The SHuttle Expendable Rocket for Payload Augmentation (SHERPA)

Size: px
Start display at page:

Download "The SHuttle Expendable Rocket for Payload Augmentation (SHERPA)"

Transcription

1 The SHuttle Expendable Rocket for Payload Augmentation (SHERPA) Aaron Rogers, Paul Gloyer, Randall Carlson, Steve Buckley SSC03-II-2 August 12 th, 2003

2 Overview Introduction Mission Requirements Description CAPE Team Key component technologies Configurations Architecture Design Summary

3 Introduction Operational need for responsive orbit transfer capability Currently no capability for secondary payloads Space Test Program Provides subsidized spaceflight for DOD Space Experiments Review Board (DOD SERB) approved experiments Provides spaceflight for other DOD approved experiments on a costreimbursable basis

4 SHERPA Mission Requirements Raise satellite from 350 km (190 nm) to 700 km (380 nm) in 57 degree inclined orbit Mass Breakdown: 56 kg (124 lbm) for SHERPA 90 kg (198 lbm) for satellite/payload kg ( lbm) total Dependent upon berth location in STS cargo bay (5 available positions) Comply with Shuttle & International Space Station safety requirements 1 degree plane change for re-contact avoidance Inhibits, fault-tolerance, material selection Total Delta-V of 240 meters/second Required components Lightweight, Restartable, and Controllable motor Guidance, Navigation, and Control System Satellite Bus System (Power, Thermal, Communications) Separation System

5 SHERPA Description Lightweight orbit transfer system for small satellites Meets needs of Space Test Program (STP) Could be secondary payload aboard Expendable Launch Vehicle (ELV) Current design utilizes Shuttle Hitchhiker Experiment Launch System (SHELS) Will utilize the Canister for All Payload Ejections (CAPE) Concept of Operations: Secondary payload manifest Ejection, loiter on orbit Perform orbit adjust using Hohmann transfer Separation from payload Collision/Clearance Avoidance Maneuver (CCAM) Rapid re-entry Goal to demonstrate in 2005/6 Goal to cost $1 million (production) B A

6 CAPE Design CAPE Canister All aluminum construction One piece design 22 id. X 52 Long EMI corners Extension Collar 22 id. X 2 long Allows for separation mechanism changes Endcap Mounting Brackets Mounting Plate Wire tie guides Inhibit Box SHERPA configuration approx. 34 kg (75 lbm)

7 SHERPA Team Hybrid Propulsion Rocket SpaceDev, Inc. (Poway, California) Hall Effect Thruster Busek Co. Inc. (Natick, Massachusetts) Guidance & Navigation System Avidyne Corporation (Lincoln, Massachusetts) Systems Engineering and Integration AeroAstro, Inc. (Ashburn, Virginia) Payload Separation System Planetary Systems Corporation (Silver Spring, Maryland)

8 Hybrid Propulsion Rocket Primary propulsion module Propellant: Nitrous Oxide (N 2 O) oxidizer and Plexiglas fuel Nontoxic Non-corrosive Non-flammable Safe (two inherent ignition inhibits) N 2 O feed valve AND igniter must actuate for motor operation Motor assembly and 4 tanks Boost time less than hour Parameters: 50% Mass Fraction Specific Impulse (Isp) of 260 sec Pyro Igniter (4 PL) Motor Case Inconel Injector Assy Lightband Interface Payload Interface N2O Flow Control Valve N2O Pressure Relief (2 PL) Feed Manifold N2O Tank Titanium (4 PL) Hybrid Propulsion Module (HPM)

9 Hall Effect Thruster Hall-effect thruster (HET) electric propulsion module Utilizes inert xenon gas Low thrust (12 mn 16 mn) Throttleable system High efficiency Isp of sec Low power (300 W) Long duration orbit raising Continuous thrusting

10 Guidance & Navigation System Silicon Pilot Light weight and flexible 3 accelerometers, 3 gyros, GPS Microprocessor Functions Host ADCS software Update measurements from attitude sensors Propagate attitude knowledge Orbit determination Mission Data Load GPS GPS A ccelerom eters Gyros S erial I/O A n a lo g F ilte rin g IS R s Navigation Attitude Determ ination Guidance Control Mulit-process RTOS MPC 555 µ P Silicon Pilot Flight Control System Actuators

11 Payload Separation System Lightweight (2 kg) Low-shock (< 300 G s) Non-pyrotechnic Precision separation springs sizable to impart variable separation velocity Fully redundant switches and tensioners/detensioners Customizable bolt pattern and mechanical interface of the upper and lower rings to adjoining vehicles Half the height of V-bands and 1/8th the cross sectional area Flight heritage: NASA Starshine-3 mission (2001) 11 Lightbands are awaiting launch on several Shuttle flights and EELV missions Lightband Separation Systems

12 Satellite Bus Systems Systems engineering, analysis, mission planning Complete bus design Modular support structure Software Communications Short Duration Mission Avionics (SDMA) Final SHERPA integration, test, flight packaging Spacecraft expertise: Alexis, HETE-1 & -2, Terriers, SPASE (not yet flown) Dept. of Defense STPSat-1 HETE Launched 1996 Launched 1993 SPASE Delivered STPSat-1 Planned Launch 2006

13 SHERPA Configurations

14 Mark I SHERPA Simplest configuration provides only propulsive capability, no other sub-systems present Payload is an independent system responsible for directing the propulsion system No separation

15 Mark II SHERPA Demonstration model Stand-alone satellite with all subsystems Boost another independent satellite Either chemical or electrical propulsion (demo will be chemical) Could add deployable panels or booms depending on mission needs Provides boost and then separation

16 Mark II Chemical Hybrid Radio Avionics Module Coarse Sun Sensor (6 total) SpaceDev Propulsion Module w/ ~12 Lightband Saddle Bag Mounting Structure Silicon Pilot Battery Pack Avionics / VME Cage ACS Thruster Battery Module (fits 2 to 3 battery packs) Avionics Module

17 Mark II Electrical Mark II-E requires much more power than Mark II-C due to Hall Thruster Large Deployable Thin Film Solar Panels are employed Busek Hall Thruster Propulsion Module w/ ~12 Lightband Booms are 3.15m long, 7 segments Root Hinge can be designed for sun tracking Orbit average power of 422 W sun pointing

18 Mark III SHERPA Platform configuration for space experiments Designed to provide flexible, responsive interface for many-different payloads and missions Provides on orbit support after orbit transfer Navigation, guidance, attitude control, and propulsion Can provide communications and longduration power Both Chemical and Electrical versions available

19 SHERPA Signal Block Diagram Solar Arrays Batteries Payload Payload Separation System Attitude Sensors Silicon Pilot (GPS/INS) ACS Module Propulsion Module (Hybrid or Hall) Tx Rx Nano Core PC&T Processor (optional) I/O Boards Propulsion Power Interface (PPI) Expansion Boards SHERPA Avionics VME Backplane Backdoor Serial Bus

20 Ground Command SHERPA Command & Control Hierarchy Rx Arbiter PC&T Masters PC&T Processor (optional) Silicon Pilot (GPS/INS) Tx I/O Boards Propulsion Power Interface (PPI) Attitude Sensors Slaves Solar Arrays Batteries Payload Separation System Payload Propulsion Module (Hybrid or HET) ACS Module

21 ISS Keep Out Zone NASA unofficial ISS Keep-Out Zone guideline (pending formal notice): No orbit translation activities until minimum stand-off position achieved Precession analysis for required on-orbit loiter time 2.8 nautical miles per ft/s of s/c V Max SHERPA V = m/s Analytical Analysis Simulation (STK) β r B α ISS Θ z r A SHERPA V Time d 17h 53m 1d 3h 11m 1d 13h 5m 1d 23h 42m 2d 11h 47m 3d 3h 1m 4d 5h 53m

22 Target Orbit Delivery Capability 10 kg 17.2 kg 20 kg Increasing Payload Mass 30 kg 40 kg 50 kg 60 kg 70 kg 80 kg 90 kg Increasing Perigee 700 km 400 km Vehicle V a function of stack mass (i.e. propellant loading, payload) Achievable orbits vary with V capability: 17.2 kg payload: 700 km x 700 km circular orbit 400 km x 4500 km HEO orbit 700 km x 3750 km HEO orbit 90 kg payload: 700 km x 700 km circular orbit 400 km x 1750 km HEO orbit 700 km x 1400 km HEO orbit

23 Summary SHERPA provides new & necessary capability Demonstrates and flight qualifies innovative technology research and development Provides on-demand flexibility for wide range of payloads and missions Improves space-asset responsiveness Satellites stored on-orbit and moved when needed Reconfigurable and maneuverable Easily procured

24 Questions? AeroAstro, Inc. - Aaron Rogers: (617) x27 Aaron.Rogers@AeroAstro.com Air Force Research Laboratory, Space Vehicles Directorate (AFRL/VS) Kirtland Air Force Base, NM - Lt Randall Carlson: (505) Randall.Carlson@Kirtland.af.mil - Steven Buckley (Northrop Grumman) : (505) Steven.Buckley@Kirtland.af.mil

The DoD Space Test Program Standard Interface Vehicle (ESPA) Class Program

The DoD Space Test Program Standard Interface Vehicle (ESPA) Class Program The DoD Space Test Program Standard Interface Vehicle (ESPA) Class Program Mr. Mike Marlow STP-SIV Program Manager Co-Authors Lt Col Randy Ripley Capt Chris Badgett Ms. Hallie Walden 20 th Annual AIAA/USU

More information

Modular Reconfigurable Spacecraft Small Rocket/Spacecraft Technology Platform SMART

Modular Reconfigurable Spacecraft Small Rocket/Spacecraft Technology Platform SMART Modular Reconfigurable Spacecraft Small Rocket/Spacecraft Technology Platform SMART Micro-Spacecraft Prototype Demonstrates Modular Open Systems Architecture for Fast Life-Cycle Missions Jaime Esper *,

More information

NASA s Choice to Resupply the Space Station

NASA s Choice to Resupply the Space Station RELIABILITY SpaceX is based on the philosophy that through simplicity, reliability and low-cost can go hand-in-hand. By eliminating the traditional layers of management internally, and sub-contractors

More information

Solar Electric Propulsion Benefits for NASA and On-Orbit Satellite Servicing

Solar Electric Propulsion Benefits for NASA and On-Orbit Satellite Servicing Solar Electric Propulsion Benefits for NASA and On-Orbit Satellite Servicing Therese Griebel NASA Glenn Research Center 1 Overview Current developments in technology that could meet NASA, DOD and commercial

More information

The Falcon 1 Flight 3 - Jumpstart Mission Integration Summary and Flight Results. AIAA/USU Conference on Small Satellites, 2008 Paper SSC08-IX-6

The Falcon 1 Flight 3 - Jumpstart Mission Integration Summary and Flight Results. AIAA/USU Conference on Small Satellites, 2008 Paper SSC08-IX-6 The Falcon 1 Flight 3 - Jumpstart Mission Integration Summary and Flight Results Aug. 13, 2008 AIAA/USU Conference on Small Satellites, 2008 Paper SSC08-IX-6 Founded with the singular goal of providing

More information

Capabilities Summary and Approach to Rideshare for 20 th Annual Small Payload Rideshare Symposium NASA Ames Research Center June 12-14, 2018

Capabilities Summary and Approach to Rideshare for 20 th Annual Small Payload Rideshare Symposium NASA Ames Research Center June 12-14, 2018 01 / Overview & Specifications Capabilities Summary and Approach to Rideshare for 20 th Annual Small Payload Rideshare Symposium NASA Ames Research Center June 12-14, 2018 Vector wants to do for spaceflight

More information

HYDROS Development of a CubeSat Water Electrolysis Propulsion System

HYDROS Development of a CubeSat Water Electrolysis Propulsion System HYDROS Development of a CubeSat Water Electrolysis Propulsion System Vince Ethier, Lenny Paritsky, Todd Moser, Jeffrey Slostad, Robert Hoyt Tethers Unlimited, Inc 11711 N. Creek Pkwy S., Suite D113, Bothell,

More information

Upper Stage Evolution

Upper Stage Evolution Upper Stage Evolution Mark Wilkins Atlas Product Line VP United Launch Alliance AIAA_JPC080309 Copyright 2009 United Launch Alliance, LLC. All Rights Reserved. EELV Sustainment Through 2030 ULA s Evolution

More information

Formation Flying Experiments on the Orion-Emerald Mission. Introduction

Formation Flying Experiments on the Orion-Emerald Mission. Introduction Formation Flying Experiments on the Orion-Emerald Mission Philip Ferguson Jonathan P. How Space Systems Lab Massachusetts Institute of Technology Present updated Orion mission operations Goals & timelines

More information

Comparison of Orbit Transfer Vehicle Concepts Utilizing Mid-Term Power and Propulsion Options

Comparison of Orbit Transfer Vehicle Concepts Utilizing Mid-Term Power and Propulsion Options Comparison of Orbit Transfer Vehicle Concepts Utilizing Mid-Term Power and Propulsion Options Frank S. Gulczinski III AFRL Propulsion Directorate (AFRL/PRSS) 1 Ara Road Edwards AFB, CA 93524-713 frank.gulczinski@edwards.af.mil

More information

VSS V1.5. This Document Contains No ITAR Restricted Information But Is Not Cleared for General Public Distribution

VSS V1.5. This Document Contains No ITAR Restricted Information But Is Not Cleared for General Public Distribution This Document Contains No ITAR Restricted Information But Is Not Cleared for General Public Distribution Table of Contents VEHICLE PERFORMANCE 4 OPERATIONS & MISSION PROFILES 5 PAYLOAD SERVICES 7 ENVIRONMENTS

More information

Vector-R Forecasted Launch Service Guide

Vector-R Forecasted Launch Service Guide Vector-R Forecasted Launch Service Guide VSS-2017-023-V2.0 Vector-R This Document Contains No ITAR Restricted Information And is Cleared for General Public Distribution Distribution: Unrestricted Table

More information

Cygnus Payload Accommodations: Supporting ISS Utilization

Cygnus Payload Accommodations: Supporting ISS Utilization The Space Congress Proceedings 2018 (45th) The Next Great Steps Feb 27th, 1:30 PM Cygnus Payload Accommodations: Supporting ISS Utilization Frank DeMauro Vice President and General Manager, Advanced Programs

More information

OMOTENASHI. (Outstanding MOon exploration TEchnologies demonstrated by NAno Semi-Hard Impactor)

OMOTENASHI. (Outstanding MOon exploration TEchnologies demonstrated by NAno Semi-Hard Impactor) SLS EM-1 secondary payload OMOTENASHI (Outstanding MOon exploration TEchnologies demonstrated by NAno Semi-Hard Impactor) The smallest moon lander launched by the most powerful rocket in the world * Omotenashi

More information

Lunar Cargo Capability with VASIMR Propulsion

Lunar Cargo Capability with VASIMR Propulsion Lunar Cargo Capability with VASIMR Propulsion Tim Glover, PhD Director of Development Outline Markets for the VASIMR Capability Near-term Lunar Cargo Needs Long-term/VSE Lunar Cargo Needs Comparison with

More information

ENERGIA 1. IDENTIFICATION. 1.1 Name. 1.2 Classification Family : K Series : K-1/SL-17 Version : 4 strap-ons

ENERGIA 1. IDENTIFICATION. 1.1 Name. 1.2 Classification Family : K Series : K-1/SL-17 Version : 4 strap-ons 1. IDENTIFICATION 1.1 Name 1.2 Classification Family : K Series : K-1/SL-17 Version : 4 strap-ons Category : SPACE LAUNCH VEHICLE Class : Heavy Lift Vehicles (HLV) Type : Expendable Launch Vehicle (ELV)

More information

AMSAT-NA FOX Satellite Program

AMSAT-NA FOX Satellite Program AMSAT-NA FOX Satellite Program Review, Status, and Future JERRY BUXTON, NØJY, AUTHOR AMSAT VP-ENGINEERING Review FOX-1 - WHY IT IS, WHAT IT IS Fox Development Strategy Take advantage of large and growing

More information

THE FALCON I LAUNCH VEHICLE Making Access to Space More Affordable, Reliable and Pleasant

THE FALCON I LAUNCH VEHICLE Making Access to Space More Affordable, Reliable and Pleasant 18 th Annual AIAA/USU Conference on Small Satellites SSC04-X-7 THE FALCON I LAUNCH VEHICLE Making Access to Space More Affordable, Reliable and Pleasant Hans Koenigsmann, Elon Musk, Gwynne Shotwell, Anne

More information

Rocket 101. IPSL Space Policy & Law Course. Andrew Ratcliffe. Head of Launch Systems Chief Engineers Team

Rocket 101. IPSL Space Policy & Law Course. Andrew Ratcliffe. Head of Launch Systems Chief Engineers Team Rocket 101 IPSL Space Policy & Law Course Andrew Ratcliffe Head of Launch Systems Chief Engineers Team Contents Background Rocket Science Basics Anatomy of a Launch Vehicle Where to Launch? Future of Access

More information

Electric propulsion as game changer for CubeSat: mission analysis with LOTOS

Electric propulsion as game changer for CubeSat: mission analysis with LOTOS Electric propulsion as game changer for CubeSat: mission analysis with LOTOS Space Tech Expo Europe 24 October 2017, Bremen (DE) Francesco Cremaschi, Sven Schäff Astos Solutions GmbH, Stuttgart service@astos.de

More information

Cal Poly CubeSat Workshop 2014

Cal Poly CubeSat Workshop 2014 Cal Poly CubeSat Workshop 2014 866.204.1707 www.spaceflightservices.com info@spaceflightservices.com hhh @spaceflightinc 1 Spaceflight Business Model Our Model Arrange launch opportunities for secondary

More information

Taurus II. Development Status of a Medium-Class Launch Vehicle for ISS Cargo and Satellite Delivery

Taurus II. Development Status of a Medium-Class Launch Vehicle for ISS Cargo and Satellite Delivery Taurus II Development Status of a Medium-Class Launch Vehicle for ISS Cargo and Satellite Delivery David Steffy Orbital Sciences Corporation 15 July 2008 Innovation You Can Count On UNCLASSIFIED / / Orbital

More information

Pathfinder Technology Demonstrator

Pathfinder Technology Demonstrator Demonstrating Advanced Technologies for Advanced Missions CubeSat Developer s Workshop April 26 th, 2017 NASA Space Technology Mission Directorate NASA Small Spacecraft Technology Program NASA Ames Research

More information

SmallSats, Iodine Propulsion Technology, Applications to Low-Cost Lunar Missions, and the iodine Satellite (isat) Project.

SmallSats, Iodine Propulsion Technology, Applications to Low-Cost Lunar Missions, and the iodine Satellite (isat) Project. SmallSats, Iodine Propulsion Technology, Applications to Low-Cost Lunar Missions, and the iodine Satellite (isat) Project. Presented to Lunar Exploration Analysis Group (LEAG) October 23, 2014 The SmallSat

More information

USA FALCON 1. Fax: (310) Telephone: (310) Fax: (310) Telephone: (310) Fax: (310)

USA FALCON 1. Fax: (310) Telephone: (310) Fax: (310) Telephone: (310) Fax: (310) 1. IDENTIFICATION 1.1 Name FALCON 1 1.2 Classification Family : FALCON Series : FALCON 1 Version : FALCON 1 Category : SPACE LAUNCH VEHICLE Class : Small Launch Vehicle (SLV) Type : Expendable Launch Vehicle

More information

High Performance Green Propulsion (HPGP): A Flight-Proven Capability and Cost Game-Changer for Small and Secondary Satellites Aaron Dinardi

High Performance Green Propulsion (HPGP): A Flight-Proven Capability and Cost Game-Changer for Small and Secondary Satellites Aaron Dinardi High Performance Green Propulsion (HPGP): A Flight-Proven Capability and Cost Game-Changer for Small and Secondary Satellites Aaron Dinardi 26 th AIAA/USU Small Satellite Conference 14 August 2012 Outline

More information

MS1-A Military Spaceplane System and Space Maneuver Vehicle. Lt Col Ken Verderame Air Force Research Laboratory 27 October 1999

MS1-A Military Spaceplane System and Space Maneuver Vehicle. Lt Col Ken Verderame Air Force Research Laboratory 27 October 1999 MS1-A Military Spaceplane System and Space Maneuver Vehicle Lt Col Ken Verderame Air Force Research Laboratory 27 October 1999 ReentryWorkshop_27Oct99_MS1-AMSP-SMV_KV p 2 MS-1A Military Spaceplane System

More information

EPIC Gap analysis and results

EPIC Gap analysis and results EPIC Gap analysis and results PSA Consortium Workshop Stockholm 11/02/2015 EPIC Gap Analysis and results/ Content Content: Scope Process Missions Analysis (i.e GEO (OR + SK)) Gaps results Gap analysis

More information

ORBITAL EXPRESS Space Operations Architecture Program 17 th Annual AIAA/USU Conference on Small Satellites August 12, 2003

ORBITAL EXPRESS Space Operations Architecture Program 17 th Annual AIAA/USU Conference on Small Satellites August 12, 2003 ORBITAL EXPRESS Space Operations Architecture Program 17 th Annual AIAA/USU Conference on Small Satellites August 12, 2003 Major James Shoemaker, USAF, Ph.D. DARPA Orbital Express Space Operations Program

More information

Baseline Concepts of the Kayser-Threde Team

Baseline Concepts of the Kayser-Threde Team Kayser-Threde GmbH Space Industrial Applications e.deorbit Mission Phase A Baseline Concepts of the Kayser-Threde Team 6 May 2014, Conference Centre Leeuwenhorst, The Netherlands Agenda Introduction Target

More information

Cibola Flight Experiment

Cibola Flight Experiment Cibola Flight Experiment Diane Roussel-Dupré & Micahel Caffrey Los Alamos National Laboratory John Buckley & Phil Davies Surrey Satellite Technology, LTD 7 Cities of Cibola: sought after by Spanish explorers

More information

UNCLASSIFIED R-1 ITEM NOMENCLATURE

UNCLASSIFIED R-1 ITEM NOMENCLATURE COST ($ in Millions) All Prior Years FY 2012 FY 2013 # Base OCO ## Total FY 2015 FY 2016 FY 2017 FY 2018 Air Force Page 1 of 5 R-1 Line #106 Complete Total Program Element - 44.308 10.051 13.000-13.000

More information

Additively Manufactured Propulsion System

Additively Manufactured Propulsion System Additively Manufactured Propulsion System Matthew Dushku Experimental Propulsion Lab 47 South 200 East Providence Utah, 84332 Mdushku@experimentalpropulsionlab.com Small Satellite Conference, Logan UT

More information

Atlas V Launches the Orbital Test Vehicle-1 Mission Overview. Atlas V 501 Cape Canaveral Air Force Station, FL Space Launch Complex 41

Atlas V Launches the Orbital Test Vehicle-1 Mission Overview. Atlas V 501 Cape Canaveral Air Force Station, FL Space Launch Complex 41 Atlas V Launches the Orbital Test Vehicle-1 Mission Overview Atlas V 501 Cape Canaveral Air Force Station, FL Space Launch Complex 41 Atlas V/OTV-1 United Launch (ULA) Alliance is proud to support the

More information

CHAPTER 2 GENERAL DESCRIPTION TO LM-2E

CHAPTER 2 GENERAL DESCRIPTION TO LM-2E GENERAL DESCRIPTION TO LM-2E 2.1 Summary Long March 2E (LM-2E) is developed based on the mature technologies of LM-2C. China Academy of Launch Vehicle Technology (CALT) started the conceptual design of

More information

VACCO ChEMS. Micro Propulsion Systems

VACCO ChEMS. Micro Propulsion Systems VACCO ChEMS Micro Propulsion Systems 14 Flight Systems and Counting 1 Heritage MEPSI Micro Propulsion System Micro Propulsion System 1U CubeSat Provided to AFRL for the Aerospace Corporation MEMS Pico-Satellite

More information

OLEV AN ON-ORBIT SERVICING PROGRAM FOR COMMERCIAL SPACECRAFTS IN GEO

OLEV AN ON-ORBIT SERVICING PROGRAM FOR COMMERCIAL SPACECRAFTS IN GEO Von der Erde ins All. Und zurück. Intelligente Lösungen für Industrie und Wissenschaft. From Earth to Space. And back. Intelligent solutions for industry and science. E a r t h S p a c e & F u t u r e

More information

RDT&E BUDGET ITEM JUSTIFICATION SHEET (R-2 Exhibit) June 2001

RDT&E BUDGET ITEM JUSTIFICATION SHEET (R-2 Exhibit) June 2001 PE NUMBER: 0603302F PE TITLE: Space and Missile Rocket Propulsion BUDGET ACTIVITY RDT&E BUDGET ITEM JUSTIFICATION SHEET (R-2 Exhibit) June 2001 PE NUMBER AND TITLE 03 - Advanced Technology Development

More information

Palamede, more than a microsatellite. Workshop on University Micro Satellites in Italy Rome, July 27, 2005

Palamede, more than a microsatellite. Workshop on University Micro Satellites in Italy Rome, July 27, 2005 Palamede, more than a microsatellite The Palamede Team (represented by Franco Bernelli and Roberto Armellin) Workshop on University Micro Satellites in Italy Rome, July 27, 2005 Outline Mission and educational

More information

The GHOST of a Chance for SmallSat s (GH2 Orbital Space Transfer) Vehicle

The GHOST of a Chance for SmallSat s (GH2 Orbital Space Transfer) Vehicle The GHOST of a Chance for SmallSat s (GH2 Orbital Space Transfer) Vehicle Dr. Gerard (Jake) Szatkowski United launch Alliance Project Mngr. SmallSat Accommodations Bernard Kutter United launch Alliance

More information

Development of a Reusable, Low-Shock Clamp Band Separation System for Small Spacecraft Release Applications

Development of a Reusable, Low-Shock Clamp Band Separation System for Small Spacecraft Release Applications Development of a Reusable, Low-Shock Clamp Band Separation System for Small Spacecraft Release Applications David Dowen, Scott Christiansen Starsys Research Corporation Boulder, Colorado 303-530-1925;

More information

July 28, ULA Rideshare Capabilities

July 28, ULA Rideshare Capabilities July 28, 2011 ULA Rideshare Capabilities Jake Szatkowski Business Development & Advanced Programs Copyright 2011 United Launch Alliance, LLC. All Rights Reserved. Rideshare Missions ULA's family of ependable

More information

Leading the Way to Electric Propulsion in Belfast

Leading the Way to Electric Propulsion in Belfast European Space Propulsion www.espdeltav.co.uk Leading the Way to Electric Propulsion in Belfast February 2014 1 Overview Strategic New Entrant To European Space Industry Provide Aerojet Rocketdyne Heritage

More information

Development of a Nitrous Oxide Monopropellant Thruster

Development of a Nitrous Oxide Monopropellant Thruster Development of a Nitrous Oxide Monopropellant Thruster Presenter: Stephen Mauthe Authors: V. Tarantini, B. Risi, R. Spina, N. Orr, R. Zee Space Flight Laboratory Toronto, Canada 2016 CubeSat Developers

More information

r bulletin 96 november 1998 Figure 1. Overall ATV configuration (ESA/D. Ducros)

r bulletin 96 november 1998 Figure 1. Overall ATV configuration (ESA/D. Ducros) r bulletin 96 november 1998 Figure 1. Overall ATV configuration (ESA/D. Ducros) atv The Automated Transfer Vehicle P. Amadieu Head of ATV/CTV Projects Division, ESA Directorate of Manned Spaceflight and

More information

EPIC Workshop 2017 SES Perspective on Electric Propulsion

EPIC Workshop 2017 SES Perspective on Electric Propulsion EPIC Workshop 2017 SES Perspective on Electric Propulsion PRESENTED BY Eric Kruch PRESENTED ON 24 October 2017 SES Proprietary SES Perspective on Electric Propulsion Agenda 1 Electric propulsion at SES

More information

AFRL Rocket Lab Technical Overview

AFRL Rocket Lab Technical Overview AFRL Rocket Lab Technical Overview 12 Sept 2016 Integrity Service Excellence Dr. Joseph Mabry Deputy for Science, Rocket Propulsion Division AFRL Rocket Lab Rocket Propulsion for the 21 st Century (RP21)

More information

VACCO ChEMS Micro Propulsion Systems Advances and Experience in CubeSat Propulsion System Technologies

VACCO ChEMS Micro Propulsion Systems Advances and Experience in CubeSat Propulsion System Technologies VACCO ChEMS Micro Propulsion Systems Advances and Experience in CubeSat Propulsion System Technologies May 1 st, 2018 VACCO Proprietary Data Shall Not Be Disclosed Without Written Permission of VACCO VACCO

More information

SMARTSat. Shape Memory Alloy Research Technology Satellite. Allison Barnard Alicia Broederdorf. Texas A&M University Space Engineering Institute

SMARTSat. Shape Memory Alloy Research Technology Satellite. Allison Barnard Alicia Broederdorf. Texas A&M University Space Engineering Institute SMARTSat Shape Memory Alloy Research Technology Satellite Allison Barnard Alicia Broederdorf Texas A&M University Space Engineering Institute Outline Introduction / Mission Objectives Systems Overview

More information

AMBR* Engine for Science Missions

AMBR* Engine for Science Missions AMBR* Engine for Science Missions NASA In Space Propulsion Technology (ISPT) Program *Advanced Material Bipropellant Rocket (AMBR) April 2010 AMBR Status Information Outline Overview Objectives Benefits

More information

Vector-R. Payload User s Guide

Vector-R. Payload User s Guide Vector-R Payload User s Guide VSS-2017-023-V2.0 Vector-R This Document Contains No ITAR Restricted Information and is Cleared for General Public Distribution. 1 Vector wants to do for spaceflight what

More information

Ares V: Supporting Space Exploration from LEO to Beyond

Ares V: Supporting Space Exploration from LEO to Beyond Ares V: Supporting Space Exploration from LEO to Beyond American Astronautical Society Wernher von Braun Memorial Symposium October 21, 2008 Phil Sumrall Advanced Planning Manager Ares Projects Office

More information

Future NASA Power Technologies for Space and Aero Propulsion Applications. Presented to. Workshop on Reforming Electrical Energy Systems Curriculum

Future NASA Power Technologies for Space and Aero Propulsion Applications. Presented to. Workshop on Reforming Electrical Energy Systems Curriculum Future NASA Power Technologies for Space and Aero Propulsion Applications Presented to Workshop on Reforming Electrical Energy Systems Curriculum James F. Soeder Senior Technologist for Power NASA Glenn

More information

USA ATHENA 1 (LLV 1)

USA ATHENA 1 (LLV 1) 1. IDENTIFICATION 1.1 Name ATHENA 1 (LLV 1) 1.2 Classification Family : LLV = LMLV(1) Series : LLV = LMLV Version : LLV = LMLV (now ATHENA 1) Category : SPACE LAUNCH VEHICLE Class : Medium Launch Vehicle

More information

QinetiQ Electric Propulsion

QinetiQ Electric Propulsion QinetiQ Electric Propulsion Gridded Ion Thruster developments Kevin Hall EPIC Madrid, Spain 24 th & 25 th October, 2017 QinetiQ Introduction QinetiQ employs over 6,000 experts in the fields of defence,

More information

Transportation Options for SSP

Transportation Options for SSP Transportation Options for SSP IEEE WiSEE 2018 SSP Workshop Huntsville, AL 11-13 December 2018 Dallas Bienhoff Founder & Space Architect dallas.bienhoff@csdc.space 571-232-4554 571-459-2660 Transportation

More information

Lunette: A Global Network of Small Lunar Landers

Lunette: A Global Network of Small Lunar Landers Lunette: A Global Network of Small Lunar Landers Leon Alkalai and John O. Elliott Jet Propulsion Laboratory California Institute of Technology LEAG/ILEWG 2008 October 30, 2008 Baseline Mission Initial

More information

6. The Launch Vehicle

6. The Launch Vehicle 6. The Launch Vehicle With the retirement of the Saturn launch vehicle system following the Apollo-Soyuz mission in summer 1975, the Titan III E Centaur is the United State s most powerful launch vehicle

More information

USA DELTA DELTA Mc DONNELL DOUGLAS SPACE SYSTEMS

USA DELTA DELTA Mc DONNELL DOUGLAS SPACE SYSTEMS 1. IDENTIFICATION 1.1 Name DELTA 2-6925 1.2 Classification Family : DELTA Series : DELTA 2 Version : 6925 Category : SPACE LAUNCH VEHICLE Class : Medium Launch Vehicle (MLV) Type : Expendable Launch Vehicle

More information

Next Steps in Human Exploration: Cislunar Systems and Architectures

Next Steps in Human Exploration: Cislunar Systems and Architectures Next Steps in Human Exploration: Cislunar Systems and Architectures Matthew Duggan FISO Telecon August 9, 2017 2017 The Boeing Company Copyright 2010 Boeing. All rights reserved. Boeing Proprietary Distribution

More information

Michael J. Cully Director of Civil and Commercial Space Swales Aerospace Beltsville, Maryland

Michael J. Cully Director of Civil and Commercial Space Swales Aerospace Beltsville, Maryland SSC03-IX-7 I-CONE FOR RAPID RESPONSE AND LOW COST ACCESS TO SPACE 1 Director of Civil and Commercial Space Swales Aerospace Beltsville, Maryland Peter Alea Manager of Thermal Products Swales Aerospace

More information

Propulsion Solutions for CubeSats and Applications

Propulsion Solutions for CubeSats and Applications Propulsion Solutions for CubeSats and Applications Dr. Dan Williams Director of Business Development Busek Co. Inc. Natick, MA 12 August 2012 CubeSat Developers Workshop Logan, Utah 1 Introduction Satellites

More information

NASA USLI PRELIMINARY DESIGN REVIEW. University of California, Davis SpaceED Rockets Team

NASA USLI PRELIMINARY DESIGN REVIEW. University of California, Davis SpaceED Rockets Team NASA USLI 2012-13 PRELIMINARY DESIGN REVIEW University of California, Davis SpaceED Rockets Team OUTLINE School Information Launch Vehicle Summary Motor Selection Mission Performance and Predictions Structures

More information

FlexCore Low-Cost Attitude Determination and Control Enabling High-Performance Small Spacecraft

FlexCore Low-Cost Attitude Determination and Control Enabling High-Performance Small Spacecraft FlexCore Low-Cost Attitude Determination and Control Enabling High-Performance Small Spacecraft Dan Hegel Director, Advanced Development Blue Canyon Technologies hegel@bluecanyontech.com BCT Overview BCT

More information

Space Transportation Atlas V / Auxiliary Payload Overview

Space Transportation Atlas V / Auxiliary Payload Overview Space Transportation Atlas V / Auxiliary Payload Overview Lockheed Martin Space Systems Company Jim England (303) 977-0861 Program Manager, Atlas Government Programs Business Development and Advanced Programs

More information

The Common Spacecraft Bus and Lunar Commercialization

The Common Spacecraft Bus and Lunar Commercialization The Common Spacecraft Bus and Lunar Commercialization Alex MacDonald NASA Ames Research Center alex.macdonald@balliol.ox.ac.uk Will Marshall NASA Ames Research Center william.s.marshall@nasa.gov Summary

More information

MISSION OVERVIEW SLC-41

MISSION OVERVIEW SLC-41 MISSION OVERVIEW SLC-41 CCAFS, FL The ULA team is proud to be the launch provider for the Tracking Data and Relay Satellite-L (TDRS-L) mission. The TDRS system is the third generation space-based communication

More information

The 1 N HPGP thruster is designed for attitude and orbit control of small-sized satellites. FLIGHT-PROVEN. High Performance Green Propulsion.

The 1 N HPGP thruster is designed for attitude and orbit control of small-sized satellites. FLIGHT-PROVEN. High Performance Green Propulsion. The 1 N HPGP thruster is designed for attitude and orbit control of small-sized satellites. FLIGHT-PROVEN. High Performance Green Propulsion. Increased performance and reduced mission costs. Compared to

More information

SMALLSAT PROPULSION. Pete Smith, Roland McLellan Marotta UK Ltd, Cheltenham, and Dave Gibbon SSTL, Guildford, UK.

SMALLSAT PROPULSION. Pete Smith, Roland McLellan Marotta UK Ltd, Cheltenham, and Dave Gibbon SSTL, Guildford, UK. SMALLSAT PROPULSION Pete Smith, Roland McLellan Marotta UK Ltd, Cheltenham, and Dave Gibbon SSTL, Guildford, UK. ABSTRACT This paper presents an overview of the components, systems and technologies used

More information

Prototype Development of a Solid Propellant Rocket Motor and an Electronic Safing and Arming Device for Nanosatellite (NANOSAT) Missions

Prototype Development of a Solid Propellant Rocket Motor and an Electronic Safing and Arming Device for Nanosatellite (NANOSAT) Missions SSC00-X-1 Prototype Development of a Solid Propellant Rocket Motor and an Electronic Safing and Arming Device for Nanosatellite (NANOSAT) Missions W. L. Boughers, C. E. Carr, R. A. Rauscher, W. J. Slade

More information

CHAPTER 2 GENERAL DESCRIPTION TO LM-3C

CHAPTER 2 GENERAL DESCRIPTION TO LM-3C GENERAL DESCRIPTION TO LM-3C 2.1 Summary Long March 3C (LM-3C) is developed on the basis of LM-3A launch vehicle. China Academy of Launch Vehicle Technology (CALT) started to design LM-3A in mid-1980s.

More information

LUNAR INDUSTRIAL RESEARCH BASE. Yuzhnoye SDO proprietary

LUNAR INDUSTRIAL RESEARCH BASE. Yuzhnoye SDO proprietary LUNAR INDUSTRIAL RESEARCH BASE DESCRIPTION Lunar Industrial Research Base is one of global, expensive, scientific and labor intensive projects which is to be implemented by the humanity to meet the needs

More information

Critical Design Review

Critical Design Review Critical Design Review University of Illinois at Urbana-Champaign NASA Student Launch 2017-2018 Illinois Space Society 1 Overview Illinois Space Society 2 Launch Vehicle Summary Javier Brown Illinois Space

More information

INTERNATIONAL LUNAR NETWORK ANCHOR NODES AND ROBOTIC LUNAR LANDER PROJECT UPDATE

INTERNATIONAL LUNAR NETWORK ANCHOR NODES AND ROBOTIC LUNAR LANDER PROJECT UPDATE INTERNATIONAL LUNAR NETWORK ANCHOR NODES AND ROBOTIC LUNAR LANDER PROJECT UPDATE NASA/ Barbara Cohen Julie Bassler Greg Chavers Monica Hammond Larry Hill Danny Harris Todd Holloway Brian Mulac JHU/APL

More information

Routine Scheduled Space Access For Secondary Payloads

Routine Scheduled Space Access For Secondary Payloads SSC10-IX-8 Routine Scheduled Space Access For Secondary Jason Andrews, President and CEO, and Jeff Cannon, Senior Systems Engineer, Spaceflight Services, Inc. Tukwila, WA 98168 Telephone: 206.342.9934

More information

2012 Cubesat Workshop. ULA Rideshare Update APR 19, 2012

2012 Cubesat Workshop. ULA Rideshare Update APR 19, 2012 2012 Cubesat Workshop ULA Rideshare Update APR 19, 2012 Jake Szatkowski gerard.p.szatkowski@ulalaunch.com Major Travis Willco will brief status of the NRO L-36 Mission On Friday Copyright 2011 United Launch

More information

Thinking Outside the Cube

Thinking Outside the Cube CHANGING THE ECONOMICS OF SPACE Thinking Outside the Cube 34 th Space Symposium Colorado Springs Monday 16 th April 2018 Anita Bernie a.bernie@sstl.co.uk Commercial in Confidence. SSTL 2017 SpaceNews Home

More information

In-Space Demonstration of HighPerformance Green Propulsion (HPGP) and its Impact on Small Satellites

In-Space Demonstration of HighPerformance Green Propulsion (HPGP) and its Impact on Small Satellites In-Space Demonstration of HighPerformance Green Propulsion (HPGP) and its Impact on Small Satellites Ben Crowe and Kjell Anflo 25 th Annual AIAA/Utah State University Conference on Small Satellites 10th

More information

Lunar Missions by Year - All Countries. Mission count dropped as we transitioned from politically driven missions to science driven missions

Lunar Missions by Year - All Countries. Mission count dropped as we transitioned from politically driven missions to science driven missions n Lunar Missions by Year - All Countries Key: All Mission Attempts Mission Successes Mission count dropped as we transitioned from politically driven missions to science driven missions Capability Driven

More information

The 1 N HPGP thruster is designed for attitude and orbit control of small-sized satellites. FLIGHT-PROVEN.

The 1 N HPGP thruster is designed for attitude and orbit control of small-sized satellites. FLIGHT-PROVEN. The 1 N HPGP thruster is designed for attitude and orbit control of small-sized satellites. FLIGHT-PROVEN. High Performance Green Propulsion. Increased performance and reduced mission costs. Compared to

More information

THE KOREASAT5 PROGRAM

THE KOREASAT5 PROGRAM THE KOREASAT5 PROGRAM - Design, AI&T, Launch and Operation KT CORPORTION Contents I. Introduction II. Design III. Assembly, Integration and Test (AI&T) IV. Launch V. Operation VI. Q & A THE KOREASAT 5

More information

EuLISA. <Chemical Propulsion> Internal Final Presentation ESTEC, 8 July Prepared by the ICPA / CDF* Team. (*) ESTEC Concurrent Design Facility

EuLISA. <Chemical Propulsion> Internal Final Presentation ESTEC, 8 July Prepared by the ICPA / CDF* Team. (*) ESTEC Concurrent Design Facility EuLISA Internal Final Presentation ESTEC, 8 July 2011 Prepared by the ICPA / CDF* Team (*) ESTEC Concurrent Design Facility Option 1 First table in MA presentation: Delta-v budget

More information

SOYUZ-IKAR-FREGAT 1. IDENTIFICATION. 1.1 Name. 1.2 Classification Family : SOYUZ Series : SOYUZ Version : SOYUZ-IKAR SOYUZ-FREGAT

SOYUZ-IKAR-FREGAT 1. IDENTIFICATION. 1.1 Name. 1.2 Classification Family : SOYUZ Series : SOYUZ Version : SOYUZ-IKAR SOYUZ-FREGAT 1. IDENTIFICATION 1.1 Name 1.2 Classification Family : SOYUZ Series : SOYUZ Version : SOYUZ-IKAR SOYUZ-FREGAT Category : SPACE LAUNCH VEHICLE Class : Medium Launch Vehicle (MLV) Type : Expendable Launch

More information

Innovating the future of disaster relief

Innovating the future of disaster relief Innovating the future of disaster relief American Helicopter Society International 33rd Annual Student Design Competition Graduate Student Team Submission VEHICLE OVERVIEW FOUR VIEW DRAWING INTERNAL COMPONENTS

More information

CONTENTS Duct Jet Propulsion / Rocket Propulsion / Applications of Rocket Propulsion / 15 References / 25

CONTENTS Duct Jet Propulsion / Rocket Propulsion / Applications of Rocket Propulsion / 15 References / 25 CONTENTS PREFACE xi 1 Classification 1.1. Duct Jet Propulsion / 2 1.2. Rocket Propulsion / 4 1.3. Applications of Rocket Propulsion / 15 References / 25 2 Definitions and Fundamentals 2.1. Definition /

More information

NASA Glenn Research Center Intelligent Power System Control Development for Deep Space Exploration

NASA Glenn Research Center Intelligent Power System Control Development for Deep Space Exploration National Aeronautics and Space Administration NASA Glenn Research Center Intelligent Power System Control Development for Deep Space Exploration Anne M. McNelis NASA Glenn Research Center Presentation

More information

The World Space Congress 2002, IAF - COSPAR October, 2002 Houston, Texas

The World Space Congress 2002, IAF - COSPAR October, 2002 Houston, Texas IAC-02-VP-01 The World Space Congress 2002, IAF - COSPAR October, 2002 Houston, Texas SCORPIUS, A New Generation of Responsive, Low Cost Expendable Launch Vehicle Family * Robert E. Conger, Shyama Chakroborty,

More information

Media Event Media Briefing Arif Karabeyoglu President & CTO SPG, Inc. June 29, 2012

Media Event Media Briefing Arif Karabeyoglu President & CTO SPG, Inc. June 29, 2012 Media Event Media Briefing Arif Karabeyoglu President & CTO SPG, Inc. June 29, 2012 spg-corp.com SPG Background SPG, Inc is an Aerospace company founded in 1999 to advance state-of of-the-art propulsion

More information

IAC-08-D The SpaceX Falcon 1 Launch Vehicle Flight 3 Results, Future Developments, and Falcon 9 Evolution

IAC-08-D The SpaceX Falcon 1 Launch Vehicle Flight 3 Results, Future Developments, and Falcon 9 Evolution IAC-08-D2.1.03 The SpaceX Falcon 1 Launch Vehicle Flight 3 Results, Future Developments, and Falcon 9 Evolution Author: Brian Bjelde, Space Exploration Technologies, United States of America, 1 Rocket

More information

CALL FOR IDEAS FOR THE RE-USE OF THE MARS EXPRESS PLATFORM PLATFORM CAPABILITIES. D. McCoy

CALL FOR IDEAS FOR THE RE-USE OF THE MARS EXPRESS PLATFORM PLATFORM CAPABILITIES. D. McCoy Mars Express Reuse: Call for Ideas CALL FOR IDEAS FOR THE RE-USE OF THE MARS EXPRESS PLATFORM PLATFORM CAPABILITIES D. McCoy PARIS 23 MARCH 2001 page 1 Mars Express Reuse: Call for Ideas PRESENTATION CONTENTS

More information

United Launch Alliance Rideshare Capabilities To Support Low-Cost Planetary Missions

United Launch Alliance Rideshare Capabilities To Support Low-Cost Planetary Missions United Launch Alliance Rideshare Capabilities To Support Low-Cost Planetary Missions Keith Karuntzos United Launch Alliance Abstract. The United Launch Alliance (ULA) family of launch vehicles - the Atlas

More information

Safety Assessment for secondary payloads launched by Japanese Expendable Launch Vehicle

Safety Assessment for secondary payloads launched by Japanese Expendable Launch Vehicle Safety Assessment for secondary payloads launched by Japanese Expendable Launch Vehicle 6 th IAASS(International Association for the Advancement of Space Safety) Safety is Not an Option Montreal, Canada

More information

Wernher von Braun Symposium. Dream Chaser Program. Sierra Nevada Corporation. Overview. October For the

Wernher von Braun Symposium. Dream Chaser Program. Sierra Nevada Corporation. Overview. October For the October 2011 Wernher von Braun Symposium For the Dream Chaser Program Overview Sierra Nevada Corporation Corporate Overview Owner Operated Company Founded in 1963 and under consistent management since

More information

Antares Rocket Launch recorded on 44 1 Beyond HD DDR recorders Controlled by 61 1 Beyond Systems total

Antares Rocket Launch recorded on 44 1 Beyond HD DDR recorders Controlled by 61 1 Beyond Systems total The 1 Beyond ultra-reliable Event DDR and Storage design won the NASA contract to supply the world s largest HD-DDR event recorder which is critical to the new Antares Rocket countdown and launch control

More information

Design Reliability Comparison for SpaceX Falcon Vehicles

Design Reliability Comparison for SpaceX Falcon Vehicles Design Reliability Comparison for SpaceX Falcon Vehicles November 2004 Futron Corporation 7315 Wisconsin Avenue Suite 900W Bethesda MD 20814-3202 (301) 913-9372 Fax: (301) 913-9475 www.futron.com Introduction

More information

AN OPTIMIZED PROPULSION SYSTEM FOR Soyuz/ST

AN OPTIMIZED PROPULSION SYSTEM FOR Soyuz/ST 1 RD-0124 AN OPTIMIZED PROPULSION SYSTEM FOR Soyuz/ST Versailles, May 14,2002 Starsem Organization 2 35% 25% 15% 25% 50-50 European-Russian joint venture providing Soyuz launch services for the commercial

More information

The Role of Electric Propulsion in a Flexible Architecture for Space Exploration

The Role of Electric Propulsion in a Flexible Architecture for Space Exploration The Role of Electric Propulsion in a Flexible Architecture for Space Exploration IEPC-2011-210 Presented at the 32nd International Electric Propulsion Conference, Wiesbaden Germany C. Casaregola 1, D.

More information

UNCLASSIFIED. R-1 Program Element (Number/Name) PE F / Aerospace Propulsion and Power Technology

UNCLASSIFIED. R-1 Program Element (Number/Name) PE F / Aerospace Propulsion and Power Technology Exhibit R-2, RDT&E Budget Item Justification: PB 2015 Air Force Date: March 2014 3600: Research, Development, Test & Evaluation, Air Force / BA 3: Advanced Technology Development (ATD) COST ($ in Millions)

More information

Exomars Orbiter Module Bus OMB

Exomars Orbiter Module Bus OMB Exomars Orbiter Module Bus OMB TAS-F 23rd Sept 2010 Exomars Industrial day- Turin 1 Exomars OMB definition Exomars OMB will: serve as a carrier to deliver the EDM at the right landing latitude in the 2016

More information

An Overview of Electric Propulsion Activities in China

An Overview of Electric Propulsion Activities in China An Overview of Electric Propulsion Activities in China Xiaolu Kang Shanghai Spaceflight Power Machinery Institute, Shanghai, P.R. China, 200233 CO-AUTHOR: Zhaoling Wang Nanhao Wang Anjie Li Guofu Wu Gengwang

More information