High Performance Green Propulsion (HPGP): A Flight-Proven Capability and Cost Game-Changer for Small and Secondary Satellites Aaron Dinardi

Size: px
Start display at page:

Download "High Performance Green Propulsion (HPGP): A Flight-Proven Capability and Cost Game-Changer for Small and Secondary Satellites Aaron Dinardi"

Transcription

1 High Performance Green Propulsion (HPGP): A Flight-Proven Capability and Cost Game-Changer for Small and Secondary Satellites Aaron Dinardi 26 th AIAA/USU Small Satellite Conference 14 August 2012

2 Outline 1. HPGP Overview 2. PRISMA Two-Year Update 3. Benefits to Small Satellite Missions

3 Why Green Propulsion? Higher performance than monopropellant Hydrazine Reduced tank volume or Extended mission IMPROVED PERFORMANCE - Storable liquid monopropellant - Higher Specific Impulse and Density Impulse + INCREASED SAFETY - Low Sensitivity - Low Toxicity - Non-Carcinogenic - Environmentally Benign = Much less toxic than Hydrazine Reduced fueling cost LOWER MISSION COSTS - Simplified handling and transportation - Reduced cost for fueling operations - Compatible with available COTS hardware

4 HPGP Characteristics (as compared to hydrazine) Comparison Parameter Hydrazine HPGP (LMP-103S) Specific Impulse Reference 6% higher than hydrazine Density Reference 24% higher than hydrazine Stability Unstable (reactivity) Stable > 20 yrs (STANAG 4582) Toxicity Highly Toxic Low Toxicity (due to methanol) Carcinogenic Yes No Corrosive Yes No Flammable Vapors Yes No Environmental Hazard Yes No Sensitive to Air & Humidity Yes No SCAPE Required for Handling Yes No Storable Yes Yes (> 6.5 yrs, end-to-end test is ongoing) Freezing Point 1 C -90 C (-7 C saturation) Boiling Point 114 C 120 C Qualified Operating Temp Range 10 C to 50 C 10 C to 50 C (allows use of COTS hydrazine components) Operating Temp Range Capability 10 C to 50 C -5 C to 60 C Typical Blow-Down Ratio 4:1 4:1 Exhaust Gases Ammonia, nitrogen, hydrogen H 2 0 (50%), N 2 (23%), H 2 (16%), CO (6%), CO 2 (5%) Radiation Tolerance Reference Insensitive up to 100 krad (Cobalt 60) Shipping Class 8 / UN2029 (Forbidden on commercial aircraft) UN / DOT 1.4S (Permitted on commercial passenger aircraft)

5 Air Transport of LMP-103S Transport Classified as UN / US DOT 1.4S Aug 2009: Stockholm Kiruna (via commercial passenger aircraft) May 2010: Örebro Orsk (via cargo aircraft with the PRISMA satellites) Aug 2011: Stockholm Zurich London (via commercial passenger aircraft) 4. 6 Jun 2012: Göteborg Stockholm New York (via commercial passenger aircraft)

6 HPGP has been flight-proven to outperform hydrazine on the PRISMA mission Mango 3-axis stabilized Attitude Independent Orbit Control 100 m/s Delta-V 145 kg launch mass 2.6 m wing-span 3 propulsion systems 4 RF systems Tango 3-axis stabilized Solar Magnetic control No orbit control 40 kg launch mass (Artists Impression Courtesy of DLR)

7 HPGP In-Space Comparison with Hydrazine as seen during 2 years on PRISMA Specific Impulse and Density Impulse Comparison Steady-State Firing: I sp for last 10 s of 60 s firings 6-12 % Higher Isp than hydrazine % Higher Density Impulse than hydrazine Single Pulse Firing: T on : 50 ms 60 s First half of the mission % Higher Isp than hydrazine % Higher Density Impulse than hydrazine Pulse Mode Firing: T on : 50 ms 30 s Duty Factor: % 0-12 % Higher Isp than hydrazine % Higher Density Impulse than hydrazine Mission Average improvement with HPGP compared to hydrazine: - Isp + 8% - Density Impulse + 32%

8 Benefits to Small Satellite Missions: 1) Increased Performance 2) Simplified Handling & Transportation 30% higher performance allows: Longer mission lifetime (with same tank), or Smaller tank (for same V) o Waterfall mass reductions o Better utilization of limited volume & mass Efficient orbit raising and/or de-orbit Reduced propellant toxicity allows: Handling in facilities not rated for hydrazine o Launch sites o Universities and SMEs Air transport (commercial/passenger aircraft) o Shipment to launch site with s/c & GSE Fueling without SCAPE suits Increased responsiveness o Shorter launch campaigns o Shipment of pre-fueled satellites 3) Reduced Mission Costs Significant life-cycle cost reductions, due to: All of the blue highlighted items on this slide 4) Fewer Secondary/Rideshare Restrictions Non-Hazardous fueling operations allow: Reduced physical risk to primary satellites Parallel processing at launch site o Reduced schedule risk to primary satellites More launch opportunities

9 Benefit #1: Increased Performance Myriade Longer Mission Lifetime Astrium Space Transportation analyzed replacing hydrazine with HPGP on their existing Myriade platform ( kg), and concluded that for the same tank size: Up to 28% higher total impulse is achievable, resulting in 24% more V (blow-down dependent) Smaller Tank NASA GSFC analyzed the mass savings which would have been achieved on the Lunar Reconnaissance Orbiter (1,882 kg) if it had implemented HPGP instead of hydrazine, and concluded that: A 39% smaller tank (volume) and 26% less propellant (mass) could have been used, resulting in waterfall mass savings of 18.7% of the entire spacecraft s mass LRO mass savings with HPGP Orbit Raising and/or De-orbit Small satellites are often injected into sub-optimal orbits (due to being launched as secondary payloads), resulting in: Reduced mission lifetime (if injected too low), or If injected too high, and orbit decay timeframe exceeding the 25 year post-mission requirement Including a small COTS-based HPGP system can provide an effective way for small satellites to raise and/or lower their perigee

10 Benefit #2: Simplified Handling & Transportation Loading PRISMA with LMP-103S Loading PRISMA with Hydrazine For the PRIMSA launch campaign: The LMP-103S propellant was transported as air cargo, together with the satellites and associated GSE o Hydrazine was shipped separately, by rail/boat/truck HPGP fueling operations required only 3 working days (leak checks, fueling & pressurization, decontamination) All HPGP handling (loading & decontamination) was declared non-hazardous operations by Range Safety o o HPGP loading did not require SCAPE operations Only limited decontamination of the HPGP loading cart was required at the launch site: Hydrazine HPGP 470 kg toxic waste 3 kg non-toxic waste 29 kg propellant waste 1 kg propellant waste The costs for propellant, transportation and fueling of hydrazine were 3 times higher than those for HPGP

11 Benefit #3: Reduced Life-Cycle Costs A Non-Space Case Study 42% - 88% higher up-front costs than heritage technology options are offset by significant savings in other areas Source: Demonstration Assessment of Light-Emitting Diode (LED) Parking Lot Lighting, Prepared for the US Dept. of Energy by the Pacific Northwest National Laboratory, May 2011

12 HPGP vs. Hydrazine Cost Comparison Consideration Factors: (*Note: Positive values indicate HPGP cost savings over a hydrazine-based system) Conclusions: 1) Significant savings are achievable, even before all cost areas are accounted for. 2) Analyses must be performed on a mission-by-mission basis in order to determine if the transportation & launch processing cost savings are able to offset the higher material costs.

13 Example HPGP Cost Savings (vs. a comparable hydrazine system) Mission #1: Missions #3&4: 1a 1b 1c 3a 4a Mission #2: Missions #3&4: 2a 2b 2c 3b 4b Analysis includes: flight hardware, propellant (excluding transport) and satellite fueling (excluding waste disposal) Greater savings are able to be achieved from smaller tanks, propellant transportation and waste disposal

14 Conclusions HPGP eliminates or reduces the concerns which often preclude the inclusion of a liquid propulsion system on small satellite missions; thus enabling small satellites to achieve increased scientific utility The combined benefits of higher performance & simplified transportation/handling provided by HPGP allow satellite mass reductions and significantly reduced mission life-cycle costs (as compared with hydrazine-based systems of similar performance) When taken together, the many flight-proven benefits make HPGP a game changer for both increasing the capabilities and reducing the costs of small satellite missions Benefits to Small Satellites: Increased Performance Reduced Mission Costs Simplified Handling & Transportation Fewer Rideshare Restrictions

15

16 Ammonium DiNitrimide (ADN) in liquid monopropellants ADN Energetic Material Highly Soluble Oxidizer Solvent Water Fuel Alcohols, acetone, ammonia LMP-103S monopropellant: ADN % Methanol % Ammonia 3-6 % Water balance (by weight) The family of ADN propellants was invented in 1997 by the Swedish Space Corporation (SSC) and the Swedish Defence Research Agency (FOI). HPGP High Performance Green Propellant

17 ECAPS High Performance Green Propulsion 1 N 5 N 22 N 50 N 220 N Thrust 0.5 N 1 N 5 N 22 N 50 N 220 N Propellant LMP-103S LMP-103S LMP-103S LMP-103S LMP-103S LMP-103 Isp (Ns/kg) 2210* (~ 225 sec) Density Impulse (Ns/L) 2310* (~ 235 sec) 2450* (~ 250 sec) 2500* (~ 255 sec) 2515** (~ 255 sec) 2800** (~ sec) Status TRL 5 TRL 9 flight proven TRL 5 TRL 5 TRL 3 TRL 4/5 * Delivered steady-state vacuum specific impulse at MEOP and ε = 150:1 ** Predicted steady-state vacuum specific impulse at MEOP and ε = 150:1

18 Objective and Background: The PRISMA Mission Demonstration of technologies related to Formation Flying (FF) and Rendezvous in space Main satellite Mango and Target satellite Tango Demonstration of High Performance Green Propulsion (HPGP) system HPGP Flight Objectives: Demonstration of non-hazardous fueling operations and reduced fueling lead time of a high performance monopropellant First in-space demonstration of a high performance storable green monopropellant Deliver ΔV to the PRISMA mission Redundant propulsion system to hydrazine Perform Back-to-Back performance comparison with hydrazine Status: Launched clamped together on 15 Jun 2010 Tango separated from Mango on 11 Aug 2010 Nominal mission completed by mid-aug 2011 Mission extended into 2012 (still operational)

19 PRISMA (Mango) Propulsion Systems Hydrazine propulsion system: Six 1N thrusters Autonomous formation flying Autonomous rendezvous Homing Proximity operations HPGP propulsion system: Two 1N thrusters Specific HPGP experiments Formation flying maneuvers Co-operations with hydrazine Pressurant Service Valve GHe LMP-103S Propellant Service Valve Latch Valve Orifice Filter Pressure Transducer TS TS Thrusters *Hydrazine based Commercial Off The Shelf components

20 Additional Consideration: Hidden Hydrazine Costs Hydrazine Disposal Cost Analysis Note: The cumulative disposal charge translates to ~$29/pound of hydrazine. However, when categories 5 & 6 are combined, the cost can grow to more than 3x that

The 1 N HPGP thruster is designed for attitude and orbit control of small-sized satellites. FLIGHT-PROVEN. High Performance Green Propulsion.

The 1 N HPGP thruster is designed for attitude and orbit control of small-sized satellites. FLIGHT-PROVEN. High Performance Green Propulsion. The 1 N HPGP thruster is designed for attitude and orbit control of small-sized satellites. FLIGHT-PROVEN. High Performance Green Propulsion. Increased performance and reduced mission costs. Compared to

More information

The 1 N HPGP thruster is designed for attitude and orbit control of small-sized satellites. FLIGHT-PROVEN.

The 1 N HPGP thruster is designed for attitude and orbit control of small-sized satellites. FLIGHT-PROVEN. The 1 N HPGP thruster is designed for attitude and orbit control of small-sized satellites. FLIGHT-PROVEN. High Performance Green Propulsion. Increased performance and reduced mission costs. Compared to

More information

In-Space Demonstration of HighPerformance Green Propulsion (HPGP) and its Impact on Small Satellites

In-Space Demonstration of HighPerformance Green Propulsion (HPGP) and its Impact on Small Satellites In-Space Demonstration of HighPerformance Green Propulsion (HPGP) and its Impact on Small Satellites Ben Crowe and Kjell Anflo 25 th Annual AIAA/Utah State University Conference on Small Satellites 10th

More information

THE FIRST IN-SPACE DEMONSTRATION OF A GREEN PROPULSION SYSTEM

THE FIRST IN-SPACE DEMONSTRATION OF A GREEN PROPULSION SYSTEM THE FIRST IN-SPACE DEMONSTRATION OF A GREEN PROPULSION SYSTEM Presented by: Mathias Persson, CEO ECAPS, Solna, Sweden SSC10-XI-2 Copyright 2010 ECAPS - 1 - Outline 1. Introduction 2. Objectives 3. PRISMA

More information

A Stable Liquid Mono-Propellant based on ADN

A Stable Liquid Mono-Propellant based on ADN A Stable Liquid Mono-Propellant based on ADN Eurenco Bofors, Groupe SNPE: Per Sjöberg and Henrik Skifs Karlskoga, Sweden ECAPS, : Peter Thormählen and Kjell Anflo Solna, Sweden Insensitive Munitions and

More information

High Performance Green Propulsion (HPGP): A Flight-Proven Capability and Cost Game-Changer for Small and Secondary Satellites

High Performance Green Propulsion (HPGP): A Flight-Proven Capability and Cost Game-Changer for Small and Secondary Satellites High Performance Green Propulsion (HPGP): A Flight-Proven Capability and Cost Game-Changer for Small and Secondary Satellites Aaron Dinardi Ecological Advanced Propulsion Systems, Inc. 2900 K St NW, Suite

More information

THE FIRST IN-SPACE DEMONSTRATION OF A GREEN PROPULSION SYSTEM

THE FIRST IN-SPACE DEMONSTRATION OF A GREEN PROPULSION SYSTEM SSC10-XI-2 THE FIRST IN-SPACE DEMONSTRATION OF A GREEN PROPULSION SYSTEM K. Anflo ECAPS P.O. Box 4207, SE-171 04 Solna, Sweden; Tel. +46 8 6276305 kjell.anflo@ssc.se B. Crowe ECAPS P.O. Box 4207, SE-171

More information

Development of a Nitrous Oxide Monopropellant Thruster

Development of a Nitrous Oxide Monopropellant Thruster Development of a Nitrous Oxide Monopropellant Thruster Presenter: Stephen Mauthe Authors: V. Tarantini, B. Risi, R. Spina, N. Orr, R. Zee Space Flight Laboratory Toronto, Canada 2016 CubeSat Developers

More information

VACCO ChEMS Micro Propulsion Systems Advances and Experience in CubeSat Propulsion System Technologies

VACCO ChEMS Micro Propulsion Systems Advances and Experience in CubeSat Propulsion System Technologies VACCO ChEMS Micro Propulsion Systems Advances and Experience in CubeSat Propulsion System Technologies May 1 st, 2018 VACCO Proprietary Data Shall Not Be Disclosed Without Written Permission of VACCO VACCO

More information

EuLISA. <Chemical Propulsion> Internal Final Presentation ESTEC, 8 July Prepared by the ICPA / CDF* Team. (*) ESTEC Concurrent Design Facility

EuLISA. <Chemical Propulsion> Internal Final Presentation ESTEC, 8 July Prepared by the ICPA / CDF* Team. (*) ESTEC Concurrent Design Facility EuLISA Internal Final Presentation ESTEC, 8 July 2011 Prepared by the ICPA / CDF* Team (*) ESTEC Concurrent Design Facility Option 1 First table in MA presentation: Delta-v budget

More information

ARIANEGROUP ORBITAL PROPULSION ROBERT-KOCH-STRASSE TAUFKIRCHEN GERMANY

ARIANEGROUP ORBITAL PROPULSION ROBERT-KOCH-STRASSE TAUFKIRCHEN GERMANY www.ariane.group ARIANEGROUP ORBITAL PROPULSION ROBERT-KOCH-STRASSE 1 82024 TAUFKIRCHEN GERMANY SUSANA CORTÉS BORGMEYER SUSANA.CORTES-BORGMEYER@ARIANE.GROUP PHONE: +49 (0)89 6000 29244 WWW.SPACE-PROPULSION.COM

More information

Enabling High Performance Green Propulsion for SmallSats

Enabling High Performance Green Propulsion for SmallSats Space Propulsion Redmond, WA Enabling High Performance Green Propulsion for SmallSats Robert Masse, Aerojet Rocketdyne Ronald Spores, Aerojet Rocketdyne May Allen, Aerojet Rocketdyne Scott Kimbrel, Aerojet

More information

Replacement of Hydrazine: Overview and First Results of the H2020 Project Rheform

Replacement of Hydrazine: Overview and First Results of the H2020 Project Rheform 6 TH EUROPEAN CONFERENCE FOR AERONAUTICS AND SPACE SCIENCES (EUCASS) Replacement of Hydrazine: Overview and First Results of the H2020 Project Rheform Michele Negri DLR (German Aerospace Center) - Lampoldshausen

More information

Hydrocarbon-Seeded Ignition System for Small Spacecraft Thrusters Using Ionic Liquid Propellants

Hydrocarbon-Seeded Ignition System for Small Spacecraft Thrusters Using Ionic Liquid Propellants Hydrocarbon-Seeded Ignition System for Small Spacecraft Thrusters Using Ionic Liquid Propellants Stephen A. Whitmore, Daniel P. Merkley, and Shannon D. Eilers Mechanical and Aerospace Engineering Department,

More information

AFRL Rocket Lab Technical Overview

AFRL Rocket Lab Technical Overview AFRL Rocket Lab Technical Overview 12 Sept 2016 Integrity Service Excellence Dr. Joseph Mabry Deputy for Science, Rocket Propulsion Division AFRL Rocket Lab Rocket Propulsion for the 21 st Century (RP21)

More information

Lunar Cargo Capability with VASIMR Propulsion

Lunar Cargo Capability with VASIMR Propulsion Lunar Cargo Capability with VASIMR Propulsion Tim Glover, PhD Director of Development Outline Markets for the VASIMR Capability Near-term Lunar Cargo Needs Long-term/VSE Lunar Cargo Needs Comparison with

More information

Solar Electric Propulsion Benefits for NASA and On-Orbit Satellite Servicing

Solar Electric Propulsion Benefits for NASA and On-Orbit Satellite Servicing Solar Electric Propulsion Benefits for NASA and On-Orbit Satellite Servicing Therese Griebel NASA Glenn Research Center 1 Overview Current developments in technology that could meet NASA, DOD and commercial

More information

AMBR* Engine for Science Missions

AMBR* Engine for Science Missions AMBR* Engine for Science Missions NASA In Space Propulsion Technology (ISPT) Program *Advanced Material Bipropellant Rocket (AMBR) April 2010 AMBR Status Information Outline Overview Objectives Benefits

More information

VACCO ChEMS. Micro Propulsion Systems

VACCO ChEMS. Micro Propulsion Systems VACCO ChEMS Micro Propulsion Systems 14 Flight Systems and Counting 1 Heritage MEPSI Micro Propulsion System Micro Propulsion System 1U CubeSat Provided to AFRL for the Aerospace Corporation MEMS Pico-Satellite

More information

Additively Manufactured Propulsion System

Additively Manufactured Propulsion System Additively Manufactured Propulsion System Matthew Dushku Experimental Propulsion Lab 47 South 200 East Providence Utah, 84332 Mdushku@experimentalpropulsionlab.com Small Satellite Conference, Logan UT

More information

EPIC Gap analysis and results

EPIC Gap analysis and results EPIC Gap analysis and results PSA Consortium Workshop Stockholm 11/02/2015 EPIC Gap Analysis and results/ Content Content: Scope Process Missions Analysis (i.e GEO (OR + SK)) Gaps results Gap analysis

More information

HYDROS Development of a CubeSat Water Electrolysis Propulsion System

HYDROS Development of a CubeSat Water Electrolysis Propulsion System HYDROS Development of a CubeSat Water Electrolysis Propulsion System Vince Ethier, Lenny Paritsky, Todd Moser, Jeffrey Slostad, Robert Hoyt Tethers Unlimited, Inc 11711 N. Creek Pkwy S., Suite D113, Bothell,

More information

Development of a Low Cost Suborbital Rocket for Small Satellite Testing and In-Space Experiments

Development of a Low Cost Suborbital Rocket for Small Satellite Testing and In-Space Experiments Development of a Low Cost Suborbital Rocket for Small Satellite Testing and In-Space Experiments Würzburg, 2015-09-15 (extended presentation) Dr.-Ing. Peter H. Weuta Dipl.-Ing. Neil Jaschinski WEPA-Technologies

More information

ULA Briefing to National Research Council. In-Space Propulsion Roadmap. March 22, Bernard Kutter. Manager Advanced Programs. File no.

ULA Briefing to National Research Council. In-Space Propulsion Roadmap. March 22, Bernard Kutter. Manager Advanced Programs. File no. ULA Briefing to National Research Council In-Space Propulsion Roadmap March 22, 2011 Bernard Kutter Manager Advanced Programs File no. Copyright 2011 United Launch Alliance, LLC. All Rights Reserved. Key

More information

Formation Flying Experiments on the Orion-Emerald Mission. Introduction

Formation Flying Experiments on the Orion-Emerald Mission. Introduction Formation Flying Experiments on the Orion-Emerald Mission Philip Ferguson Jonathan P. How Space Systems Lab Massachusetts Institute of Technology Present updated Orion mission operations Goals & timelines

More information

Leading the Way to Electric Propulsion in Belfast

Leading the Way to Electric Propulsion in Belfast European Space Propulsion www.espdeltav.co.uk Leading the Way to Electric Propulsion in Belfast February 2014 1 Overview Strategic New Entrant To European Space Industry Provide Aerojet Rocketdyne Heritage

More information

The GHOST of a Chance for SmallSat s (GH2 Orbital Space Transfer) Vehicle

The GHOST of a Chance for SmallSat s (GH2 Orbital Space Transfer) Vehicle The GHOST of a Chance for SmallSat s (GH2 Orbital Space Transfer) Vehicle Dr. Gerard (Jake) Szatkowski United launch Alliance Project Mngr. SmallSat Accommodations Bernard Kutter United launch Alliance

More information

Beyond Cold Gas Thrusters

Beyond Cold Gas Thrusters Beyond Cold Gas Thrusters Good - Simple Bad - Limited I sp How to increase specific impulse of monopropellant? raise T o Where will energy come from? chemical exothermic decomposition of monopropellant

More information

Suitability of reusability for a Lunar re-supply system

Suitability of reusability for a Lunar re-supply system www.dlr.de Chart 1 Suitability of reusability for a Lunar re-supply system Etienne Dumont Space Launcher Systems Analysis (SART) Institut of Space Systems, Bremen, Germany Etienne.dumont@dlr.de IAC 2016

More information

An Overview of Electric Propulsion Activities in China

An Overview of Electric Propulsion Activities in China An Overview of Electric Propulsion Activities in China Xiaolu Kang Shanghai Spaceflight Power Machinery Institute, Shanghai, P.R. China, 200233 CO-AUTHOR: Zhaoling Wang Nanhao Wang Anjie Li Guofu Wu Gengwang

More information

EPIC Workshop 2017 SES Perspective on Electric Propulsion

EPIC Workshop 2017 SES Perspective on Electric Propulsion EPIC Workshop 2017 SES Perspective on Electric Propulsion PRESENTED BY Eric Kruch PRESENTED ON 24 October 2017 SES Proprietary SES Perspective on Electric Propulsion Agenda 1 Electric propulsion at SES

More information

The Falcon 1 Flight 3 - Jumpstart Mission Integration Summary and Flight Results. AIAA/USU Conference on Small Satellites, 2008 Paper SSC08-IX-6

The Falcon 1 Flight 3 - Jumpstart Mission Integration Summary and Flight Results. AIAA/USU Conference on Small Satellites, 2008 Paper SSC08-IX-6 The Falcon 1 Flight 3 - Jumpstart Mission Integration Summary and Flight Results Aug. 13, 2008 AIAA/USU Conference on Small Satellites, 2008 Paper SSC08-IX-6 Founded with the singular goal of providing

More information

Vehicle Reusability. e concept e promise e price When does it make sense? MARYLAND U N I V E R S I T Y O F. Vehicle Reusability

Vehicle Reusability. e concept e promise e price When does it make sense? MARYLAND U N I V E R S I T Y O F. Vehicle Reusability e concept e promise e price When does it make sense? 2010 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu 1 Sir Arthur C. Clarke: We re moving from the beer can philosophy of space travel

More information

LUNAR INDUSTRIAL RESEARCH BASE. Yuzhnoye SDO proprietary

LUNAR INDUSTRIAL RESEARCH BASE. Yuzhnoye SDO proprietary LUNAR INDUSTRIAL RESEARCH BASE DESCRIPTION Lunar Industrial Research Base is one of global, expensive, scientific and labor intensive projects which is to be implemented by the humanity to meet the needs

More information

The Common Spacecraft Bus and Lunar Commercialization

The Common Spacecraft Bus and Lunar Commercialization The Common Spacecraft Bus and Lunar Commercialization Alex MacDonald NASA Ames Research Center alex.macdonald@balliol.ox.ac.uk Will Marshall NASA Ames Research Center william.s.marshall@nasa.gov Summary

More information

Monopropellant Micro Propulsion system for CubeSats

Monopropellant Micro Propulsion system for CubeSats Monopropellant Micro Propulsion system for CubeSats By Chris Biddy 174 Suburban Rd Suite 120 San Luis Obispo CA 93401 (805) 549 8200 chris@stellar exploration.com Introduction High Performance CubeSat

More information

RDT&E BUDGET ITEM JUSTIFICATION SHEET (R-2 Exhibit) June 2001

RDT&E BUDGET ITEM JUSTIFICATION SHEET (R-2 Exhibit) June 2001 PE NUMBER: 0603302F PE TITLE: Space and Missile Rocket Propulsion BUDGET ACTIVITY RDT&E BUDGET ITEM JUSTIFICATION SHEET (R-2 Exhibit) June 2001 PE NUMBER AND TITLE 03 - Advanced Technology Development

More information

LPT6510 Pulse-tube Cooler for K applications

LPT6510 Pulse-tube Cooler for K applications 1 LPT6510 Pulse-tube Cooler for 60-150 K applications R. Arts, J. Mullié, J. Tanchon 1, T. Trollier 1. Thales Cryogenics B.V., Eindhoven, The Netherlands 1 Absolut System SAS, Seyssinet-Pariset, France

More information

SMALLSAT PROPULSION. Pete Smith, Roland McLellan Marotta UK Ltd, Cheltenham, and Dave Gibbon SSTL, Guildford, UK.

SMALLSAT PROPULSION. Pete Smith, Roland McLellan Marotta UK Ltd, Cheltenham, and Dave Gibbon SSTL, Guildford, UK. SMALLSAT PROPULSION Pete Smith, Roland McLellan Marotta UK Ltd, Cheltenham, and Dave Gibbon SSTL, Guildford, UK. ABSTRACT This paper presents an overview of the components, systems and technologies used

More information

July 28, ULA Rideshare Capabilities

July 28, ULA Rideshare Capabilities July 28, 2011 ULA Rideshare Capabilities Jake Szatkowski Business Development & Advanced Programs Copyright 2011 United Launch Alliance, LLC. All Rights Reserved. Rideshare Missions ULA's family of ependable

More information

Cygnus Payload Accommodations: Supporting ISS Utilization

Cygnus Payload Accommodations: Supporting ISS Utilization The Space Congress Proceedings 2018 (45th) The Next Great Steps Feb 27th, 1:30 PM Cygnus Payload Accommodations: Supporting ISS Utilization Frank DeMauro Vice President and General Manager, Advanced Programs

More information

AMSAT-NA FOX Satellite Program

AMSAT-NA FOX Satellite Program AMSAT-NA FOX Satellite Program Review, Status, and Future JERRY BUXTON, NØJY, AUTHOR AMSAT VP-ENGINEERING Review FOX-1 - WHY IT IS, WHAT IT IS Fox Development Strategy Take advantage of large and growing

More information

All-Electric CubeSat Propulsion Technologies

All-Electric CubeSat Propulsion Technologies All-Electric CubeSat Propulsion Technologies 6 th International Interplanetary CubeSat Workshop May 31 st 2017 Dan Courtney Michael Tsay Nathaniel Demmons Approved for public release; distribution is unlimited.

More information

Lunar Surface Access from Earth-Moon L1/L2 A novel lander design and study of alternative solutions

Lunar Surface Access from Earth-Moon L1/L2 A novel lander design and study of alternative solutions Lunar Surface Access from Earth-Moon L1/L2 A novel lander design and study of alternative solutions 28 November 2012 Washington, DC Revision B Mark Schaffer Senior Aerospace Engineer, Advanced Concepts

More information

AN OPTIMIZED PROPULSION SYSTEM FOR Soyuz/ST

AN OPTIMIZED PROPULSION SYSTEM FOR Soyuz/ST 1 RD-0124 AN OPTIMIZED PROPULSION SYSTEM FOR Soyuz/ST Versailles, May 14,2002 Starsem Organization 2 35% 25% 15% 25% 50-50 European-Russian joint venture providing Soyuz launch services for the commercial

More information

Bi-Axial Solar Array Drive Mechanism: Design, Build and Environmental Testing

Bi-Axial Solar Array Drive Mechanism: Design, Build and Environmental Testing Bi-Axial Solar Array Drive Mechanism: Design, Build and Environmental Testing Noémy Scheidegger*, Mark Ferris* and Nigel Phillips * Abstract The development of the Bi-Axial Solar Array Drive Mechanism

More information

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION CHAPTER 1 INTRODUCTION The development of Long March (LM) launch vehicle family can be traced back to the 1960s. Up to now, the Long March family of launch vehicles has included the LM-2C Series, the LM-2D,

More information

QinetiQ Electric Propulsion

QinetiQ Electric Propulsion QinetiQ Electric Propulsion Gridded Ion Thruster developments Kevin Hall EPIC Madrid, Spain 24 th & 25 th October, 2017 QinetiQ Introduction QinetiQ employs over 6,000 experts in the fields of defence,

More information

Station for Exploratory Analysis and Research Center for Humanity (SEARCH)

Station for Exploratory Analysis and Research Center for Humanity (SEARCH) Station for Exploratory Analysis and Research Center for Humanity (SEARCH) Authors: Jasmine Wong, Matthew Decker, Joseph Lewis, Megerditch Arabian, and Dr. Peter Bishay California State University, Northridge

More information

Eliminating the Need for Payload-specific Coupled Loads Analysis

Eliminating the Need for Payload-specific Coupled Loads Analysis Eliminating the Need for Payload-specific Coupled Loads Analysis Tom Sarafin and Seth Kovnat Instar Engineering and Consulting, Inc. 6901 S. Pierce St., Suite 200, Littleton, CO 80128; 303-973-2316 tom.sarafin@instarengineering.com

More information

NASA s Choice to Resupply the Space Station

NASA s Choice to Resupply the Space Station RELIABILITY SpaceX is based on the philosophy that through simplicity, reliability and low-cost can go hand-in-hand. By eliminating the traditional layers of management internally, and sub-contractors

More information

Electric propulsion as game changer for CubeSat: mission analysis with LOTOS

Electric propulsion as game changer for CubeSat: mission analysis with LOTOS Electric propulsion as game changer for CubeSat: mission analysis with LOTOS Space Tech Expo Europe 24 October 2017, Bremen (DE) Francesco Cremaschi, Sven Schäff Astos Solutions GmbH, Stuttgart service@astos.de

More information

OMOTENASHI. (Outstanding MOon exploration TEchnologies demonstrated by NAno Semi-Hard Impactor)

OMOTENASHI. (Outstanding MOon exploration TEchnologies demonstrated by NAno Semi-Hard Impactor) SLS EM-1 secondary payload OMOTENASHI (Outstanding MOon exploration TEchnologies demonstrated by NAno Semi-Hard Impactor) The smallest moon lander launched by the most powerful rocket in the world * Omotenashi

More information

SMARTSat. Shape Memory Alloy Research Technology Satellite. Allison Barnard Alicia Broederdorf. Texas A&M University Space Engineering Institute

SMARTSat. Shape Memory Alloy Research Technology Satellite. Allison Barnard Alicia Broederdorf. Texas A&M University Space Engineering Institute SMARTSat Shape Memory Alloy Research Technology Satellite Allison Barnard Alicia Broederdorf Texas A&M University Space Engineering Institute Outline Introduction / Mission Objectives Systems Overview

More information

FlexCore Low-Cost Attitude Determination and Control Enabling High-Performance Small Spacecraft

FlexCore Low-Cost Attitude Determination and Control Enabling High-Performance Small Spacecraft FlexCore Low-Cost Attitude Determination and Control Enabling High-Performance Small Spacecraft Dan Hegel Director, Advanced Development Blue Canyon Technologies hegel@bluecanyontech.com BCT Overview BCT

More information

Propulsion Solutions for CubeSats and Applications

Propulsion Solutions for CubeSats and Applications Propulsion Solutions for CubeSats and Applications Dr. Dan Williams Director of Business Development Busek Co. Inc. Natick, MA 12 August 2012 CubeSat Developers Workshop Logan, Utah 1 Introduction Satellites

More information

H-IIA Launch Vehicle Upgrade Development

H-IIA Launch Vehicle Upgrade Development 26 H-IIA Launch Vehicle Upgrade Development - Upper Stage Enhancement to Extend the Lifetime of Satellites - MAYUKI NIITSU *1 MASAAKI YASUI *2 KOJI SHIMURA *3 JUN YABANA *4 YOSHICHIKA TANABE *5 KEITARO

More information

Performance and Thermal Characteristics of High-Power Hydrogen Arcjet Thrusters with Radiation-Cooled Anodes for In-Space Propulsion

Performance and Thermal Characteristics of High-Power Hydrogen Arcjet Thrusters with Radiation-Cooled Anodes for In-Space Propulsion Performance and Thermal Characteristics of High-Power Hydrogen Arcjet Thrusters with Radiation-Cooled Anodes for In-Space Propulsion IEPC-2015-231 /ISTS-2015-b-231 Presented at Joint Conference of 30th

More information

Closed-loop thrust control in a MEMS-based micro propulsion module for CubeSats

Closed-loop thrust control in a MEMS-based micro propulsion module for CubeSats Closed-loop thrust control in a MEMS-based micro propulsion module for CubeSats Pelle Rangsten, Kristoffer Palmer, Johan Bejhed, Ana Salaverri, Kerstin Jonsson, and Tor-Arne Grönland NanoSpace Uppsala

More information

THE KOREASAT5 PROGRAM

THE KOREASAT5 PROGRAM THE KOREASAT5 PROGRAM - Design, AI&T, Launch and Operation KT CORPORTION Contents I. Introduction II. Design III. Assembly, Integration and Test (AI&T) IV. Launch V. Operation VI. Q & A THE KOREASAT 5

More information

SmallSats, Iodine Propulsion Technology, Applications to Low-Cost Lunar Missions, and the iodine Satellite (isat) Project.

SmallSats, Iodine Propulsion Technology, Applications to Low-Cost Lunar Missions, and the iodine Satellite (isat) Project. SmallSats, Iodine Propulsion Technology, Applications to Low-Cost Lunar Missions, and the iodine Satellite (isat) Project. Presented to Lunar Exploration Analysis Group (LEAG) October 23, 2014 The SmallSat

More information

A Monopropellant Milli-Newton Thruster System for Attitude Control of Nanosatellites

A Monopropellant Milli-Newton Thruster System for Attitude Control of Nanosatellites A Monopropellant Milli-Newton Thruster System for Attitude Control of Nanosatellites Donald Platt Micro Aerospace Solutions, Inc. 2280 Pineapple Avenue Melbourne, FL 32935 Phone: (321)253-0638 Email: dplatt@micro-a.net

More information

Flight Demonstration and Application of Electric Propulsion at CAST

Flight Demonstration and Application of Electric Propulsion at CAST Flight Demonstration and Application of Electric Propulsion at CAST IEPC-2013-108 Presented at 33nd international Electric Propulsion Conference, University of George Washington, Washington,D.C. USA CHEN

More information

Media Event Media Briefing Arif Karabeyoglu President & CTO SPG, Inc. June 29, 2012

Media Event Media Briefing Arif Karabeyoglu President & CTO SPG, Inc. June 29, 2012 Media Event Media Briefing Arif Karabeyoglu President & CTO SPG, Inc. June 29, 2012 spg-corp.com SPG Background SPG, Inc is an Aerospace company founded in 1999 to advance state-of of-the-art propulsion

More information

Preliminary Design of the Electrical Power Subsystem for the European Student Moon Orbiter Mission

Preliminary Design of the Electrical Power Subsystem for the European Student Moon Orbiter Mission Preliminary Design of the Electrical Power Subsystem for the European Student Moon Orbiter Mission Steve Ulrich Jean-François Veilleux François Landry Corbin Picture courtesy of ESA Presentation Outline

More information

Development of Low-thrust Thruster with World's Highest Performance Contributing to Life Extension of Artificial Satellites

Development of Low-thrust Thruster with World's Highest Performance Contributing to Life Extension of Artificial Satellites Development of Low-thrust Thruster with World's Highest Performance Contributing to Life Extension of Artificial Satellites 40 NOBUHIKO TANAKA *1 DAIJIRO SHIRAIWA *1 TAKAO KANEKO *2 KATSUMI FURUKAWA *3

More information

Safety Assessment for secondary payloads launched by Japanese Expendable Launch Vehicle

Safety Assessment for secondary payloads launched by Japanese Expendable Launch Vehicle Safety Assessment for secondary payloads launched by Japanese Expendable Launch Vehicle 6 th IAASS(International Association for the Advancement of Space Safety) Safety is Not an Option Montreal, Canada

More information

Ironless Core DC Motors for Aerospace

Ironless Core DC Motors for Aerospace Ironless Core DC Motors for Aerospace Market segments covered by AS/EN9100 Support equipment Space shuttle & re entry vehicles Aviation Commercial passenger aircraft Light aircraft Cabin equipment Science

More information

2 LBF COLD GAS THRUSTER

2 LBF COLD GAS THRUSTER 2 LBF COLD GAS THRUSTER 48003040 DESCRIPTION The VACCO Cold Gas Thruster is a flight qualified design featuring an electrically operated, fastresponse solenoid valve. These rugged CRES units are designed

More information

ARIANEGROUP ORBITAL PROPULSION ROBERT-KOCH-STRASSE TAUFKIRCHEN GERMANY

ARIANEGROUP ORBITAL PROPULSION ROBERT-KOCH-STRASSE TAUFKIRCHEN GERMANY www.ariane.group ARIANEGROUP ORBITAL PROPULSION ROBERT-KOCH-STRASSE 1 82024 TAUFKIRCHEN GERMANY SUSANA CORTÉS BORGMEYER SUSANA.CORTES-BORGMEYER@ARIANE.GROUP PHONE: +49 (0)89 6000 29244 WWW.SPACE-PROPULSION.COM

More information

Development Status of H3 Launch Vehicle -To compete and survive in the global commercial market-

Development Status of H3 Launch Vehicle -To compete and survive in the global commercial market- 32 Development Status of H3 Launch Vehicle -To compete and survive in the global commercial market- TOKIO NARA *1 TADAOKI ONGA *2 MAYUKI NIITSU *3 JUNYA TAKIDA *2 AKIHIRO SATO *3 NOBUKI NEGORO *4 The H3

More information

ORBITAL EXPRESS Space Operations Architecture Program 17 th Annual AIAA/USU Conference on Small Satellites August 12, 2003

ORBITAL EXPRESS Space Operations Architecture Program 17 th Annual AIAA/USU Conference on Small Satellites August 12, 2003 ORBITAL EXPRESS Space Operations Architecture Program 17 th Annual AIAA/USU Conference on Small Satellites August 12, 2003 Major James Shoemaker, USAF, Ph.D. DARPA Orbital Express Space Operations Program

More information

Taurus II. Development Status of a Medium-Class Launch Vehicle for ISS Cargo and Satellite Delivery

Taurus II. Development Status of a Medium-Class Launch Vehicle for ISS Cargo and Satellite Delivery Taurus II Development Status of a Medium-Class Launch Vehicle for ISS Cargo and Satellite Delivery David Steffy Orbital Sciences Corporation 15 July 2008 Innovation You Can Count On UNCLASSIFIED / / Orbital

More information

SSC Swedish Space Corporation

SSC Swedish Space Corporation SSC Swedish Space Corporation Platforms for in-flight tests Gunnar Florin, SSC Presentation outline SSC and Esrange Space Center Mission case: Sounding rocket platform, dedicated to drop tests Satellite

More information

The DoD Space Test Program Standard Interface Vehicle (ESPA) Class Program

The DoD Space Test Program Standard Interface Vehicle (ESPA) Class Program The DoD Space Test Program Standard Interface Vehicle (ESPA) Class Program Mr. Mike Marlow STP-SIV Program Manager Co-Authors Lt Col Randy Ripley Capt Chris Badgett Ms. Hallie Walden 20 th Annual AIAA/USU

More information

THE FALCON I LAUNCH VEHICLE Making Access to Space More Affordable, Reliable and Pleasant

THE FALCON I LAUNCH VEHICLE Making Access to Space More Affordable, Reliable and Pleasant 18 th Annual AIAA/USU Conference on Small Satellites SSC04-X-7 THE FALCON I LAUNCH VEHICLE Making Access to Space More Affordable, Reliable and Pleasant Hans Koenigsmann, Elon Musk, Gwynne Shotwell, Anne

More information

Pathfinder Technology Demonstrator

Pathfinder Technology Demonstrator Demonstrating Advanced Technologies for Advanced Missions CubeSat Developer s Workshop April 26 th, 2017 NASA Space Technology Mission Directorate NASA Small Spacecraft Technology Program NASA Ames Research

More information

SPACE PROPULSION SIZING PROGRAM (SPSP)

SPACE PROPULSION SIZING PROGRAM (SPSP) SPACE PROPULSION SIZING PROGRAM (SPSP) Version 9 Let us create vessels and sails adjusted to the heavenly ether, and there will be plenty of people unafraid of the empty wastes. - Johannes Kepler in a

More information

Analysis of Power Storage Media for the Exploration of the Moon

Analysis of Power Storage Media for the Exploration of the Moon Analysis of Power Storage Media for the Exploration of the Moon Michael Loweth, Rachel Buckle ICEUM 9 22-26 th October 2007 ABSL Space Products 2005 2007 Servicing USA and the ROW UNITED KINGDOM Culham

More information

Cal Poly CubeSat Workshop 2014

Cal Poly CubeSat Workshop 2014 Cal Poly CubeSat Workshop 2014 866.204.1707 www.spaceflightservices.com info@spaceflightservices.com hhh @spaceflightinc 1 Spaceflight Business Model Our Model Arrange launch opportunities for secondary

More information

Transportation Options for SSP

Transportation Options for SSP Transportation Options for SSP IEEE WiSEE 2018 SSP Workshop Huntsville, AL 11-13 December 2018 Dallas Bienhoff Founder & Space Architect dallas.bienhoff@csdc.space 571-232-4554 571-459-2660 Transportation

More information

Upper Stage Evolution

Upper Stage Evolution Upper Stage Evolution Mark Wilkins Atlas Product Line VP United Launch Alliance AIAA_JPC080309 Copyright 2009 United Launch Alliance, LLC. All Rights Reserved. EELV Sustainment Through 2030 ULA s Evolution

More information

Innovative Small Launcher

Innovative Small Launcher Innovative Small Launcher 13 th Reinventing Space Conference 11 November 2015, Oxford, UK Arnaud van Kleef, B.A. Oving (Netherlands Aerospace Centre NLR) C.J. Verberne, B. Haemmerli (Nammo Raufoss AS)

More information

Abstract. 1 American Institute of Aeronautics and Astronautics

Abstract. 1 American Institute of Aeronautics and Astronautics Enabling Long Duration CisLunar Spaceflight via an Integrated Vehicle Fluid System Michael Holguin, United Launch Alliance (ULA) 9100 E. Mineral Avenue Centennial, CO 80112 Abstract The following paper

More information

Sandwich nozzle hot test on Vulcain 2 engine.

Sandwich nozzle hot test on Vulcain 2 engine. Sandwich nozzle hot test on Vulcain 2 engine. Vulcain 2 Vulcain 2 + Vulcain 1 The information contained in this document is Volvo Aero Corporation Proprietary Information and it shall not either in its

More information

OLEV AN ON-ORBIT SERVICING PROGRAM FOR COMMERCIAL SPACECRAFTS IN GEO

OLEV AN ON-ORBIT SERVICING PROGRAM FOR COMMERCIAL SPACECRAFTS IN GEO Von der Erde ins All. Und zurück. Intelligente Lösungen für Industrie und Wissenschaft. From Earth to Space. And back. Intelligent solutions for industry and science. E a r t h S p a c e & F u t u r e

More information

NEXT Exploration Science and Technology Mission. Relevance for Lunar Exploration

NEXT Exploration Science and Technology Mission. Relevance for Lunar Exploration NEXT Exploration Science and Technology Mission Relevance for Lunar Exploration Alain Pradier & the NEXT mission team ILEWG Meeting, 23 rd September 2007, Sorrento AURORA PROGRAMME Ministerial Council

More information

Solar Electric Propulsion (SEP) Benefits for Near Term Space Exploration

Solar Electric Propulsion (SEP) Benefits for Near Term Space Exploration Solar Electric Propulsion (SEP) Benefits for Near Term Space Exploration IEPC-2013-45 Luke DeMaster-Smith *, Scott Kimbrel, Christian Carpenter, Steve Overton, Roger Myers **, and David King Aerojet Rocketdyne,

More information

Copyright 2016 Boeing. All rights reserved.

Copyright 2016 Boeing. All rights reserved. Boeing s Commercial Crew Program John Mulholland, Vice President and Program Manager International Symposium for Personal and Commercial Spaceflight October 13, 2016 CST-100 Starliner Spacecraft Flight-proven

More information

European Lunar Lander: System Engineering Approach

European Lunar Lander: System Engineering Approach human spaceflight & operations European Lunar Lander: System Engineering Approach SECESA, 17 Oct. 2012 ESA Lunar Lander Office European Lunar Lander Mission Objectives: Preparing for Future Exploration

More information

MS1-A Military Spaceplane System and Space Maneuver Vehicle. Lt Col Ken Verderame Air Force Research Laboratory 27 October 1999

MS1-A Military Spaceplane System and Space Maneuver Vehicle. Lt Col Ken Verderame Air Force Research Laboratory 27 October 1999 MS1-A Military Spaceplane System and Space Maneuver Vehicle Lt Col Ken Verderame Air Force Research Laboratory 27 October 1999 ReentryWorkshop_27Oct99_MS1-AMSP-SMV_KV p 2 MS-1A Military Spaceplane System

More information

SmallSats mission opportunities for the Vega launch system: the Small Spacecraft Mission Service 7 th August, 2016

SmallSats mission opportunities for the Vega launch system: the Small Spacecraft Mission Service 7 th August, 2016 SmallSats mission opportunities for the Vega launch system: the Small Spacecraft Mission Service F. Caramelli 7 th August, 2016 Vega Future Missions and Production Project Manager LAU/EVF ESRIN 1. SmallSat

More information

First results and next steps in Kazakhstan Earth Observation missions in cooperation with SSTL

First results and next steps in Kazakhstan Earth Observation missions in cooperation with SSTL First results and next steps in Kazakhstan Earth Observation missions in cooperation with SSTL M.Moldabekov (1), M.Nurguzhin (2), V.Ten (3), S.Murushkin (3), H.Lambert (3), A.da Silva Curiel (4), D.King

More information

Fly Me To The Moon On An SLS Block II

Fly Me To The Moon On An SLS Block II Fly Me To The Moon On An SLS Block II Steven S. Pietrobon, Ph.D. 6 First Avenue, Payneham South SA 5070, Australia steven@sworld.com.au Presented at International Astronautical Congress Adelaide, South

More information

ReachMars 2024 A Candidate Large-Scale Technology Demonstration Mission as a Precursor to Human Mars Exploration

ReachMars 2024 A Candidate Large-Scale Technology Demonstration Mission as a Precursor to Human Mars Exploration ReachMars 2024 A Candidate Large-Scale Technology Demonstration Mission as a Precursor to Human Mars Exploration 1 October 2014 Toronto, Canada Mark Schaffer Senior Aerospace Engineer, Advanced Concepts

More information

Development of Low Cost Propulsion Systems for Launchand In Space Applications

Development of Low Cost Propulsion Systems for Launchand In Space Applications Reinventing Space Conference BIS-RS-2015-36 Development of Low Cost Propulsion Systems for Launchand In Space Applications Peter H. Weuta WEPA-Technologies GmbH Neil Jaschinski WEPA-Technologies GmbH 13

More information

CALL FOR IDEAS FOR THE RE-USE OF THE MARS EXPRESS PLATFORM PLATFORM CAPABILITIES. D. McCoy

CALL FOR IDEAS FOR THE RE-USE OF THE MARS EXPRESS PLATFORM PLATFORM CAPABILITIES. D. McCoy Mars Express Reuse: Call for Ideas CALL FOR IDEAS FOR THE RE-USE OF THE MARS EXPRESS PLATFORM PLATFORM CAPABILITIES D. McCoy PARIS 23 MARCH 2001 page 1 Mars Express Reuse: Call for Ideas PRESENTATION CONTENTS

More information

CubeSat Advanced Technology Propulsion System Concept

CubeSat Advanced Technology Propulsion System Concept SSC14-X-3 CubeSat Advanced Technology Propulsion System Concept Dennis Morris, Rodney Noble Aerojet Rocketdyne 8900 DeSoto Ave., Canoga Park, CA 91304; (818) 586-1503 Dennis.Morris@rocket.com ABSTRACT

More information

Comparison of Orbit Transfer Vehicle Concepts Utilizing Mid-Term Power and Propulsion Options

Comparison of Orbit Transfer Vehicle Concepts Utilizing Mid-Term Power and Propulsion Options Comparison of Orbit Transfer Vehicle Concepts Utilizing Mid-Term Power and Propulsion Options Frank S. Gulczinski III AFRL Propulsion Directorate (AFRL/PRSS) 1 Ara Road Edwards AFB, CA 93524-713 frank.gulczinski@edwards.af.mil

More information

The European Lunar Lander Mission

The European Lunar Lander Mission The European Lunar Lander Mission Alain Pradier ASTRA Noordwijk, 12 th April 2011 European Space Agency Objectives Programme Objective PREPARATION FOR FUTURE HUMAN EXPLORATION Lunar Lander Mission Objective

More information