ENVIRONMENTAL PERFORMANCE OF INLAND NAVIGATION. Juha SCHWEIGHOFER, Petra SEIWERTH

Size: px
Start display at page:

Download "ENVIRONMENTAL PERFORMANCE OF INLAND NAVIGATION. Juha SCHWEIGHOFER, Petra SEIWERTH"

Transcription

1 European Inland Waterway Navigation Conference June, 2007, Visegrád, Hungary ENVIRONMENTAL PERFORMANCE OF INLAND NAVIGATION Juha SCHWEIGHOFER, Petra SEIWERTH via donau Österreichische Wasserstraßen-Gesellschaft mbh Donau-City-Straße 1, A-1220 Vienna, Austria Received: April 30, ABSTRACT Focussed on emissions to the air, the environmental performance of inland navigation and means for its improvement are discussed. The investigation was carried out in the Work Package 6, Environmental Impact of Inland Navigation, of the European-Union project CREATING Concepts to Reduce Environmental impact and Attain optimal Transport performance by Inland NaviGation, funded within the Sixth Framework Programme. The legislation with respect to exhaust emissions in waterborne and road transport is outlined briefly. For a Large Roll On-Roll Off (RoRo) vessel and a coupled formation of a motor cargo vessel and a barge operating on a defined stretch on the Danube, the exhaust emissions without and with the application of different emission-reduction technologies are evaluated. A comparison between the emissions of the vessels investigated and a truck on the road is carried out for the different emission-reduction technologies and emission regulations considered. Further, a brief discussion is performed on the costs associated with the introduction of the emission-reduction technologies presented. Using a combination of technologies like the Selective Catalytic Reduction, low sulphur fuel and a particulate filter, the inland vessel remains superior to the truck in its environmental performance with respect to PM and NO X emissions; even in the case of an application of the Euro V legislation to trucks. Keywords: CREATING, inland navigation, road transport, emissions to the air, emission reduction technologies 1 INTRODUCTION Inland navigation is known as environmentally friendly transport mode. Regarding emissions to the air, especially with respect to emissions of the greenhouse gas CO 2 (Carbon-Dioxide) the performance of inland vessels is outstanding. On average, the CO 2 emissions of an inland vessel are only 1/3 of the ones of a truck per ton-kilometre (tkm). However, the introduction of emission limits for road transport since the early 1990s has led to a significant reduction of the pollutant emissions of NO X (Nitrogen-Oxides) and PM (Particulate Matter) on road. In inland navigation such strict emission limits are still missing. Consequently, the superiority in the environmental performance of inland vessels compared with trucks has become smaller in this regard, and with the introduction of EURO IV and EURO V limits for road transport in 2006 and 2009, respectively, these new trucks may emit even less NO X and PM per tkm than inland vessels. Considering the scenario mentioned above, the aim of Work Package 6, Environmental Impact of Inland Navigation, of the CREATING Project [18] was to find solutions, how the environmental superiority of inland vessels can be restored regarding these emissions. This paper gives a short introduction into the emission limits for inland waterway and road transport and a survey about the results of CREATING on possible achievements with the application of different improvement techniques to inland vessel engines. This survey is shown on examples of a Roll-On Roll-Off (RoRo) vessel and a motor cargo vessel pushing a barge for the Danube, including a brief discussion on the costs

2 associated with the introduction of the emission-reduction technologies presented. The paper is completed by key conclusions and recommendations to policy makers, ship owners, equipment suppliers and oil companies as well as fuel suppliers derived from the research performed within Work Package 6 of the CREATING project. 2.1 Inland navigation 2 EMISSION LEGISLATION In Table 2-1, a simplified overview of existing and future emission regulations relevant to inland navigation is given. The entry into force dates denote dates when the regulations are considered to be fully in force. The summary is based on [1], [2], [3]. The CCNR Phase III and EU Stage IV limits are still under discussion. Therefore, the entry into force date is to be taken as indicative. Table 2-1 Simplified overview of present and future emission regulations for inland navigation Regulatory framework NOx PM Entry into g/kwh force date CCNR Phase I CCNR Phase II EU Stage IIIA /2007 CCNR Phase III EU Stage IV < ~ Road transport In Table 2-2, an overview of existing and future EU emission standards for heavy duty vehicles to be used in road transport is given. The table is completed by proposals of the German Federal Environmental Agency (Umweltbundesamt, UBA) for EURO V and EURO VI, being still under discussion. The entry into force dates denote dates when the regulations are considered to be fully in force. The overview is based on [4], [5], [6], [7], [8]. Table 2-2 EU emission standards for heavy duty vehicles and German Federal Environmental Agency (UBA) proposals for 2008 and 2010 Heavy duty vehicles NO x HC CO PM Entry into g/kwh force dates EURO EURO I EURO II EURO III EURO IV EURO V EURO V UBA Proposal EURO VI UBA Proposal In Fig. 2-1, a comparison of existing and future emission limits is presented for inland waterway and road transport summarizing the contents of Tables 2-1 and 2-2. Additionally, the US emission standard, denoted by US-EPA (United States Environmental Protection Agency), entering into force in 2010 is given, [9], [10]. It can be clearly seen that the existing emission standards for road transport, EURO III and EURO IV for Europe are by far stricter than the ones for inland waterway transport as there are: the emission standards by the CCNR (Central Commission for the Navigation on the Rhine) corresponding to Phases I and II and the one by the European

3 Commission corresponding to EU-Stage IIIA. The CCNR Phase III and EU Stage IV standards to be applied to inland navigation and being still under discussion will be equally strict as the EURO V standard for road transport. However, the EURO V standard will be introduced much earlier, and considering the US-EPA standard and the proposal by the UBA for EURO VI, both standards to be introduced in 2010, the emission standards for road transport are expected to remain much stricter than the ones for inland navigation. Emission Standards 0,6 CCNR I (2002, vessels) 0,5 PM emissions [g/kwh] 0,4 0,3 0,2 CCNR II / EU-Stage IIIA (2008/2007, vessels) EURO I (1993, trucks) EURO III (2001, trucks) 0,1 EURO V (2009, trucks) ~ CCNR III / EU Stage IV (~ US-EPA (2010, trucks) 2012, vessels) EURO IV (2006, trucks) 0 EURO 0 VI UBA (proposal, , trucks) NOx emissions [g/kwh] Fig. 2-1 Emission standards for inland waterway and road transport These emission standards are related to the energy consumption of the means of transport. As the energy consumption per tkm of inland vessels is on average about three times lower than the one of trucks, the emission standards may remain to a certain degree less severe with respect to equal environmental impact. However, once the EURO V standard has been introduced to road transport in 2009, only the introduction of CCNR Phase III and EU Stage IV standards or stricter ones to inland navigation will result in a better environmental performance of inland navigation with respect to emitted pollutants per tkm compared with road transport, Fig The introduction of EURO IV (UBA Proposal) will result in a slightly better performance of trucks, which, however, will be of minor significance. In Fig. 2-2, the NO X and PM emissions related to tkm of a Rhine vessel complying with CCNR Phases I, II, and III are compared with the ones of a truck complying with EURO I up to V and EURO IV proposed by the Federal Environmental Agency of Germany (UBA). The emissions of the vessel and the truck in g/kwh correspond to Tables 2-1 and 2-2. For the truck, it is assumed that the fuel consumption accounts for 200 g/kwh and 320 g/km leading to an energy demand per km of 1.6 kwh/km. The payload is assumed to be 17 t giving an energy demand per tkm of kwh/tkm. For the Rhine vessel a mean power factor of 0.4 kw/t is assumed, leading to an energy demand of about 0.04 kwh/tkm for a vessel speed of 10 km/h, [11], [12]. Multiplication of the emission factors in g/kwh with the energy demand in kwh/tkm gives the emissions in g/tkm.

4 0,035 T1 0,03 0,025 Euro I truck (T1) PM emissions (g/tkm) 0,02 0,015 V1 T2 Euro II truck (T2) Euro III truck (T3) Euro IV truck (T4) Euro V truck (T5) Euro VI UBA prop. truck (T6) CCNR I vessel (V1) CCNR II vessel (V2) 0,01 V2 T3 CCNR III vessel (V3) 0,005 T5 T4 V3 0 T6 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 NOx emissions (g/tkm) Fig. 2-2 Emission comparison of trucks and inland vessels (CCNR Phases I, II, III). Emissions in g/kwh equal limit values of standards and phases considered. A major concern is, moreover, the longer lifetime of an inland vessel engine compared with a truck engine. Truck engines are replaced on average every 5 years. This means that five years after the introduction of a new emission limit, the average truck fleet complies with this limit. Vessel engines may remain in service for 30 years or even longer, and, therefore, it will take also much longer in order to achieve a compliance with new emission standards compared with trucks. 3 ESTIMATION OF EMISSION REDUCTION POTENTIALS Taking into consideration the developments in the emission legislation described above, compliance with EU transport policy and environmental friendliness as a competitive factor of increasing significance, it was an objective of the CREATING project to find possible solutions to improve the environmental performance of inland vessels. The results of this project are used as basis for the evaluation of possible effects of the combination of several improvement techniques on the emission characteristics of a vessel engine. The outcome of this evaluation is presented in the following. The evaluation is made for two cases: 1. A RoRo vessel designed for the Danube sailing between Passau (D) and Vidin (BG). The travelling distance in one direction accounts for 1442 km. The design concept was developed within the CREATING project. The main dimensions are: Length over all, LOA = 120 m Breadth moulded, B = 20.6 m Draught, vessel fully loaded, T = 1.65 m Number of trucks replaced = 93 since the vessel is able to transport 49 semi trailers and 88 vans. It is assumed that one truck transports two vans.

5 2. A coupled formation of a motor cargo vessel and a barge sailing on the same route. The motor cargo vessel is a DDSG-Steinklasse vessel with the following main dimensions: Length over all, LOA = 95 m Breadth moulded, B = 11.4 m Draught, vessel about 60 % loaded, T = 1.9 m (fully loaded T = 2.7 m) Number of trucks replaced = 62. This value is obtained by dividing the payload of the partially loaded vessel accounting for 1060 t by the average payload of trucks being assumed as 17 t. The barge is a Europe II B barge with the following main dimensions: Length over all, LOA = 76.5 m Breadth moulded, B = 11.0 m Draught, vessel about 60 % loaded, T = 1.9 m (fully loaded T = 2.7 m) Number of trucks replaced = 62. This value is obtained in the same way as the respective one for the DDSG Steinklasse motor cargo vessel. The coupled formation is considered as it represents a real case being representative for a part of the Danube fleet. The examination is performed for a partially loaded configuration as it never travels 100 % loaded in both directions. The assumption of about 60 % average loading is based on experience. Both vessels are equipped with two engines, each having a power output (maximum continuous rating) of 746 kw. 3.1 Estimations for the basic case The emission factors for the emissions of the engines of both vessels are estimated as 9 g/kwh NO X emissions and 0.2 g/kwh PM emissions following the average emission factors for vessels in service complying with the CCNR I emission regulations. The CO 2 emissions are directly related to the fuel consumption by CO 2 emissions = FC ρ 3.2, where FC is the fuel consumption in m 3, and ρ is the density of the fuel equal to 840 kg/m 3. The power requirement for travelling on the Danube is adapted to the cruising conditions on the Danube with an engine power of 1000 kw on most stretches upstream and downstream and a variable velocity. Taking into account the streaming velocity of the river, the pure travelling times (without stops in locks and ports) for a round trip are estimated as approximately 215 h for the RoRo vessel and 196 h for the motor cargo vessel pushing a barge. The travelling times are averages of the travelling times for a water depth of 5 m in all sections of the Danube, and the ones for water depths of 3 m in free flowing sections and 5 m everywhere else. The longer travelling time for the RoRo vessel is mainly caused by the larger beam of this vessel causing a larger water resistance. 3.2 Improvement scenarios The following improvement techniques are used for the evaluation: Selective Catalytic Reduction (SCR) for the catalytic reduction of NO X emissions of the engine. The NO X emissions are reduced in the SCR using urea. Therefore, the NO X emissions of the engine entering the SCR may be higher, being associated with a more favourable combustion process and a higher efficiency. Due to the mainly higher efficiency less fuel consumption is required, leading to an additional reduction of PM emissions. Advising Tempomaat (ATM): An electronic control system for optimising the energy efficiency of a vessel by advising the crew on the optimal speed for the prevailing

6 water conditions. It reduces the fuel consumption of the engine and consequently also the emissions of PM and NO X. Biodiesel (BD): An alternative fuel mainly used for the reduction of CO 2 emissions due to its regenerative attributes. Biodiesel Blend (BDB): A mixture of 80% fossil diesel and 20% biodiesel. Low Sulphur Fuel (LSF): A fuel of higher quality compared to normal gas oil due to the reduction of the sulphur content from 2000 ppm down to 10 ppm. Particulate Mass Filter (PMF): A filter to reduce the PM emissions of the engine. Requires LSF. Natural Gas Engine (NGE): An engine which shows outstanding emission characteristics in both NO X and PM emissions compared with diesel engines. Although the fuel consumption of a gas engine is slightly higher, the CO 2 emissions are reduced due to the better C/H (Carbon to Hydrogen) ratio of gas compared with diesel. The effects of these techniques on the mass-emission characteristics of the engine are shown in Table 3-1, [13]. Table 3-1: Changes in mass emissions with respect to the application of different emission-reduction techniques compared with the basic case where no emissionreduction technique is used. FC means changes in fuel consumption. NO x PM FC CO 2 SCR -81% -35% -7.5% -7.5% ATM -10% -10% -10% -10% BD +10% -5% +15% -65% BDB +2% -1% +3% -13% LSF none -17% none none PMF none -85% +2% +2% NGE -98.5% -97.5% +4.5% -10% 3.3 Evaluation method The emissions are estimated as emitted mass per truck-km as, initially, the investigation was focused on the RoRo vessel being an outcome of CREATING. First the mass of emissions per km are estimated for both vessels, and, then, the mass of these emissions is divided by the number of trucks on road which can be replaced by each vessel giving emissions per truck km. The calculation of emissions per km is made as follows: Σ( ef * P * tt) E = (1) d with the parameters: E Emissions per km [g] ef emission factor [g/kwh] = emission factor for basic case reduction given in Table 3-1. P required power on different stretches (e.g. the RoRo vessel is sailing on different stretches at 1370, 1000, 810, 750, 625, 607 and 200 kw) tt travelling time on a stretch associated with a certain power (e.g. the RoRo vessel is sailing 11h at 1370kW, 160 h at 1000kW, ) d travelling distance Passau - Vidin - Passau The number of trucks replaced is given in the description of the cases in the beginning of Section 3. The emissions per km of a truck on road are taken from [14].

7 The results in truck km are transferred into emitted mass per tkm by division with 17 t, being equal to the payload of one truck used in the evaluation. 3.4 Results In Fig. 3-1, the PM and NO X emissions of the RoRo vessel and a truck are compared. The respective comparison between the motor cargo vessel pushing a barge and a truck is shown in Fig In both figures, it is shown that the implementation of an SCR system (V2, M2) is sufficient to reduce the NO X emissions to a level far below the one of EURO V trucks (T3). In combination with the Advising Tempomaat system (ATM) and low sulphur diesel (V6, M6), also the PM emissions can be reduced to a level near the EURO V truck for both vessels. This means that the RoRo vessel can also match the demand for emitting less pollutants than trucks, although the operation mode of this vessel is by far less favourable than the one of the motor cargo vessel pushing a barge. However, in order to keep the superiority even after the introduction of stricter emission limits than EURO V for trucks as proposed by the UBA (EURO IV) for 2010, it will be necessary to apply particulate filters to vessel engines, additionally to the mentioned emission-reduction techniques (V7, M7), whereby the effect of the ATM is minor in this case. In Fig. 3-3, the emissions in g/kwh of the engines used in the RoRo and motor cargo vessels are compared with limits according to the EURO standards for road transport and CCNR Phases for inland navigation. The engines comply with CCNR I, and the emissions account for 9 g/kwh NO X emissions and 0.2 g/kwh PM emissions, as already presented. The emission limits with respect to road transport and inland navigation apply to engines on the test stand, and they are taken from Tables 2-1 and 2-2. The emission reduction potentials of the different techniques correspond to the values presented in Table 3-1. Standards according to CCNR III or EURO V may be met only by application of SCR, diesel particulate filter and low sulphur fuel. With internal measures (EGR= Exhaust Gas Recirculation and injection systems) being described more in detail in [13], compliance with EURO II for NO X and PM, and EURO III only for PM is achieved in this particular case. The best result is obtained for HCCI (Homogenous Charge Compression Ignition) and a natural gas engine (NGE), allowing compliance with strictest emission standards like EURO IV as proposed by the UBA. These technologies, HCCI and NGE, need still significant development in order to be applied to inland navigation. The application of biodiesel makes only sense if a significant reduction of CO 2 emissions is to be achieved. Regarding the reduction of NO X and PM emissions, the sole use of biodiesel will have no significant positive effect. On the contrary, NO X emissions will even increase. Therefore, also for the application of biodiesel additional measures have to be considered in order to reduce NO X and PM emissions.

8 0,016 0,014 T1 0,012 EURO III truck (T1) PM emissions [g/tkm] 0,01 0,008 0,006 0,004 V3 V2 V5 V4 V6 T3 V1 T2 EURO IV truck (T2) EURO V truck (T3) basic case (V1) SCR (V2) SCR + ATM (V3) SCR + ATM + BD (V4) SCR + ATM + BDB (V5) SCR + ATM + LSF (V6) SCR + ATM + LSF + PMF (V7) NGE (V8) 0,002 V7 0 V8 0 0,1 0,2 0,3 0,4 0,5 0,6 NOx emissions [g/tkm] Fig. 3-1 Emission comparison between RoRo vessel and truck 0,016 0,014 T1 0,012 PM emissions [g/tkm] 0,01 0,008 0,006 M2 M1 EURO III truck (T1) EURO IV truck (T2) EURO V truck (T3) basic case (M1) SCR (M2) SCR + ATM (M3) SCR + ATM + BD (M4) SCR + ATM + BDB (M5) SCR + ATM + LSF (M6) SCR + ATM + LSF + PMF (M7) NGE (M8) 0,004 M3 M5 M4 M6 T3 T2 0,002 0 M8 M7 0 0,1 0,2 0,3 0,4 0,5 0,6 NOx emissions [g/tkm] Fig. 3-2 Emission comparison between motor cargo vessel pushing a barge and truck

9 PM emissions (g/kwh) 0,6 V1 0,5 0,4 T1 0,3 V2 BC 0,2 T2 T3 0,1 T5 = V3 T4 T NOx emissions (g/kwh) Euro I truck (T1) Euro II truck (T2) Euro III truck (T3) Euro IV truck (T4) Euro V truck (T5) = CCNR III (V3) Euro VI UBA prop. truck (T6) CCNR I vessel (V1) CCNR II vessel (V2) Basic case (BC) EGR + Injection systems Humidification HCCI Diesel oxidation catalyst PMF SCR BD LSF NGE SCR + PMF + LSF Fig. 3-3 Emission comparison of vessel engine (RoRo, motor cargo vessel) with emission standards for road (EURO) and inland navigation (CCNR) 4 COST CONSIDERATION For the assessment of costs the following parameters are used, [13]: Basic case, without improvement devices: The total fuel consumption is evaluated from the engine power for the different stretches on the route, in most cases 1000 kw, the duration of travelling with the respective power and the fuel consumption in l/h obtained from the engine characteristics and the propeller curve. This estimation leads to a fuel consumption of 51 m³ for the RoRo vessel and 47 m³ for the motor cargo vessel pushing a barge, which can be operated more efficiently. The fuel price is estimated as /l which was the status in October 2005 [15]. For the estimation of costs per year it is assumed that with each vessel 25 round trips per year are made. SCR: It is assumed that SCR systems for truck engines can be used also in inland navigation. These systems are available on a large scale since the introduction of EURO IV and EURO V trucks to the market in 2005 and have a by far lower price than specifically designed systems. The costs for one catalyst can be considered as It is assumed that 4 catalysts are used. The urea consumption of the SCR catalyst is considered as 3% of the fuel consumption. The urea costs are 0.32 /l. The fuel consumption is considered as 7.5% lower compared with the basic case as it is assumed that the efficiency of the engine is increased due to a more favourable combustion associated with higher temperatures and increased NO X raw emissions of the engine. Since the NO X emissions are filtered out in the SCR catalysts this approach is considered reasonable. The reduction in fuel consumption is equal to the reduction in CO 2 emissions, see Table 3-1.

10 ATM: The system costs are considered as The benefit in fuel consumption is estimated as 10%, see Table 3-1. BD: Due to the lower energy content of the bio diesel the fuel consumption has to be considered as 15% higher compared to a vessel operated on gas oil, see Table 3-1. The price of bio diesel is estimated as /l [16]. BDB: Similarly to the estimation of emissions, also the fuel consumption of the bio diesel blend is averaged from the prices of the fractions of bio diesel and gas oil. LSF: The price of sulphur free diesel is estimated as /l (status October 2005) [17]. PMF: Similarly to the SCR, it is assumed that particulate filters for trucks can be used also for inland vessels. The number of filters is estimated as 4 with a price per filter of The fuel consumption has to be considered as increased by 2%, see Table 3-1. Installation costs are not considered, and it is assumed that the installed systems will be in service for five years. The comparisons of the system costs with the saved fuel costs with respect to the basic case are shown in Fig. 4-1 for the RoRo vessel and in Fig. 4-2 for the motor cargo vessel pushing a barge. In the saved fuel costs, the costs associated with the urea consumption of SCR are taken into account. BD and NGE are not considered in these figures since either no fuel savings are expected or the technology needs a more comprehensive examination with respect to its application to inland navigation. These figures show that, using the systems described in Section 3, an increase of the operational costs may not take place; on the contrary, due to the achievable savings in fuel consumption, the applied systems may lead even to a reduction of the operational costs Costs (1000 ) System costs saved fuel costs per year saved fuel costs in five years SCR (V2) SCR + ATM (V3) SCR + ATM + BDB (V5) SCR + ATM + LSF (V6) SCR + ATM + LSF + PMF (V7) Fig. 4-1: Comparison of system costs against saved fuel costs for RoRo vessel

11 Costs [1000 ] System costs saved fuel costs per year saved fuel costs in five years SCR (M2) SCR + ATM (M3) SCR + ATM + BDB (M5) SCR + ATM + LSF (M6) SCR + ATM + LSF + PMF (M7) Fig. 4-2: Comparison of system costs against saved fuel costs for motor cargo vessel pushing a barge 5 CONCLUSIONS AND RECOMMENDATIONS The emission legislation applied to inland navigation is less strict than the one applied to road transport. This is expected to be the case in the immediate future, too. In order to achieve a superior environmental performance of inland navigation with respect to NO X and PM emissions, emission standards equal to CCNR III and EU Stage IV have to be introduced, at least. Application of SCR, PMF and LSF to marine engines complying with CCNR I will lead to a superior environmental performance of inland navigation with respect to NO X and PM emissions, when EURO V is considered for road transport. In the case of application of the proposed EURO VI standard to road transport, the application of SCR, PM and LSF to marine engines will lead to approximately the same environmental performance. However, the introduction of LSF is required for the application of PMF, whereby, under circumstances, proper additives might have to be added to the fuel in order to preserve its lubrication characteristics and to prevent possible engine damage. Application of truck engines to inland navigation will lead to superior environmental performance of inland navigation. Nevertheless, issues related to operational costs, technical suitability and performance under continuous high engine loads amongst others have to be considered in detail before implementing truck technology in inland vessels. Due to the much higher energy efficiency of inland navigation compared with road transport, inland navigation will remain superior with respect to CO 2 emissions, as long as similar technologies are applied. Costs associated with the application of several emission reduction technologies may be compensated by reduced fuel consumption. Within the EU project CREATING a rather comprehensive evaluation of the environmental impact of inland navigation was performed, [13], from which a part has been presented in this paper. Based on the research results of the project, a number of conclusions were drawn, forming the basis for recommendations to policy makers, ship owners, equipment suppliers and oil companies as well as fuel suppliers. The original text is cited in the following:

12 Key conclusions Stricter emission limits are required in order to keep future emissions caused by inland navigation below road transport emissions (both related to the transported mass and distance). They should be applied not only to new engines but also to retrofitting of older engines with after treatment devices. Only a combination of lower emission limits, low sulphur diesel oil and financial incentives for implementation of emission reduction techniques will pave the way for a major improvement in emission reductions from inland navigation. Due to the average substitution rate of marine engines of 15 years or higher, substantial penetration of clean engines in the inland navigation fleet will be very slow, unless additional policy measures will be introduced. The CREATING research and practical tests have shown that application of after treatment techniques to existing marine engines (retrofit) is possible, though depending on the engine type. Lowering the sulphur content of the fuel is a prerequisite for application of stateof-the-art emission reduction techniques for (marine) diesel engines. The presently allowed sulphur content of gas oil used as fuel in inland navigation is 0.2 % by mass (EU-Directive 1999/32/EC). According to the present schedule, this will be reduced to 0.1 % by Diesel oil for road transport, however, is usually already below 0.001% (10 ppm). According to EU Directive 2003/30/EC, EU Member States are required to guarantee that a minimum share of biofuel is sold as transportation fuel, including inland navigation. However, due to the present price level of gas oil in inland navigation (free of excise tax), the introduction of biodiesel in inland navigation is hampered considerably. The effect of biofuels on NO X and PM emissions is insignificant. Only for CO 2 emissions a significant reduction may be obtained, provided that the CO 2 balance of raw material production, its transport and the conversion to biofuel is positive. The direct health impact of emissions from marine engines in inland navigation is usually lower than from road traffic. This is simply due to the fact that waterways are mostly located further away from buildings than roads, as well as to the small contribution of inland navigation to total traffic emissions. Therefore, inland navigation usually does not play a key role when EU air quality limits in urban hot spots are exceeded. The determination of the mass of pollutants emitted by inland vessels might be improved. Presently, this is only possible on the basis of emission factors being based on a limited set of data. Onshore measurements may be considered as an alternative to onboard measurements. However, more development with respect to the accuracy of the estimation of PM emissions is required. Recommendations Recommendations to policy makers with respect to regulations, non-financial stimulation and financial stimulation: Accelerate the introduction of lower emission limits for NO X, particulate matter (PM), CO and gaseous hydrocarbons (HC) for new and existing marine diesel engines, in combination with the introduction of road transport quality fuel and financial incentives. Advised dates for implementation of retrofit legislation would be 2011 for EU Stage IIIA/CCNR II limits and 2016 for EU Stage IV/CCNR III.

13 Reduce the allowed sulphur content of gas oil used as fuel in inland navigation to a level that allows application of state-of-the-art emission reduction techniques for new and existing marine diesel engines. Public bodies are invited to help raising awareness regarding the environmental advantages of waterborne transport, by national and international activities to stimulate waterborne transport. Such activities should preferably be developed in cooperation with inland navigation promotional organisations and may include, but are not limited to: o stimulation of development and implementation of after treatment technology, o stimulation of introduction of high quality fuel, o stimulation of demonstration projects aiming at emission reductions, and o stimulation of research projects aiming at measuring the emission impact on health and environment, including in-service exhaust gas measurements. Stimulate the implementation of retrofitting techniques in existing inland vessels by developing financial incentives for application of such techniques. Maintain the existing tax regulations for fuel used for marine engines in inland navigation and make them applicable for sulphur free diesel oil as soon as possible. Set financial incentives to stimulate the use of electronic control systems for optimising the energy efficiency of a vessel. Recommendations to technique users (ship owners): Ship owners are called upon to consider the technical possibilities for reduction of fuel consumption and emissions from propulsion and auxiliary engines on board, as well for new engines as for existing engines, which might be equipped with after treatment techniques (retrofit). Issues to be considered may comprise, but are not limited to: o after treatment techniques to reduce exhaust emissions; in particular Selective Catalytic Reduction (SCR) and particulate matter filters (PMF), o use of high quality fuel (sulphur free diesel oil) and o installation of speed advising equipment. Ship owners are called upon to make use of available financial incentives for improving the environmental performance of their vessels and to cope with future standards ahead of legislation. Recommendations to equipment suppliers: Adapt mass produced after treatment technology like SCR and particulate filter systems from the trucking industry for being used in combination with inland vessel engines. Together with engine manufacturers, search for solutions to optimize the engine after treatment system to a good compromise of low pollutant emissions and a low fuel consumption. Make available speed advising technology that can easily be installed at low costs in inland vessels. Recommendations to oil companies/fuel suppliers: Make low sulphur or sulphur free diesel equal to road standard available for inland navigation, if necessary with additives in order to comply with engine manufacturer s requirements. Advice ship owners on necessary additives and compliance of fuel with engine.

14 6 REFERENCES [1] European Parliament and the Council: Directive 2004/26/EC of the European Parliament and the Council of 21 April 2004 amending Directive 97/68/EC on the approximation of the laws of the Member States relating to measures against the emission of gaseous and particulate pollutants from internal combustion engines to be installed in non-road machinery. [2] CCNR: Inspection Regulation for Rhine Vessels [3] Schilperoord, H.A.: Environmental performance of inland shipping. Royal Haskoning report 9p1060/R0006/HSC/LKa [4] European Environment Agency: Indicator Fact Sheet TERM EU Proportion of vehicle fleet meeting certain emission standards (by mode). May [5] European Union: Official Journal L [6] European Union: Official Journal L [7] European Union: Official Journal L [8] Rodt S., Future Diesel Exhaust gas legislation for passenger cars, light duty commercial vehicles, and heavy duty vehicles Updating of limit values for diesel engines, Federal Environmental Agency (Umweltbundesamt). July [9] Krishnan R. and Tarabulski T.J.: Economics of emission reduction for heavy duty trucks, DieselNet Technical Report. January [10] EPA United States Environmental Protection Agency: Office of Transportation and Air Quality, High way diesel progress review Report 2, EPA420-R March [11] German Lloyd: Erarbeitung von Verfahren zur Ermittlung der Luftschadstoffemissionen von in Betrieb befindlichen Binnenschiffsmotoren. November [12] Bialonski, W. Vanck, P. et al.: Spezifischer Energieeinsatz im Verkehr Ermittlung und Vergleich der spezifischen Energieverbräuche. Forschungsbericht FE Nr /88, im Auftrag des Bundesministeriums für Verkehr. Verkehrswissenschaftliches Institut, RWTH Aachen [13] Kampfer, A. Schweighofer, J. et al.: Environmental impact of inland navigation. EU Project CREATING. WP 6. Final Report. December To be published [14] Federal Environmental Agency (Umweltbundesamt): Handbook Emission Factors for Road Transport. Version [15] [16] [17] [18] European-Union project, CREATING Concepts to Reduce Environmental Impact and Attain Optimal Transport Performance by Inland Navigation, Sixth Framework Programme,

An overview of Directive (EU) 2015/2193 from the Power Generation business perspective

An overview of Directive (EU) 2015/2193 from the Power Generation business perspective Our energy working for you. TM Power topic #EMERPT-6194-EN Technical information from Cummins Power Generation Medium Combustion Plants Directive White Paper By Pedro Ponte, Project Application Engineer

More information

Academia, Industry and Government: together for automotive engineering development

Academia, Industry and Government: together for automotive engineering development Academia, Industry and Government: together for automotive engineering development code: EAEC- 15 009B-FEP Paper title: CO2 EMISSION DETERMINATION IN ACCORD WITH EUROPEAN REGULATION FOR OLD AND TODAY CARS

More information

Testing of particulate emissions from positive ignition vehicles with direct fuel injection system. Technical Report

Testing of particulate emissions from positive ignition vehicles with direct fuel injection system. Technical Report Testing of particulate emissions from positive ignition vehicles with direct fuel injection system -09-26 by Felix Köhler Institut für Fahrzeugtechnik und Mobilität Antrieb/Emissionen PKW/Kraftrad On behalf

More information

IAPH Tool Box for Port Clean Air Programs

IAPH Tool Box for Port Clean Air Programs ENGINE STANDARDS Background Ports around the world depend on the efficiency of the diesel engine to power port operations in each source category ocean/sea-going vessels, harbor craft, cargo handling equipment,

More information

Marin gas logistics. Work package 5. D5-5 Environmental studies - assessment of air emissions in terminal ports

Marin gas logistics. Work package 5. D5-5 Environmental studies - assessment of air emissions in terminal ports Marin gas logistics Work package 5 D5-5 Environmental studies - assessment of air emissions in terminal ports 2 TABLE OF CONTENTS 1. Summary and conclusions...3 2. Introduction...4 3. Objectives...4 4.

More information

Official Journal L 076, 22/03/2003 P

Official Journal L 076, 22/03/2003 P Directive 2003/17/EC of the European Parliament and of the Council of 3 March 2003 amending Directive 98/70/EC relating to the quality of petrol and diesel fuels (Text with EEA relevance) Official Journal

More information

Proportion of the vehicle fleet meeting certain emission standards

Proportion of the vehicle fleet meeting certain emission standards The rate of penetration of new technologies is highly correlated with the average life-time of vehicles and the average age of the fleet. Estimates based on the numbers of cars fitted with catalytic converter

More information

COMMISSION DELEGATED REGULATION (EU) /... of

COMMISSION DELEGATED REGULATION (EU) /... of EUROPEAN COMMISSION Brussels, 19.12.2016 C(2016) 8383 final COMMISSION DELEGATED REGULATION (EU) /... of 19.12.2016 supplementing Regulation (EU) 2016/1628 of the European Parliament and of the Council

More information

A comparison of the impacts of Euro 6 diesel passenger cars and zero-emission vehicles on urban air quality compliance

A comparison of the impacts of Euro 6 diesel passenger cars and zero-emission vehicles on urban air quality compliance A comparison of the impacts of Euro 6 diesel passenger cars and zero-emission vehicles on urban air quality compliance Introduction A Concawe study aims to determine how real-driving emissions from the

More information

REAL WORLD DRIVING. Fuel Efficiency & Emissions Testing. Prepared for the Australian Automobile Association

REAL WORLD DRIVING. Fuel Efficiency & Emissions Testing. Prepared for the Australian Automobile Association REAL WORLD DRIVING Fuel Efficiency & Emissions Testing Prepared for the Australian Automobile Association - 2016 2016 ABMARC Disclaimer By accepting this report from ABMARC you acknowledge and agree to

More information

Environmental and EnergyStrategies for Freight Transport. Dipl.-Ing. Håkan Samuelsson, Chairman of the MAN Nutzfahrzeuge Gruppe

Environmental and EnergyStrategies for Freight Transport. Dipl.-Ing. Håkan Samuelsson, Chairman of the MAN Nutzfahrzeuge Gruppe Environmental and EnergyStrategies for Freight Transport Dipl.-Ing. Håkan Samuelsson, Chairman of the MAN Nutzfahrzeuge Group MAN Nutzfahrzeuge Gruppe FS-MN 30.06.2004 < > Growing freight traffic Expansion

More information

AECC Clean Diesel Euro 6 Real Driving Emissions Project. AECC Technical Seminar on Real-Driving Emissions Brussels, 29 April 2015

AECC Clean Diesel Euro 6 Real Driving Emissions Project. AECC Technical Seminar on Real-Driving Emissions Brussels, 29 April 2015 AECC Clean Diesel Euro 6 Real Driving Emissions Project AECC Technical Seminar on Real-Driving Emissions Brussels, 29 April 2015 Contents Background Test Programme Vehicle description & test regime. Baseline

More information

Real Driving Emissions

Real Driving Emissions Real Driving Emissions John May, AECC UnICEG meeting 8 April 2015 Association for Emissions Control by Catalyst (AECC) AISBL AECC members: European Emissions Control companies Exhaust emissions control

More information

DEPLOYMENT STRATEGIES FOR CLEAN AND FUEL EFFICIENT VEHICLES: EFFECTIVENESS OF INFORMATION AND SENSITIZATION IN INFLUENCING PURCHASE BEHAVIOUR

DEPLOYMENT STRATEGIES FOR CLEAN AND FUEL EFFICIENT VEHICLES: EFFECTIVENESS OF INFORMATION AND SENSITIZATION IN INFLUENCING PURCHASE BEHAVIOUR DEPLOYMENT STRATEGIES FOR CLEAN AND FUEL EFFICIENT VEHICLES: EFFECTIVENESS OF INFORMATION AND SENSITIZATION IN INFLUENCING PURCHASE BEHAVIOUR Leen GOVAERTS, Erwin CORNELIS VITO, leen.govaerts@vito.be ABSTRACT

More information

Automotive Particle Emissions: an update of regulatory Euro 6/VI and UNECE developments

Automotive Particle Emissions: an update of regulatory Euro 6/VI and UNECE developments Automotive Particle Emissions: an update of regulatory Euro 6/VI and UNECE developments Steininger Nikolaus European Commission The presentation should provide an update on ongoing and imminent regulatory

More information

Field experience with considerably reduced NOx and Smoke Emissions

Field experience with considerably reduced NOx and Smoke Emissions Field experience with considerably reduced NOx and Smoke Emissions Author: Horst W. Koehler, MAN B&W Diesel More than 95 % of the world s trade goes by sea and there are approximately 86,000 ocean going

More information

WORKSHOP ON MODERNISATION OF DANUBE VESSELS FLEET

WORKSHOP ON MODERNISATION OF DANUBE VESSELS FLEET WORKSHOP ON MODERNISATION OF DANUBE VESSELS FLEET Non-Road Mobile Machinery (NRMM) Directive Introduction to the requirements for the IWT sector & greening strategies and alternative fuels in the Netherlands

More information

GEME WG Presentation of recommendations for full amendment of Directive 97/68/EC

GEME WG Presentation of recommendations for full amendment of Directive 97/68/EC GEME WG Presentation of recommendations for full amendment of Directive 97/68/EC 2010-09-13 Introduction GEME WG was created to assist the European Commission in preparing a full amendment to Directive

More information

Low Sulphur Fuel Oils Preliminary Estimated Costs to Canadian Industry based on European Data

Low Sulphur Fuel Oils Preliminary Estimated Costs to Canadian Industry based on European Data Low Sulphur Fuel Oils Preliminary Estimated Costs to Canadian Industry based on European Data Lyne Monastesse and Mark Tushingham Fuels Division Environment Canada August 2002 2 Table of Content INTRODUCTION...

More information

Official Journal of the European Union

Official Journal of the European Union 17.2.2015 L 41/55 COMMISSION IMPLEMTING DECISION (EU) 2015/253 of 16 February 2015 laying down the rules concerning the sampling and reporting under Council Directive 1999/32/EC as regards the sulphur

More information

Non-Road Mobile Machinery EU Regulation

Non-Road Mobile Machinery EU Regulation Power topic #5410788 Technical information from Cummins Non-Road Mobile Machinery EU Regulation White Paper By Pedro Ponte, Project Application Engineer Over the past decade, raised awareness and concern

More information

Regulation No Uniform provisions concerning the approval of replacement pollution control devices for power-driven vehicles

Regulation No Uniform provisions concerning the approval of replacement pollution control devices for power-driven vehicles Transmitted by the expert from Germany Informal document No. GRPE-68-18 68th GRPE, 7-10 January 2014, agenda item 3(c) Regulation No. 103 - Uniform provisions concerning the approval of replacement pollution

More information

Lean and clean dredging for a better future

Lean and clean dredging for a better future Lean and clean dredging for a better future Bernadete Goncalves-Castro, Leo van Ingen, Alex Roosendaal, Sergio Ooijens, Marcel Boor Presented by Leo W. van Ingen, August 26 th Preface Why this paper? IHC

More information

AIR POLLUTION AND ENERGY EFFICIENCY. Update on the proposal for "A transparent and reliable hull and propeller performance standard"

AIR POLLUTION AND ENERGY EFFICIENCY. Update on the proposal for A transparent and reliable hull and propeller performance standard E MARINE ENVIRONMENT PROTECTION COMMITTEE 64th session Agenda item 4 MEPC 64/INF.23 27 July 2012 ENGLISH ONLY AIR POLLUTION AND ENERGY EFFICIENCY Update on the proposal for "A transparent and reliable

More information

HELLENIC REPUBLIC MINISTRY OF DEVELOPMENT DIRECTORATE-GENERAL FOR ENERGY DIRECTORATE FOR RENEWABLE ENERGY SOURCES AND ENERGY-SAVING EXTENSIVE SUMMARY

HELLENIC REPUBLIC MINISTRY OF DEVELOPMENT DIRECTORATE-GENERAL FOR ENERGY DIRECTORATE FOR RENEWABLE ENERGY SOURCES AND ENERGY-SAVING EXTENSIVE SUMMARY Important notice: this report has been submitted in the language of the Member State, which is the sole authentic version. Translation into the English language is being provided for information purposes

More information

Black Carbon Emissions From Diesel Engines - Technical And Policy Options For Reduction. Dr Richard O Sullivan 22 March 2012

Black Carbon Emissions From Diesel Engines - Technical And Policy Options For Reduction. Dr Richard O Sullivan 22 March 2012 Black Carbon Emissions From Diesel Engines - Technical And Policy Options For Reduction Dr Richard O Sullivan 22 March 2012 OVERVIEW OF PRESENTATION The significance of Diesel engine derived black carbon

More information

SUMMARY OF THE IMPACT ASSESSMENT

SUMMARY OF THE IMPACT ASSESSMENT COMMISSION OF THE EUROPEAN COMMUNITIES Brussels, 13.11.2008 SEC(2008) 2861 COMMISSION STAFF WORKING DOCUMT Accompanying document to the Proposal for a DIRECTIVE OF THE EUROPEAN PARLIAMT AND OF THE COUNCIL

More information

Subject: ACEA proposal for Euro 6 OBD and Euro 6 PN limit for gasoline direct injection engines.

Subject: ACEA proposal for Euro 6 OBD and Euro 6 PN limit for gasoline direct injection engines. Subject: for Euro 6 OBD and Euro 6 PN limit for gasoline direct injection engines. Amendments to Regulations 715/007 (1) Regulation 566/011 (3) and 69/008 (), as amended by Note: ACEA s initial comments

More information

BIODIESEL CHAINS. Biofuels in Poland

BIODIESEL CHAINS. Biofuels in Poland BIODIESEL CHAINS Bucharest, 28th June 2007 Biofuels in Poland Oskar Mikucki KAPE 2007-08-29 The Polish National Energy Conservation Agency 1 History 1990s at the Radom Engineering University oilseed rape

More information

Euro VI Programme and Emissions Results on European Cycles

Euro VI Programme and Emissions Results on European Cycles Overview of the AECC Heavy-duty Euro VI Programme and Emissions Results on European Cycles Dr. R. J. Brisley AECC Technical Steering Committee AECC Technical Seminar on Heavy-duty Engine Emissions Brussels,

More information

STATUTORY INSTRUMENTS. S.I. No. 160 of 2017

STATUTORY INSTRUMENTS. S.I. No. 160 of 2017 STATUTORY INSTRUMENTS. S.I. No. 160 of 2017 EUROPEAN UNION (GREENHOUSE GAS EMISSION REDUCTIONS, CALCULATION METHODS AND REPORTING REQUIREMENTS) REGULATIONS 2017 2 [160] S.I. No. 160 of 2017 EUROPEAN UNION

More information

Leading the World in Emissions Solutions

Leading the World in Emissions Solutions Leading the World in Emissions Solutions Solutions for Vehicle Emissions CDTI is a leading global manufacturer and distributor of heavy duty diesel and light duty vehicle emissions control systems and

More information

Low Emission Zones in Germany

Low Emission Zones in Germany Martin Lambrecht Umweltbundesamt (UBA) Federal Environment Agency Germany Section I 3.1 Environment and Transport 1 Outline 1. EU: Air Quality Targets 2. Implementation in Germany 3. Experiences in Berlin

More information

EUROPEAN COMMISSION ENTERPRISE AND INDUSTRY DIRECTORATE-GENERAL

EUROPEAN COMMISSION ENTERPRISE AND INDUSTRY DIRECTORATE-GENERAL EUROPEAN COMMISSION ENTERPRISE AND INDUSTRY DIRECTORATE-GENERAL Consumer Goods and EU Satellite navigation programmes Automotive industry Brussels, 08 April 2010 ENTR.F1/KS D(2010) European feed back to

More information

EUROPEAN COMMISSION ENTERPRISE AND INDUSTRY DIRECTORATE-GENERAL

EUROPEAN COMMISSION ENTERPRISE AND INDUSTRY DIRECTORATE-GENERAL EUROPEAN COMMISSION ENTERPRISE AND INDUSTRY DIRECTORATE-GENERAL Industrial Innovation and Mobility Industries Automotive industry Brussels, ENTR D5/PÅ D(2010) SUMMARY OF WORKSHOP ON APPROACH ON EMISSIONS

More information

BOLK: Impact of biofuels on engine technology and emissions

BOLK: Impact of biofuels on engine technology and emissions BOLK: Impact of biofuels on engine technology and emissions 17 April 2008 VROM, Den Haag Ruud Verbeek / Richard Smokers Contents Objectives / introduction Engine development & compatibility with renewable

More information

EUROPEAN PARLIAMENT Committee on the Environment, Public Health and Food Safety

EUROPEAN PARLIAMENT Committee on the Environment, Public Health and Food Safety EUROPEAN PARLIAMT 2014-2019 Committee on the Environment, Public Health and Food Safety 31.3.2015 2014/0012(COD) ***I DRAFT REPORT on the proposal for a regulation of the European Parliament and of the

More information

Emissions from Tractors and Non-Road Mobile Machinery Engines

Emissions from Tractors and Non-Road Mobile Machinery Engines Emissions from Tractors and Non-Road Mobile Machinery Engines Hearing on Agricultural and forestry vehicles: a new regulatory framework, European Parliament IMCO Committee Brussels, 12 April 2011 Cécile

More information

The influence of fuel injection pump malfunctions of a marine 4-stroke Diesel engine on composition of exhaust gases

The influence of fuel injection pump malfunctions of a marine 4-stroke Diesel engine on composition of exhaust gases Article citation info: LEWIŃSKA, J. The influence of fuel injection pump malfunctions of a marine 4-stroke Diesel engine on composition of exhaust gases. Combustion Engines. 2016, 167(4), 53-57. doi:10.19206/ce-2016-405

More information

Emission control at marine terminals

Emission control at marine terminals Emission control at marine terminals Results of recent CONCAWE studies BACKGROUND The European Stage 1 Directive 94/63/EC on the control of volatile organic compound (VOC) emissions mandates the installation

More information

13917/18 CB/AP/add 1 ECOMP.3.A

13917/18 CB/AP/add 1 ECOMP.3.A Interinstitutional File: 2018/0065(COD) 'I' ITEM NOTE From: General Secretariat of the Council To: Permanent Representatives Committee (Part 1) No. prev. doc.: 13917/18 Subject: Proposal for a Regulation

More information

Real Driving Emissions and Test Cycle Data from 4 Modern European Vehicles

Real Driving Emissions and Test Cycle Data from 4 Modern European Vehicles Real Driving Emissions and Test Cycle Data from 4 Modern European Vehicles Dirk Bosteels IQPC 2 nd International Conference Real Driving Emissions Düsseldorf, 18 September 2014 Association for Emissions

More information

Austria. Advanced Motor Fuels Statistics

Austria. Advanced Motor Fuels Statistics Austria Austria Drivers and Policies In December 2016, the national strategy framework Saubere Energie im Verkehr (Clean Energy in Transportation) 1 was introduced to the Ministerial Council by the Federal

More information

Evaluating opportunities for soot-free, low-carbon bus fleets in Brazil: São Paulo case study

Evaluating opportunities for soot-free, low-carbon bus fleets in Brazil: São Paulo case study Evaluating opportunities for soot-free, low-carbon bus fleets in Brazil: São Paulo case study Tim Dallmann International seminar Electric mobility in public bus transport: Challenges, benefits, and opportunities

More information

Capabilities of Emission Control Technologies and their Impact on Air Quality. Expert Meeting of the EU Refining Forum Brussels 1 December 2017

Capabilities of Emission Control Technologies and their Impact on Air Quality. Expert Meeting of the EU Refining Forum Brussels 1 December 2017 Capabilities of Emission Control Technologies and their Impact on Air Quality Expert Meeting of the EU Refining Forum Brussels 1 December 2017 Association for Emissions Control by Catalyst (AECC AISBL)

More information

VEHICLE EMISSIONS. ITF-SEDEMA workshop in Mexico City Norbert Ligterink

VEHICLE EMISSIONS. ITF-SEDEMA workshop in Mexico City Norbert Ligterink VEHICLE EMISSIONS ITF-SEDEMA workshop in Mexico City Norbert Ligterink HOT AIR, HIGH HOPES, AND LITTLE EXPECTATIONS FOR NO X Diesel passenger cars have shown no substantial reduction of NO x emissions

More information

Emission from vehicles with Euro 6/VI technology. Results from the measurement program in EMIROAD 2015

Emission from vehicles with Euro 6/VI technology. Results from the measurement program in EMIROAD 2015 Summary Emission from vehicles with Euro 6/VI technology. Results from the measurement program in EMIROAD 2015 TØI Report 1506/2016 Authors: Christian Weber and Astrid H. Amundsen Oslo 2016 54 pages Norwegian

More information

Reducing air pollutant emissions of inland waterway transport in Europe

Reducing air pollutant emissions of inland waterway transport in Europe Reducing air pollutant emissions of inland waterway transport in Europe Technical Assistance for the impact assessments to reduce emissions of inland waterway transport Strassbourg, 8 October 2013, Roundtable

More information

Pollution & GHG emissions from ships. Development of market-based. Marine Environment Division - IMO

Pollution & GHG emissions from ships. Development of market-based. Marine Environment Division - IMO IMO activities on reduction of Air Pollution & GHG emissions from ships Development of market-based measures for international shipping Marine Environment Division - IMO 1 International Maritime Organization

More information

Challenges to achieve existing and upcoming environmental regulation. Khalid Tachi EICB/EIBIP

Challenges to achieve existing and upcoming environmental regulation. Khalid Tachi EICB/EIBIP Challenges to achieve existing and upcoming environmental regulation Khalid Tachi EICB/EIBIP IWT Emission Regulations: CCR and NRMM P N [kw] CO [g/kwh] HC [g/kwh] NO x [g/kwh] PM [g/kwh] 18

More information

Module 6:Emission Control for CI Engines Lecture 31:Diesel Particulate Filters (contd.) The Lecture Contains: Passive/Catalytic Regeneration

Module 6:Emission Control for CI Engines Lecture 31:Diesel Particulate Filters (contd.) The Lecture Contains: Passive/Catalytic Regeneration Module 6:Emission Control for CI Engines The Lecture Contains: Passive/Catalytic Regeneration Regeneration by Fuel Additives Continuously Regenerating Trap (CRT) Syatem Partial Diesel Particulate Filters

More information

ENGINE TECHNOLOGY. Bobcat Engine_B _ _EN_reworked.indd 1

ENGINE TECHNOLOGY. Bobcat Engine_B _ _EN_reworked.indd 1 ENGINE TECHNOLOGY Bobcat Engine_B4459500_01-2015_EN_reworked.indd 1 1/30/2015 10:07:51 AM A COMPANY THAT S GROWING WITH SOCIETY Bobcat prides itself on innovations that shape the future. For decades, we

More information

Consistent implementation of the 2020 sulphur limit and work to further address GHG emissions from international shipping

Consistent implementation of the 2020 sulphur limit and work to further address GHG emissions from international shipping Consistent implementation of the 2020 sulphur limit and work to further address GHG emissions from international shipping IBIA/BMS United A glimpse into the future of shipping 30 May 2018, Athens, Greece

More information

Measuring Procedure for the Determination of Nitrogen Dioxide Emissions from Diesel Engines Fitted with Particulate Reduction Systems

Measuring Procedure for the Determination of Nitrogen Dioxide Emissions from Diesel Engines Fitted with Particulate Reduction Systems Section I 3.2 1 November 2010 Measuring Procedure for the Determination of Nitrogen Dioxide Emissions from Diesel Engines Fitted with Particulate Reduction Systems General remarks and explanatory notes:

More information

Proposal for a DECISION OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL

Proposal for a DECISION OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL EUROPEAN COMMISSION Brussels, 17.5.2018 COM(2018) 275 final 2018/0130 (COD) Proposal for a DECISION OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL amending Council Directive 96/53/EC as regards the time

More information

Learning Legacy Document

Learning Legacy Document SUSTAINABILITY & CONSENTS Guidance on Diesel Engine Emissions from Non-Road Mobile Machinery (NRMM) and retrofitting with Diesel Particulate Filters (DPF) Document History: Document Number: CR-XRL-T1-GUI-CR001-50005

More information

Challenges for sustainable freight transport Maritime transport. Elena Seco Gª Valdecasas Director Spanish Shipowners Association - ANAVE

Challenges for sustainable freight transport Maritime transport. Elena Seco Gª Valdecasas Director Spanish Shipowners Association - ANAVE Challenges for sustainable freight transport Maritime transport Elena Seco Gª Valdecasas Director Spanish Shipowners Association - ANAVE Index 1. Shipping air emissions vs other transport modes. 2. How

More information

Financing and roadmap for roll-out of clean inland ship technologies

Financing and roadmap for roll-out of clean inland ship technologies Financing and roadmap for roll-out of clean inland ship technologies Friday 13th of April, Nijmegen Funded by: Martin Quispel, partner STC-NESTRA Contents Urgency to green the inland vessel fleet Costs

More information

New results from a 2015 PEMS testing campaign on a Diesel Euro 6b vehicle

New results from a 2015 PEMS testing campaign on a Diesel Euro 6b vehicle New results from a 215 PEMS testing campaign on a Diesel Euro 6b vehicle Cécile Favre, Dirk Bosteels, John May AECC Jon Andersson, Simon de Vries Ricardo 11 th Integer Emissions Summit & AdBlue Forum Europe

More information

DIRECTIVE 2006/40/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL

DIRECTIVE 2006/40/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL L 161/12 EN Official Journal of the European Union 14.6.2006 DIRECTIVE 2006/40/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 17 May 2006 relating to emissions from air-conditioning systems in motor

More information

Curbing emissions and energy consumption in the transport sector how can we deal with it in Warsaw 2012 Annual POLIS Conference

Curbing emissions and energy consumption in the transport sector how can we deal with it in Warsaw 2012 Annual POLIS Conference Curbing emissions and energy consumption in the transport sector how can we deal with it in Warsaw 2012 Annual POLIS Conference Perugia, 29 30 November 2012 1 Covenant of Mayors (under the auspices of

More information

European Emissions Legislation Update

European Emissions Legislation Update European Emissions Legislation Update by AECC (www.aecc.be) MECA International Committee meeting 30 September 2005 1 Agenda - Passenger Cars & Light Duty vehicles - Heavy-duty Engines - Particulate Measurement

More information

European Regulation MRV. Luis Guerrero 2 nd November 2015

European Regulation MRV. Luis Guerrero 2 nd November 2015 European Regulation MRV Luis Guerrero 2 nd November 2015 CONTENTS THE EU MRV REGULATION GENERAL OBJECTIVE OF THE MRV REGULATION SCOPE OF THE MRV REGULATION METHOD FOR MONITORING CO2 EMISSIONS CALCULATION

More information

Automotive sector the driver of future PGM demand PDAC March 2005 Bob Gilmour Overview

Automotive sector the driver of future PGM demand PDAC March 2005 Bob Gilmour Overview Automotive sector the driver of future PGM demand PDAC March 25 Bob Gilmour Overview Review of platinum and palladium in 24 The driver of future pgm demand Review of platinum and palladium demand and supply

More information

Mandate to CEN on the revision of EN 590 to increase the concentration of FAME and FAEE to 10% v/v

Mandate to CEN on the revision of EN 590 to increase the concentration of FAME and FAEE to 10% v/v EUROPEAN COMMISSION DIRECTORATE-GENERAL FOR ENERGY AND TRANSPORT DIRECTORATE D - New and Renewable Energy Sources, Energy Efficiency & Innovation Innovation and technological development in energy Biofuels

More information

BIODIESEL CHAINS. Biofuels in Poland

BIODIESEL CHAINS. Biofuels in Poland BIODIESEL CHAINS Nicosia, 18th January 2007 Biofuels in Poland Oskar Mikucki KAPE 2007-08-29 The Polish National Energy Conservation Agency 1 Development of biofuels market Development of biofuels in Poland

More information

The topic of exhaust emission regulation and reduction is extremely complex. In order to comply with the permissible emission values, increasingly

The topic of exhaust emission regulation and reduction is extremely complex. In order to comply with the permissible emission values, increasingly READY? We are! 2 By way of numerous patents and INNOVATIONS, we at DEUTZ have played a definitive part in co-determining the development of the modern diesel engine, and as a result have always been a

More information

Monitoring, reporting and verification of CO 2 emissions from ships - EU MRV regulation and obligations and the parallel IMO activities

Monitoring, reporting and verification of CO 2 emissions from ships - EU MRV regulation and obligations and the parallel IMO activities Monitoring, reporting and verification of CO 2 emissions from ships - EU MRV regulation and obligations and the parallel IMO activities ENAMOR Seminar 22 th November 2016 PIRAEUS HOTEL SAVOY Krzysztof

More information

Creating a zero-emissions shipping world

Creating a zero-emissions shipping world Creating a zero-emissions shipping world Shipping is responsible for a significant portion of the global air pollution: NO x : 10-15% In the EU, NO x from shipping is expected to exceed NO x from all land

More information

Cars and vans CO2 regulations: even ambitious EU standards deliver less than half transport emission reductions needed to meet 2030 climate targets

Cars and vans CO2 regulations: even ambitious EU standards deliver less than half transport emission reductions needed to meet 2030 climate targets Cars and vans CO2 regulations: even ambitious EU standards deliver less than half transport emission reductions needed to meet 2030 climate targets October 2017 Summary Road transport is one of the few

More information

Joint Research Centre

Joint Research Centre Joint Research Centre the European Commission's in-house science service Serving society Stimulating innovation Supporting legislation In-Service Monitoring Procedures for NRMM outside the 56 to 560 kw

More information

Fuel Cell Application in a New Configured Aircraft PUBLISHABLE REPORT

Fuel Cell Application in a New Configured Aircraft PUBLISHABLE REPORT Fuel Cell Application in a New Configured Aircraft PUBLISHABLE REPORT Document Reference CELINA Publishable Report Contract Nr. AST4-CT-2005-516126 Version/Date Version 1.3 January 2009 Issued by Airbus

More information

Pioneering MTU C&I diesel engines for U.S. EPA Tier 4

Pioneering MTU C&I diesel engines for U.S. EPA Tier 4 Technical Background Article Contact: Mirko Gutemann Phone: +49 7541 90-4741 E-mail: mirko.gutemann@tognum.com Pioneering MTU C&I diesel engines for U.S. EPA Tier 4 For more than 100 years, diesel engines

More information

RDE PN emissions from a GDI vehicle without and with a GPF

RDE PN emissions from a GDI vehicle without and with a GPF RDE PN emissions from a GDI vehicle without and with a GPF Dr. Joachim Demuynck IQPC 4 th international conference on RDE Berlin, 25-27 October 2016 Association for Emissions Control by Catalyst (AECC)

More information

A Comparative Study and Analysis of Emission Norms Adopted by Developed and Developing Nations

A Comparative Study and Analysis of Emission Norms Adopted by Developed and Developing Nations A Comparative Study and Analysis of Emission Adopted by Developed and Developing Nations Pankaj Sharma 1, Mohit Yadav 2, Deepak Yadav 3, Devendra Vashist 4 1,2,,3 Student, 4 Professor Automobile Engineering

More information

The new EU-NRMM-Regulation

The new EU-NRMM-Regulation The new EU-NRMM-Regulation 7. VERT-Forum EMPA-Academy, CH-8600-Dübendorf March 16th, 2016 Franz Greil, A.Mayer NRMM = Non Road Mobile Machinery Proposal for a new EU-Regulation on Emission limits and type-approval

More information

The Introduction of Euro 5 and Euro 6 Emissions Regulations for Light Passenger and Commercial Vehicles

The Introduction of Euro 5 and Euro 6 Emissions Regulations for Light Passenger and Commercial Vehicles The Introduction of Euro 5 and Euro 6 Emissions Regulations for Light Passenger and Commercial Vehicles Introduction As a member of the European Union, Ireland is obliged to introduce Regulation (EC) No.

More information

Future Policy for Motor Vehicle Exhaust Emission Reduction. (Sixth Report)

Future Policy for Motor Vehicle Exhaust Emission Reduction. (Sixth Report) Future Policy for Motor Vehicle Exhaust Emission Reduction (Sixth Report) June 30, 2003 Central Environment Council Chukanshin No. 126 June 30, 2003 To: His Excellency Shunichi Suzuki Minister of the Environment

More information

DIESEL-ELECTRIC PROPULSION

DIESEL-ELECTRIC PROPULSION The concept of electrical propulsion systems is not new. The first ships with diesel-electric propulsion were in operation as early as 1904 and the concept has obviously made a lot of progress since then.

More information

Regulatory update on implementation of the 0.50% sulphur limit for international shipping

Regulatory update on implementation of the 0.50% sulphur limit for international shipping Regulatory update on implementation of the 0.50% sulphur limit for international shipping Marshall Islands Quality Council (MIQC), 19 April 2018 Trinity House, London Dr Edmund Hughes Marine Environment

More information

Fuel Quality Directive

Fuel Quality Directive Fuel Quality Directive An amendment to the fuel quality Directive (EU Directive 2009/30/EC) adopted by the European Parliament and EU Council in April 2009 means that, from 1 January 2011, gas oil (diesel)

More information

EMISSION FACTORS FROM EMISSION MEASUREMENTS. VERSIT+ methodology Norbert Ligterink

EMISSION FACTORS FROM EMISSION MEASUREMENTS. VERSIT+ methodology Norbert Ligterink EMISSION FACTORS FROM EMISSION MEASUREMENTS VERSIT+ methodology Norbert Ligterink Symposium Vehicle Emissions November 3, 2016 GETTING THE COMPLETE PICTURE fuels SCR DPF hybrid technology downsizing dynamometer

More information

Monitoring the CO 2 emissions from new passenger cars in the EU: summary of data for 2010

Monitoring the CO 2 emissions from new passenger cars in the EU: summary of data for 2010 Monitoring the CO 2 emissions from new passenger cars in the EU: summary of data for 2010 EXECUTIVE SUMMARY EEA has collected data submitted by Member States on vehicle registrations in the year 2010,

More information

Low Emission Strategies Sussex-DEFRA Seminar, March 2011

Low Emission Strategies Sussex-DEFRA Seminar, March 2011 Low Emission Strategies Sussex-DEFRA Seminar, March 2011 Andrew Whittles Low Emission Strategies Programme Technical & Strategic Advisor AWhittles@lowemissionstrategies.org web: www.lowemissionstrategies.org

More information

WHEN ARE FUEL CELLS COMPETITIVE? Hans Pohl, Viktoria Swedish ICT AB Bengt Ridell, SWECO AB Annika Carlson, KTH Göran Lindbergh, KTH

WHEN ARE FUEL CELLS COMPETITIVE? Hans Pohl, Viktoria Swedish ICT AB Bengt Ridell, SWECO AB Annika Carlson, KTH Göran Lindbergh, KTH WHEN ARE FUEL CELLS COMPETITIVE? Hans Pohl, Viktoria Swedish ICT AB Bengt Ridell, SWECO AB Annika Carlson, KTH Göran Lindbergh, KTH SCOPE OF STUDY WP1 policy relating to fuel cell vehicles (FCVs) Emission

More information

Proposal for a COUNCIL DECISION

Proposal for a COUNCIL DECISION EUROPEAN COMMISSION Brussels, 13.9.2018 COM(2018) 624 final 2018/0325 (NLE) Proposal for a COUNCIL DECISION on the position to be taken on behalf of the European Union in the International Maritime Organization

More information

MARPOL Annex VI prevention of air pollution from ships

MARPOL Annex VI prevention of air pollution from ships MARPOL Annex VI prevention of air pollution from ships Edmund Hughes Air Pollution and Climate Change Marine Environment Division Clean air at sea promoting solutions for sustainable and competitive shipping

More information

RESEARCH ON INFLUENCE OF SELECTED FAILURES ON THE EXHAUST GAS CONTENT OF SHIP DIESEL ENGINE WORKING ON HEAVY FUEL OIL

RESEARCH ON INFLUENCE OF SELECTED FAILURES ON THE EXHAUST GAS CONTENT OF SHIP DIESEL ENGINE WORKING ON HEAVY FUEL OIL Journal of KONES Powertrain and Transport, Vol. 16, No. 4 2009 RESEARCH ON INFLUENCE OF SELECTED FAILURES ON THE EXHAUST GAS CONTENT OF SHIP DIESEL ENGINE WORKING ON HEAVY FUEL OIL Kazimierz Witkowski

More information

Expected Light Duty Vehicle Emissions from Final Stages of Euro 6

Expected Light Duty Vehicle Emissions from Final Stages of Euro 6 Ricardo plc 2017 Expected Light Duty Vehicle Emissions from Final Stages of Euro 6 EU Refining Forum - Dr Nick Powell Ricardo plc 2017 2 Contents What is Euro 6 and what are the stages of its introduction?

More information

NOTE FROM THE FRENCH AUTHORITIES. SUBJECT: Report assessing actions taken to promote biofuels in France in 2008.

NOTE FROM THE FRENCH AUTHORITIES. SUBJECT: Report assessing actions taken to promote biofuels in France in 2008. Important notice: this report has been submitted in the language of the Member State, which is the sole authentic version. Translation into the English language is being provided for information purposes

More information

Diesel engines on the pathway to low impact on local air quality in Europe

Diesel engines on the pathway to low impact on local air quality in Europe Diesel engines on the pathway to low impact on local air quality in Europe Dirk Bosteels International Conference ECT-2018 Pune, India 25-26 October 2018 Association for Emissions Control by Catalyst (AECC

More information

COMMISSION RECOMMENDATION. of XXX

COMMISSION RECOMMENDATION. of XXX EUROPEAN COMMISSION Brussels, XXX [ ](2017) XXX draft COMMISSION RECOMMENDATION of XXX on the use of fuel consumption and CO 2 emission values type-approved and measured in accordance with the World Harmonised

More information

Particulate Emissions from Typical Light-Duty Vehicles taken from the European Fleet, Equipped with a Variety of Emissions Control Technologies

Particulate Emissions from Typical Light-Duty Vehicles taken from the European Fleet, Equipped with a Variety of Emissions Control Technologies Particulate Emissions from Typical Light-Duty Vehicles taken from the European Fleet, Equipped with a Variety of Emissions Control Technologies John May, Dirk Bosteels and Cécile Favre, Association for

More information

The new Iran Heavy Duty Diesel Environmental Regulation

The new Iran Heavy Duty Diesel Environmental Regulation Dipl.-Ing. Karsten Mathies karsten.mathies@tuevhessen.de The new Iran Heavy Duty Diesel Environmental Regulation Karsten Mathies, TÜV Hessen Prof. Vahid Hosseini, AQCC Tehran 19th ETH-Conference on Combustion

More information

TESTING OF AUTOMOBILE VW GOLF OPERATING ON THREE DIFFERENT FUELS

TESTING OF AUTOMOBILE VW GOLF OPERATING ON THREE DIFFERENT FUELS TESTING OF AUTOMOBILE VW GOLF OPERATING ON THREE DIFFERENT FUELS Ilmars Dukulis, Vilnis Pirs, Zanis Jesko, Aivars Birkavs, Gints Birzietis Latvia University of Agriculture Ilmars.Dukulis@llu.lv, Vilnis.Pirs@llu.lv,

More information

THE DRIVING EMISSIONS TEST

THE DRIVING EMISSIONS TEST THE DRIVING EMISSIONS TEST 2017 FUEL ECONOMY AND EMISSIONS REPORT REALWORLD.ORG.AU 2017 ABMARC Disclaimer By accepting this report from ABMARC you acknowledge and agree to the terms as set out below. This

More information

Internal Combustion Engines

Internal Combustion Engines Emissions & Air Pollution Lecture 3 1 Outline In this lecture we will discuss emission control strategies: Fuel modifications Engine technology Exhaust gas aftertreatment We will become particularly familiar

More information

Annex VIII LIMIT VALUES FOR FUELS AND NEW MOBILE SOURCES

Annex VIII LIMIT VALUES FOR FUELS AND NEW MOBILE SOURCES EU provisional position based on ECE/EB.AIR/WG.2009/20 as amended by ECE/EB.AIR/WG.5/2011/2 Strikeout means provisions proposed to be deleted and bold underlined proposed amendment to text. "Explanatory

More information

This presentation has been produced in the context of a seminar/conference organized with the assistance of the

This presentation has been produced in the context of a seminar/conference organized with the assistance of the Disclaimer: This presentation has been produced in the context of a seminar/conference organized with the assistance of the European Union. It reflects the views only of the author, and the European Union

More information

Intelligent Phasing for freight in Clean Air Zones

Intelligent Phasing for freight in Clean Air Zones Policy Paper Intelligent Phasing for freight in Clean Air Zones Road Haulage Association Revised 10 July 2018 V 3. Intelligent Phasing for freight in Clean Air Zones 1. The RHA is asking Local Authorities

More information