present or both in the test fuel affects directly the performance and emission characteristic of the test engine. Therefore, to obtain the true nature of research, the mechanism of development and characterization of fuel has to be studied in depth and also the experiment has to be carried both precisely and judiciously. The economic growth of our country depends upon self reliance in energy. It is highly essential to search for alternative sources of energy, which are renewable, safe and non-polluting. Alternative fuel selection for the experiment depends upon its availability and suitable fuel properties. Bio-origin liquid fuels because of its environmental compatibility have been selected to use as pilot fuel in dual fuel engine. Vegetable oils or blends with diesel and its biodiesel can be directly used in diesel engines as their cetane number and calorific value are closer to diesel. Similarly, the producer gas because of its non fossil and renewable origin is being selected to use as primary fuel in dual fuel engine. The producer gas mainly generated from variety of biomass sources. These biomass sources are woody based obtained from different fire woods like Babul, Acacia, and eucaly ptus and agricultural and forest waste based (coir-pith, rice husk, saw dust, coconut shell, ground nut husk and cereal straw etc). 3.2 Karanja (Pongamia pinnata) oil as a fuel for diesel engine Karanja is a non-edible vegetable oil which is available plentily in northern and eastern states of India. It is a medium sized tree, yielding fruits after 4-6 years. Its production rate in India is 135,000 metric tons per year. Seeds are light brown coloured and contain 30-40% oil. This oil contains high amount of triglyceride and has a bitter taste and odour due to the presence of falconoid composition i.e. pongamiin and karanjin. Due to this bitter in taste, it is not considered for edible purpose. It is extensively used as a lubricant, medicine and pesticide. The presence of oxygen bonding in this oil reduces its calorific value as compared to diesel. It has been tested as a fuel in diesel engine and shows good thermal efficiency [25]. The constituents of this oil are 27.5% fatty oil, 19% moisture, 17.4% protein and 6.6% starch [54]. 42

3 3.3 Extraction of Karanja oil The oil seeds were mechanically processed using expeller as shown in Figure 3.1 to produce vegetable oil. The raw vegetable oil was then filtered using oil filter as shown in Figure 3.2. Figure 3.1 Photograph of mechanical expeller Figure 3.2 Photograph of oil filter 3.4 Development of Karanja bio-diesel as a fuel for diesel engine Firstly, the crude Karanja oil was collected from the crusher mill, which is a clear, viscous and dark brown in colour. Then it was filter with a nylon mesh cloth filter. After filtration, the 43

4 phosphorus in the crude oil was removed by a chemical process called degumming. In this process the oil was treated with 1% v/v phosphoric acid. After degumming, The Karanja oil is processed for biodiesel production by transesterification method. The first step of biodiesel production i.e. esterification of crude oil, in which degummed Karanja oil was mixed with 22% volume/volume (v/v) ratio methanol and1% v/v ratio sulphuric acid. The mixture was then heated in a constant temperature bath for one hour with continuous stirring at 65 C. This esterified mixture was then transesterified. In this process, acid esterified Karanja oil was taken in transestrification unit in which a reagent mixture is mixed with this esterified oil. A reagent mixture was prepared with anhydrous methanol (22% v/v) and base catalyst (0.5% v/v ratio) of potassium hydroxide (KOH). The total mixture was then continuously stirred at a constant speed below a temperature of 65 C (i.e. the boiling point of methanol) for about 2.0 hours. Then the stirring and heating was stopped and the mixture was allowed to settle down for about 24 hours. After settling, glycerol which is dark in colour was obtained in the lower layer and separated through separating valve. The upper layer which is Karanja methyl ester was collected separately. Then water washing of methyl ester was performed 2-3 times to remove extra esters and KOH if any. It was then heated above 65 C to remove additional methanol to obtained pure Karanja bio-diesel. The photographs of different stages of biodiesel production are shown in Figure 3.3(a-f). (a) Crude Karanja oil (b) Esterification processes 44

5 (c) Transetrification processes (d) Separation processes (e) Heating after water washing (f) Bio-diesel Figure 3.3(a-f) Stages of bio-diesel production 45

6 3.5 Blend oils preparation method and Property Analysis of Test fuels In the present work, the blends used are K10, K20, B10 and B20. The blend K10 is prepared by mixing 10% Karanja oil with 90% diesel by weight basis followed by the preparation of other blends. Firstly, the sample of various concentrations of this oil and diesel are weighed and taken in a container. The mixture formed is stirred for one hour by a stirring unit. After preparation of the above blends, some of the important properties of the test fuels are carried out before use in engine. Fuel properties like density, kinematic viscosity, acid value, free fatty acid (FFA), flash point, fire point, cetane number and calorific value etc are calculated using various ASTM methods and instruments. The various ASTM methods and instruments used for measurement of fuel properties are given in Table 3.1. Table 3.1 Various ASTM methods and instruments used for measurement of fuel properties Properties ASTM Methods Density at 25 C (kg/m 3 ) D 1298 Hydrometer Instruments Kinematic viscosity at 40 o C (cst.) D 445 Kinematic Viscometer Calorific value (MJ/kg) D 240 Bomb Calorimeter Cetane number D 613 Ignition Quality Tester Flash point ( C) D 93 Pensky-Martens closed cup tester Fire point ( C) D 93 Pensky-Martens closed cup tester 3.6 Physico-chemical properties of Karanja oil and its bio-diesel From various literatures review, it is found that vegetable oil blend with diesel fuel would bring the viscosity to satisfy the engine specification range. Therefore, by blending the neat Karanja oil with diesel oil in varying proportion, reduce its viscosity close to that of conventional diesel. Similarly, usage of 100% biodiesel in engine is not cost effective and also enhances the NO x emission. Hence to avoid these problems, blending of bio-diesel is needed. The physical and chemical properties of all the test fuels are tested at the Renewable Energy laboratory of SOA, University, Bhubaneswar, India. The photographs of various samples of test fuels are shown in Figure 3.4(a-f). 46

7 (a) Sample of Karanja oil. (b) Sample of Diesel oil. (c) Sample of blend K10. (d) Sample of blend B10 (e) Sample of blend K20. (f) Sample of blend B20. Figure 3.4(a-f) Photograph of various samples of test fuels. 47

8 3.6.1 Density Density is the mass per unit volume. The weight of a fixed volume of fuel was measured using a precision balance to measure the density. The measurements are made at 25 C temperatures as specified in the ASTM D1298. The density of different fuel blends with diesel, bio-diesel and vegetable oil are measured and then compared with that of diesel fuel. The photograph of density measuring instrument is shown in Figure 3.5 Density bath with Hydrometer Figure 3.5 Density bath with hydrometer apparatus Viscosity Viscosity is the important property of a fluid which resists the fluid motion when it is subjected to flow due to internal resistance. Viscosity is a measure of internal resistance force. The viscosity of vegetable oil affects its atomization and fuel delivery rates. The reason being if its value is too low and too high, then its atomization, mixing with air in combustion chamber gets affected. Viscosity studies are conducted for different fuel blends of diesel, biodiesel and vegetable oil. Absolute viscosity sometimes called dynamic or simple viscosity is the product of fluid density and kinematic viscosity. Kinematic viscosity of liquid fuel samples are measured using the Viscometer at 40 C as per specification given in ASTM D445. The photograph of measuring unit is shown in Figure

9 Kinematic Viscometer Figure 3.6 Kinematic viscometer bath apparatus Flash and Fire point Flash point is the minimum temperature at which oil gives so much of vapor, which when mixed with air forms combustible mixtures and gives a momentary flash on application of a small pilot flame. The flash and fire point of the fuel blends were measured as per standard of ASTM D93. The sample is heated in a test cup at a slow and constant rate of stirring. A small pilot flame is directed into the cup at the regular intervals with simultaneous interruption of stirring. Fire point is an extension of flash point in a way that it reflects the conditions at which vapor burn continuously for at least 5 seconds. Fire point is generally higher than the flash point. A Pensky-Martens apparatus is used in the study for determination of flash point as well as fire point as shown in Figure

10 Figure 3.7 Pensky- Martens flash point apparatus Calorific value The calorific value is defined in terms of the number of heat units liberated in kj/kg. All fuels containing mainly hydrogen, carbon, sulphur and other oxidizable element along with moisture. The moisture in the available form will combine with oxygen and form steam during the process of combustion. If the products of combustion are cooled to its initial temperature, the steam formed as a result will condense and thus maximum heat is extracted. This heat value is called the higher calorific value. The calorific value of the fuel is determined with the help of Isothermal Bomb Calorimeter shown in Figure 3.8 as per the specification ASTM D240. The combustion of fuel takes place at a constant volume in a totally enclosed vessel in the presence of oxygen. The sample of fuel is ignited electrically. The water equivalent of bomb calorimeter is determined by burning a known quantity of benzoic acid and heat liberated is absorbed by a known mass of water. Then the fuel samples are burnt in bomb calorimeter and the calorific value of all samples are calculated. The heat of combustion of the fuel samples is calculated with the help of equation 3.1 given below: 50

11 H c = (W c. T) / M s (3.1) H c = Heat of combustion of the fuel sample in kj/kg W c = Water Equivalent of the calorimeter assembly in kj/ C T = Rise in temperature in C M s = Mass of sample burnt in kg Figure 3.8 Bomb calorimeter Cloud and Pour point The cloud point is the temperature at which wax formation starts when the fuel is cooled. This value is higher than conventional diesel. The pour point is the lowest temperature above which the fuel can flow. It is measured by cloud point & pour point apparatus as shown in Figure 3.9. Its temperature range varies from ambient to - 40 C. 51

12 Figure 3.9 Cloud point & pour point apparatus 3.7 RESULT & DISCUSSION Performance of Karanja oil and its blends as fuel for diesel engine The properties like kinetic viscosity, density, calorific value, flash point, fire point, cloud point and pour point of Karanja oil, diesel and their blends are tested as per the ASTM standards and results are shown in Table 3.2. Kinematic viscosity, density, flash point, fire point, cloud point and pour point are found to be higher in neat Karanja oil and its blends. The flash point and fire point of Karanja oil are found 219 ºC and 235 ºC respectively which is higher than diesel. The high flash point of oil is a beneficial safety feature as the fuel can be safely stored and transported at the room temperature. The calorific value of Karanja oil is found to be kj/kg and for blended oil it increases with the addition of the oil to pure diesel fuel. Kinematic viscosity of Karanja oil is found cst at 40 ºC. The relatively high viscosities of vegetable oils cause problems like coking of injectors, oil ring sticking and thickening of lubricating oil. However, the viscosity of blended fuels is close to diesel. Due to this reason this blended fuels are suitable for diesel engine application. This high viscosity results from the higher molar masses of the oils and the presence of unsaturated fatty acids. Diesel has more number of double bonds than vegetable oils. 52

13 Table 3.2 Properties of diesel, Karanja oil & its blends (K10, K20) Properties Diesel Karanja oil K10 K20 Density at 25 C(Kg/m 3 ) Kinematic viscosity at 40 C (cst.) Calorific value (MJ/kg) Flash point ( C) Fire point ( C) Cloud point ( C) Pour point ( C) Performance of Karanja bio-diesel and its blends as fuel for diesel engine The properties like kinetic viscosity, density, calorific value, flash point and fire point of Karanja bio-diesel, diesel and their blends are analyzed as per the ASTM standard and results are shown in Table 3.3. Kinematic viscosity, density, flash point and fire point are found to be higher values in Karanja bio-diesel and its blends. The flash point and fire point of Karanja bio-diesel are found 161 ºC and 189 ºC respectively which are higher than diesel. The high flash point of oil is a beneficial safety feature as the fuel can be safely stored and transported at the room temperature. The calorific value of Karanja bio-diesel is found to be kj/kg and for blended oil it increases with the addition of the oil to pure diesel fuel. Kinematic viscosity of Karanja bio-diesel, B10 and B20 are found to be 5.12 cst, 2.92 cst and 3.88 cst respectively at 40 ºC which are very close to diesel. Hence due to this comparable viscosity of bio-diesel and its blends with diesel, these are suitable for diesel engine application without any engine modification. Table 3.3 Properties of Diesel, Karanja bio-diesel and its blends (B10, B20) Properties Diesel Karanja bio-diesel B10 B20 Density at 25 C (kg/m 3 ) Kinematic viscosity at 40 C (cst.) Calorific value (MJ/kg) Flash point ( C) Fire point ( C)

14 3.8 Babul wood (biomass feed stock) as producer gas resource Woody biomass is a well known fuel in India and has been traditionally used for generation of heat due to its higher calorific value and low ash content. In the present experiment for gasifier feedstock, small pieces of Babul wood with an approximate size of 25 mm length and 25 mm diameter is generated in author s laboratory and suitably used. The photograph of the Babul wood chips is shown Figure Babul wood (Prosopis juliflora) is abundantly available in the northern part of India as well as in Odisha. It is a medium sized tree, yielding fruits after 5-7 years. It has higher calorific value and density as compared to other available timber woods in India. During the process of gasification, Babul wood does not produce any tar. Production of tar during gasification may cause the problem of gasifier. Hence, producer gas generated from Babul wood is of better quality and higher calorific value with a reasonable moisture content of less than 20%. The ultimate and proximate analysis of Babul wood under wet basis (wb) and dry basis (db) is shown in Table 3.4 Figure 3.10 Photograph of Babul wood chips 54

15 Table 3.4 Ultimate and proximate analysis of Babul wood [101] Sl. No. Characteristics Corresponding values 01 Size (mm) 25x25 02 Bulk density (kg/m 3 ) Moisture content (%wb) Volatile mater (%db) Ash content (%db) Fixed carbon (%db) Calorific values (kj kg -1 ) Generation of producer gas using downdraft gasifier Gasification is the thermo-chemical conversion of solid biomass to gaseous fuel in a gasifier by pyrolysis process at a higher temperature. Producer gas is generated through gasification process in a downdraft type biomass gasifier. The downdraft gasifier has been selected for the present research work because of its low tar concentration in the product. Since the produced gas is used as fuel in a dual fuel engine whose performance is greatly affected by tar concentration in producer gas. The downdraft gasifier used in this research has been procured from Ankur Scientific Energy Technology Pvt. Ltd., Baroda. The biomass gasifier consists of a reactor, gas cooling unit, two sets of gas filters. The detailed specification of the downdraft woody biomass gasifier is given in Table 3.5. The photograph of the biomass gasifier and cooling unit are shown in Figure 3.11(a) and (b) respectively. Table 3.5 Specification of the downdraft woody biomass gasifier. Model WBG-10 in scrubbed, clean gas mode Rated gas flow 25 Nm 3 /hr Gasifier type Downdraft Average gas calorific value 1000 Kcal/Nm 3 Gasification temperature C Fuel storage capacity 100 kg Ash removal Manually, Dry ash discharge Start up Through scrubber pump Permissible moisture Less than 20% (wet basis) Rated hourly consumption 8-9 kg Rated hourly ash discharge 5-6 % 55

16 (a) Photograph of biomass gasifier. (b) Photograph of gas cooling unit. Figure 3.11(a-b) Photograph of gasification unit The biomass is loaded from the top of the gasifier and ash is removed after a regular interval. The partial combustion of biomass in the gasifier reactor is converted in to high temperature producer gas, which enter in to the gas cooler. The temperature of combustion gas before enter in to the cooling system is measured by the help of thermocouple and found to be 458 C and after cooling and cleaning, it is found to be about 40 C. During trial run, the indicative pressure drop in the nozzle at rated flow is found to be 20 mm of water column and indicative pressure drop in the gasifier is found to be mm of water column at rated gas flow rate. The moisture, tar and dust particle is removed by passing through two set of filters. Some properties of producer gas are collected from published literature and shown in Table 3.6. The compositions of producer gas are measured by the help of the gas chromatograph as shown Figure

17 Table 3.6 Properties of producer gas Sl. No. Properties Reference Corresponding values 1 Density [89] kg/m 3 2 Calorific value 3771 kj/kg 3 Octane number Laminar burning velocity [89] 0.5 ± 0.05 m/s 5 Stoichiometric air/fuel ratio [89] 1.12:1 6 Energy density [89] 1.26 MJ/m 3 7 Adiabatic flame temperature [89] 1546 ± 25K Figure 3.12 Photograph of gas Chromatograph Performance of producer gas as fuel for diesel engine The typical compositions of producer gas generated from Babul wood are measured in Author s laboratory by the help of a microprocessor based gas chromatograph (model No 2010) supplied by Chromatography and instruments company Pvt. Ltd. Baroda. The compositions of producer gas are shown in Table 3.7. The calorific value of producer gas is found to be 3771 kj/kg. The higher percentage of nitrogen in composition of producer gas acts as a knock suppressor [92]. 57

18 Table 3.7 Composition of producer gas Carbon monoxide 19±3% Carbon dioxide 10±3% Nitrogen 50% Hydrogen 18±2% Methane Up to 3% 3.9 Conclusion Experiments were conducted as per ASTM specified standards and the different physicochemical properties of liquid fuels such as viscosity, density, calorific value, flash point, fire point, cloud point, pour point of diesel, Karanja oil and its blends, Karanja biodiesel and its blends were measured. Similarly the compositions and calorific value of producer gas were obtained using gas chromatograph. Because of availability of limited experimental facility the other properties of producer gas have been collected from the published article and shown in table 3.6. From the above fuel properties it has observed that the fuel samples are suitable as a diesel substitute and selected for engine testing. The fuel samples of fossil diesel, 10% Karanja oil blend, 20% Karanja oil blend, 10% Karanja bio-diesel blend and 20% Karanja bio-diesel blend were prepared for the test engine. Chapter Summary This chapter describes the selection of materials and its development as test fuels and the methods employed to carry out the investigations. It presents the details of the physical, chemical and thermal characterization of the test fuels by using the standard ASTM methods. 58

Project Reference No.: 40S_B_MTECH_007

Project Reference No.: 40S_B_MTECH_007 PRODUCTION OF BIODIESEL FROM DAIRY WASH WATER SCUM THROUGH HETEROGENEOUS CATALYST AND PERFORMANCE EVALUATION OF TBC DIESEL ENGINE FOR DIFFERENT DIESEL AND METHANOL BLEND RATIOS Project Reference No.: 40S_B_MTECH_007

More information

Keywords: Simarouba Glauca, Heterogeneous base catalyst, Ultrasonic Processor, Phytochemicals.

Keywords: Simarouba Glauca, Heterogeneous base catalyst, Ultrasonic Processor, Phytochemicals. PRODUCTION OF FATTY ACID METHYL ESTERS FROM SIMAROUBA OIL VIA ULTRASONIC IRRADIATION PROCESS, EFFECTIVE UTILIZATION OF BYPRODUCTS. TESTING AND EXTRACTION OF PHYTOCHEMICALS FROM SIMAROUBA OIL AND CAKE COLLEGE

More information

SYNTHESIS OF BIODIESEL

SYNTHESIS OF BIODIESEL SYNTHESIS OF BIODIESEL AIM 1. To generate laboratory know-how for the process of production of biodiesel from the given oil feed stock 2. To perform basic mass and energy balance calculations for a large

More information

Production of Biodiesel from Used Groundnut Oil from Bosso Market, Minna, Niger State, Nigeria

Production of Biodiesel from Used Groundnut Oil from Bosso Market, Minna, Niger State, Nigeria Production of Biodiesel from Used Groundnut Oil from Bosso Market, Minna, Niger State, Nigeria Alabadan B.A. Department of Agricultural and Bioresources Engineering, Federal University, Oye Ekiti. Ajayi

More information

CHAPTER - 3 PREPARATION AND CHARACTERIZATION OF

CHAPTER - 3 PREPARATION AND CHARACTERIZATION OF 75 CHAPTER - 3 PREPARATION AND CHARACTERIZATION OF BIODIESEL FROM NON-EDIBLE VEGETABLE OILS Table of Contents Chapter 3: PREPARATION AND CHARACTERIZATION OF BIODIESEL FROM NON-EDIBLE VEGETABLE OILS S.

More information

PROJECT REFERENCE NO.: 39S_R_MTECH_1508

PROJECT REFERENCE NO.: 39S_R_MTECH_1508 DEVELOPMENT OF AGRICULTURAL WASTE BASED HETEROGENEOUS CATALYST FOR PRODUCTION OF BIODIESEL FROM MIXED WASTE COOKING OIL AND ITS PERFORMANCE ON DIESEL ENGINE PROJECT REFERENCE NO.: 39S_R_MTECH_1508 COLLEGE

More information

PERFORMANCE AND EMISSION CHARACTERISTICS OF DIESEL ENGINE USING RICE BRAN OIL METHYL ESTER BLEND WITH ADITIVE DIETHYL ETHER (DEE)

PERFORMANCE AND EMISSION CHARACTERISTICS OF DIESEL ENGINE USING RICE BRAN OIL METHYL ESTER BLEND WITH ADITIVE DIETHYL ETHER (DEE) International Journal of Science, Engineering and Technology Research (IJSETR), Volume 3, Issue 2, February 214 PERFORMANCE AND EMISSION CHARACTERISTICS OF DIESEL ENGINE USING RICE BRAN OIL METHYL ESTER

More information

POLLUTION CONTROL AND INCREASING EFFICIENCY OF DIESEL ENGINE USING BIODIESEL

POLLUTION CONTROL AND INCREASING EFFICIENCY OF DIESEL ENGINE USING BIODIESEL POLLUTION CONTROL AND INCREASING EFFICIENCY OF DIESEL ENGINE USING BIODIESEL Deepu T 1, Pradeesh A.R. 2, Vishnu Viswanath K 3 1, 2, Asst. Professors, Dept. of Mechanical Engineering, Ammini College of

More information

Experimental Investigation on Performance of karanjaand mustard oil: Dual Biodiesels Blended with Diesel on VCR Diesel engine

Experimental Investigation on Performance of karanjaand mustard oil: Dual Biodiesels Blended with Diesel on VCR Diesel engine Experimental Investigation on Performance of karanjaand mustard oil: Dual Biodiesels Blended with Diesel on VCR Diesel engine Umesh Chandra Pandey 1, Tarun Soota 1 1 Department of Mechanical Engineering,

More information

Experimental Investigations on a Four Stoke Diesel Engine Operated by Jatropha Bio Diesel and its Blends with Diesel

Experimental Investigations on a Four Stoke Diesel Engine Operated by Jatropha Bio Diesel and its Blends with Diesel International Journal of Manufacturing and Mechanical Engineering Volume 1, Number 1 (2015), pp. 25-31 International Research Publication House http://www.irphouse.com Experimental Investigations on a

More information

Preparation and Application of Karanja Bio-diesel and it s Blends in a Twin Cylinder Diesel Engine

Preparation and Application of Karanja Bio-diesel and it s Blends in a Twin Cylinder Diesel Engine Preparation and Application of Karanja Bio-diesel and it s Blends in a Twin Cylinder Diesel Engine 83 Preparation and Application of Karanja Bio-diesel and it s Blends in a Twin Cylinder Diesel Engine

More information

Effect of biodiesel and its blends with oxygenated additives on performance and emissions from a diesel engine

Effect of biodiesel and its blends with oxygenated additives on performance and emissions from a diesel engine Journal of SIVALAKSHMI Scientific & Industrial & BALUSAMY: Research EFFECT OF NEEM BIODIESEL AND BLENDS ON ENGINE PERFORMANCE Vol. 70, October 2011, pp. 879-883 879 Effect of biodiesel and its blends with

More information

CHAPTER-3 EXPERIMENTAL SETUP. The experimental set up is made with necessary. instrumentations to evaluate the performance, emission and

CHAPTER-3 EXPERIMENTAL SETUP. The experimental set up is made with necessary. instrumentations to evaluate the performance, emission and 95 CHAPTER-3 EXPERIMENTAL SETUP The experimental set up is made with necessary instrumentations to evaluate the performance, emission and combustion parameters of the compression ignition engine at different

More information

BIODIESEL DEVELOPMENT FROM HIGH FREE FATTY ACID PUNNAKKA OIL

BIODIESEL DEVELOPMENT FROM HIGH FREE FATTY ACID PUNNAKKA OIL BIODIESEL DEVELOPMENT FROM HIGH FREE FATTY ACID PUNNAKKA OIL Ramaraju A. and Ashok Kumar T. V. Department of Mechanical Engineering, National Institute of Technology, Calicut, Kerala, India E-Mail: ashokkumarcec@gmail.com

More information

Production of Biodiesel Fuel from Waste Soya bean Cooking Oil by Alkali Trans-esterification Process

Production of Biodiesel Fuel from Waste Soya bean Cooking Oil by Alkali Trans-esterification Process Current World Environment Vol. 11(1), 260-266 (2016) Production of Biodiesel Fuel from Waste Soya bean Cooking Oil by Alkali Trans-esterification Process Ajinkya Dipak Deshpande*, Pratiksinh Dilipsinh

More information

Material Science Research India Vol. 7(1), (2010)

Material Science Research India Vol. 7(1), (2010) Material Science Research India Vol. 7(1), 201-207 (2010) Influence of injection timing on the performance, emissions, combustion analysis and sound characteristics of Nerium biodiesel operated single

More information

Biofuels and characteristics

Biofuels and characteristics Lecture-16 Biofuels and characteristics Biofuels and Ethanol Biofuels are transportation fuels like ethanol and biodiesel that are made from biomass materials. These fuels are usually blended with petroleum

More information

Experimental investigation on constant-speed diesel engine fueled with. biofuel mixtures under the effect of fuel injection

Experimental investigation on constant-speed diesel engine fueled with. biofuel mixtures under the effect of fuel injection Experimental investigation on constant-speed diesel engine fueled with biofuel mixtures under the effect of fuel injection 1 I. Vinoth kanna *, 2 K. Subramani, 3 A. Devaraj 1 2 3 Department of Mechanical

More information

PERFORMANCE ANALYSIS OF CI ENGINE USING PALM OIL METHYL ESTER

PERFORMANCE ANALYSIS OF CI ENGINE USING PALM OIL METHYL ESTER PERFORMANCE ANALYSIS OF CI ENGINE USING PALM OIL METHYL ESTER Prof. Hitesh Muthiyan 1, Prof. Sagar Rohanakar 2, Bidgar Sandip 3, Saurabh Biradar 4 1,2,3,4 Department of Mechanical Engineering, PGMCOE,

More information

PERFORMANCE OF DIESEL ENGINE USING JATROPHA CURCAS BIO-DIESEL

PERFORMANCE OF DIESEL ENGINE USING JATROPHA CURCAS BIO-DIESEL Journal of KONES Powertrain and Transport, Vol. 15, No. 4 28 PERFORMANCE OF DIESEL ENGINE USING JATROPHA CURCAS BIO-DIESEL Dr (Miss) S L Sinha Mr Vinay Kumar Kar 2 Reader, National Institute of Technology

More information

ABSTRACT I. INTRODUCTION II. TECHNICAL SPECIFICATIONS OF THE ENGINE III. MATERIAL & METHODS

ABSTRACT I. INTRODUCTION II. TECHNICAL SPECIFICATIONS OF THE ENGINE III. MATERIAL & METHODS 2015 IJSRSET Volume 1 Issue 2 Print ISSN: 2395-1990 Online ISSN : 2394-4099 Themed Section : Engineering and Technology Experimental Investigations on a Four Stoke Die Engine Operated by Neem Bio Blended

More information

Experimental Analysis of Bio Oil under Transestrification Process by Using Babool Tree Seeds

Experimental Analysis of Bio Oil under Transestrification Process by Using Babool Tree Seeds Experimental Analysis of Bio Oil under Transestrification Process by Using Babool Tree Seeds Radhakrishnan.C 1, Yogeshwaran.K 1, Karunaraja.N 1, Tamilselvan.R 2, Sriram Gopal 2, Kavin Prasanth.K 2, Assistant

More information

CHAPTER 5 FUEL CHARACTERISTICS

CHAPTER 5 FUEL CHARACTERISTICS 66 CHAPTER 5 FUEL CHARACTERISTICS 5.1 EVALUATION OF PROPERTIES OF FUELS TESTED The important properties of biodiesel, biodiesel-diesel blends, biodiesel-ethanol blends, biodiesel-methanol blends and biodiesel-ethanoldiesel

More information

Properties and Use of Jatropha Curcas Ethyl Ester and Diesel Fuel Blends in Variable Compression Ignition Engine

Properties and Use of Jatropha Curcas Ethyl Ester and Diesel Fuel Blends in Variable Compression Ignition Engine Journal of Scientific & Industrial Research Vol. 74, June 2015, pp. 343-347 Properties and Use of Jatropha Curcas Ethyl Ester and Diesel Fuel Blends in Variable Compression Ignition Engine R Kumar*, A

More information

Department of Mechanical Engineering, JSPM s Imperial College of Engineering & Research, Wagholi, Pune-14, India

Department of Mechanical Engineering, JSPM s Imperial College of Engineering & Research, Wagholi, Pune-14, India International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347 5161 2016 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article An experimental

More information

Research Article Performance and Emission Analysis of a CI Engine in Dual Mode with LPG and Karanja Oil Methyl Ester

Research Article Performance and Emission Analysis of a CI Engine in Dual Mode with LPG and Karanja Oil Methyl Ester ISRN Renewable Energy Volume 2013, Article ID 540589, 7 pages http://dx.doi.org/10.1155/2013/540589 Research Article Performance and Emission Analysis of a CI Engine in Dual Mode with LPG and Karanja Oil

More information

Performance Testing of Diesel Engine using Cardanol-Kerosene oil blend

Performance Testing of Diesel Engine using Cardanol-Kerosene oil blend Performance Testing of Diesel Engine using Cardanol-Kerosene oil blend Ravindra 1*, Aruna M 1 and Vardhan Harsha 1 1 Department of Mining Engineering, National Institute of Technology Karnataka, Surathkal,

More information

INVESTIGATIONS ON BIODIESEL FROM WASTE COOKING OIL AS DIESEL FUEL SUBSTITUTE

INVESTIGATIONS ON BIODIESEL FROM WASTE COOKING OIL AS DIESEL FUEL SUBSTITUTE INVESTIGATIONS ON BIODIESEL FROM WASTE COOKING OIL AS DIESEL FUEL SUBSTITUTE Jagannath Hirkude 1, 2*, Atul S. Padalkar 1 and Jisa Randeer 1 1 Padre Canceicao College of Engineering, 403722, Goa, India,

More information

EXPERIMENTAL STUDY ON PERFORMANCE OF DIESEL ENGINE USING BIO-DIESEL

EXPERIMENTAL STUDY ON PERFORMANCE OF DIESEL ENGINE USING BIO-DIESEL EXPERIMENTAL STUDY ON PERFORMANCE OF DIESEL ENGINE USING BIO-DIESEL Vishwanath V K 1, Pradhan Aiyappa M R 2, Aravind S Desai 3 1 Graduate student, Dept. of Mechanical Engineering, Nitte Meenakshi Institute

More information

A R DIGITECH International Journal Of Engineering, Education And Technology (ARDIJEET) X, VOLUME 2 ISSUE 1, 01/01/2014

A R DIGITECH International Journal Of Engineering, Education And Technology (ARDIJEET) X, VOLUME 2 ISSUE 1, 01/01/2014 Investigation of Diesel Engine Performance with the help of Preheated Transesterfied Cotton Seed Oil Mr. Pankaj M.Ingle*1,Mr.Shubham A.Buradkar*2,Mr.Sagar P.Dayalwar*3 *1(Student of Dr.Bhausaheb Nandurkar

More information

Experimental Investigation On Performance And Emission Characteristics Of A Diesel Engine Fuelled With Karanja Oil Methyl Ester Using Additive

Experimental Investigation On Performance And Emission Characteristics Of A Diesel Engine Fuelled With Karanja Oil Methyl Ester Using Additive Experimental Investigation On Performance And Emission Characteristics Of A Engine Fuelled With Karanja Oil Methyl Ester Using Additive Swarup Kumar Nayak 1,*, Sibakanta Sahu 1, Saipad Sahu 1, Pallavi

More information

ENVO DIESEL TEST ON AUTOMOTIVE ENGINE AN ANALYSIS OF ITS PERFORMANCE AND EMISSIONS RESULTS

ENVO DIESEL TEST ON AUTOMOTIVE ENGINE AN ANALYSIS OF ITS PERFORMANCE AND EMISSIONS RESULTS International Journal of Mechanical and Materials Engineering (IJMME), Vol. 3 (2008), No.1, 55-60. ENVO DIESEL TEST ON AUTOMOTIVE ENGINE AN ANALYSIS OF ITS PERFORMANCE AND EMISSIONS RESULTS M.A. Kalam,

More information

Rubber Seed Oil as an Alternative Fuel for CI Engine: Review

Rubber Seed Oil as an Alternative Fuel for CI Engine: Review Rubber Seed Oil as an Alternative Fuel for CI Engine: Review Jayshri S. Patil 1, Shanofar A. Bagwan 2, Praveen A. Harari 3, Arun Pattanashetti 4 1 Assistant Professor, Department of Automobile Engineering,

More information

Biodiesel Oil Derived from Biomass Solid Waste

Biodiesel Oil Derived from Biomass Solid Waste , July 6-8, 2011, London, U.K. Biodiesel Oil Derived from Biomass Solid Waste Mohamed Y. E. Selim, Y. Haik, S.-A. B. Al-Omari and H. Abdulrahman Abstract - Oils of a significant value both as fuels as

More information

PERFORMANCE AND EMISSION TEST OF CANOLA AND NEEM BIO-OIL BLEND WITH DIESEL

PERFORMANCE AND EMISSION TEST OF CANOLA AND NEEM BIO-OIL BLEND WITH DIESEL PERFORMANCE AND EMISSION TEST OF CANOLA AND NEEM BIO-OIL BLEND WITH DIESEL MR.N.BALASUBRAMANI 1, M.THANASEGAR 2, R.SRIDHAR RAJ 2, K.PRASANTH 2, A.RAJESH KUMAR 2. 1Asst. Professor, Dept. of Mechanical Engineering,

More information

PERFORMANCE AND EMISSION ANALYSIS OF CI ENGINE FUELLED WITH THE BLENDS OF PALM OIL METHYL ESTERS AND DIESEL

PERFORMANCE AND EMISSION ANALYSIS OF CI ENGINE FUELLED WITH THE BLENDS OF PALM OIL METHYL ESTERS AND DIESEL ISSN: 2455-2631 July 217 IJSDR Volume 2, Issue 7 PERFORMANCE AND EMISSION ANALYSIS OF CI ENGINE FUELLED WITH THE BLENDS OF PALM OIL METHYL ESTERS AND DIESEL 1 K.Sandeep Kumar, 2 Taj, 3 B. Prashanth Assistant

More information

Vauhkonen Ville**, Hiltunen Erkki*, Niemi Seppo*, Pasila Antti**, Salminen Heikki*, Lehtonen Jari*, Ventin Mikael*** and Nummela Ilona****

Vauhkonen Ville**, Hiltunen Erkki*, Niemi Seppo*, Pasila Antti**, Salminen Heikki*, Lehtonen Jari*, Ventin Mikael*** and Nummela Ilona**** Vauhkonen Ville**, Hiltunen Erkki*, Niemi Seppo*, Pasila Antti**, Salminen Heikki*, Lehtonen Jari*, Ventin Mikael*** and Nummela Ilona**** *University of Vaasa, Faculty of Technology, Energy Technology

More information

Biodiesel. As fossil fuels become increasingly expensive to extract and produce, bio-diesel is

Biodiesel. As fossil fuels become increasingly expensive to extract and produce, bio-diesel is Aaron Paternoster CHEM 380 10D Prof. Laurie Grove January 30, 2015 Biodiesel Introduction As fossil fuels become increasingly expensive to extract and produce, bio-diesel is proving to be an economically

More information

Published in Offshore World, April-May 2006 Archived in

Published in Offshore World, April-May 2006 Archived in Published in Offshore World, April-May 2006 Archived in Dspace@nitr, http://dspace.nitrkl.ac.in/dspace Preparation of karanja oil methyl ester. R. K. Singh *, A. Kiran Kumar and S. Sethi Department of

More information

Optimization of Biodiesel production parameters (Pongamia pinnata oil) by. transesterification process,

Optimization of Biodiesel production parameters (Pongamia pinnata oil) by. transesterification process, Journal of Advanced & Applied Sciences (JAAS) Volume 03, Issue 03, Pages 84-88, 2015 ISSN: 2289-6260 Optimization of Biodiesel production parameters (Pongamia pinnata oil) by transesterification process

More information

PERFORMANCE EVALUATION OF C.I. ENGINE WITH COTTON SEED OIL

PERFORMANCE EVALUATION OF C.I. ENGINE WITH COTTON SEED OIL PERFORMANCE EVALUATION OF C.I. ENGINE WITH COTTON SEED OIL SHYAM KUMAR RANGANATHAN 1, ANIL GANDAMWAD 2 & MAYUR BAWANKURE 3 1,2&3 Mechanical Engineering, Jawaharlal Darda Engineering College, Yavatmal,

More information

CONVERSION OF GLYCEROL TO GREEN METHANOL IN SUPERCRITICAL WATER

CONVERSION OF GLYCEROL TO GREEN METHANOL IN SUPERCRITICAL WATER CONVERSION OF GLYCEROL TO GREEN METHANOL IN SUPERCRITICAL WATER Maša Knez Hrnčič, Mojca Škerget, Ljiljana Ilić, Ţeljko Knez*, University of Maribor, Faculty of Chemistry and Chemical Engineering, Laboratory

More information

Performance and Emission Characteristics of 4 S DI diesel Engine fueled with Calophyllum Inophyllum Biodiesel Blends

Performance and Emission Characteristics of 4 S DI diesel Engine fueled with Calophyllum Inophyllum Biodiesel Blends International OPEN ACCESS Journal ISSN: 2249-6645 Of Modern Engineering Research (IJMER) Performance and Emission Characteristics of 4 S DI diesel Engine fueled with Calophyllum Inophyllum Biodiesel Blends

More information

EXPERIMENTAL ANALYSIS ON 4 STROKE SINGLE CYLINDER DIESEL ENGINE BLENDED WITH NEEM OIL AND NANO POWDER

EXPERIMENTAL ANALYSIS ON 4 STROKE SINGLE CYLINDER DIESEL ENGINE BLENDED WITH NEEM OIL AND NANO POWDER EXPERIMENTAL ANALYSIS ON 4 STROKE SINGLE CYLINDER DIESEL ENGINE BLENDED WITH NEEM OIL AND NANO POWDER K.Swami Prasad naik 1, R.Jyothu Naik 2, P. Srinivasa Rao 3 1 M.Tech Student, Mechanical Engineering,

More information

Effect of Rubber Seed Oil and Palm Oil Biodiesel Diesel Blends on Diesel Engine Emission and Combustion Characteristics

Effect of Rubber Seed Oil and Palm Oil Biodiesel Diesel Blends on Diesel Engine Emission and Combustion Characteristics Effect of Rubber Seed Oil and Palm Oil Biodiesel Diesel Blends on Diesel Engine Emission and Combustion Characteristics Ibrahim Khalil 1, a, A.Rashid A.Aziz 2,b and Suzana Yusuf 3,c 1,2 Mechanical Engineering

More information

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION 1 CHAPTER 1 INTRODUCTION 1.1 GENERAL With a rapid increase in the demand of fossil fuel, decrease in the availability of crude oil supplies and greater environmental stringent norms on pollution has created

More information

Investigation of Single Cylinder Diesel Engine Using Bio Diesel from Marine Algae

Investigation of Single Cylinder Diesel Engine Using Bio Diesel from Marine Algae Investigation of Single Cylinder Diesel Engine Using Bio Diesel from Marine Algae R.Velappan 1, and S.Sivaprakasam 2 1 Assistant Professor, Department of Mechanical Engineering, Annamalai University. Annamalai

More information

Performance and Emission Characteristics of a DI Diesel Engine Fuelled with Cashew Nut Shell Liquid (CNSL)-Diesel Blends

Performance and Emission Characteristics of a DI Diesel Engine Fuelled with Cashew Nut Shell Liquid (CNSL)-Diesel Blends Performance and Emission Characteristics of a DI Diesel Engine Fuelled with Cashew Nut Shell Liquid (CNSL)-Diesel Blends Velmurugan. A, Loganathan. M Abstract The increased number of automobiles in recent

More information

EXPERIMENTAL INVESTIGATION OF PERFORMANCE ANALYSIS ON VCR DI DIESEL ENGINE OPERATED ON MULTI BLEND BIODIESEL

EXPERIMENTAL INVESTIGATION OF PERFORMANCE ANALYSIS ON VCR DI DIESEL ENGINE OPERATED ON MULTI BLEND BIODIESEL EXPERIMENTAL INVESTIGATION OF PERFORMANCE ANALYSIS ON VCR DI DIESEL ENGINE OPERATED ON MULTI BLEND BIODIESEL Jagadeesh A 1, Rakesh A. Patil 2, Pavankumar C. Bhovi 3 1, 2, 3 Mechanical Engineering, Hirasugar

More information

EXPERIMENTAL ANALYSIS ON 4 STROKE SINGLE CYLINDER DIESEL ENGINE BLENDED WITH EUCALYPTUS AND METHYL ESTER OF PALM KERNEL OIL

EXPERIMENTAL ANALYSIS ON 4 STROKE SINGLE CYLINDER DIESEL ENGINE BLENDED WITH EUCALYPTUS AND METHYL ESTER OF PALM KERNEL OIL EXPERIMENTAL ANALYSIS ON 4 STROKE SINGLE CYLINDER DIESEL ENGINE BLENDED WITH EUCALYPTUS AND METHYL ESTER OF PALM KERNEL OIL P.Kasi Viswanath 1, P. Srinivasa Rao 2 1 M.Tech Student, Mechanical Engineering,

More information

Emission Analysis Of The Biodiesel From Papaya And Chicken Blends

Emission Analysis Of The Biodiesel From Papaya And Chicken Blends Research Paper Volume 2 Issue 7 March 2015 International Journal of Informative & Futuristic Research ISSN (Online): 2347-1697 Emission Analysis Of The Biodiesel From Paper ID IJIFR/ V2/ E7/ 059 Page No.

More information

AN EXPERIMENTAL INVESTIGATION ON THE PERFORMANCE CHARACTERISTIC OF C.I ENGINE USING MULTIPLE BLENDS OF METHYL CASTOR OIL IN DIFFERENT PISTON SHAPES

AN EXPERIMENTAL INVESTIGATION ON THE PERFORMANCE CHARACTERISTIC OF C.I ENGINE USING MULTIPLE BLENDS OF METHYL CASTOR OIL IN DIFFERENT PISTON SHAPES AN EXPERIMENTAL INVESTIGATION ON THE PERFORMANCE CHARACTERISTIC OF C.I ENGINE USING MULTIPLE BLENDS OF METHYL CASTOR OIL IN DIFFERENT PISTON SHAPES *Vincent.H.Wilson, **V.Yalini * Dean, Department of Mechanical

More information

GRD Journals- Global Research and Development Journal for Engineering Volume 1 Issue 12 November 2016 ISSN:

GRD Journals- Global Research and Development Journal for Engineering Volume 1 Issue 12 November 2016 ISSN: GRD Journals- Global Research and Development Journal for Engineering Volume 1 Issue 12 November 2016 ISSN: 2455-5703 Effect of Brake Thermal Efficiency of a Variable Compression Ratio Diesel Engine Operating

More information

Study on Effect of Injection Opening Pressure on the Performance and Emissions of C I Engine Running on Neem Methyl Ester Blend as a Fuel

Study on Effect of Injection Opening Pressure on the Performance and Emissions of C I Engine Running on Neem Methyl Ester Blend as a Fuel Study on Effect of Injection Opening Pressure on the Performance and Emissions of C I Engine Running on Neem Methyl Ester Blend as a Fuel 1 Ramesha D.K., 2 Vidyasagar H.N, 3 Hemanth Kumar.P. 1, 2 Associate

More information

Study of Transesterification Reaction Using Batch Reactor

Study of Transesterification Reaction Using Batch Reactor Study of Transesterification Reaction Using Batch Reactor 1 Mehul M. Marvania, 2 Prof. Milap G. Nayak 1 PG. Student, 2 Assistant professor Chemical engineering department Vishwakarma Government engineering

More information

V.Venkatakranthi Teja. N S Raju Institute of Technology (NSRIT), Sontyam, Visakhapatnam, Andhra Pradesh , India.

V.Venkatakranthi Teja. N S Raju Institute of Technology (NSRIT), Sontyam, Visakhapatnam, Andhra Pradesh , India. Preparation of Waste Cooking Oil as Alternative Fuel and Experimental Investigation Using Bio-Diesel Setup a Comparative Study with Single Cylinder Diesel Engine Mr.S.Sanyasi Rao Pradesh - 531173, India.

More information

Emission Analysis of Biodiesel from Chicken Bone Powder

Emission Analysis of Biodiesel from Chicken Bone Powder Research Paper Volume 2 Issue 7 March 2015 International Journal of Informative & Futuristic Research ISSN (Online): 2347-1697 Emission Analysis of Biodiesel from Chicken Paper ID IJIFR/ V2/ E7/ 058 Page

More information

University Visvesvaraya College of Engineering, Bangalore University, K R Circle, Bangalore- 01

University Visvesvaraya College of Engineering, Bangalore University, K R Circle, Bangalore- 01 EXPERIMENTAL STUDY ON EFFECTIVE USE OF MAHUA METHYL ESTER AS ALTERNATIVE TO DIESEL IN CI ENGINES Dr. Mrityunjayaswamy K M 1, Dr. Ramesha D K 2, Dr. Vijayasimhareddy B G 3 1 Associate Professor, Vemana

More information

EXPERIMENTAL INVESTIGATION ON 4 STROKE SINGLE CYLINDER DIESEL ENGINE BLENDED WITH TYRE OIL

EXPERIMENTAL INVESTIGATION ON 4 STROKE SINGLE CYLINDER DIESEL ENGINE BLENDED WITH TYRE OIL EXPERIMENTAL INVESTIGATION ON 4 STROKE SINGLE CYLINDER DIESEL ENGINE BLENDED WITH TYRE OIL D.Sravani 1, R.Jyothu Naik 2, P. Srinivasa Rao 3 1 M.Tech Student, Mechanical Engineering, Narasaraopet Engineering

More information

BIODIESEL DEVELOPMENT FROM HIGH FREE FATTY ACID MAROTTI OIL

BIODIESEL DEVELOPMENT FROM HIGH FREE FATTY ACID MAROTTI OIL International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 6340(Print) ISSN 0976 6359(Online) Volume 1 Number 1, July - Aug (2010), pp. 227-237 IAEME, http://www.iaeme.com/ijmet.html

More information

Performance evaluation of a diesel engine fueled with methyl ester of castor seed oil

Performance evaluation of a diesel engine fueled with methyl ester of castor seed oil Performance evaluation of a diesel engine fueled with methyl ester of castor seed oil G.DURGA DEVI*, MAHESH.C** * Department of Mechanical Engineering V.R.SIDDHRATHA ENGG COLLEGE, J.N.T.U (KAKINADA) E-mail

More information

Performance and Experimental analysis of a Safflower biodiesel and Diesel blends on C.I. Engine

Performance and Experimental analysis of a Safflower biodiesel and Diesel blends on C.I. Engine Performance and Experimental analysis of a Safflower biodiesel and Diesel blends on C.I. Engine Manindra Singh Rathore 1, J.K. Tiwari 2, Shashank Mishra 3 Department of Mechanical Engineering, SSTC, SSGI,

More information

Sathyabama Institute of Science and Technology,Chennai ,Tamilnadu,India. JSPM s,college of Engineering,Hadapsar,Pune ,Maharashtra,India.

Sathyabama Institute of Science and Technology,Chennai ,Tamilnadu,India. JSPM s,college of Engineering,Hadapsar,Pune ,Maharashtra,India. INVESTIGATION OF COTTONSEED OIL BIO WITH ETHANOL AS AN ADDITIVE ON FUEL PROPERTIES, ENGINE PERFORMANCE, COMBUSTION AND EMISSION CHARACTERISTICS OF A ENGINE Shrikant MADIWALE 1*, Karthikeyan ALAGU 2 and

More information

Comparative Analysis of Jatropha-Methanol Mixture and Diesel on Direct Injection Diesel Engine

Comparative Analysis of Jatropha-Methanol Mixture and Diesel on Direct Injection Diesel Engine Volume 119 No. 16 218, 4947-4961 ISSN: 1314-3395 (on-line version) url: http://www.acadpubl.eu/hub/ http://www.acadpubl.eu/hub/ Comparative Analysis of Jatropha-Methanol Mixture and on Direct Injection

More information

A Feasibility Study on Production of Solid Fuel from Glycerol and Agricultural Wastes

A Feasibility Study on Production of Solid Fuel from Glycerol and Agricultural Wastes International Transaction Journal of Engineering, Management, & Applied Sciences & Technologies. International Transaction Journal of Engineering, Management, & Applied Sciences & Technologies http://www.tuengr.com,

More information

STUDY ON THE PERFORMANCE ANALYSIS OF FOUR STROKE SINGLE CYLINDER DIESEL ENGINE FUELLED WITH TOBACCO SEED METHYL ESTERS AND CASTOR SEED METHYL ESTERS.

STUDY ON THE PERFORMANCE ANALYSIS OF FOUR STROKE SINGLE CYLINDER DIESEL ENGINE FUELLED WITH TOBACCO SEED METHYL ESTERS AND CASTOR SEED METHYL ESTERS. International Journal of Mechanical Engineering and Technology (IJMET) Volume 8, Issue 11, November 2017, pp. 1071 1082, Article ID: IJMET_08_11_109 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=8&itype=11

More information

Automotive Technology

Automotive Technology International Conference on Automotive Technology An Experimental Study on the Performance and Emission Characteristics of a Single Cylinder Diesel Engine Using CME- Diesel Blends. Hari Vasudevan a*,sandip

More information

A Study of Performance and Characteristics of Diesel Engine using Mixture of Waste Milk Scum oil and Pongamia Pinnata oil as a Bio-Diesel

A Study of Performance and Characteristics of Diesel Engine using Mixture of Waste Milk Scum oil and Pongamia Pinnata oil as a Bio-Diesel A Study of Performance and Characteristics of Diesel Engine using Mixture of Waste Milk Scum oil and Pongamia Pinnata oil as a Bio-Diesel NANDISH V 1, MANJUNATHA K 2 1 M-Tech student, Thermal Power Engineering,

More information

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION 1 CHAPTER 1 INTRODUCTION 1.1 GENERAL Industrialization and globalization have increased the automobile population in the recent years. This has led to the rapid depletion of fossil fuel resources, leading

More information

JATROPHA AND KARANJ BIO-FUEL: AN ALTERNATE FUEL FOR DIESEL ENGINE

JATROPHA AND KARANJ BIO-FUEL: AN ALTERNATE FUEL FOR DIESEL ENGINE JATROPHA AND KARANJ BIO-FUEL: AN ALTERNATE FUEL FOR DIESEL ENGINE Surendra R. Kalbande and Subhash D. Vikhe College of Agricultural Engineering and Technology, Marathwada Agriculture University, Parbhani

More information

COMBUSTION CHARACTERISTICS OF DI-CI ENGINE WITH BIODIESEL PRODUCED FROM WASTE CHICKEN FAT

COMBUSTION CHARACTERISTICS OF DI-CI ENGINE WITH BIODIESEL PRODUCED FROM WASTE CHICKEN FAT COMBUSTION CHARACTERISTICS OF DI-CI ENGINE WITH BIODIESEL PRODUCED FROM WASTE CHICKEN FAT K. Srinivasa Rao Department of Mechanical Engineering, Sai Spurthi Institute of Technology, Sathupally, India E-Mail:

More information

Project DIREKT 4th meeting Mauritius April Biofuels in Fiji and the Pacific - research, production and possibilities

Project DIREKT 4th meeting Mauritius April Biofuels in Fiji and the Pacific - research, production and possibilities Project DIREKT 4th meeting Mauritius 12 16 April 2011 Biofuels in Fiji and the Pacific - research, production and possibilities Anirudh Singh and Pritika Bijay Talk outline 1. Introduction why biofuels?

More information

Performance and Emission Characteristics of Direct Injection Diesel Engine Running On Canola Oil / Diesel Fuel Blend

Performance and Emission Characteristics of Direct Injection Diesel Engine Running On Canola Oil / Diesel Fuel Blend American Journal of Engineering Research (AJER) e-issn : 2320-0847 p-issn : 2320-0936 Volume-03, Issue-08, pp-202-207 www.ajer.org Research Paper Open Access Performance and Emission Characteristics of

More information

International Research Journal of Engineering and Technology (IRJET) e-issn: Volume: 04 Issue: 08 Aug p-issn:

International Research Journal of Engineering and Technology (IRJET) e-issn: Volume: 04 Issue: 08 Aug p-issn: Experimental investigation of performance, emission and combustion characteristic of C.I engine using Kusum biodiesel blended with diesel at different injection pressures Srinivas Valmiki 1, Dr.Abhimanyu

More information

Effect of Injection Pressure on The Performance And Emission Characteristics of Single Cylinder Diesel Engine Using Neem And Niger Oil As A Biodiesel

Effect of Injection Pressure on The Performance And Emission Characteristics of Single Cylinder Diesel Engine Using Neem And Niger Oil As A Biodiesel Effect of Injection Pressure on The Performance And Emission Characteristics of Single Cylinder Diesel Engine Using Neem And Niger Oil As A Biodiesel #1 Kadam S. S., #2 Dr. Dambhare S. G. 1 M.E.(Heat Power)

More information

Ester (KOME)-Diesel blends as a Fuel

Ester (KOME)-Diesel blends as a Fuel International Research Journal of Environment Sciences E-ISSN 2319 1414 Injection Pressure effect in C I Engine Performance with Karanja Oil Methyl Ester (KOME)-Diesel blends as a Fuel Abstract Venkateswara

More information

Characterization of Crude Glycerol from Biodiesel Produced from Cashew, Melon and Rubber Oils.

Characterization of Crude Glycerol from Biodiesel Produced from Cashew, Melon and Rubber Oils. Characterization of Crude Glycerol from Biodiesel Produced from Cashew, Melon and Rubber Oils. Otu, F.I 1,a ; Otoikhian, S.K. 2,b and Ohiro, E. 3,c 1 Department of Mechanical Engineering, Federal University

More information

EFFECT OF STEAM INJECTION ON NO X EMISSIONS AND PERFORMANCE OF A SINGLE CYLINDER DIESEL ENGINE FUELLED WITH SOY METHYL ESTER

EFFECT OF STEAM INJECTION ON NO X EMISSIONS AND PERFORMANCE OF A SINGLE CYLINDER DIESEL ENGINE FUELLED WITH SOY METHYL ESTER S473 EFFECT OF STEAM INJECTION ON NO X EMISSIONS AND PERFORMANCE OF A SINGLE CYLINDER DIESEL ENGINE FUELLED WITH SOY METHYL ESTER by Madhavan V. MANICKAM a*, Senthilkumar DURAISAMY a, Mahalingam SELVARAJ

More information

PERFORMANCE AND EMISSION CHARACTERISTICS OF CI DI ENGINE USING BLENDS OF BIODIESEL (WASTE COOKING OIL) AND DIESEL FUEL

PERFORMANCE AND EMISSION CHARACTERISTICS OF CI DI ENGINE USING BLENDS OF BIODIESEL (WASTE COOKING OIL) AND DIESEL FUEL PERFORMANCE AND EMISSION CHARACTERISTICS OF CI DI ENGINE USING BLENDS OF BIODIESEL (WASTE COOKING OIL) AND DIESEL FUEL Rajesh S Gurani 1, B. R. Hosamani 2 1PG Student, Thermal Power Engineering, Department

More information

PRODUCTION OF BIODIESEL FROM NON-EDIBLE TREE-BORNE OILS AND ITS FUEL CHARACTERIZATION

PRODUCTION OF BIODIESEL FROM NON-EDIBLE TREE-BORNE OILS AND ITS FUEL CHARACTERIZATION ISSN: 2250-0138 (Online) PRODUCTION OF BIODIESEL FROM NON-EDIBLE TREE-BORNE OILS AND ITS FUEL CHARACTERIZATION NABNIT PANIGRAHI a1, AMAR KUMAR DAS b AND KEDARNATH HOTA c abc Gandhi Institute For Technology

More information

PERFORMANCE AND ANALYSIS OF DIESEL ENGINE USING CHICKEN OIL WITH DIESEL AS A BIOFUEL

PERFORMANCE AND ANALYSIS OF DIESEL ENGINE USING CHICKEN OIL WITH DIESEL AS A BIOFUEL PERFORMANCE AND ANALYSIS OF DIESEL ENGINE USING CHICKEN OIL WITH DIESEL AS A BIOFUEL Prakash T 1 Suraj S 2, Mayilsamy E 3,Vasanth Kumar R 4, Vinoth S V 5 1 Assistant Professor, Mechanical Engineering,

More information

Eucalyptus Biodiesel; an Environmental friendly fuel for Compression Ignition Engines

Eucalyptus Biodiesel; an Environmental friendly fuel for Compression Ignition Engines American Journal of Engineering Research (AJER) 214 American Journal of Engineering Research (AJER) e-issn : 232-847 p-issn : 232-936 Volume-3, Issue-3, pp-144-149 www.ajer.org Research Paper Open Access

More information

Process optimization for production of biodiesel from croton oil using two-stage process

Process optimization for production of biodiesel from croton oil using two-stage process IOSR Journal of Environmental Science, Toxicology and Food Technology (IOSR-JESTFT) e-issn: 2319-2402,p- ISSN: 2319-2399.Volume 8, Issue 11 Ver. III (Nov. 2014), PP 49-54 Process optimization for production

More information

Production and Comparative Characterization of Castor Biodiesel as Alternative Fuel for Diesel Engines

Production and Comparative Characterization of Castor Biodiesel as Alternative Fuel for Diesel Engines Production and Comparative Characterization of Castor Biodiesel as Alternative Fuel for Diesel Engines Dishika Jagga 1, S.K. Mahla 2 1 M.Tech student at Thapar University, Patiala 2 Thapar University,

More information

TESTING OF FUELS : FLASH AND FIRE POINT

TESTING OF FUELS : FLASH AND FIRE POINT Department of Mechanical Engineering Indian Institute of Technology New Delhi II Semester -- 2017 2018 MCL 241 Energy systems and Technologies TESTING OF FUELS : FLASH AND FIRE POINT 1. Introduction The

More information

ASTM D Standard Specification for Biodiesel Fuel (B 100) Blend Stock for Distillate Fuels

ASTM D Standard Specification for Biodiesel Fuel (B 100) Blend Stock for Distillate Fuels ASTM D 6751 02 Standard Specification for Biodiesel Fuel (B 100) Blend Stock for Distillate Fuels Summary This module describes the key elements in ASTM Specifications and Standard Test Methods ASTM Specification

More information

The Effect of Bio-Fuel Blends and Fuel Injection Pressure on Diesel Engine Emission for Sustainable Environment

The Effect of Bio-Fuel Blends and Fuel Injection Pressure on Diesel Engine Emission for Sustainable Environment American Journal of Environmental Sciences 7 (4): 377-382, 2011 ISSN 1553-345X 2011 Science Publications The Effect of Bio-Fuel Blends and Fuel Injection Pressure on Diesel Engine Emission for Sustainable

More information

Performance Analysis of Four Stroke Single Cylinder CI Engine Using Karanja Biodiesel-Diesel Blends

Performance Analysis of Four Stroke Single Cylinder CI Engine Using Karanja Biodiesel-Diesel Blends IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X, Volume 13, Issue 3, Ver. I (May- Jun. 2016), PP 76-81 www.iosrjournals.org Performance Analysis of Four

More information

Operational Characteristics of Diesel Engine Run by Ester of Sunflower Oil and Compare with Diesel Fuel Operation

Operational Characteristics of Diesel Engine Run by Ester of Sunflower Oil and Compare with Diesel Fuel Operation Vol. 2, No. 2 Journal of Sustainable Development Operational Characteristics of Diesel Engine Run by Ester of Sunflower Oil and Compare with Diesel Fuel Operation Murugu Mohan Kumar Kandasamy & Mohanraj

More information

, RMK College of Engineering and Technology R.S.M.Nagar, Puduvoyal, India Corresponding author

, RMK College of Engineering and Technology R.S.M.Nagar, Puduvoyal, India Corresponding author Extraction of Biodiesel from Sunflower Oil and Evaluating its Performance and Emission Characteristics in DI Diesel Engine G.K.Bharath Sai Kumar 1, K.Rajesh 2, A.Harish Kumar Sharma 3, S. Balachandran

More information

Experimental Investigation of Performance and Emission Characteristics of Cebia petandra Biodiesel in CI Engine

Experimental Investigation of Performance and Emission Characteristics of Cebia petandra Biodiesel in CI Engine International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: 0974-4290 Vol.9, No.04 pp 230-238, 2016 Experimental Investigation of Performance and Emission Characteristics of Cebia petandra Biodiesel

More information

Biodiesel Production and Analysis

Biodiesel Production and Analysis Biodiesel Production and Analysis Introduction A key current focus in science and engineering is the development of technologies for generating and utilizing new sources of energy. Climate change, geopolitics,

More information

REDUCTION OF NOX EMISSIONS IN JATROPHA SEED OIL-FUELED CI ENGINE

REDUCTION OF NOX EMISSIONS IN JATROPHA SEED OIL-FUELED CI ENGINE REDUCTION OF NOX EMISSIONS IN JATROPHA SEED OIL-FUELED CI ENGINE M. K. Duraisamy 1, T. Balusamy 2 and T. Senthilkumar 3 1 Mechanical Engineering, ACCET, Karaikudi, Tamilnadu, India 2 Mechanical Engineering,

More information

Experimentation On Bio-kerosene Stove Using Organic Additive

Experimentation On Bio-kerosene Stove Using Organic Additive Experimentation On Bio-kerosene Stove Using Organic Additive M.Varshini 1,a) and Divakar Shetty 2, b 1,2 Department of Mechanical Engineering, Amrita School of Engineering, Bengaluru, Amrita Vishwa Vidyapeetham,

More information

Experimental Investigations on Diesel engine using Methyl esters of Jatropha oil and fish oil

Experimental Investigations on Diesel engine using Methyl esters of Jatropha oil and fish oil IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Experimental Investigations on Diesel engine using Methyl esters of Jatropha oil and fish oil To cite this article: A Karthikeyan

More information

ANALYSIS ON PERFORMANCE CHARACTERISTICS AND EMISSIONS OF DIESEL ENGINE USING DIFFERENT BLENDS OF CALOPHYLLUM INOPHYLLUM, COTTON SEED OIL, KARANJA.

ANALYSIS ON PERFORMANCE CHARACTERISTICS AND EMISSIONS OF DIESEL ENGINE USING DIFFERENT BLENDS OF CALOPHYLLUM INOPHYLLUM, COTTON SEED OIL, KARANJA. ANALYSIS ON PERFORMANCE CHARACTERISTICS AND EMISSIONS OF DIESEL ENGINE USING DIFFERENT BLENDS OF CALOPHYLLUM INOPHYLLUM, COTTON SEED OIL, KARANJA. Omprakash S Baradol Department of Mechanical Engineering,

More information

Annex no. 1 of Accreditation Certificate no. LI 333 from

Annex no. 1 of Accreditation Certificate no. LI 333 from Valid from 04.02.2008 to 04.02.2012 Oil Products Laboratory DJ No. 226, Nvodari, Constana county belonging to SC ROMPETROL QUALITY CONTROL SRL 1 2 3 4 Physical tests 1. Determination of the density with

More information

EXPERIMENTAL INVESTIGATION OF METHODS TO IMPROVE PERFORMANCE OF DI ENGINE USING PONGAMIA BIODIESEL BY VARYING PARAMETERS

EXPERIMENTAL INVESTIGATION OF METHODS TO IMPROVE PERFORMANCE OF DI ENGINE USING PONGAMIA BIODIESEL BY VARYING PARAMETERS Volume: 05 Issue: 05 May 2018 www.irjet.net p-issn: 2395-0072 EXPERIMENTAL INVESTIGATION OF METHODS TO IMPROVE PERFORMANCE OF DI ENGINE USING PONGAMIA BIODIESEL BY VARYING PARAMETERS 1 BANASHANKARI NIMBAL,

More information

Biodiesel Business Environment

Biodiesel Business Environment Biodiesel Business Environment By Patum Vegetable Oil co., ltd. February 12, 2008 Innovation on Biofuel in Thailand, Century Park Hotel Agenda Company Profile Biodiesel Technology Country Policy & Regulation

More information

Emission Characteristics of Rice Bran Oil Biodiesel as an Alternative in Single Cylinder CI Engine with DI Ethyl Ether Blends

Emission Characteristics of Rice Bran Oil Biodiesel as an Alternative in Single Cylinder CI Engine with DI Ethyl Ether Blends e t International Journal on Emerging Technologies (Special Issue on RTIESTM-216) 7(1): 151-157(216) ISSN No. (Print) : 975-8364 ISSN No. (Online) : 2249-3255 Emission Characteristics of Rice Bran Oil

More information