How ultracapacitors work (and why they fall short)

Size: px
Start display at page:

Download "How ultracapacitors work (and why they fall short)"

Transcription

1 How ultracapacitors work (and why they fall short) By Josie Garthwaite Jul. 12, 2011, Hang around the energy storage crowd long enough, and you ll hear chatter about ultracapacitors. Tesla Motors chief executive Elon Musk has said he believes capacitors will even supercede batteries. What is it that makes ultracapacitors such a promising technology? And if ultracapacitors are so great, why have they lost out to batteries, so far, as the energy storage device of choice for applications like electric cars and the power grid? Put simply, ultracapacitors are some of the best devices around for delivering a quick surge of power. Because an ultracapacitor stores energy in an electric field, rather than in a chemical reaction, it can

2 survive hundreds of thousands more charge and discharge cycles than a battery can. A more thorough answer, however, looks at how ultracapacitors compare to capacitors and batteries. From there we ll walk through some of the inherent strengths and weaknesses of ultracaps, how they can enhance (rather than compete with) batteries, and what the opportunities are to advance ultracapacitor technology. Capacitor 101 A basic capacitor consists of two metal plates, or conductors (typically aluminum), separated by an insulator, such as air or a film made of plastic, or ceramic. During charging, electrons accumulate on one conductor, and depart from the other. In effect, a negative charge builds on one side while a positive charge builds on the other. The negatively charged electrons want to join the depleted (positive) side, but can t cross over that non-conductive insulator (for the most part, anyway there is some leakage). This separation of positive and negative charges, which want to balance out, or neutralize, each other, creates what s called an electric field. Discharging occurs when the electrons are given a path to flow to the other side in other words, when balance is restored. Putting the ultra in ultracapacitors

3 Ultracap diagram courtesy of NREL Ultracapacitors also have two metal plates, but they are coated with a sponge-like, porous material known as activated carbon. And they re immersed in an electrolyte made of positive and negative ions dissolved in a solvent. One carbon-coated plate, or electrode, is positive, and the other is negative. During charging, ions from the electrolyte accumulate on the surface of each carbon-coated plate. Like capacitors, ultracapacitors store energy in an electric field, which is created between two oppositely charged particles when they are separated. Recall that in an ultracapacitor, we have this electrolyte, in which an equal number of positive and negative ions are uniformly dispersed. And remember that in a capacitor, negative charge builds on one side and positive charge builds on the other. Similarly, in an ultracapacitor, when voltage is applied across the two metal plates (i.e. during charging), a charge still builds on the two electrodes one positive, one negative. This then causes each electrode to attract ions of the opposite charge. But for an ultracapacitor, each carbon electrode ends up having two layers of charge coating its surface (thus, ultracaps are also

4 called double layer capacitors ), John Kassakian, a professor in MIT s Laboratory for Electromagnetic and Electronic Systems (LEES), explained to me: In effect, an ultracapacitor is actually two capacitors in series, one at each electrode. Joel Schindall, another professor in MIT s LEES and associate director of the lab, explained that during discharging, the charge on the plates decreases as electrons flow through an external circuit. The ions are no longer attracted to the plate as strongly, he said, so they break off and once again distribute themselves evenly through the electrolyte. The ultracap advantage Unlike capacitors and ultracapacitors, batteries store energy in a chemical reaction. Ions are actually inserted into the atomic structure of an electrode (in an ultracap, the ions simply cling). This is an important distinction, because storing energy without chemical reactions allows ultracapacitors to charge and discharge

5 much faster than batteries, Schindall explained. And because capacitors don t suffer the wear and tear caused by chemical reactions, they can also last much longer. (See previous post: Why lithium-ion batteries die so young) Charge separation is at work in both capacitors and ultracapacitors. But in a capacitor, the separated charges can get no closer than the distance between the two metal plates. They re awfully close together on the order of tens of microns but limited by the thickness of that ceramic or paper film in the middle (one micron is one-thousandth of a millimeter). In an ultracapacitor, the distance between the ions and opposite-charged electrode is so tiny it s measured in nanometers (one-thousandth of a micron). Why should we care about such small distances? Turns out the size of the electric field is inversely proportional to the separation distance. The shorter distance between those separated charges in an ultracapacitor translates to a larger electric field and much more energy storage capacity. That s only part of why ultracapacitors can store more energy than regular capacitors. The activated carbon is also key. See, it s so spongy, according to Schindall, that it affords a surface area 10,000 to 100,000 times greater than the linear surface area of the naked metal. Put simply, all those nooks and crannies in the surface allow more ions to cling to the electrode.

6 Measuring capacitance Surface area makes a huge difference for what s called capacitance, or the amount of electric charge a device will hold given a certain amount of voltage. Capacitance is the key metric for comparing capacitor performance, and it s measured in Farads (named, as Lost fans might appreciate, after the chemist and physicist Michael Faraday). Now, the Farad is such a huge unit of measurement, it s like measuring distance in light years, said Schindall. So it s much more common to see microfarads (one-millionth of a farad) and even picofarads (one-millionth of a microfarad). A capacitor the size of a D-cell battery, for example, has a capacitance of only about 20 microfarads. But a similarly sized ultracapacitor has a capacitance of 300 Farads. That means, at the same voltage, the ultracapacitor could in theory store up to 15 million times more energy than the capacitor. Here is where we run into some of the challenges with ultracapacitors, however. A typical 20-microfarad capacitor would be able to handle as much as 300 volts, while an ultracap would be rated at only 2.7 volts. At a higher voltage, the electrolyte starts to break down. So realistically we re talking about an ultracapacitor storing about 1,500 times the energy of a comparably sized capacitor, said Schindall.

7 Ultracaps and batteries as partners Despite offering a huge leap over regular capacitors, ultracaps still lag behind batteries when it comes to energy storage capacity. Ultracapacitors (which are also more expensive per energy unit than batteries), can store only about 5 percent of the energy of comparable lithium-ion batteries. And that, said Schindall, is a fatal flaw for many applications. It would be technically possible, for example, to use ultracaps instead of lithium-ion batteries in cell phones, with some serious benefits: You would never have to replace the ultracapacitor, said Schindall, and the phone would recharge very quickly. But the phone wouldn t stay charged for very long at all with today s ultracapacitors perhaps as little as 90 minutes, or five hours max, Schindall said. Ultracapacitors are very effective, however, at accepting or delivering a sudden surge of energy, and that makes them a good

8 partner for lithium-ion batteries, Schindall explained. In an electric car, for example, an ultracapacitor could provide the power needed for acceleration, while a battery provides range and recharges the ultracap between surges. Think of it this way: The ultracapacitor is like a small bucket with a big spout. Water can flow in or out very fast, but there s not very much of it. The battery is like a big bucket with a tiny spout. It can hold much more water, but it takes a long time to fill and drain it. The small bucket can provide a brief power surge ( lots of water in this analogy), and then refill gradually from the big bucket, Schindall explained. Putting ultracaps to work Already, Schindall believes some electric vehicle manufacturers are using ultracapacitors for acceleration. The devices also appear in hundreds of other applications, from cell phone base stations to

9 alarm clocks (as backup power) to audio systems. For most music, Schindall explained, a high-end audio system with big speakers might do just fine with a 1-watt amplifier. But then the kettle drum comes in, demanding a sudden power surge of 1- kilowatt. One solution, Schindall said, is to build a 1-watt supply, plus an ultracapacitor to handle the peak. Ultracapacitors hold promise for a similar job on the electric grid. Today, transmission lines operate below full capacity (often somewhere above 90 percent), said Schindall, in order to leave a buffer for power surges. Banks of ultracapacitors could be set up to absorb power surges, enabling transmission lines to run closer to 100 percent capacity. It might not seem like much, especially considering that it would take warehouse-sized banks for ultracaps to do the job. But installing ultracapacitors to handle the peaks would actually be much cheaper, Schindall said, than adding even 5 percent more capacity with new transmission lines. In cars, ultracapacitors could play a role in the growing market for microhybrids, which cut the engine during idling. In these startstop systems, Schindall explained in an , The ultracapacitor would provide power during the stop (lights, radio, air conditioner, etc.). It would also provide power for the restart, and then be recharged during the next interval of travel.

10 How to build better ultracapacitors There are two basic ways to improve the performance of ultracapacitors: increase the surface area of the plate coating, and increase the maximum amount of voltage that the device can handle. Recall old Faraday again. Capacitance, measured in Farads, is how much electric energy our device will hold given a certain voltage. Increase the voltage, and you can increase the amount of energy our device holds (energy is equal to half the capacitance, multiplied by voltage squared). Schindall is tackling the surface area challenge using carbon nanotubes (more like a shag carpet or paintbrush than the spongelike activated carbon). Other researchers, he noted, are working with graphene or better activated carbon. In addition to boosting the surface area, carbon nanotubes and graphene can also withstand a somewhat higher voltage than activated carbon, said Schindall. The voltage challenge, meanwhile seems to be a tougher road, he said. Researchers are experimenting with ionic liquid electrolytes (all ion, no solvent, behaves like a liquid), which under the right conditions can operate at up to three times the voltage of conventional electrolytes. But ionic liquids are fussy, Schindall said. They don t like being

11 liquids, and tend to freeze below room temperature. They re also expensive, and they have higher resistance than conventional electrolytes, which means you can t get energy out as fast. The maximum power one of ultracaps key advantages is decreased. As Schindall put it, There s always a tradeoff.

Use of Aqueous Double Layer Ultracapacitor using Hybrid CDI-ED Technology for the use in Hybrid Battery Systems

Use of Aqueous Double Layer Ultracapacitor using Hybrid CDI-ED Technology for the use in Hybrid Battery Systems Use of Aqueous Double Layer Ultracapacitor using Hybrid CDI-ED Technology for the use in Hybrid Battery Systems Overview By Robert Atlas, Aqua EWP,LLC. September 2007 Aqua EWP. has for the last 10 years

More information

8.2 Electric Circuits and Electrical Power

8.2 Electric Circuits and Electrical Power 8.2 Electric Circuits and Electrical Power Every electrical device uses current to carry energy and voltage to push the current. How are electrical devices designed? What types of parts are used in an

More information

4 Electric Circuits. TAKE A LOOK 2. Identify Below each switch, label the circuit as a closed circuit or an open circuit.

4 Electric Circuits. TAKE A LOOK 2. Identify Below each switch, label the circuit as a closed circuit or an open circuit. CHAPTER 17 4 Electric Circuits SECTION Introduction to Electricity BEFORE YOU READ After you read this section, you should be able to answer these questions: What are the three main parts of a circuit?

More information

Electricity Unit Review

Electricity Unit Review Science 9 Electricity Unit Review Name: General Definitions: Neutral Object Charge Separation Electrical Discharge Electric Current Amperes (amps) Voltage (volts) Voltmeter Ammeters Galvanometer Multimeter

More information

Use of Aqueous Double Layer Ultracapacitor using Hybrid CDI-ED Technology for the use in Hybrid Battery Systmes

Use of Aqueous Double Layer Ultracapacitor using Hybrid CDI-ED Technology for the use in Hybrid Battery Systmes Overview Use of Aqueous Double Layer Ultracapacitor using Hybrid CDI-ED Technology for the use in Hybrid Battery Systmes By Robert Atlas, Aqua EWP,LLC. September 2006 Aqua EWP. has for the last 10 years

More information

Ultracapacitor/Battery Hybrid Designs: Where Are We? + Carey O Donnell Mesa Technical Associates, Inc.

Ultracapacitor/Battery Hybrid Designs: Where Are We? + Carey O Donnell Mesa Technical Associates, Inc. Ultracapacitor/Battery Hybrid Designs: Where Are We? + Carey O Donnell Mesa Technical Associates, Inc. Objectives Better understand ultracapacitors: what they are, how they work, and recent advances in

More information

11.1 CURRENT ELECTRICITY. Electrochemical Cells (the energy source) pg Wet Cell. Dry Cell. Positive. Terminal. Negative.

11.1 CURRENT ELECTRICITY. Electrochemical Cells (the energy source) pg Wet Cell. Dry Cell. Positive. Terminal. Negative. Date: SNC1D: Electricity 11.1 CURRENT ELECTRICITY Define: CIRCUIT: path that electrons follow. CURRENT ELECTRICITY: continuous flow of electrons in a circuit LOAD: device that converts electrical energy

More information

reflect energy: the ability to do work

reflect energy: the ability to do work reflect Have you ever thought about how much we depend on electricity? Electricity is a form of energy that runs computers, appliances, and radios. Electricity lights our homes, schools, and office buildings.

More information

LS Mtron Ultracapacitor Stand: 2015

LS Mtron Ultracapacitor Stand: 2015 LS Mtron Ultracapacitor Stand: 2015 Meckenloher Str. 11 D-91126 Rednitzhembach Tel.: +49 9122 97 96 0 Fax: +49 9122 97 96 50 info@alfatec.de www.alfatec.de New-generation Energy Storage Devices with Low

More information

Electricity. Chapter 20

Electricity. Chapter 20 Electricity Chapter 20 Types of electric charge Protons + charge Electrons - charge SI unit of electric charge is the coulomb (C) Interactions between charges Like charges repel Opposite charges attract

More information

There are several technological options to fulfill the storage requirements. We cannot use capacitors because of their very poor energy density.

There are several technological options to fulfill the storage requirements. We cannot use capacitors because of their very poor energy density. ET3034TUx - 7.5.1 - Batteries 1 - Introduction Welcome back. In this block I shall discuss a vital component of not only PV systems but also renewable energy systems in general. As we discussed in the

More information

What is an Ultracapacitor? APEC Special Presentation Ultracapacitors March Tecate Group. Powerburst Presentation APEC 2011

What is an Ultracapacitor? APEC Special Presentation Ultracapacitors March Tecate Group. Powerburst Presentation APEC 2011 Tecate Group Powerburst Presentation APEC 2011 HEADQUARTERS FACILITIES LOCATION: SAN DIEGO, CA USA INVENTORY SALES & MARKETING ENGINEERING QUALITY MANAGEMENT What is an Ultracapacitor? An ultracapacitor,

More information

Chapter: Electricity

Chapter: Electricity Chapter 13 Table of Contents Chapter: Electricity Section 1: Electric Charge Section 2: Electric Current Section 3: Electrical Energy 1 Electric Charge Positive and Negative Charge Atoms contain particles

More information

How Off Grid Solar Works

How Off Grid Solar Works How Off Grid Solar Works The Sun (Fuel Source) With a solar power system you never need to purchase the fuel; the fuel is wirelessly transmitted from a fusion reactor that is safely placed 149.6 million

More information

Electricity and Magnetism

Electricity and Magnetism Electricity and Magnetism Electric Current and Electric Circuits What do you think? Read the statement below and decide whether you agree or disagree with it. Place an A in the Before column if you agree

More information

Sponsored By. The Charge of the Ultra - Capacitors By Joel Schindall. Illustration: Bryan Christie Design

Sponsored By. The Charge of the Ultra - Capacitors By Joel Schindall. Illustration: Bryan Christie Design Sponsored By The Charge of the Ultra - Capacitors By Joel Schindall Illustration: Bryan Christie Design In 1995, a small fleet of innovative electric buses began running along 15-minute routes through

More information

Bunya Solar. Renewable Energy Systems. Remote area power supply system manual

Bunya Solar. Renewable Energy Systems. Remote area power supply system manual Bunya Solar Renewable Energy Systems Mob 0438 120 035 Mob 0428 677 261 10 Page St Moruya NSW 2537 info@bunyasolar.com.au BCSE Accred A0636689 ABN 75 144 538 554 Remote area power supply system manual Welcome

More information

Chapter 17 Notes. Magnetism is created by moving charges.

Chapter 17 Notes. Magnetism is created by moving charges. Chapter 17 Notes Section 17.1 Electric Current and Magnetism Hans Christian Øersted (1819), a Danish physicist and chemist - compass needle near a wire circuit and with current flowing through the wire,

More information

The Model 1900G The Alkaline-Powered No. 6 Battery for Impulse-Wound Clocks Ken Reindel Ken s Clock Clinic

The Model 1900G The Alkaline-Powered No. 6 Battery for Impulse-Wound Clocks Ken Reindel Ken s Clock Clinic The Model 1900G The Alkaline-Powered No. 6 Battery for Impulse-Wound Clocks Ken Reindel Ken s Clock Clinic Imagine the ideal No. 6 vintage battery for self winding clocks: Outputs 3.3 volts regardless

More information

Solar Powered Wireless Sensors & Instrumentation

Solar Powered Wireless Sensors & Instrumentation Solar Powered Wireless Sensors & Instrumentation Energy Harvesting Technology Reduces Operating Cost at Remote Sites Speakers: Michael Macchiarelli Standards Certification Education & Training Publishing

More information

I. Equivalent Circuit Models Lecture 3: Electrochemical Energy Storage

I. Equivalent Circuit Models Lecture 3: Electrochemical Energy Storage I. Equivalent Circuit Models Lecture 3: Electrochemical Energy Storage MIT Student In this lecture, we will learn some examples of electrochemical energy storage. A general idea of electrochemical energy

More information

Today, we re going to talk about battery safety. We ll discuss all the key issues associated with using batteries safely, including battery hazards,

Today, we re going to talk about battery safety. We ll discuss all the key issues associated with using batteries safely, including battery hazards, Today, we re going to talk about battery safety. We ll discuss all the key issues associated with using batteries safely, including battery hazards, battery charging, and battery maintenance. Although

More information

Efficient Source and Demand Leveling Power System

Efficient Source and Demand Leveling Power System Efficient Source and Demand Leveling Power System Team 10 Pre- Proposal Manager: Marvel Mukongolo Webmaster: Chi-Fai Lo Documentation: Michael Kovalcik Presentation/Lab: Jamal Adams Facilitator: Dr. Fang

More information

APEC 2011 Special Session Polymer Film Capacitors March 2011

APEC 2011 Special Session Polymer Film Capacitors March 2011 This presentation covers current topics in polymer film capacitors commonly used in power systems. Polymer film capacitors are essential components in higher voltage and higher current circuits. Unlike

More information

============================================================================

============================================================================ Coleman 5.4V Flashcell Cordless Screwdriver - ultracapacitor Posted by opi - 2009/09/14 10:54 I've wanted to play with some ultracapacitors but the cost has been a little much for my small budget. However,

More information

Electricity Electric Current current. ampere. Sources of Current

Electricity Electric Current current. ampere. Sources of Current Electricity The basis for the study of electricity begins with the electron. It is a small, negatively charged particle located outside the nucleus in all atoms. The nucleus of the atom is positively charged

More information

BATTERY CHARGING SYSTEMS

BATTERY CHARGING SYSTEMS BATTERY CHARGING SYSTEMS BATTERIES ARE CHARGED BY APPLYING A HIGH ENOUGH VOLTAGE TO THEM. BUT THE RATE OF CHARGE IS NOT CONSTANT. IN THE FIRST SPLIT SECOND, THE VERY LIGHT ELECTRONS FROM THE CHARGING SOURCE

More information

How supercapacitors can extend alkaline battery life in portable electronics

How supercapacitors can extend alkaline battery life in portable electronics How supercapacitors can extend alkaline battery life in portable electronics Today s consumers take for granted the ability of the electronics industry to squeeze more functions into smaller, more portable

More information

Electronic Paint- Thickness Gauges What They Are, and Why You Need Them

Electronic Paint- Thickness Gauges What They Are, and Why You Need Them By Kevin Farrell Electronic Paint- Thickness Gauges What They Are, and Why You Need Them Measuring the paint in microns. The reading of 125 microns is a fairly normal factory reading. This shows that the

More information

4 Electric Circuits. TAKE A LOOK 2. Identify Below each switch, label the circuit as a closed circuit or an open circuit.

4 Electric Circuits. TAKE A LOOK 2. Identify Below each switch, label the circuit as a closed circuit or an open circuit. CHAPTER 1 4 Electric Circuits SECTION Introduction to Electricity BEFORE YOU READ After you read this section, you should be able to answer these questions: What are the three main parts of a circuit?

More information

Electricity. Electric Charge. Before You Read. Read to Learn. Positive and Negative Charges. Picture This. section.

Electricity. Electric Charge. Before You Read. Read to Learn. Positive and Negative Charges. Picture This. section. chapter 6 Electricity 1 section Electric Charge What You ll Learn how electric charges exert forces about conductors and insulators how things become electrically charged Before You Read Think about some

More information

Leading Solution LS Mtron, LS Cable, LS Industrial System, LS-Nikko Copper, Gaon Cable, E1 and Yesco

Leading Solution LS Mtron, LS Cable, LS Industrial System, LS-Nikko Copper, Gaon Cable, E1 and Yesco Leading Solution LS Mtron, LS Cable, LS Industrial System, LS-Nikko Copper, Gaon Cable, E1 and Yesco New Dream, New Start To become a leader in the competitive global market, LG has been divided into three

More information

Electricity MR. BANKS 8 TH GRADE SCIENCE

Electricity MR. BANKS 8 TH GRADE SCIENCE Electricity MR. BANKS 8 TH GRADE SCIENCE Electric charges Atoms and molecules can have electrical charges. These are caused by electrons and protons. Electrons are negatively charged. Protons are positively

More information

Energy Storage. Electrochemical Cells & Batteries

Energy Storage. Electrochemical Cells & Batteries Energy Storage These notes cover the different methods that can be employed to store energy in various forms. These notes cover the storage of Electrical Energy, Kinetic Energy, and Pneumatic Energy. There

More information

There s a New Powerhouse in Town

There s a New Powerhouse in Town There s a New Powerhouse in Town By Edward R. Breneiser, WA3WSJ I ve been working on my Icom 703 Plus HFpack about two years now. I think I just found a great power source for it. I was using a good power

More information

Battery-Back-Up Power for Amateur Radio

Battery-Back-Up Power for Amateur Radio Battery-Back-Up Power for Amateur Radio These days of instant communications, we seem to rely on our cordless and cell phones, HTs and mobile rigs for our communications needs. One item we always seem

More information

DIY Synth Kit - Manual STUTTER SYNTH

DIY Synth Kit - Manual STUTTER SYNTH DIY Synth Kit - Manual STUTTER SYNTH Welcome to the DIY Synth - Manual This is a step-by-step guide to making your own electronic Synth. All you will need is your hands and your DIY Synth kit which includes

More information

The Physics of the Automotive Ignition System

The Physics of the Automotive Ignition System I. Introduction This laboratory exercise explores the physics of automotive ignition systems used on vehicles for about half a century until the 1980 s, and introduces more modern transistorized systems.

More information

DIY Synth Kit - Manual

DIY Synth Kit - Manual DIY Synth Kit - Manual Welcome to the DIY Synth - Manual This is a step-by-step guide to making your own electronic Synth. All the equipment you ll need to make your synth is your DIY Synth kit and of

More information

How to use the Multirotor Motor Performance Data Charts

How to use the Multirotor Motor Performance Data Charts How to use the Multirotor Motor Performance Data Charts Here at Innov8tive Designs, we spend a lot of time testing all of the motors that we sell, and collect a large amount of data with a variety of propellers.

More information

MINIPAK. Handheld fuel cell power system. Frequently Asked Questions

MINIPAK. Handheld fuel cell power system. Frequently Asked Questions MINIPAK Handheld fuel cell power system Frequently Asked Questions Q: What is the MINIPAK? A: The MINIPAK personal power center delivers 1.5W of continuous power using a standard USB port, and uses refillable

More information

Maxwell Technologies Overview Corporate & Product

Maxwell Technologies Overview Corporate & Product Maxwell Technologies Overview Corporate & Product The Maxwell Name The company was founded by Alan Kolb and 2 partners: Bruce Hayworth and Terrence C. Gooding, who all came from General Dynamics. (1965)

More information

Full file at

Full file at CHAPTER 2 FUNDAMENTALS OF ELECTRICITY Job Assignment for This Chapter: You are on a service call and a customer does not understand the basic theory of electricity and thinks you are trying to sell parts

More information

ELON MUSK'S GRAND PLAN TO POWER THE WORLD WITH BATTERIES

ELON MUSK'S GRAND PLAN TO POWER THE WORLD WITH BATTERIES ELON MUSK'S GRAND PLAN TO POWER THE WORLD WITH BATTERIES NATHANIEL WOOD FOR WIRED Elon Musk wants to sell you a battery. And he doesn't care whether you drive an electric car. Musk, ever the showman, unveiled

More information

CELLS AND BATTERIES Understand the general features of cells and batteries Describe the relationship between cells and batteries. Describe the basic

CELLS AND BATTERIES Understand the general features of cells and batteries Describe the relationship between cells and batteries. Describe the basic Cell & Batteries CELLS AND BATTERIES Understand the general features of cells and batteries Describe the relationship between cells and batteries. Describe the basic operation of a battery. Compare between

More information

Is it Magnetic? 1. Fill in each table. List things ATTRACTED by a magnet on the LEFT and things NOT ATTRACTED on the RIGHT.

Is it Magnetic? 1. Fill in each table. List things ATTRACTED by a magnet on the LEFT and things NOT ATTRACTED on the RIGHT. Is it Magnetic? 1. Fill in each table. List things ATTRACTED by a magnet on the LEFT and things NOT ATTRACTED on the RIGHT. MAGNETIC NON-MAGNETIC # Object Made from check # Object Made from check --- ------------

More information

CDI Revision Notes Term 1 ( ) Grade 12 General Unit 1 Materials & Unit 2 Fundamentals of Electronics

CDI Revision Notes Term 1 ( ) Grade 12 General Unit 1 Materials & Unit 2 Fundamentals of Electronics CDI Revision Notes Term 1 (2017 2018) Grade 12 General Unit 1 Materials & Unit 2 Fundamentals of Electronics STUDENT INSTRUCTIONS Student must attempt all questions. For this examination, you must have:

More information

Powertrain Efficiency Technologies. Turbochargers

Powertrain Efficiency Technologies. Turbochargers Powertrain Efficiency Technologies Turbochargers Turbochargers increasingly are being used by automakers to make it possible to use downsized gasoline engines that consume less fuel but still deliver the

More information

Understanding the Battery

Understanding the Battery Understanding the Battery Materials Needed For this lesson, you will need the following materials: Student Manual Dummy Battery Visuals Understanding a Battery training video Battery Application Guide

More information

Today s lecture: Generators Eddy Currents Self Inductance Energy Stored in a Magnetic Field

Today s lecture: Generators Eddy Currents Self Inductance Energy Stored in a Magnetic Field PHYSICS 1B Today s lecture: Generators Eddy Currents Self Inductance Energy Stored in a Magnetic Field PHYSICS 1B Lenz's Law Generators Electric generators take in energy by work and transfer it out by

More information

Metal-air batteries. Joan Gómez Chabrera Alejandro Andreu Nácher Pablo Bou Pérez

Metal-air batteries. Joan Gómez Chabrera Alejandro Andreu Nácher Pablo Bou Pérez Metal-air batteries Joan Gómez Chabrera Alejandro Andreu Nácher Pablo Bou Pérez Index 1. Introduction 2. Principle of operation of metal-air batteries 3. Air cathodes 4. Types 5. General aplications 6.

More information

Electric current is related to the voltage that produces it, and the resistance that opposes it.

Electric current is related to the voltage that produces it, and the resistance that opposes it. Electric current is related to the voltage that produces it, and the resistance that opposes it. Voltage produces a flow of charge, or current, within a conductor. The flow is restrained by the resistance

More information

Working Principle of Power Saver as per Manufacture:

Working Principle of Power Saver as per Manufacture: Analysis the Truth behind Household Power Savers Introduction: A House hold power saving devices has recently received a lot of attention from both consumers and manufacturers. It is generally used in

More information

CSIRO Energy Storage Projects: David Lamb Low Emission Transport Theme Leader

CSIRO Energy Storage Projects: David Lamb Low Emission Transport Theme Leader CSIRO Energy Storage Projects: David Lamb Low Emission Transport Theme Leader Energy Storage for Transport Three projects Safe, High-Performance Lithium-Metal Batteries Supercapacitors Ultrabattery 10

More information

Lithium battery charging

Lithium battery charging Lithium battery charging How to charge to extend battery life? Why Lithium? Compared with the traditional battery, lithium ion battery charge faster, last longer, and have a higher power density for more

More information

34 Electric Current. Electric current is related to the voltage that produces it, and the resistance that opposes it.

34 Electric Current. Electric current is related to the voltage that produces it, and the resistance that opposes it. Electric current is related to the voltage that produces it, and the resistance that opposes it. Voltage produces a flow of charge, or current, within a conductor. The flow is restrained by the resistance

More information

HOW BATTERY STORAGE CAN HELP CHARGE THE ELECTRIC- VEHICLE MARKET

HOW BATTERY STORAGE CAN HELP CHARGE THE ELECTRIC- VEHICLE MARKET HOW BATTERY STORAGE CAN HELP CHARGE THE ELECTRIC- VEHICLE MARKET February 2018 Stefan Knupfer Jesse Noffsinger Shivika Sahdev HOW BATTERY STORAGE CAN HELP CHARGE THE ELECTRIC-VEHICLE MARKET People are

More information

Electrical Engineering:

Electrical Engineering: Electrical Engineering: 1. Resistors: Remember resistors are components designed to limit the flow of electrons through an electrical circuit. Resistors are usually indicated with a colour code, as shown

More information

Chapter 2. Voltage and Current. Copyright 2011 by Pearson Education, Inc. publishing as Pearson [imprint]

Chapter 2. Voltage and Current. Copyright 2011 by Pearson Education, Inc. publishing as Pearson [imprint] Chapter 2 Voltage and Current OBJECTIVES Become aware of the basic atomic structure of conductors such as copper and aluminum and understand why they are used so extensively in the field. Understand how

More information

CradlePoint Vehicle Best Practices Installation Guide

CradlePoint Vehicle Best Practices Installation Guide CradlePoint Vehicle Best Practices Installation Guide Using CradlePoint Routers in 12V and 24V Vehicles Revision 1.2 Overview The automotive environment can be particularly harsh for electrical equipment

More information

B How much voltage does a standard automobile battery usually supply?

B How much voltage does a standard automobile battery usually supply? Chapter 2 B-003-16-01 How much voltage does a standard automobile battery usually supply? 1. About 240 volts 2. About 120 volts 3. About 12 volts 4. About 9 volts B-003-16-02 Which component has a positive

More information

Portable Power & Storage

Portable Power & Storage Portable Power & Storage NMTC Disruptive Technology Summit and TECH CONN3CT Workshops 28 April 2017 Edward J. Plichta Chief Scientist for Power & Energy Command Power & Integration Directorate Aberdeen

More information

HOW TO MAKE YOUR OWN BATTERIES

HOW TO MAKE YOUR OWN BATTERIES HOW TO MAKE YOUR OWN BATTERIES 1 Page TABLE OF CONTENTS Introduction....3 Usage....4 Aluminum Can Batteries/Cells....8 A Long Lasting, Yet Powerful Battery....10 PVC Pipe Batteries...13 Lab Notes....17

More information

Electrical Systems. Introduction

Electrical Systems. Introduction Electrical Systems Figure 1. Major Components of the Car s Electrical System Introduction Electricity is used in nearly all systems of the automobile (Figure 1). It is much easier to understand what electricity

More information

Introduction to Electricity & Electrical Current

Introduction to Electricity & Electrical Current Introduction to Electricity & Electrical Current Physical Science Georgia Performance Standards: SPS10a. Investigate static electricity in terms of friction, induction, and conduction. SPS10b. Explain

More information

SILICONES GLOBAL SOLUTIONS

SILICONES GLOBAL SOLUTIONS SILICONES GLOBAL SOLUTIONS 2016 PROPOSAL FOR INSTALLATION OF A 25% POWER SAVING DEVICE Silicones Global Solutions, Email:info@siliconesgbsolutions.com, Contact: 0302200950/0208163888 1/1/2016 Contents

More information

PRO/CON: Self-driving cars could take over the road in the near future

PRO/CON: Self-driving cars could take over the road in the near future PRO/CON: Self-driving cars could take over the road in the near future By Tribune News Service, adapted by Newsela staff on 09.14.16 Word Count 982 A self-driving Ford Fusion hybrid car is test driven

More information

Charles Sullivan, Associate Professor, Thayer School of Engineering at Dartmouth

Charles Sullivan, Associate Professor, Thayer School of Engineering at Dartmouth FORMULA HYBRID SAFETY TUTORIAL FUSING Charles Sullivan, Associate Professor, Thayer School of Engineering at Dartmouth Purpose of Fusing Fuses interrupt current in a circuit when the current exceeds a

More information

Cathode material for batteries the safe bridge to e-mobility

Cathode material for batteries the safe bridge to e-mobility Innovation Spotlight Life Power P2 Andrew Silver Cathode material for batteries the safe bridge to e-mobility Issue: Summer 2012 Lithium iron phosphate is at present the only inherently safe cathode material

More information

Talga Anode Enables Ultra-Fast Charge Battery

Talga Anode Enables Ultra-Fast Charge Battery ASX & Media Release 16 October 2018 ASX:TLG Talga Anode Enables Ultra-Fast Charge Battery New test results show Talga s lithium-ion battery anode product outperforming commercial benchmark and enabling

More information

Unit 2: Electricity and Energy Resources

Unit 2: Electricity and Energy Resources 8 8 Table of Contents Unit 2: Electricity and Energy Resources Chapter 8: Magnetism and Its Uses 8.1: Magnetism 8.2: Electricity and Magnetism 8.3: Producing Electric Current 8.1 Magnets More than 2,000

More information

TROUBLESHOOTING AND MAINTAINING ELECTRONIC KILN CONTROL SYSTEMS

TROUBLESHOOTING AND MAINTAINING ELECTRONIC KILN CONTROL SYSTEMS TROUBLESHOOTING AND MAINTAINING ELECTRONIC KILN CONTROL SYSTEMS Tom Salicos American Wood Dryers Clackamas, Oregon After many years of helping American Wood Dryers' customers troubleshoot dry kiln control

More information

3/31/2016. Unit 2: Electricity and Energy Resources. Magnets. Magnets. Magnetic Force. Magnetic Field. Chapter 8: Magnetism and Its Uses

3/31/2016. Unit 2: Electricity and Energy Resources. Magnets. Magnets. Magnetic Force. Magnetic Field. Chapter 8: Magnetism and Its Uses 8 8 Table of Contents Unit 2: Electricity and Energy Resources Chapter 8: and Its Uses : : Electricity and : Magnets More than 2,000 years ago Greeks discovered deposits of a mineral that was a natural

More information

THE FOURTH STATE. Gaining a universal insight into the diagnosis of automotive ignition systems. By: Bernie Thompson

THE FOURTH STATE. Gaining a universal insight into the diagnosis of automotive ignition systems. By: Bernie Thompson THE FOURTH STATE Gaining a universal insight into the diagnosis of automotive ignition systems By: Bernie Thompson Did you know that the forth state of matter powers the spark ignition internal combustion

More information

LS Ultracapacitor New-generation Energy Storage Devices with Great Power and Great Reliability

LS Ultracapacitor New-generation Energy Storage Devices with Great Power and Great Reliability Authorized Distributor: ;::.,.. LS Mtron ES COMPONENTS 108 PRATTS JUNCTION ROAD STERLING, MA 01564 ( PHONE: (978)422-7641 FAX: (978)422-0011 www.escomponents.com/ultracapacitors-ls-mtron/ LS Ultracapacitor

More information

Two Cell Battery. 6. Masking tape 7. Wire cutters 8. Vinegar 9. Salt 10. Lemon Juice DC ammeter

Two Cell Battery. 6. Masking tape 7. Wire cutters 8. Vinegar 9. Salt 10. Lemon Juice DC ammeter Your Activity Build a two-cell Wet battery Materials 1. 2 150 ml beakers 2. 2 pieces aluminum foil (8 X 12 inch) 3. 2 small paper cups, cut ¾ from bottom 4. 3 31.5 inch of non-insulated copper wire gauge

More information

Supercapacitors: A Comparative Analysis

Supercapacitors: A Comparative Analysis Supercapacitors: A Comparative Analysis Authors: Sneha Lele, Ph.D., Ashish Arora, M.S.E.E., P.E. Introduction Batteries, fuel cells, capacitors and supercapacitors are all examples of energy storage devices.

More information

Chapter 21 Practical Electricity

Chapter 21 Practical Electricity Chapter 21 Practical Electricity (A) Electrical Power 1. State four applications of the heating effect of electricity. Home: o Used in electric kettles o Used in electric irons o Used in water heaters

More information

SPRAYBOOTH OVEN AUXILIARY AIR MOVEMENT DESIGN, OPERATION AND BENEFITS

SPRAYBOOTH OVEN AUXILIARY AIR MOVEMENT DESIGN, OPERATION AND BENEFITS SPRAYBOOTH OVEN AUXILIARY AIR MOVEMENT DESIGN, OPERATION AND BENEFITS 16 th May 2011 - Ref: QADs Review Junair Spraybooths ANZ Pty Ltd Phone: 1300 881 411 Post: Suite 302 Locked Bag 1, Robina Town Centre

More information

Electric Circuits. Lab. FCJJ 16 - Solar Hydrogen Science Kit. Goals. Background

Electric Circuits. Lab. FCJJ 16 - Solar Hydrogen Science Kit. Goals. Background Goals Build a complete circuit with a solar panel Power a motor and electrolyzer with a solar panel Measure voltage and amperage in different circuits Background Electricity has fundamentally changed the

More information

Driving a vehicle with the Lightning Hybrids Energy Recovery System JUNE 2016

Driving a vehicle with the Lightning Hybrids Energy Recovery System JUNE 2016 Driving a vehicle with the Lightning Hybrids Energy Recovery System JUNE 2016 Welcome to Lightning Hybrids Driver Training Lightning Hybrids hydraulic hybrid system saves fuel and reduces emissions. It

More information

Comments and facts below in chronological order as testing progress. Added non Added resistive Total load Watt meter kwh resistive

Comments and facts below in chronological order as testing progress. Added non Added resistive Total load Watt meter kwh resistive Comments and facts below in chronological order as testing progress Date Added non Added resistive Total load Watt meter kwh resistive from grid Jan 13 6 + 9 = 15 W 15 W 16 Jan 17 3 x 27 = 81 W 96 W 100

More information

UNIT 4 Electrical Applications

UNIT 4 Electrical Applications UNIT 4 Electrical Applications Topic How do the sources used 4.1 to generate electrical energy compare? (Pages 244-51) Topic 4.1: How do the sources used to generate electrical energy compare? Topic 4.6:

More information

ELECTRIC CURRENT. Name(s)

ELECTRIC CURRENT. Name(s) Name(s) ELECTRIC CURRT The primary purpose of this activity is to decide upon a model for electric current. As is the case for all scientific models, your electricity model should be able to explain observed

More information

Is Uncorrected Power Factor Costing You Money?

Is Uncorrected Power Factor Costing You Money? Is Uncorrected Power Factor Costing You Money? Are You Being Overcharged by Your Energy Provider? Find Out! Everyone s trying to lower their energy bill these days. If you re a business owner, facilities

More information

Hybrids for Heavy Duty Use. Komatsu America Corp Armando Nájera, Jr.

Hybrids for Heavy Duty Use. Komatsu America Corp Armando Nájera, Jr. Hybrids for Heavy Duty Use Komatsu America Corp Armando Nájera, Jr. Product Manager Hydraulic Excavators Agenda What is a Hybrid? Hybrid definition Hybrid automobiles REGENERATION Hybrid Automobiles Hybrid

More information

Incandescent Lightbulb. Electricity passes through a tungsten (W) filament, which in turn glows white hot (4500F).

Incandescent Lightbulb. Electricity passes through a tungsten (W) filament, which in turn glows white hot (4500F). 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Incandescent Lightbulb Electricity passes through a tungsten (W) filament, which in turn glows white hot (4500F). Very inefficient: 90% of the electrical energy is lost

More information

The Discussion of this exercise covers the following points:

The Discussion of this exercise covers the following points: Exercise 1 Battery Fundamentals EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with various types of lead-acid batteries and their features. DISCUSSION OUTLINE The Discussion

More information

Parts of an atom. Protons (P + ) Electrons (e - ) Neutrons. Have a positive electric charge. Have a negative electric charge

Parts of an atom. Protons (P + ) Electrons (e - ) Neutrons. Have a positive electric charge. Have a negative electric charge Electricity Parts of an atom Protons (P + ) Have a positive electric charge Electrons (e - ) Have a negative electric charge Neutrons Are neutral Have no charge Electric Charge In most atoms, the charges

More information

Understanding Polymer and Hybrid Capacitors

Understanding Polymer and Hybrid Capacitors WHITE PAPER Understanding Polymer and Hybrid Capacitors Advanced capacitors based on conductive polymers maximize performance and reliability The various polymer and hybrid capacitors have distinct sweet

More information

Exercise 2. Discharge Characteristics EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. Cutoff voltage versus discharge rate

Exercise 2. Discharge Characteristics EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. Cutoff voltage versus discharge rate Exercise 2 Discharge Characteristics EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with the discharge characteristics of lead-acid batteries. DISCUSSION OUTLINE The Discussion

More information

Paper Battery. Paper Battery. 1

Paper Battery. Paper Battery. 1 Paper Battery 1 www.seminarsonly.com A paper battery is a flexible, ultra-thin energy storage and production device formed by combining carbon nanotube with a conventional sheet of cellulose-based paper.

More information

Electricity and Magnetism

Electricity and Magnetism Electricity and Magnetism What is electricity? The collection or flow of electrons in the form of an electric charge What is static electricity? When two objects rub against each other, electrons transfer

More information

AUTOMOTIVE ENGINEERING SECTION

AUTOMOTIVE ENGINEERING SECTION PURPOSE OF IGNITION SYSTEM The ignition system supplies high-voltage surges as high as 47,000 volts (in some electronic systems) to the spark plugs in the engine cylinders. These surges produce electric

More information

Renewable Energy. Presented by Sean Flanagan

Renewable Energy. Presented by Sean Flanagan Renewable Energy Presented by Sean Flanagan Background Flanagan and Sun since 2004 Solar electric (PV) off grid and grid tie, solar thermal, pool heating, solar air heating, small wind turbines, microhydro

More information

Lipo Battery Charging & Safety Guide

Lipo Battery Charging & Safety Guide Lipo Battery Charging & Safety Guide Lithium Polymer or LiPo batteries are a great new way of storing energy for portable devices from cell phones to RC helicopters. They re great because they can store

More information

BASIC ELECTRICAL MEASUREMENTS By David Navone

BASIC ELECTRICAL MEASUREMENTS By David Navone BASIC ELECTRICAL MEASUREMENTS By David Navone Just about every component designed to operate in an automobile was designed to run on a nominal 12 volts. When this voltage, V, is applied across a resistance,

More information

SILICON VALLEY / SAN JOSE DECEMBER 24, 2010 VOL. 27 NO. 40

SILICON VALLEY / SAN JOSE DECEMBER 24, 2010 VOL. 27 NO. 40 SILICON VALLEY / SAN JOSE DECEMBER 24, 2010 VOL. 27 NO. 40 DECEMBER 24, 2010 Executive of the Year Q&A: Elon Musk That person knows we are going to push the envelope and create something that has never

More information

PREVENTING VFD/AC DRIVE INDUCED ELECTRICAL DAMAGE TO AC MOTOR BEARINGS

PREVENTING VFD/AC DRIVE INDUCED ELECTRICAL DAMAGE TO AC MOTOR BEARINGS PREVENTING VFD/AC DRIVE INDUCED ELECTRICAL DAMAGE TO AC MOTOR BEARINGS Written by: William Oh, Engineer October 5, 2007 PREVENTING VFD/AC DRIVE INDUCED ELECTRICAL DAMAGE TO AC MOTOR BEARINGS EXECUTIVE

More information

12 VDC Power Sources For Your RV

12 VDC Power Sources For Your RV 12 VDC Power Sources For Your RV Win Semmler RVIS, LLC www.rvinspectionservices.com www.facebook.com/rvinspectionservices rvisllc@gmail.com Sources of 12 VDC For Your RV Batteries Converters Alternators

More information