Development of a Low Cost Suborbital Rocket for Small Satellite Testing and In-Space Experiments
|
|
- Morris Atkins
- 10 months ago
- Views:
Transcription
1 Development of a Low Cost Suborbital Rocket for Small Satellite Testing and In-Space Experiments Würzburg, (extended presentation) Dr.-Ing. Peter H. Weuta Dipl.-Ing. Neil Jaschinski WEPA-Technologies GmbH Seite 1;
2 Introduction: WEPA-Technologies GmbH Seite 2;
3 Introduction: WEPA-Technologies GmbH Background - Founded in 2011 via spin-off (origin: mechanical engineering company) Company focus - Engineering-, Automation- and Aerospace-Solutions Business premises - 700m 2 work shop area m 2 office space => R&D focussed engineering office and manufacturing company Seite 3;
4 Seite 4; Business Activities
5 Business Activities (Manufacturing) 1 Generell Planning, development and realization of non-standard solutions Manufacturing of prototypes and small lots (company owned workshop) Broad range of manufacturing technologies CNC-machining Turning (max. 1.4 m diameter x 4 m length) (up to 4 axis) Milling (max. 3.0 m x 0.8 m x 0.8 m) (up to 5 axis) Metal spinning Wire eroding Conventional machining Grinding, welding, sheet metal work Public references include - CASSIDIAN GmbH (Airbus Defence & Space) - Dynamit Nobel Defence GmbH - EU-customer (H 2 O 2 - concentration plant) Seite 5;
6 Business Activities (Rocket Technology) 2 Business and development segments Rocket technology (development) - Propulsion Liquid propellant rocket engines (LPRE) Turbo pumps for LPRE Solid rocket motors (SRM) - (Complete systems) Suborbital sounding rockets (propulsion unit) H 2 O 2 - concentration plants (max. 98 %) Engineering (business) - Construction and manufacturing of mechanical parts Automation (business) - Focus on control retrofits of CNC-machine tools Seite 6; CASSIDIAN contract development (Airbus Defence & Space) solid rocket motor test (thrust: 20 kn)
7 Business Activities (Rocket Technology) 3 max. thrust: 14.5 kn CASSIDIAN contract development (Airbus Defence and Space) Seite 7; solid rocket motor test (specified thrust: up to 20 kn)
8 Use of Sounding Rockets in PiNa-Development Seite 8;
9 Use of Sounding Rockets in PiNa-Development Pre-testing of technology components Transport of satellites to LEO or beyond comes along with long lead time and costs up to 100 keur / kg (still secondary payload rides!) - Very reliable systems required to guarantee long term operability in orbit! Some pre-testing can be conducted on Earth, other require space specific conditions - Zero-gravity, high vacuum, cosmic radiation or communication over long distance (Earth LEO) Repeatability of testing important - Realization of test sequences via sounding rocket flights possible Seite 9;
10 Conceptional Design of Sounding Rocket SILBERPFEIL ( Silver Arrow ) Seite 10;
11 Central Design Decision: Liquid- or Solid Propellant Rocket Engines? 1 By far most sounding rockets use Solid Rocket Motor propulsion systems Surplus military motors - ready availability not always given Very high acceleration of vehicle - significant stress on payload Thrust / time profile and total impulse cannot be modified Safety and cost issues using solid propellants - regulations for explosives becoming even more stringent: transport storage handling / on site integration Conclusion: Solid Rocket Motors show significant disadvantages for frequent low cost launches! Seite 11;
12 Central Design Decision: Liquid- or Solid Propellant Rocket Engines? 2 Advantages of Liquid Propellant Rocket Engines Completely safe handling of rocket during payload integration, handling and transport (=> fuel tanks empty) - no stringent safety regulations to be followed Low peak acceleration - low stress on payload Launch readiness can be kept up for many weeks: responsive, very low lead time launch possible (while using storable, H 2 O 2 oxidizer) Environmentally friendly ( green ) propellants (while using H 2 O 2 or O 2 oxidizer and Kerosene fuel) Conclusion: Liquid propellant rocket engines show significant advantages for frequent launches but have to be made low-priced! Seite 12;
13 Central Design Goal: Low Cost! Low cost characteristics of sounding rockets can be achieved by multiple, parallel approaches (focus: propulsion system): Significantly reduced safety regulations due to avoidance of explosives (solid propellants) Simplified design of propulsion system (rocket engine and turbo pumps) Low level operational parameters (chamber pressure) Environmentally benign and easy to handle propellant components (H 2 O 2 / Kerosene) Simple tank structures / no thermal isolation; common bulkhead Low-cost materials and manufacturing technologies - avoid typical aerospace grade materials and manufacturing processes Simple guidance systems / thrust vector control for ballistic flight required Goal: EUR / 400 kg (300 km) payload (0,75 1,5 Mio EUR) - Depending on flight rate and depreciation of development costs - Ground support not included Seite 13;
14 Preliminary Design of Sounding Rocket: Definition of Payload Section Payload section is very specific to mission requirements - Can be adapted to customers needs: length, diameter, total mass Choose representative (commercial) payload size: TEXUS module (DLR, ~ 400 kg) - Advantages: qualified equipment could be re-used (data acquisition + downlink, power supply, telemetry, recovery systems ) Use 35 kn technology demonstrator engine - Thrust / time profile could be adapted to mission s needs Seite 14;
15 TEXUS: SRM vs. LPRE-Propulsion? Different Concepts TEXUS Sounding Rocket DLR / alternative concept: WEPA / TU-Dresden (PL: 400 kg, h max ; ~ 300 km) Identical Payload and Recovery Module ~ 13.2 m LPRE-Booster: 35 kn thrust (H 2 O 2 / Kerosene) 35 SL Solid Rocket Motor(2) ~ 7.9 m 0.7 m credit: H. Voigt (2015) Seite 15;
16 Summary of results: TEXUS Module via LPRE booster Conclusion: Identical max. height (300 km) and payload capacity (400 kg) Significantly reduced maximum acceleration => lower stress on payload (4.7 g vs. 12 g) Comparable GLOW and outer envelope of complete system Reduced safety requirements: no danger during handling, transport, storage (Reliable availability of propulsion modules) Seite 16; credit: H. Voigt (2015)
17 TEXUS Module via LPRE Booster: Simulated Trajectory 1 TEXUS: alternative propulsion concept WEPA-Technologies / TU-Dresden (PL: 400 kg, h max ; ~ 300 km) F: 35 SL (H 2 O 2 / Kerosene) height [km] Zero Gravity: ~ 7 Min engine shutdown depending on recovery system time [s] credit: H. Voigt (2015) Seite 17;
18 TEXUS module via LPRE booster: simulated trajectory 2 Alternative propulsion concept WEPA-Technologies / TU-Dresden (PL: 400 kg, h max ; ~ 300 km) F: 35 SL (H 2 O 2 / Kerosene) Velocity [m/s] Seite 18; credit: H. Voigt (2015)
19 Enabling Technologies of Sounding Rocket SILBERPFEIL : - H 2 O 2 -Concentration Plants - Liquid Propulsion Rocket Engines - Turbo Pump Units Seite 19;
20 Seite 20; H 2 O 2 -Concentration Technology
21 Supply of H 2 O 2 (c > %) 1 Motivation - Due to non-cryogenic nature of H 2 O 2 overall system architecture is significantly reduced (no isolation required, no formation of ice, less complicated TPU) - H 2 O 2 -based propulsion systems show very high operational reliability - Very high strength H 2 O 2 required for high performance propulsion systems - Increase of H 2 O 2 concentration (85 => 95 %): identical payload capacity compared to LOX (outer envelope kept constant!) (see section Micro Satellite Launch Vehicle / WEPA-Presentation at SpacePropulsion 2014: Commercial supply situation (present) - Very limited availability at c > 88 % - Transport via public ground prohibited by law => on site production in specialized plants required! - Small production plants cannot be rented, only bought (> 1,8 Mio EUR, ~ 1 kg H 2 O 2 / h) => not very attractive situation for developing / using H 2 O 2 - based propulsion processes. Seite 21;
22 Supply of H 2 O 2 (c > %) 2 H 2 O 2 concentration plant developed by WEPA-Technologies for EUcustomer - Capacity: up to ~ 40 kg / d (- 90 %) - Feed: 50 % - 70 % H 2 O 2 - Fully automatic, 24 / 7 operability Working packages supplied by WEPA-Technologies - Conceptional process design incl. safety concept - Detail Engineering (process-, control- and electrical diagrams) - Equipment purchase - Erection and commissioning Reference plant open to customer visits (final commissioning: 10/2015) Very safe production process up to 98 % concentration under development (10 kg / h) Seite 22;
23 Supply of H 2 O 2 (90 %) : Reference Plant EU - customer Seite 23;
24 Development of Liquid Propellant Engines Seite 24;
25 Development of LPRE 1 Overview Goal: construction of low cost engines => Significant reduction of development and production costs required Approach: improve designs based on proven technologies (USA / USSR / Europe ) Use of green propellants (LOX / H 2 O 2 : EtOH / Kerosin) => No significant environmental issues (test & launch area) Thrust range: kn - increase to level of kn mid term goal Present development: 35 kn technology demonstrator - Chamber pressure: 5 MPa - Exit pressure: 0,5 MPa - Regenerative cooling Seite 25;
26 Seite 26; Turbo Pump Units
27 Current Development: Turbo Pump Units overview 1 Goal: minimize engineering, testing and manufacturing effort by low level operational parameter - Exit pressure: max. 75 bar - Operating point: max. 30,000 RPM - Open gas generator cycle (H 2 O 2 or LOX / Kerosene) Propellant systems: H 2 O 2 / Kerosene (LOX / Kerosene) Mass flow rate: Weight: Arrangement: ~ 14.5 kg/s H 2 O 2 / Kerosene (35 kn engine) max.35 kg (incl. gas generator + control unit) Turbine H 2 O 2 Kerosene (Turbine Kerosene LOX) credit: H. Zetschke / H. Wolter (2014) Seite 27;
28 Seite 28; General Development Strategy: Rocket Technology
29 Present Development Strategy Key development fields Turbo Pump LOX / EtOH (p c : 50 bar / I sp : 250 s) H 2 O 2 concentration Plants (max. 98 %) Seite 29; kn LPRE H 2 O 2 (95 %) / Kerosene - non cryogenic stage - simplified design - high system reliability (relevant in upper stages!) Potential customer applications Micro Satellite Launch Vehicle; f. ex kg LEO 9 10 to GLOW 3 stage design stage 1: 4 x 35 kn stage 2: 1 x 35 kn Sounding Rockets
30 Seite 30; Summary
31 Summary Basic design parameter of a LPRE-propelled sounding rocket ( SILBERPFEIL ) were described - Due to non-cryogenic nature of H 2 O 2 overall system architecture is significantly reduced TEXUS payload module (400 kg) has been chosen for reference km height / ~ 7 min zero-g time - Other geometries / masses of payload section can be considered WEPA-Technologies is developing key propulsion-technologies (LPRE resp. turbo pumps) and H 2 O 2 - concentration plants independent of the realization of sounding rocket projects To initiate development of the payload section and complete sounding rocket WEPA-Technologies is open to cooperations Seite 31;
32 Poster Session Seite 32;
33 Thank you for your attention! Seite 33; Dr Ing. P. Weuta Dipl.- Ing. N. Jaschinski
34 Seite 34;
Low Cost Propulsion Systems for Launch-, In Space- and SpaceTourism Applications
Low Cost Propulsion Systems for Launch-, In Space- and SpaceTourism Applications Space Propulsion (Rome, 02 06/05/2016) Dr.-Ing. Peter H. Weuta Dipl.-Ing. Neil Jaschinski WEPA-Technologies GmbH (Germany)
NASA s Choice to Resupply the Space Station
RELIABILITY SpaceX is based on the philosophy that through simplicity, reliability and low-cost can go hand-in-hand. By eliminating the traditional layers of management internally, and sub-contractors
THE FALCON I LAUNCH VEHICLE Making Access to Space More Affordable, Reliable and Pleasant
18 th Annual AIAA/USU Conference on Small Satellites SSC04-X-7 THE FALCON I LAUNCH VEHICLE Making Access to Space More Affordable, Reliable and Pleasant Hans Koenigsmann, Elon Musk, Gwynne Shotwell, Anne
SPACE PROPULSION SIZING PROGRAM (SPSP)
SPACE PROPULSION SIZING PROGRAM (SPSP) Version 9 Let us create vessels and sails adjusted to the heavenly ether, and there will be plenty of people unafraid of the empty wastes. - Johannes Kepler in a
Development of a Nitrous Oxide Monopropellant Thruster
Development of a Nitrous Oxide Monopropellant Thruster Presenter: Stephen Mauthe Authors: V. Tarantini, B. Risi, R. Spina, N. Orr, R. Zee Space Flight Laboratory Toronto, Canada 2016 CubeSat Developers
Development of a Nitrous Oxide Monopropellant Thruster
Development of a Nitrous Oxide Monopropellant Thruster Presenter: Stephen Mauthe Authors: V. Tarantini, B. Risi, R. Spina, N. Orr, R. Zee Space Flight Laboratory Toronto, Canada 2016 CubeSat Developers
Suitability of reusability for a Lunar re-supply system
www.dlr.de Chart 1 Suitability of reusability for a Lunar re-supply system Etienne Dumont Space Launcher Systems Analysis (SART) Institut of Space Systems, Bremen, Germany Etienne.dumont@dlr.de IAC 2016
AN OPTIMIZED PROPULSION SYSTEM FOR Soyuz/ST
1 RD-0124 AN OPTIMIZED PROPULSION SYSTEM FOR Soyuz/ST Versailles, May 14,2002 Starsem Organization 2 35% 25% 15% 25% 50-50 European-Russian joint venture providing Soyuz launch services for the commercial
Rocketry, the student way
Rocketry, the student way Overview Student organization Based at TU Delft About 90 members > 100 rockets flown Design, Construction, Test, Launch All done by students Goal Design, build, and fly rockets
Innovative Small Launcher
Innovative Small Launcher 13 th Reinventing Space Conference 11 November 2015, Oxford, UK Arnaud van Kleef, B.A. Oving (Netherlands Aerospace Centre NLR) C.J. Verberne, B. Haemmerli (Nammo Raufoss AS)
Reentry Demonstration Plan of Flare-type Membrane Aeroshell for Atmospheric Entry Vehicle using a Sounding Rocket
AIAA ADS Conference 2011 in Dublin 1 Reentry Demonstration Plan of Flare-type Membrane Aeroshell for Atmospheric Entry Vehicle using a Sounding Rocket Kazuhiko Yamada, Takashi Abe (JAXA/ISAS) Kojiro Suzuki
The 1 N HPGP thruster is designed for attitude and orbit control of small-sized satellites. FLIGHT-PROVEN.
The 1 N HPGP thruster is designed for attitude and orbit control of small-sized satellites. FLIGHT-PROVEN. High Performance Green Propulsion. Increased performance and reduced mission costs. Compared to
Adrestia. A mission for humanity, designed in Delft. Challenge the future
Adrestia A mission for humanity, designed in Delft 1 Adrestia Vision Statement: To inspire humanity by taking the next step towards setting a footprint on Mars Mission Statement Our goal is to design an
HYDROS Development of a CubeSat Water Electrolysis Propulsion System
HYDROS Development of a CubeSat Water Electrolysis Propulsion System Vince Ethier, Lenny Paritsky, Todd Moser, Jeffrey Slostad, Robert Hoyt Tethers Unlimited, Inc 11711 N. Creek Pkwy S., Suite D113, Bothell,
Development of Business Cases for Fuel Cells and Hydrogen Applications for Regions and Cities. FCH Aircraft
Development of Business Cases for Fuel Cells and Hydrogen Applications for Regions and Cities FCH Aircraft Brussels, Fall 2017 This compilation of application-specific information forms part of the study
The 1 N HPGP thruster is designed for attitude and orbit control of small-sized satellites. FLIGHT-PROVEN. High Performance Green Propulsion.
The 1 N HPGP thruster is designed for attitude and orbit control of small-sized satellites. FLIGHT-PROVEN. High Performance Green Propulsion. Increased performance and reduced mission costs. Compared to
CHAPTER 2 GENERAL DESCRIPTION TO LM-2E
GENERAL DESCRIPTION TO LM-2E 2.1 Summary Long March 2E (LM-2E) is developed based on the mature technologies of LM-2C. China Academy of Launch Vehicle Technology (CALT) started the conceptual design of
CONCEPT STUDY OF AN ARES HYBRID-OS LAUNCH SYSTEM
CONCEPT STUDY OF AN ARES HYBRID-OS LAUNCH SYSTEM AIAA-2006-8057 14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conference 06-09 November 2006, Canberra, Australia Revision A 07 November
ALCOHOL LOX STEAM GENERATOR TEST EXPERIENCE
ALCOHOL LOX STEAM GENERATOR TEST EXPERIENCE Klaus Schäfer, Michael Dommers DLR, German Aerospace Center, Institute of Space Propulsion D 74239 Hardthausen / Lampoldshausen, Germany Klaus.Schaefer@dlr.de
Next Steps in Human Exploration: Cislunar Systems and Architectures
Next Steps in Human Exploration: Cislunar Systems and Architectures Matthew Duggan FISO Telecon August 9, 2017 2017 The Boeing Company Copyright 2010 Boeing. All rights reserved. Boeing Proprietary Distribution
IAC-15-C4.3.1 JET INDUCER FOR A TURBO PUMP OF A LIQUID ROCKET ENGINE
IAC-15-C4.3.1 JET INDUCER FOR A TURBO PUMP OF A LIQUID ROCKET ENGINE Martin Böhle Technical University Kaiserslautern, Germany, martin.boehle@mv.uni-kl.de Wolfgang Kitsche German Aerospace Center (DLR),
VSS V1.5. This Document Contains No ITAR Restricted Information But Is Not Cleared for General Public Distribution
This Document Contains No ITAR Restricted Information But Is Not Cleared for General Public Distribution Table of Contents VEHICLE PERFORMANCE 4 OPERATIONS & MISSION PROFILES 5 PAYLOAD SERVICES 7 ENVIRONMENTS
High Performance Green Propulsion (HPGP): A Flight-Proven Capability and Cost Game-Changer for Small and Secondary Satellites Aaron Dinardi
High Performance Green Propulsion (HPGP): A Flight-Proven Capability and Cost Game-Changer for Small and Secondary Satellites Aaron Dinardi 26 th AIAA/USU Small Satellite Conference 14 August 2012 Outline
Development Status of H3 Launch Vehicle -To compete and survive in the global commercial market-
32 Development Status of H3 Launch Vehicle -To compete and survive in the global commercial market- TOKIO NARA *1 TADAOKI ONGA *2 MAYUKI NIITSU *3 JUNYA TAKIDA *2 AKIHIRO SATO *3 NOBUKI NEGORO *4 The H3
Vector-R Forecasted Launch Service Guide
Vector-R Forecasted Launch Service Guide VSS-2017-023-V2.0 Vector-R This Document Contains No ITAR Restricted Information And is Cleared for General Public Distribution Distribution: Unrestricted Table
Upper Stage Evolution
Upper Stage Evolution Mark Wilkins Atlas Product Line VP United Launch Alliance AIAA_JPC080309 Copyright 2009 United Launch Alliance, LLC. All Rights Reserved. EELV Sustainment Through 2030 ULA s Evolution
July 28, ULA Rideshare Capabilities
July 28, 2011 ULA Rideshare Capabilities Jake Szatkowski Business Development & Advanced Programs Copyright 2011 United Launch Alliance, LLC. All Rights Reserved. Rideshare Missions ULA's family of ependable
USA FALCON 1. Fax: (310) Telephone: (310) Fax: (310) Telephone: (310) Fax: (310)
1. IDENTIFICATION 1.1 Name FALCON 1 1.2 Classification Family : FALCON Series : FALCON 1 Version : FALCON 1 Category : SPACE LAUNCH VEHICLE Class : Small Launch Vehicle (SLV) Type : Expendable Launch Vehicle
H-IIA Launch Vehicle Upgrade Development
26 H-IIA Launch Vehicle Upgrade Development - Upper Stage Enhancement to Extend the Lifetime of Satellites - MAYUKI NIITSU *1 MASAAKI YASUI *2 KOJI SHIMURA *3 JUN YABANA *4 YOSHICHIKA TANABE *5 KEITARO
The SABRE engine and SKYLON space plane
The SABRE engine and SKYLON space plane 4 June 2014 Current Access to Space (Expendable launch vehicles) What is wrong with todays launchers? - Cost (>$100M per flight) - Operations (> 3 month preparation)
Development of an Extended Range, Large Caliber, Modular Payload Projectile
1 Development of an Extended Range, Large Caliber, Modular Payload Projectile April 12th, 2011 Miami, Florida, USA 46 th Annual Gun & Missile Systems Conference & Exhibition Speaker: Pierre-Antoine Rainville
Lunette: A Global Network of Small Lunar Landers
Lunette: A Global Network of Small Lunar Landers Leon Alkalai and John O. Elliott Jet Propulsion Laboratory California Institute of Technology LEAG/ILEWG 2008 October 30, 2008 Baseline Mission Initial
AAE STAGING. Ch3 46
3.7 STAGING Ch3 46 STAGING PHILOSOPHY Staging Strategy: Reduces effective mission-averaged mass ratio. Serial staging is more effective. Parallel staging ( strap-ons ) simpler, especially to upgrade existing
SSC Swedish Space Corporation
SSC Swedish Space Corporation Platforms for in-flight tests Gunnar Florin, SSC Presentation outline SSC and Esrange Space Center Mission case: Sounding rocket platform, dedicated to drop tests Satellite
Technical Assessments of Future European Space Transportation Options
IAC-07-D2.7.09 Technical Assessments of Future European Space Transportation Options Martin Sippel, Arnold van Foreest Space Launcher Systems Analysis (SART), DLR, Cologne, Germany Jean-Philippe Dutheil*,
Development of the LE-X Engine
36 Development of the LE-X Engine MASAHIRO ATSUMI *1 KIMITO YOSHIKAWA *2 AKIRA OGAWARA *3 TADAOKI ONGA *3 The expander bleed cycle is an engine cycle that was developed in Japan for practical applications.
UNCLASSIFIED FY 2016 OCO. FY 2016 Base
Exhibit R-2, RDT&E Budget Item Justification: PB 2016 Air Force Date: February 2015 3600: Research, Development, Test & Evaluation, Air Force / BA 3: Advanced Technology Development (ATD) COST ($ in Millions)
Onboard DC Grid. Jan Fredrik DP Conference 2011; Houston. for enhanced DP operation in ships
Onboard Grid Jan Fredrik Hansen @ DP Conference 2011; Houston for enhanced DP operation in ships Traditional System Onboard Grid Up to 20% fuel saving potential Quicker and more dynamic system performance
Supersonic Combustion Experimental Investigation at T2 Hypersonic Shock Tunnel
Supersonic Combustion Experimental Investigation at T2 Hypersonic Shock Tunnel D. Romanelli Pinto, T.V.C. Marcos, R.L.M. Alcaide, A.C. Oliveira, J.B. Chanes Jr., P.G.P. Toro, and M.A.S. Minucci 1 Introduction
Design, Fabrication and Testing of an Unmanned Aerial Vehicle Catapult Launcher
ISBN 978-93-84422-40-0 Proceedings of 2015 International Conference on Computing Techniques and Mechanical Engineering (ICCTME 2015) Phuket, October 1-3, 2015, pp. 47-53 Design, Fabrication and Testing
China International Automotive Congress Vehicle concepts, tailor made for e-propulsion. Shenyang, 13. September 2009
China International Automotive Congress 2009 Vehicle concepts, tailor made for e-propulsion Shenyang, 13. September 2009 Prof. Dr.-Ing. habil. J.-W. Biermann Dipl.-Ing. Bastian Hartmann Institut für Kraftfahrzeuge
SAFRAN an international
SAFRAN an international Technology Leader Presentation to CSIS forum November 12 th, 2009, Washington DC 0 SAFRAN : a long history in rocket propulsion 1967 HM4 1 st H2/O2 engine test L17-35 t DIAMANT
SmallSats mission opportunities for the Vega launch system: the Small Spacecraft Mission Service 7 th August, 2016
SmallSats mission opportunities for the Vega launch system: the Small Spacecraft Mission Service F. Caramelli 7 th August, 2016 Vega Future Missions and Production Project Manager LAU/EVF ESRIN 1. SmallSat
ARIANEGROUP ORBITAL PROPULSION ROBERT-KOCH-STRASSE TAUFKIRCHEN GERMANY
www.ariane.group ARIANEGROUP ORBITAL PROPULSION ROBERT-KOCH-STRASSE 1 82024 TAUFKIRCHEN GERMANY SUSANA CORTÉS BORGMEYER SUSANA.CORTES-BORGMEYER@ARIANE.GROUP PHONE: +49 (0)89 6000 29244 WWW.SPACE-PROPULSION.COM
Driving dynamics and hybrid combined in the torque vectoring
Driving dynamics and hybrid combined in the torque vectoring Concepts of axle differentials with hybrid functionality and active torque distribution Vehicle Dynamics Expo 2009 Open Technology Forum Dr.
BIMODAL NUCLEAR THERMAL ROCKET (BNTR) PROPULSION FOR FUTURE HUMAN MARS EXPLORATION MISSIONS
BIMODAL NUCLEAR THERMAL ROCKET (BNTR) PROPULSION FOR FUTURE HUMAN MARS EXPLORATION MISSIONS Stan Borowski National Aeronautics and Space Administration Glenn Research Center Cleveland, Ohio Bimodal Nuclear
blended wing body aircraft for the
Feasibility study of a nuclear powered blended wing body aircraft for the Cruiser/Feeder eede concept cept G. La Rocca - TU Delft 11 th European Workshop on M. Li - TU Delft Aircraft Design Education Linköping,
Preliminary Design Study of Main Rocket Engine for SpaceLiner High-Speed Passenger Transportation Concept
Preliminary Design Study of Main Rocket Engine for SpaceLiner High-Speed Passenger Transportation Concept By Ryoma Yamashiro 1) and Martin Sippel 2) 1) Space Transportation Mission Directorate, JAXA, Tsukuba,
Mass Estimating Relations
Review of iterative design approach (MERs) Sample vehicle design analysis 1 2009 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu Akin s Laws of Spacecraft Design - #3 Design is an iterative
Turbocharging: Key technology for high-performance engines
Engine technology Turbocharging: Key technology for high-performance engines Authors: Dr. Johannes Kech Head of Development Turbocharging Ronald Hegner Team Leader, Design of Turbocharging Systems Tobias
Formation Flying Experiments on the Orion-Emerald Mission. Introduction
Formation Flying Experiments on the Orion-Emerald Mission Philip Ferguson Jonathan P. How Space Systems Lab Massachusetts Institute of Technology Present updated Orion mission operations Goals & timelines
An Overview of Electric Propulsion Activities in China
An Overview of Electric Propulsion Activities in China Xiaolu Kang Shanghai Spaceflight Power Machinery Institute, Shanghai, P.R. China, 200233 CO-AUTHOR: Zhaoling Wang Nanhao Wang Anjie Li Guofu Wu Gengwang
VACCO ChEMS. Micro Propulsion Systems
VACCO ChEMS Micro Propulsion Systems 14 Flight Systems and Counting 1 Heritage MEPSI Micro Propulsion System Micro Propulsion System 1U CubeSat Provided to AFRL for the Aerospace Corporation MEMS Pico-Satellite
USA DELTA DELTA Mc DONNELL DOUGLAS SPACE SYSTEMS
1. IDENTIFICATION 1.1 Name DELTA 2-6925 1.2 Classification Family : DELTA Series : DELTA 2 Version : 6925 Category : SPACE LAUNCH VEHICLE Class : Medium Launch Vehicle (MLV) Type : Expendable Launch Vehicle
Future NASA Power Technologies for Space and Aero Propulsion Applications. Presented to. Workshop on Reforming Electrical Energy Systems Curriculum
Future NASA Power Technologies for Space and Aero Propulsion Applications Presented to Workshop on Reforming Electrical Energy Systems Curriculum James F. Soeder Senior Technologist for Power NASA Glenn
UNCLASSIFIED FY 2017 OCO. FY 2017 Base
Exhibit R-2, RDT&E Budget Item Justification: PB 2017 Air Force Date: February 2016 3600: Research, Development, Test & Evaluation, Air Force / BA 2: Applied Research COST ($ in Millions) Prior Years FY
Fuel Cell Systems For Aeronautic Applications A Clean Way from Kerosene to Energy
DGLR / VDI / RAeS Vortragsreihe an der HAW / Berliner Tor Presented by O 2 + - H 2 Hans-Jürgen Heinrich Manager Engineering H 2 O Fuel Cell Systems For Aeronautic Applications A Clean Way from Kerosene
Safety Assessment for secondary payloads launched by Japanese Expendable Launch Vehicle
Safety Assessment for secondary payloads launched by Japanese Expendable Launch Vehicle 6 th IAASS(International Association for the Advancement of Space Safety) Safety is Not an Option Montreal, Canada
PRODUCT OPTIMIZATION SUPPORT 40 MM HV ABM. Federica Valente, H. Huisjes, T. Soullié, A. M. Kruse
PRODUCT OPTIMIZATION SUPPORT 40 MM HV ABM Federica Valente, H. Huisjes, T. Soullié, A. M. Kruse CONTENT Introduction to TNO Organisation Capabilities Portfolio examples The 40 mm HV ABM case: support in
Pre-Launch Procedures
Pre-Launch Procedures Integration and test phase This phase of operations takes place about 3 months before launch, at the TsSKB-Progress factory in Samara, where Foton and its launch vehicle are built.
MS1-A Military Spaceplane System and Space Maneuver Vehicle. Lt Col Ken Verderame Air Force Research Laboratory 27 October 1999
MS1-A Military Spaceplane System and Space Maneuver Vehicle Lt Col Ken Verderame Air Force Research Laboratory 27 October 1999 ReentryWorkshop_27Oct99_MS1-AMSP-SMV_KV p 2 MS-1A Military Spaceplane System
A Stable Liquid Mono-Propellant based on ADN
A Stable Liquid Mono-Propellant based on ADN Eurenco Bofors, Groupe SNPE: Per Sjöberg and Henrik Skifs Karlskoga, Sweden ECAPS, : Peter Thormählen and Kjell Anflo Solna, Sweden Insensitive Munitions and
SOFC Development for Aircraft Application
SOFC Development for Aircraft Application G. Schiller German Aerospace Center (DLR) Institute of Technical Thermodynamics Pfaffenwaldring 38-40, D-70569 Stuttgart, Germany 1 st International Workshop on
EPIC Gap analysis and results
EPIC Gap analysis and results PSA Consortium Workshop Stockholm 11/02/2015 EPIC Gap Analysis and results/ Content Content: Scope Process Missions Analysis (i.e GEO (OR + SK)) Gaps results Gap analysis
UNCLASSIFIED R-1 ITEM NOMENCLATURE. FY 2014 FY 2014 OCO ## Total FY 2015 FY 2016 FY 2017 FY 2018
Exhibit R-2, RDT&E Budget Item Justification: PB 2014 Air Force DATE: April 2013 COST ($ in Millions) All Prior FY 2014 Years FY 2012 FY 2013 # Base FY 2014 FY 2014 OCO ## Total FY 2015 FY 2016 FY 2017
Cal Poly CubeSat Workshop 2014
Cal Poly CubeSat Workshop 2014 866.204.1707 www.spaceflightservices.com info@spaceflightservices.com hhh @spaceflightinc 1 Spaceflight Business Model Our Model Arrange launch opportunities for secondary
EMC-HD. C 01_2 Subheadline_15pt/7.2mm
C Electromechanical 01_1 Headline_36pt/14.4mm Cylinder EMC-HD C 01_2 Subheadline_15pt/7.2mm 2 Elektromechanischer Zylinder EMC-HD Short product name Example: EMC 085 HD 1 System = ElectroMechanical Cylinder
Nuclear Thermal Propulsion (NTP) Engine Component Development
Nuclear Thermal Propulsion (NTP) Engine Component Development Presented to the NETS 2015 Conference O. Mireles, K. Benenski, J. Buzzell, D. Cavender, J. Caffrey, J. Clements, W. Deason, C. Garcia, C. Gomez,
Presentation Outline. # Title
FRR Presentation 1 Presentation Outline # Title 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Team Introduction Mission Summary Vehicle Overview Vehicle Dimensions Upper Body Section Elliptical
Electric Flight Potential and Limitations
Electric Flight Potential and Limitations Energy Efficient Aircraft Configurations, Technologies and Concepts of Operation, Sao José dos Campos, 19 21 November 2013 Dr. Martin Hepperle DLR Institute of
Alternative propulsion Systems with Main Focus on Electric Vehicles. A3PS-conference Alternative Propulsion Systems and Energy Carriers
A3PS-conference Alternative Propulsion Systems and Energy Carriers Parallel session 1, electric mobility: Alternative propulsion Systems with Main Focus on Electric Vehicles 1. Increasing problems for
Closed-loop thrust control in a MEMS-based micro propulsion module for CubeSats
Closed-loop thrust control in a MEMS-based micro propulsion module for CubeSats Pelle Rangsten, Kristoffer Palmer, Johan Bejhed, Ana Salaverri, Kerstin Jonsson, and Tor-Arne Grönland NanoSpace Uppsala
ROCKET - ASSISTED AMMUNITION TECHNOLOGIES for 120 mm MORTARS
ROCKET - ASSISTED AMMUNITION TECHNOLOGIES for 120 mm MORTARS MUNITIONS TECHNOLOGY SYMPOSIUM In Pleasanton on April 11-12, 2000 THOMSON-CSF DAIMLERCHRYSLER AEROSPACE 50 % 50 % TDA 100 % FZ Other subsidiaries
Sandwich nozzle hot test on Vulcain 2 engine.
Sandwich nozzle hot test on Vulcain 2 engine. Vulcain 2 Vulcain 2 + Vulcain 1 The information contained in this document is Volvo Aero Corporation Proprietary Information and it shall not either in its
Maglifter: A Ground-Based Next Generation Reusable Launch Assist for a Low-Cost and Highly Reliable Space Access
SSC03-VIII- Maglifter: A Ground-Based Next Generation Reusable Launch Assist for a Low-Cost and Highly Reliable Space Access, Jorge Flores, Robert Kluka, and Robert Crabbs Florida Space Institute / Department
The DLR Project Next Generation Train (NGT)
> UIC Energy Efficiency Workshop, Rome > Holger Dittus The DLR Project Next Generation Train (NGT) > 04/10/2017 DLR.de Chart 1 The DLR Project Next Generation Train (NGT) Holger Dittus UIC Energy Efficiency
An Update on SKYLON. Alan Bond Managing Director & Chief Engineer Reaction Engines Ltd. REACTION ENGINES LTD
An Update on SKYLON Alan Bond Managing Director & Chief Engineer Reaction Engines Ltd. SKYLON Operations 2 SKYLON 1990 The SKYLON spaceplane the phoenix of HOTOL 1951 Skylon Sculpture Festival of Britain
UNCLASSIFIED FY 2017 OCO. FY 2017 Base
Exhibit R-2, RDT&E Budget Item Justification: PB 2017 Air Force Date: February 2016 3600: Research, Development, Test & Evaluation, Air Force / BA 3: Advanced Technology Development (ATD) COST ($ in Millions)
VoltAir All-electric Transport Concept Platform
VoltAir All-electric Transport Concept Platform VoltAir All-electric propulsion system concepts for future air vehicle applications are being developed by EADS INNOVATION WORKS, the corporate research
Eurofighter -Typhoon Entwicklungsprogramm. Peter Huber Chief Engineer Typhoon CASSIDIAN AS
Eurofighter -Typhoon Entwicklungsprogramm Peter Huber Chief Engineer Typhoon CASSIDIAN AS Page 1 1 Content Initial Concept Studies Top-Level Operational Requirements International Cooperation Eurofighter
AABC Europe 2017 Mainz, Germany Dr. Jörn Albers, Dr. Christian Rosenkranz Johnson Controls Power Solutions EMEA. Johnson Controls Power Solutions EMEA
Johnson Controls Power Solutions EMEA If you can read this Click on the icon to choose a picture or Reset the slide. To Reset: Right click on the slide thumbnail and select reset slide or choose the Reset
Mountain Launch System utilizing gravity assisted launch. Keith Watts May 3, 2014
Mountain Launch System utilizing gravity assisted launch Keith Watts May 3, 2014 Table of contents Introduction Conventional approach and limitations Mountain launch concept Design case study Design details
Lunar Architecture and LRO
Lunar Architecture and LRO Lunar Exploration Background Since the initial Vision for Space Exploration, NASA has spent considerable time defining architectures to meet the goals Original ESAS study focused
Laser Assisted Dry Ice Blasting A Hybrid Machine Tool Concept for Cleaning and Recycling
A Hybrid Machine Tool Concept for Cleaning and Recycling Effizient und schonend reinigen Innovative Verfahren zur Reinigung, Entschichtung und Vorbehandlung von Oberflächen Sonderabfallgesellschaft Brandenburg/
Unreasonable Rocket Nanosat Business Plan Executive Summary. 1. Stage one proposal summary
Unreasonable Rocket Nanosat Business Plan Executive Summary. 1. Stage one proposal summary Unreasonable rocket believes there is a real need for a responsive commercial nanosat launcher. The nanosat market
ULA Briefing to National Research Council. In-Space Propulsion Roadmap. March 22, Bernard Kutter. Manager Advanced Programs. File no.
ULA Briefing to National Research Council In-Space Propulsion Roadmap March 22, 2011 Bernard Kutter Manager Advanced Programs File no. Copyright 2011 United Launch Alliance, LLC. All Rights Reserved. Key
From HOTOL to SKYLON British Spaceplane Programmes: Past, Present and Future
From HOTOL to SKYLON British Spaceplane Programmes: Past, Present and Future Roger Longstaff, Reaction Engines Ltd. 18 th AIAA International Space Planes and Hypersonic Systems and Technologies Conference
GT-Suite Users Conference
GT-Suite Users Conference Thomas Steidten VKA RWTH Aachen Dr. Philip Adomeit, Bernd Kircher, Stefan Wedowski FEV Motorentechnik GmbH Frankfurt a. M., October 2005 1 Content 2 Introduction Criterion for
ELECTRIC PROPULSION MISSION TO GEO USING SOYUZ/FREGAT LAUNCH VEHICLE M.S. Konstantinov *, G.G. Fedotov *, V.G. Petukhov ±, G.A.
ELECTRIC PROPULSION MISSION TO GEO USING SOYUZ/FREGAT LAUNCH VEHICLE M.S. Konstantinov *, G.G. Fedotov *, V.G. Petukhov ±, G.A. Popov * Moscow Aviation Institute, Moscow, Russia ± Khrunichev State Research
Experience the Hybrid Drive
Experience the Hybrid Drive MAGNA STEYR equips SUV with hybrid drive Hybrid demo vehicle with dspace prototyping system To integrate components into a hybrid vehicle drivetrain, extensive modification
Responsive Access to Space The Scorpius Low-Cost Launch System
International Astronautics Federation Congress, Oct. 4 8, 2004 Vancouver, BC, Canada. Paper No. Responsive Access to Space The Scorpius Low-Cost Launch System Shyama Chakroborty, Robert E. Conger, James
Modeling a Phlegmatized Diesel-Engine in a Hybrid Electric Vehicle Using a Transient Predictive Model Michael Auerbach, October 25th, 2010, Frankfurt
Modeling a Phlegmatized Diesel-Engine in a Hybrid Electric Vehicle Using a Transient Predictive Model Michael Auerbach, October 25th, 2010, Frankfurt a. M. Institut für Verbrennungsmotoren und Kraftfahrwesen
Auburn University. Project Wall-Eagle FRR
Auburn University Project Wall-Eagle FRR Rocket Design Rocket Model Mass Estimates Booster Section Mass(lb.) Estimated Upper Section Mass(lb.) Actual Component Mass(lb.) Estimated Mass(lb.) Actual Component
Artemis: A Reusable Excursion Vehicle Concept for Lunar Exploration
Artemis: A Reusable Excursion Vehicle Concept for Lunar Exploration David A. Young *, John R. Olds, Virgil Hutchinson *, Zachary Krevor *, James Young * Space Systems Design Lab Guggenheim School of Aerospace
SPACE LAUNCH SYSTEM. Steve Creech Manager Spacecraft/Payload Integration & Evolution August 29, 2017 A NEW CAPABILITY FOR DISCOVERY
National Aeronautics and Space Administration 5... 4... 3... 2... 1... SPACE LAUNCH SYSTEM A NEW CAPABILITY FOR DISCOVERY Steve Creech Manager Spacecraft/Payload Integration & Evolution August 29, 2017
Lessons in Systems Engineering. The SSME Weight Growth History. Richard Ryan Technical Specialist, MSFC Chief Engineers Office
National Aeronautics and Space Administration Lessons in Systems Engineering The SSME Weight Growth History Richard Ryan Technical Specialist, MSFC Chief Engineers Office Liquid Pump-fed Main Engines Pump-fed
Size of Boost-Phase Region of Ballistic Missile Flight
Size of Boost-Phase Region of Ballistic Missile Flight Location of Objects Shown Every 20 Seconds q =22.55 degrees 0 V 0=7.177, 7.1935, and 7.21 km/s Altitude (Kilometers) Altitudes Where ICBM is in Powered
B-COOL. Low Cost and High Efficiency CO 2 Mobile Air Conditioning system for lower segment cars
Low Cost and High Efficiency CO 2 Mobile Air Conditioning system for lower segment cars Carloandrea Malvicino Centro Ricerche Fiat Strada Torino 50-10043 Orbassano Italy carloandrea.malvicino@crf.it -
Influence of Decontamination
Influence of Decontamination Michael Knaack 18th February 2016 Influence of Decontamination ~ February 2016 ~ 1 Decontamination Overview of reasons for decontamination Different methods Advantages / Disadvantages
The Common Spacecraft Bus and Lunar Commercialization
The Common Spacecraft Bus and Lunar Commercialization Alex MacDonald NASA Ames Research Center alex.macdonald@balliol.ox.ac.uk Will Marshall NASA Ames Research Center william.s.marshall@nasa.gov Summary