Liquid Piston Engines

Size: px
Start display at page:

Download "Liquid Piston Engines"

Transcription

1

2

3 Liquid Piston Engines

4 Scrivener Publishing 100 Cummings Center, Suite 541J Beverly, MA Publishers at Scrivener Martin Scrivener Phillip Carmical

5 Liquid Piston Engines Aman Gupta, Shubham Sharma, and Sunny Narayan

6 This edition first published 2017 by John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA and Scrivener Publishing LLC, 100 Cummings Center, Suite 541J, Beverly, MA 01915, USA 2017 Scrivener Publishing LLC For more information about Scrivener publications please visit All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, except as permitted by law. Advice on how to obtain permission to reuse material from this title is available at Wiley Global Headquarters 111 River Street, Hoboken, NJ 07030, USA For details of our global editorial offices, customer services, and more information about Wiley products visit us at Limit of Liability/Disclaimer of Warranty While the publisher and authors have used their best efforts in preparing this work, they make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives, written sales materials, or promotional statements for this work. The fact that an organization, website, or product is referred to in this work as a citation and/or potential source of further information does not mean that the publisher and authors endorse the information or services the organization, website, or product may provide or recommendations it may make. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for your situation. You should consult with a specialist where appropriate. Neither the publisher nor authors shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages. Further, readers should be aware that websites listed in this work may have changed or disappeared between when this work was written and when it is read. Library of Congress Cataloging-in-Publication Data ISBN Cover images: Irrigation, Elswarro Dreamstime.com. Plant, lofoto Dreamstime.com Chimneys, Piotr Majka Dreamstime.com Cover design by Kris Hackerott Set in size of 11pt and Minion Pro by Exeter Premedia Services Private Ltd., Chennai, India Printed in the USA

7 Contents Abstract List of Symbols 1 Introduction Background Types of Stirling Engines Stirling Engine Designs Free-Piston Stirling Engines Gamma Type Engine 18 References and Bibliography 27 2 Liquid Piston Engines Introduction Objectives Brief Overview of Pumps and Heat Engines Heat Engine Clever Pumps History and Development of Stirling Engines Operation of a Stirling Engine Working Gas Pros and Cons of Stirling Engine Low Temperature Difference Stirling Engine Basic Principle of a Fluidyne Detailed Working of a Fluidyne Role of Evaporation Regenerator Pumping Setups Tuning of Liquid Column Motion Analysis Losses Factors Affecting Amplitude Performance of Engine 67 ix xi v

8 vi Contents 2.21 Design Assembly Calculation Experiments Results Comparison Within Existing Commercial Devices Improvements Future Scope Conclusion Numerical Analysis 80 References and Bibliography 83 3 Customer Satisfaction Issues Durability Issues Testing of Engines Design of Systems Systems Durability 89 References and Bibliography 89 4 Lubrication Dynamics Background Friction Features Effects of Varying Speeds and Loads Friction Reduction Piston-Assembly Dynamics Reynolds Equation for Lubrication Oil Pressure Introduction Background Occurrence of Piston Slap Events Literature Review Piston Motion Simulation Using COMSOL Force Analysis Effects of Various Skirt Design Parameters Numerical Model of Slapping Motion Piston Side Thrust Force Frictional Forces Determination of System Mobility Conclusion 143

9 Contents vii 5 NVH Features of Engines Background Acoustics Overview of Internal Combustion Engine Imperial Formulation to Determine Noise Emitted from Engine Engine Noise Sources Noise Source Identification Techniques Summary 157 References and Bibliography Diagnosis Methodology for Diesel Engines Introduction Power Spectral Density Function Time Frequency Analysis Wavelet Analysis Conclusion 164 References and Bibliography Sources of Noise in Diesel Engines Introduction Combustion Noise Piston Assembly Noise Valve Train Noise Gear Train Noise Crank Train and Engine Block Vibrations Aerodynamic Noise Bearing Noise Timing Belt and Chain Noise Summary 174 References and Bibliography Combustion Based Noise Introduction Background of Combustion Process in Diesel Engines Combustion Phase Analysis Combustion Based Engine Noise Factors Affecting Combustion Noise In Cylinder Pressure Analysis Effects of Heat Release Rate Effects of Cyclic Variations Resonance Phenomenon 189

10 viii Contents 8.10 In Cylinder Pressure Decomposition Method Mathematical Model of Generation of Combustion Noise Evaluation of Combustion Noise Methods Summary 199 References and Bibliography Effects of Turbo Charging in S.I. Engines Abstract Fundamentals Turbochargers Turbocharging in Diesel Engines Turbocharging of Gasoline Engines Turbocharging Components of Turbocharged SI Engines Intercooler Designing of Turbocharger Operational Problems in Turbocharging of SI Engines Methods to Reduce Knock in S.I Engines Ignition Timing and Knock Charge Air Cooling Downsizing of SI Engines Techniques Associated with Turbo Charging of SI Engines Boosting Systems Emissions Control by Turbo Charged SI Engines Scope of Turbo Charging in SI Engines Summary Conclusions and Future Work Conclusions Contributions Future Recommendations 238 References and Bibliography 240 List of Important Terms 243 Bibliography 247 Glossary 249 Index 251

11 Abstract Engines and pumps are common engineering devices which have become essential to the smooth running of modern society. Many of these are very sophisticated and require infrastructure and high levels of technological competence to ensure their correct operation. For example, some are computer controlled, others require stable three-phase electrical supplies, or clean hydrocarbon fuels. The first part of the project focuses on the identification, design, construction and testing of a simple, yet elegant, device which has the ability to pump water but which can be manufactured easily without any special tooling or exotic materials and which can be powered from either combustion of organic matter or directly from solar heating. The device, which has many of the elements of a Stirling engine, is a liquid piston engine in which the fluctuating pressure is harnessed to pump a liquid (water). A simple embodiment of this engine/pump has been designed and constructed. It has been tested and recommendations on how it might be improved are made. The underlying theory of the device is also presented and discussed. The second portion deals with noise,vibration and harshness performances of internal combustion engines. Features of various sources of noise and vibrations have been discussed and major focus has been on combustion based noise and piston secondary motion.various equations of piston motion were solved and effects of various parameters on it were analyzed. ix

12

13 List of Symbols Symbol Definition Units V Volume cm 3 P Pressure Bar T Temperature Kelvin R Gas Constant J/K-mol v Voltage Volt I Current Ampere Q, V Volume flow Rate cm 3 /s Q e Heat Absorbed Joules A Tube Area cm 2 q Charge coulomb C p Specific Heat J/Kg-K η Kinematic Fluid Viscosity m 2 /S ω Frequency Hz R t Radius Of Tube cm X Fluid Displacement cm ρ Fluid Density kg/m 3 U Heat Transfer coefficient W/m 2 -k L,l Tube length cm g Acceleration due to gravity m/s 2 xi

14

15 1 Introduction 1.1 Background The Stirling engine system was studied years ago. Such engines have merits the basis of sealings, materials, heat transfer rate, size, and weight issues. During past years the major focus has been on various designs of Stirling engine systems. This engine is based on a heated reciprocating system. The gas receives heat and expands at constant temperature. Rate of transfer is higher, which is a major drawback of these engines. In contrary the internal combustion (IC) engine is operated by combustion of air-fuel mixture which results in higher heat and pressure rise which is converted to useful work. The temperature varies with the combustion and piston motion. As the heat is supplied externally the following varieties of sources can be used: Heat from gaseous, liquid, or solid fuel Solar energy Recycled Waste heat 1

16 2 Liquid Piston Engines Cooling in a Stirling engine cycle can be done in the following ways: Convection cooling Use of cooling fluids like water, ethylene glycol, or a mixture Reversible nature of Stirling engine differentiates it from IC engines. Combustion outside results in lower emissions as well as less noise and vibration. Solar energy may also be harnessed using parabolic dish. As a smaller number of fuel types or heat sources are available, a Stirling system may be designed as such. This system may use solar heating as the primary heat source, as well as a natural gas burner as an auxiliary unit during nights and cloudy periods. 1.2 Types of Stirling Engines Using basic concepts of heat engineering many designs of Stirling engines have been proposed over past years. These engines may be classified on the basis of mechanical design features as: Kinematic designs: These engines operate on basis of crankshaft and linkage mechanisms in which the motion of the piston is limited by configuration of linkages. Free-piston designs: In these engines the oscillatory motion of the piston in a magnetic field generate electric power. Pressure gradient cause tuned spring-mass-damper motion of displacer. Such machines are simple to operate but more complex on basis of dynamics and thermodynamics. For cooling purposes, the piston may be driven by a motor. Stirling engines may also have alpha, beta, or gamma configurations which are discussed as follows: Alpha engines which are seen in Figure 1.1 have two separate pistons that are linked and oscillate showing some phase lag. The working gas moves to and fro passing through a cooler, regenerator, and a heater between the cylinders. These engines are kinematic engines which need proper sealings. Beta engines that are seen in Figure 1.2 have a displacer-piston arrangement that are in phase with one another. The displacer pushes the gas to and fro between the hot (expansion area) and cold ends (compression

17 Introduction 3 Regenerator Gas motion Hot end Cold end Crank shaft Figure 1.1 Alpha engines. Hot end Displacer Heater Regenerator Cold end Cooler Power piston Figure 1.2 Beta engines. Cold end Displacer Cooler Regenerator Power piston Heater Hot end Figure 1.3 Gamma engine. area). As the working gas moves, it passes through a cooler, regenerator, and heater. Beta engines can be either kinematic or free-piston engines. Gamma engines which are shown in Figure 1.3 have a system wherein the displacer and power pistons operate in separate cylinders. The displacer moves the working gas to and fro between the hot and cold ends. The cold

18 4 Liquid Piston Engines area has cold side of the displacer and power piston. As the gas moves, it passes through a cooler, a regenerator, and a heater. These engines can be either kinematic or free-piston type. 1.3 Stirling Engine Designs The power piston in the engine is connected to an output shaft by linkages. Kinematic design of the engine has following merits: Coordination of various parts for proper motion during start-up, normal operation, and fluctuations of loads. Some disadvantages of such a design include: Need of lubrication due to rotating parts. Need of more maintenance. Proper sealing needed. Some of the novel designs of kinematic engines are discussed next. Wobble-plate Mechanisms The wobble-plate that is seen Figure 1.4 has a wobble plate which is in a sliding contact with the crankshaft pivoted by connections to pistons as well as connecting rods. This ensures straight travel inside the cylinder with out rotation. The thrust is transferred to the crank at an offset angle Crank shaft Piston Wobble plate Figure 1.4 Gamma engine.

19 Introduction 5 Swash plate Power piston Crank shaft Power piston Figure 1.5 Swash plate engines. to wobble plate which acts as a double-acting engine using the power stroke of one cylinder to compress the cold gas for the adjacent cylinder. The power piston for one cylinder is the displacer piston for another cylinder. The Z-crank shape that the same to the wobble plate design has pistons connected directly to the crankshaft. Pivot points are made in order to ensure axial motion of the piston in the cylinder. Such design is more compact as compared to a single-piston Stirling engine. However these engines have certain demerits: Cyclic load and wear of pivots is quick as they are under compression and bendings. Piston-lubrication is a major issue. Oil flow may cause fouling and lesser external heat transfer so reducing the efficiency. Swash Plate Drive mechanisms This drive has may same features as wobble plate. Bearings are used to connect the swash plate to the crankshaft and rotates with the crankshaft, but the wobble plate which remains fixed is attached to the shaft. This design has many merits: Quiet operation, better sealings with lesser lubrication problems. Design of swash plate may be changed for better stiffness and power transfer. The balancing of swash plate can be done built by adding additional sets of pistons. This in turn increases the power output and reduces the power-to-weight ratio. Rhombic Drive In this mechanism, yokes connect the power piston and the displacer piston. These are linked to twin crankshafts by means of connecting rods, as seen in Figure 1.6. In this drive mechanism power

20 6 Liquid Piston Engines Regenerator Displacer piston Connecting rod Power piston Yoke power Gear Displacer york Crank disc Figure 1.6 Rhombic drive engine. piston and the displacer piston move with constant lag. The rhombic drive has many benefits: The engine has less vibrations due to complete balance of various lateral forces. These engines operate at higher power outputs due to higher pressures. Many units can move at same time in order to provide power to a multi-cylinder engine. 1.4 Free-Piston Stirling Engines These engines have two oscillating pistons that are not connected as seen in Figure 1.7. The displacer piston has a smaller mass compared to the power piston. The heavier piston moves undamped. Motion of the displacer is simulated by springs or by the compressible working gas. The springs placed between the displacer and the power piston provide harmonic oscillations of the displacer. These oscillations are maintained by temperature difference, and so the system operates at the natural frequency. The power in a free-piston system is generated by a linear alternator. Recently some of the designs have been using a hydraulic drive to run the crankshaft. Use of these hydraulics is good in engines having more torque which reduces the lateral forces in such systems.

21 Introduction 7 Heater Regenerator Cooler Hot end Displacer Cold end Alternator Electric output Figure 1.7 Free piston engine. Free-piston systems have major advantages: Less lateral forces and lubrication needs due to absence of rotating parts. Less maintenance. Properly sealed units prevent loss of the working gas. These systems have following disadvantages: Need of complex calculations to ensure proper working. Lower response time as compared to kinematic and IC engines. Piston position is an important parameter to control system as oscillations may become unbalanced. The Alpha configuration of engine is the simplest form having two pistons and two cylinders connected by a regenerator. Both these cylinders are normal to one another connected by a flywheel. The hot piston is in contact with located high-temperature source while the cold piston is with the lowtemperature reservoir. The pistons are arranged in a manner that the linear motion is converted to rotatory motion and a constant phase difference is maintained. The pistons are joined at a common point on flywheel. As compared to the other basic designs the alpha type engine has greater volume due to higher compression ratios.

22 8 Liquid Piston Engines Figure 1.8 An Alpha Stirling engine. Cold end Hot end Figure 1.9 Alpha engine - Transfer phase. WORKING OF ENGINES: working of a Stirling engine can be divided into four operations steps that are similar to I.C. engine. Heat is added and removed at constant temperatures. The working of I.C. Engines occurs on the basis of Otto and Diesel cycles, respectively. Mechanisms of these engines is complex as motion is based on movements of multiple pistons. Working of an Alpha Stirling can be analyzed as follows: 1. Transfer of working gas from cold side to hotter side: Flywheel moves clockwise, the hot piston moves towards right hand side towards Dead Centre and the cold piston moves up towards Top Dead Centre (TDC) as seen in Figure 1.9.

23 Introduction 9 Cold end Hot end Figure 1.10 Alpha engine - Power stroke. The regenerator connects both pistons and operates at hotter temperatures. The pistons move in such a manner that the change in the engine volume is minimum and heat addition occurs at constant volume. Towards end of the process, the working gas will be hotter and the major portion of remains in the hot cylinder. This is similar to suction stroke. 2. Power stroke As flywheel roates by 90, the majority of the working gas is now in the hotter cylinder and volume of the engine is minimum. The fluid receives heat from a hot source. It expands moving the flywheel further. This is similar to power stroke of the engine and all energy is derived from this stroke. As the hot piston moves towards right side due to gas pressure, the gas expands, with a portion passing through the regenerator. As the heat added to the system at constant temperature it is converted to work, with a little rise in temperature. A perfect isothermal processes will cause a phase change. This may be compared to the power stroke. The working fluid expands to about three times its original volume. The flywheel turns by another quarter rotation and the hot piston starts to move to Dead Centre. The cold piston moves downwards. The regenerator gets heated up as the hot fluid passes by. Heat rejection occurs at constant volume and can be seen as the exhaust stroke of the engine.

24 10 Liquid Piston Engines Figure 1.11 Alpha engine - Transfer stroke. Figure 1.12 Alpha engine - compression stroke. 3. Compression stroke The crank moves by quarter of rotation. The cold piston is at the bottom dead center location and the hot piston moves towards inner dead center. The working gas has major portion in the cold cylinder which cools down rejecting heat to cold reservoir. As the cold piston moves to the top dead center, volume is reduced and the working gas is compressed. During Isothermal Compression the working gas rejects heat and gets compressed. There is minimum change in the internal energy and work needed is also minimum. Towards the end of the process, almost all the gas

25 Introduction 11 Hot cylinder Cold cylinder Triangle connecting rod Figure 1.13 Ross engine. Expansion space Heater Regenerator Cooler Compression space Figure 1.14 Double-acting engine. is in the cold piston, so volume reduces to about one-third of its original and the cycle goes on. This final stroke may be compared to action of a supercharger or turbocharger. There is no need of compression inside the power piston. This mechanism was first proposed by Andy Ross. This linkage makes design more compact as connecting rods move in a straight line. This in turn reduces the force on the pistons and thus improves performance of the engine. Wear is less due to less friction and life is also increased. The double-acting-engine has four cylinders. The pistons act as the expansion space of one engine and at the same time as compression space

26 12 Liquid Piston Engines Pistons Bearing Figure 1.15 Rocking yoke. Power shaft Pistons Gears Power shaft Crank shaft Figure 1.16 Gear mechanism. of a neighbouring one. Thus this is the same as four Alpha engines. Sir William Siemens has done major work to develop these engines. The cylinders are connected in a circular manner with cold and hot regions of neighbouring cylinders connected by a reservoir. Hence the outlet of the last cylinder is connected to the first one. So this system is more compact and with high specific power output. All the pistons move at a phase difference of 90. Maintaining the phase difference between the pistons and harnessing power is complicated. All the above mentioned mechanisms face problems due to excessive side thrust and excessive wear and they have lower life and reliability.

27 Introduction 13 Swash plate drive Cooler Piston Regenerator Heater tubes Combustor Figure 1.17 Swash plate mechanism. Expansion space Heater Regenerator Manifold Valve Cooler Compression space Turbine Figure 1.18 Beal engine. William Beale later designed an engine in which a turbine was used to harness power out. Such mechanism that is seen in Figure 1.18 uses gas compressors to run turbines. Double-acting compressors may be used for more pulses of air per cycle but at lesser specific power of the engine. Uniform loading and lesser thrust force also increases life of the engine. WORKING: Working of the double acting Stirling engine can be understood from the design of Alpha Stirling engine. Various engines in alpha design can have the same stroke. For that the phase lag between any two adjacent pistons must be 90.

28 14 Liquid Piston Engines As shown in Figure 1.18, first see the first piston moving downwards. The engine between the last and the first cylinder may be considered as a fourth engine. The first and second piston move downwards at the same time, this transfers the working gas to the hotter side with negligible change in volume. Hence the first engine is working on Isochoric heat transfer in working fluid. The second one is vicinity of the BDC and third piston moves upwards. The second one is in power stroke, and the volume of fluid is maximum. Similarly, other engines are in transfer stroke which moves fluid from hot to cold end. A Beta configuration of engine has a displacer and piston in same cylinder with a 90 phase difference. Robert Stirling was first to invent a Beta Stirling engine that was an inverted beam engine. It was similar steam engine having a beam linkage. These are more suited for space limited applications, but output is lower than other engines. Use of a regenerator is complex in absence of insulation between the hot and cold ends. There is loss of RPM of the engine and hence its output. WORKING: The basic working of a Beta Stirling engine is similar to that of Alpha Stirling engine. The difference lies in the way the working gas Figure 1.19 Beta engine. Piston Compression space Displacer Expansion space Beta engine Cooler Regenerator Heater Figure 1.20 Beta engine in working.

A REVIEW ON STIRLING ENGINES

A REVIEW ON STIRLING ENGINES A REVIEW ON STIRLING ENGINES Neeraj Joshi UG Student, Department of Mechanical Engineering, Sandip Foundation s Sandip Institute of Technology and Research Centre,Mahiravani, Nashik Savitribai Phule Pune

More information

AN INTRODUCTION TO THERMODYNAMIC CYCLE SIMULATIONS FOR INTERNAL COMBUSTION ENGINES

AN INTRODUCTION TO THERMODYNAMIC CYCLE SIMULATIONS FOR INTERNAL COMBUSTION ENGINES AN INTRODUCTION TO THERMODYNAMIC CYCLE SIMULATIONS FOR INTERNAL COMBUSTION ENGINES AN INTRODUCTION TO THERMODYNAMIC CYCLE SIMULATIONS FOR INTERNAL COMBUSTION ENGINES Jerald A. Caton Department of Mechanical

More information

Comparative Study Of Four Stroke Diesel And Petrol Engine.

Comparative Study Of Four Stroke Diesel And Petrol Engine. Comparative Study Of Four Stroke Diesel And Petrol Engine. Aim: To study the construction and working of 4- stroke petrol / diesel engine. Theory: A machine or device which derives heat from the combustion

More information

UNIT IV INTERNAL COMBUSTION ENGINES

UNIT IV INTERNAL COMBUSTION ENGINES UNIT IV INTERNAL COMBUSTION ENGINES Objectives After the completion of this chapter, Students 1. To know the different parts of IC engines and their functions. 2. To understand the working principle of

More information

ENGINES ENGINE OPERATION

ENGINES ENGINE OPERATION ENGINES ENGINE OPERATION Because the most widely used piston engine is the four-stroke cycle type, it will be used as the example for this section, Engine Operation and as the basis for comparison in the

More information

Analysis of Parametric Studies on the Impact of Piston Velocity Profile On the Performance of a Single Cylinder Diesel Engine

Analysis of Parametric Studies on the Impact of Piston Velocity Profile On the Performance of a Single Cylinder Diesel Engine IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X, Volume 12, Issue 2 Ver. II (Mar - Apr. 2015), PP 81-85 www.iosrjournals.org Analysis of Parametric Studies

More information

Thermal Stress Analysis of Diesel Engine Piston

Thermal Stress Analysis of Diesel Engine Piston International Conference on Challenges and Opportunities in Mechanical Engineering, Industrial Engineering and Management Studies 576 Thermal Stress Analysis of Diesel Engine Piston B.R. Ramesh and Kishan

More information

SAMPLE STUDY MATERIAL

SAMPLE STUDY MATERIAL IC Engine - ME GATE, IES, PSU 1 SAMPLE STUDY MATERIAL Mechanical Engineering ME Postal Correspondence Course Internal Combustion Engine GATE, IES & PSUs IC Engine - ME GATE, IES, PSU 2 C O N T E N T 1.

More information

Reduction of Self Induced Vibration in Rotary Stirling Cycle Coolers

Reduction of Self Induced Vibration in Rotary Stirling Cycle Coolers Reduction of Self Induced Vibration in Rotary Stirling Cycle Coolers U. Bin-Nun FLIR Systems Inc. Boston, MA 01862 ABSTRACT Cryocooler self induced vibration is a major consideration in the design of IR

More information

Internal Combustion Engines

Internal Combustion Engines Lecture-31 Prepared under QIP-CD Cell Project Internal Combustion Engines Ujjwal K Saha, Ph.D. Department of Mechanical Engineering Indian Institute of Technology Guwahati 1 Introduction Known as Hot air

More information

(v) Cylinder volume It is the volume of a gas inside the cylinder when the piston is at Bottom Dead Centre (B.D.C) and is denoted by V.

(v) Cylinder volume It is the volume of a gas inside the cylinder when the piston is at Bottom Dead Centre (B.D.C) and is denoted by V. UNIT II GAS POWER CYCLES AIR STANDARD CYCLES Air standard cycles are used for comparison of thermal efficiencies of I.C engines. Engines working with air standard cycles are known as air standard engines.

More information

VALVE TIMING DIAGRAM FOR SI ENGINE VALVE TIMING DIAGRAM FOR CI ENGINE

VALVE TIMING DIAGRAM FOR SI ENGINE VALVE TIMING DIAGRAM FOR CI ENGINE VALVE TIMING DIAGRAM FOR SI ENGINE VALVE TIMING DIAGRAM FOR CI ENGINE Page 1 of 13 EFFECT OF VALVE TIMING DIAGRAM ON VOLUMETRIC EFFICIENCY: Qu. 1:Why Inlet valve is closed after the Bottom Dead Centre

More information

Multi Body Dynamic Analysis of Slider Crank Mechanism to Study the effect of Cylinder Offset

Multi Body Dynamic Analysis of Slider Crank Mechanism to Study the effect of Cylinder Offset Multi Body Dynamic Analysis of Slider Crank Mechanism to Study the effect of Cylinder Offset Vikas Kumar Agarwal Deputy Manager Mahindra Two Wheelers Ltd. MIDC Chinchwad Pune 411019 India Abbreviations:

More information

L34: Internal Combustion Engine Cycles: Otto, Diesel, and Dual or Gas Power Cycles Introduction to Gas Cycles Definitions

L34: Internal Combustion Engine Cycles: Otto, Diesel, and Dual or Gas Power Cycles Introduction to Gas Cycles Definitions Page L: Internal Combustion Engine Cycles: Otto, Diesel, and Dual or Gas Power Cycles Review of Carnot Power Cycle (gas version) Air-Standard Cycles Internal Combustion (IC) Engines - Otto and Diesel Cycles

More information

Introduction to I.C Engines CH. 1. Prepared by: Dr. Assim Adaraje

Introduction to I.C Engines CH. 1. Prepared by: Dr. Assim Adaraje Introduction to I.C Engines CH. 1 Prepared by: Dr. Assim Adaraje 1 An internal combustion engine (ICE) is a heat engine where the combustion of a fuel occurs with an oxidizer (usually air) in a combustion

More information

Foundations of Thermodynamics and Chemistry. 1 Introduction Preface Model-Building Simulation... 5 References...

Foundations of Thermodynamics and Chemistry. 1 Introduction Preface Model-Building Simulation... 5 References... Contents Part I Foundations of Thermodynamics and Chemistry 1 Introduction... 3 1.1 Preface.... 3 1.2 Model-Building... 3 1.3 Simulation... 5 References..... 8 2 Reciprocating Engines... 9 2.1 Energy Conversion...

More information

ENGINE & WORKING PRINCIPLES

ENGINE & WORKING PRINCIPLES ENGINE & WORKING PRINCIPLES A heat engine is a machine, which converts heat energy into mechanical energy. The combustion of fuel such as coal, petrol, diesel generates heat. This heat is supplied to a

More information

The Shock Absorber Handbook Second Edition

The Shock Absorber Handbook Second Edition The Shock Absorber Handbook Second Edition John C. Dixon, Ph.D, F.I.Mech.E., F.R.Ae.S. Senior Lecturer in Engineering Mechanics The Open University, Great Britain IICIUTIHHIIL BICINTINNIIM. John Wiley

More information

III B.Tech I Semester Supplementary Examinations, May/June

III B.Tech I Semester Supplementary Examinations, May/June Set No. 1 III B.Tech I Semester Supplementary Examinations, May/June - 2015 1 a) Derive the expression for Gyroscopic Couple? b) A disc with radius of gyration of 60mm and a mass of 4kg is mounted centrally

More information

Vibration Analysis of an All-Terrain Vehicle

Vibration Analysis of an All-Terrain Vehicle Vibration Analysis of an All-Terrain Vehicle Neeraj Patel, Tarun Gupta B.Tech, Department of Mechanical Engineering, Maulana Azad National Institute of Technology, Bhopal, India. Abstract - Good NVH is

More information

Chapter 9 GAS POWER CYCLES

Chapter 9 GAS POWER CYCLES Thermodynamics: An Engineering Approach Seventh Edition in SI Units Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011 Chapter 9 GAS POWER CYCLES Mehmet Kanoglu University of Gaziantep Copyright The McGraw-Hill

More information

Theory of Machines. CH-1: Fundamentals and type of Mechanisms

Theory of Machines. CH-1: Fundamentals and type of Mechanisms CH-1: Fundamentals and type of Mechanisms 1. Define kinematic link and kinematic chain. 2. Enlist the types of constrained motion. Draw a label sketch of any one. 3. Define (1) Mechanism (2) Inversion

More information

Application of Simulation-X R based Simulation Technique to Notch Shape Optimization for a Variable Swash Plate Type Piston Pump

Application of Simulation-X R based Simulation Technique to Notch Shape Optimization for a Variable Swash Plate Type Piston Pump Application of Simulation-X R based Simulation Technique to Notch Shape Optimization for a Variable Swash Plate Type Piston Pump Jun Ho Jang 1, Won Jee Chung 1, Dong Sun Lee 1 and Young Hwan Yoon 2 1 School

More information

Heat engine. Heat engine

Heat engine. Heat engine Heat engine Device that transforms heat into work. It requires two energy reservoirs at different temperatures An energy reservoir is a part of the environment so large wrt the system that its temperature

More information

Analysis and Fabrication of Solar Stirling Engines

Analysis and Fabrication of Solar Stirling Engines Analysis and Fabrication of Solar Stirling Engines SARATH RAJ 1, RENJITH KRISHNAN 2, SUJITH G 3, GOKUL GOPAN 4, ARUN G.S 5 1,2,3,4,5 Assistant professors in mechanical engineering, SNIT, Adoor Abstract:

More information

Chapter 9 GAS POWER CYCLES

Chapter 9 GAS POWER CYCLES Thermodynamics: An Engineering Approach, 6 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2008 Chapter 9 GAS POWER CYCLES Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction

More information

Comparing FEM Transfer Matrix Simulated Compressor Plenum Pressure Pulsations to Measured Pressure Pulsations and to CFD Results

Comparing FEM Transfer Matrix Simulated Compressor Plenum Pressure Pulsations to Measured Pressure Pulsations and to CFD Results Purdue University Purdue e-pubs International Compressor Engineering Conference School of Mechanical Engineering 2012 Comparing FEM Transfer Matrix Simulated Compressor Plenum Pressure Pulsations to Measured

More information

UNIT 2 POWER PLANTS 2.1 INTRODUCTION 2.2 CLASSIFICATION OF IC ENGINES. Objectives. Structure. 2.1 Introduction

UNIT 2 POWER PLANTS 2.1 INTRODUCTION 2.2 CLASSIFICATION OF IC ENGINES. Objectives. Structure. 2.1 Introduction UNIT 2 POWER PLANTS Power Plants Structure 2.1 Introduction Objectives 2.2 Classification of IC Engines 2.3 Four Stroke Engines versus Two Stroke Engines 2.4 Working of Four Stroke Petrol Engine 2.5 Working

More information

Application of Airborne Electro-Optical Platform with Shock Absorbers. Hui YAN, Dong-sheng YANG, Tao YUAN, Xiang BI, and Hong-yuan JIANG*

Application of Airborne Electro-Optical Platform with Shock Absorbers. Hui YAN, Dong-sheng YANG, Tao YUAN, Xiang BI, and Hong-yuan JIANG* 2016 International Conference on Applied Mechanics, Mechanical and Materials Engineering (AMMME 2016) ISBN: 978-1-60595-409-7 Application of Airborne Electro-Optical Platform with Shock Absorbers Hui YAN,

More information

Load Analysis and Multi Body Dynamics Analysis of Connecting Rod in Single Cylinder 4 Stroke Engine

Load Analysis and Multi Body Dynamics Analysis of Connecting Rod in Single Cylinder 4 Stroke Engine IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 08, 2015 ISSN (online): 2321-0613 Load Analysis and Multi Body Dynamics Analysis of Connecting Rod in Single Cylinder 4

More information

KINEMATICS OF MACHINARY UBMC302 QUESTION BANK UNIT-I BASICS OF MECHANISMS PART-A

KINEMATICS OF MACHINARY UBMC302 QUESTION BANK UNIT-I BASICS OF MECHANISMS PART-A KINEMATICS OF MACHINARY UBMC302 QUESTION BANK UNIT-I BASICS OF MECHANISMS PART-A 1. Define the term Kinematic link. 2. Classify kinematic links. 3. What is Mechanism? 4. Define the terms Kinematic pair.

More information

Influence of Cylinder Bore Volume on Pressure Pulsations in a Hermetic Reciprocating Compressor

Influence of Cylinder Bore Volume on Pressure Pulsations in a Hermetic Reciprocating Compressor Purdue University Purdue e-pubs International Compressor Engineering Conference School of Mechanical Engineering 2014 Influence of Cylinder Bore Volume on Pressure Pulsations in a Hermetic Reciprocating

More information

APPLICATION OF A NEW TYPE OF AERODYNAMIC TILTING PAD JOURNAL BEARING IN POWER GYROSCOPE

APPLICATION OF A NEW TYPE OF AERODYNAMIC TILTING PAD JOURNAL BEARING IN POWER GYROSCOPE Colloquium DYNAMICS OF MACHINES 2012 Prague, February 7 8, 2011 CzechNC APPLICATION OF A NEW TYPE OF AERODYNAMIC TILTING PAD JOURNAL BEARING IN POWER GYROSCOPE Jiří Šimek Abstract: New type of aerodynamic

More information

10/29/2018. Chapter 16. Turning Moment Diagrams and Flywheel. Mohammad Suliman Abuhaiba, Ph.D., PE

10/29/2018. Chapter 16. Turning Moment Diagrams and Flywheel. Mohammad Suliman Abuhaiba, Ph.D., PE 1 Chapter 16 Turning Moment Diagrams and Flywheel 2 Turning moment diagram (TMD) graphical representation of turning moment or crank-effort for various positions of the crank 3 Turning Moment Diagram for

More information

IOP Conference Series: Materials Science and Engineering. Related content PAPER OPEN ACCESS

IOP Conference Series: Materials Science and Engineering. Related content PAPER OPEN ACCESS IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Experimental comparison of Pressure ratio in Alpha and Gamma Stirling cryocoolers with identical compression space volumes and

More information

PREDICTION OF PISTON SLAP OF IC ENGINE USING FEA BY VARYING GAS PRESSURE

PREDICTION OF PISTON SLAP OF IC ENGINE USING FEA BY VARYING GAS PRESSURE PREDICTION OF PISTON SLAP OF IC ENGINE USING FEA BY VARYING GAS PRESSURE V. S. Konnur Department of Mechanical Engineering, BLDEA s Engineering College, Bijapur, Karnataka, (India) ABSTRACT The automotive

More information

B.TECH III Year I Semester (R09) Regular & Supplementary Examinations November 2012 DYNAMICS OF MACHINERY

B.TECH III Year I Semester (R09) Regular & Supplementary Examinations November 2012 DYNAMICS OF MACHINERY 1 B.TECH III Year I Semester (R09) Regular & Supplementary Examinations November 2012 DYNAMICS OF MACHINERY (Mechanical Engineering) Time: 3 hours Max. Marks: 70 Answer any FIVE questions All questions

More information

AT 2303 AUTOMOTIVE POLLUTION AND CONTROL Automobile Engineering Question Bank

AT 2303 AUTOMOTIVE POLLUTION AND CONTROL Automobile Engineering Question Bank AT 2303 AUTOMOTIVE POLLUTION AND CONTROL Automobile Engineering Question Bank UNIT I INTRODUCTION 1. What are the design considerations of a vehicle?(jun 2013) 2..Classify the various types of vehicles.

More information

Gas Power Cycles. Tarawneh

Gas Power Cycles. Tarawneh Gas Power Cycles Dr.Mohammad Tarawneh ) Carnot cycle 2) Otto cycle ) Diesel cycle - Today 4) Dual Cycle 5) Stirling cycle 6) Ericsson cycles 7) Brayton cycle Carnot Cycle Reversible isothermal expansion

More information

6. Acoustical simulation of straight and side inlet/outlet rectangular plenums using the FEM method

6. Acoustical simulation of straight and side inlet/outlet rectangular plenums using the FEM method Research Signpost 37/661 (2), Fort P.O. Trivandrum-695 023 Kerala, India Noise Control: Theory, Application and Optimization in Engineering, 2014: 119-144 ISBN: 978-81-308-0552-8 Editors: Min-Chie Chiu

More information

Dynamics of Machines. Prof. Amitabha Ghosh. Department of Mechanical Engineering. Indian Institute of Technology, Kanpur. Module No.

Dynamics of Machines. Prof. Amitabha Ghosh. Department of Mechanical Engineering. Indian Institute of Technology, Kanpur. Module No. Dynamics of Machines Prof. Amitabha Ghosh Department of Mechanical Engineering Indian Institute of Technology, Kanpur Module No. # 05 Lecture No. # 01 V & Radial Engine Balancing In the last session, you

More information

Chapter 7: Thermal Study of Transmission Gearbox

Chapter 7: Thermal Study of Transmission Gearbox Chapter 7: Thermal Study of Transmission Gearbox 7.1 Introduction The main objective of this chapter is to investigate the performance of automobile transmission gearbox under the influence of load, rotational

More information

Waste Heat Recovery from an Internal Combustion Engine

Waste Heat Recovery from an Internal Combustion Engine Waste Heat Recovery from an Internal Combustion Engine Design Team Josh Freeman, Matt McGroarty, Rob McGroarty Greg Pellegrini, Ming Wood Design Advisor Professor Mohammed Taslim Abstract A substantial

More information

I.C ENGINES. CLASSIFICATION I.C Engines are classified according to:

I.C ENGINES. CLASSIFICATION I.C Engines are classified according to: I.C ENGINES An internal combustion engine is most popularly known as I.C. engine, is a heat engine which converts the heat energy released by the combustion of the fuel taking place inside the engine cylinder

More information

Design of Alternative Automatic Transmission for Electric Mopeds Ameya Bhusari 1, Saurabh Rege 2

Design of Alternative Automatic Transmission for Electric Mopeds Ameya Bhusari 1, Saurabh Rege 2 Design of Alternative Automatic Transmission for Electric Mopeds Ameya Bhusari 1, Saurabh Rege 2 1 Department of Mechanical, Maharashtra Institute of Technology, PUNE-38 2 Department of Mechanical, Modern

More information

An Experimental Study of Dual Mass Flywheel on Conventional Flywheel on Two stroke petrol engine.

An Experimental Study of Dual Mass Flywheel on Conventional Flywheel on Two stroke petrol engine. An Experimental Study of Dual Mass Flywheel on Conventional Flywheel on Two stroke petrol engine. N. N. Suryawanshi 1, Prof. D. P. Bhaskar 2 1 M.E. Design, S.R.E.S Kopargaon. nikhil23031992@gmail.com,

More information

SUPERCHARGER AND TURBOCHARGER

SUPERCHARGER AND TURBOCHARGER SUPERCHARGER AND TURBOCHARGER 1 Turbocharger and supercharger 2 To increase the output of any engine more fuel can be burned and make bigger explosion in every cycle. i. One way to add power is to build

More information

WEEK 4 Dynamics of Machinery

WEEK 4 Dynamics of Machinery WEEK 4 Dynamics of Machinery References Theory of Machines and Mechanisms, J.J.Uicker, G.R.Pennock ve J.E. Shigley, 2003 Prof.Dr.Hasan ÖZTÜRK 1 DYNAMICS OF RECIPROCATING ENGINES Prof.Dr.Hasan ÖZTÜRK The

More information

Free-CHP: Free-Piston Reciprocating Joule Cycle Engine

Free-CHP: Free-Piston Reciprocating Joule Cycle Engine PRO-TEM Special Session on Power Generation and Polygeneration Systems Free-CHP: Free-Piston Reciprocating Joule Cycle Engine Rikard Mikalsen, Tony Roskilly Newcastle University, UK Background: micro-chp

More information

Design of Piston Ring Surface Treatment for Reducing Lubricating Oil Consumption

Design of Piston Ring Surface Treatment for Reducing Lubricating Oil Consumption The 3rd International Conference on Design Engineering and Science, ICDES 2014 Pilsen, Czech Republic, August 31 September 3, 2014 Design of Piston Ring Surface Treatment for Reducing Lubricating Consumption

More information

DHANALAKSHMI COLLEGE OF ENGINEERING

DHANALAKSHMI COLLEGE OF ENGINEERING DHANALAKSHMI COLLEGE OF ENGINEERING (Dr.VPR Nagar, Manimangalam, Tambaram) Chennai - 601 301 DEPARTMENT OF MECHANICAL ENGINEERING III YEAR MECHANICAL - VI SEMESTER ME 6601 DESIGN OF TRANSMISSION SYSTEMS

More information

Static Structural and Thermal Analysis of Aluminum Alloy Piston For Design Optimization Using FEA Kashyap Vyas 1 Milan Pandya 2

Static Structural and Thermal Analysis of Aluminum Alloy Piston For Design Optimization Using FEA Kashyap Vyas 1 Milan Pandya 2 IJSRD - International Journal for Scientific Research & Development Vol. 2, Issue 03, 2014 ISSN (online): 2321-0613 Static Structural and Thermal Analysis of Aluminum Alloy Piston For Design Optimization

More information

Long Transfer Lines Enabling Large Separations between Compressor and Coldhead for High- Frequency Acoustic-Stirling ( Pulse-Tube ) Coolers

Long Transfer Lines Enabling Large Separations between Compressor and Coldhead for High- Frequency Acoustic-Stirling ( Pulse-Tube ) Coolers Long Transfer Lines Enabling Large Separations between Compressor and Coldhead for High- Frequency Acoustic-Stirling ( Pulse-Tube ) Coolers P. S. Spoor and J. A. Corey CFIC-Qdrive Troy, NY 12180 ABSTRACT

More information

Design and Development Of Opposite Piston Engine

Design and Development Of Opposite Piston Engine ISSN (Online) : 2319-8753 ISSN (Print) : 2347-6710 International Journal of Innovative Research in Science, Engineering and Technology Volume 3, Special Issue 3, March 2014 2014 IEEE International Conference

More information

ADDIS ABABA UNIVERSITY INSTITUTE OF TECHNOLOGY

ADDIS ABABA UNIVERSITY INSTITUTE OF TECHNOLOGY 1 INTERNAL COMBUSTION ENGINES ADDIS ABABA UNIVERSITY INSTITUTE OF TECHNOLOGY MECHANICAL ENGINEERING DEPARTMENT DIVISON OF THERMAL AND ENERGY CONVERSION IC Engine Fundamentals 2 Engine Systems An engine

More information

ISSN: SIMULATION AND ANALYSIS OF PASSIVE SUSPENSION SYSTEM FOR DIFFERENT ROAD PROFILES WITH VARIABLE DAMPING AND STIFFNESS PARAMETERS S.

ISSN: SIMULATION AND ANALYSIS OF PASSIVE SUSPENSION SYSTEM FOR DIFFERENT ROAD PROFILES WITH VARIABLE DAMPING AND STIFFNESS PARAMETERS S. Journal of Chemical and Pharmaceutical Sciences www.jchps.com ISSN: 974-2115 SIMULATION AND ANALYSIS OF PASSIVE SUSPENSION SYSTEM FOR DIFFERENT ROAD PROFILES WITH VARIABLE DAMPING AND STIFFNESS PARAMETERS

More information

Design and Analysis of Stirling Engines. Justin Denno Advised by Dr. Raouf Selim

Design and Analysis of Stirling Engines. Justin Denno Advised by Dr. Raouf Selim Design and Analysis of Stirling Engines Justin Denno Advised by Dr. Raouf Selim Abstract The Stirling engines being researched here are the acoustic engines and the Alpha-V engine. The acoustic engine

More information

Design, Development of Dual Mass Flywheel and Comparative Testing with Conventional Flywheel

Design, Development of Dual Mass Flywheel and Comparative Testing with Conventional Flywheel Design, Development of Dual Mass Flywheel and Comparative Testing with Conventional Flywheel #1 N. N. Suryawanshi, #2 Prof. D. P. Bhaskar 1 nikhil23031992@gmail.com #1 Student Mechanical Engineering Department,

More information

2 Technical Background

2 Technical Background 2 Technical Background Vibration In order to understand some of the most difficult R- 2800 development issues, we must first briefly digress for a quick vibration tutorial. The literature concerning engine

More information

FINE PARTICLE (2.5 MICRONS) EMISSIONS Regulation, Measurement, and Control John D. McKenna James H. Turner James P. McKenna A JOHN WILEY & SONS, INC., PUBLICATION FINE PARTICLE (2.5 MICRONS) EMISSIONS

More information

A New Device to Measure Instantaneous Swept Volume of Reciprocating Machines/Compressors

A New Device to Measure Instantaneous Swept Volume of Reciprocating Machines/Compressors Purdue University Purdue e-pubs International Compressor Engineering Conference School of Mechanical Engineering 2004 A New Device to Measure Instantaneous Swept Volume of Reciprocating Machines/Compressors

More information

CHAPTER 1 MECHANICAL ARRANGEMENT

CHAPTER 1 MECHANICAL ARRANGEMENT CHAPTER 1 CHAPTER 1 MECHANICAL ARRANGEMENT CONTENTS PAGE Basic Principals 02 The Crankshaft 06 Piston Attachment 08 Major Assemblies 10 Valve Gear 12 Cam Drive 18 Mechanical Arrangement - Basic Principals

More information

11/12/2017 Erwin H. Doorenspleet

11/12/2017 Erwin H. Doorenspleet Slide 1 Slide 2 Slide 3 Introduction: Density Measurement Additionally to mass flow multi-variable Coriolis mass flow meters also determine temperature and density Precise density measurement performance

More information

2013 THERMAL ENGINEERING-I

2013 THERMAL ENGINEERING-I SET - 1 II B. Tech II Semester, Regular Examinations, April/May 2013 THERMAL ENGINEERING-I (Com. to ME, AME) Time: 3 hours Max. Marks: 75 Answer any FIVE Questions All Questions carry Equal Marks ~~~~~~~~~~~~~~~~~~~~~~~~

More information

Test Rig Design for Measurement of Shock Absorber Characteristics

Test Rig Design for Measurement of Shock Absorber Characteristics Test Rig Design for Measurement of Shock Absorber Characteristics H. R. Sapramer Dr. G. D. Acharya Mechanical Engineering Department Principal Sir Bhavsinhaji Polytechnic Institute Atmiya Institute of

More information

A Novel Device to Measure Instantaneous Swept Volume of Internal Combustion Engines

A Novel Device to Measure Instantaneous Swept Volume of Internal Combustion Engines Global Journal of Researches in Engineering Vol. 10 Issue 7 (Ver1.0), December 2010 P a g e 47 A Novel Device to Measure Instantaneous Swept Volume of Internal Combustion Engines MURUGAN. R. GJRE -A Classification

More information

PATENT: ARTICULATED RHOMBIC PRISM PISTON FOR THERMAL MACHINES Filed in Italy on 18/11/2008 N TO 2008 A Inventor: Vittorio Scialla -

PATENT: ARTICULATED RHOMBIC PRISM PISTON FOR THERMAL MACHINES Filed in Italy on 18/11/2008 N TO 2008 A Inventor: Vittorio Scialla - PATENT: ARTICULATED RHOMBIC PRISM PISTON FOR THERMAL MACHINES Filed in Italy on 18/11/2008 N TO 2008 A 000847 Inventor: Vittorio Scialla - Nationality: italian - Resident: Via Cibrario 114, Torino (TO),

More information

Kul Internal Combustion Engine Technology. Definition & Classification, Characteristics 2015 Basshuysen 1,2,3,4,5

Kul Internal Combustion Engine Technology. Definition & Classification, Characteristics 2015 Basshuysen 1,2,3,4,5 Kul-14.4100 Internal Combustion Engine Technology Definition & Classification, Characteristics 2015 Basshuysen 1,2,3,4,5 Definitions Combustion engines convert the chemical energy of fuel to mechanical

More information

Mathematical Modelling and Simulation Of Semi- Active Suspension System For An 8 8 Armoured Wheeled Vehicle With 11 DOF

Mathematical Modelling and Simulation Of Semi- Active Suspension System For An 8 8 Armoured Wheeled Vehicle With 11 DOF Mathematical Modelling and Simulation Of Semi- Active Suspension System For An 8 8 Armoured Wheeled Vehicle With 11 DOF Sujithkumar M Sc C, V V Jagirdar Sc D and MW Trikande Sc G VRDE, Ahmednagar Maharashtra-414006,

More information

2.61 Internal Combustion Engine Final Examination. Open book. Note that Problems 1 &2 carry 20 points each; Problems 3 &4 carry 10 points each.

2.61 Internal Combustion Engine Final Examination. Open book. Note that Problems 1 &2 carry 20 points each; Problems 3 &4 carry 10 points each. 2.61 Internal Combustion Engine Final Examination Open book. Note that Problems 1 &2 carry 20 points each; Problems 3 &4 carry 10 points each. Problem 1 (20 points) Ethanol has been introduced as the bio-fuel

More information

Pressure Ratio Effect to Warm Displacer Type Pulse Tube Refrigerator

Pressure Ratio Effect to Warm Displacer Type Pulse Tube Refrigerator 227 1 Pressure Ratio Effect to Warm Displacer Type Pulse Tube Refrigerator S. Zhu 1,Y. Matsubara 2 1 School of Mechanical Engineering, Tongji University, Shanghai, 201804, China 2 Former professor of Nihon

More information

Simulation Method of Hydraulic Confined Piston Engine

Simulation Method of Hydraulic Confined Piston Engine 5th International Conference on Advanced Design and Manufacturing Engineering (ICADME 2015) Simulation Method of Hydraulic Confined Piston Engine JIAO Yuqin 1, a, ZHANG Hongxin 1,b * and XU Wei 1,c 1 Electromechanic

More information

A Comparison of the Effectiveness of Elastomeric Tuned Mass Dampers and Particle Dampers

A Comparison of the Effectiveness of Elastomeric Tuned Mass Dampers and Particle Dampers 003-01-1419 A Comparison of the Effectiveness of Elastomeric Tuned Mass Dampers and Particle Dampers Copyright 001 Society of Automotive Engineers, Inc. Allan C. Aubert Edward R. Green, Ph.D. Gregory Z.

More information

Enhanced Heat Transfer Surface Development for Exterior Tube Surfaces

Enhanced Heat Transfer Surface Development for Exterior Tube Surfaces 511 A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 32, 2013 Chief Editors: Sauro Pierucci, Jiří J. Klemeš Copyright 2013, AIDIC Servizi S.r.l., ISBN 978-88-95608-23-5; ISSN 1974-9791 The Italian

More information

Hours / 100 Marks Seat No.

Hours / 100 Marks Seat No. 17412 16117 3 Hours / 100 Seat No. Instructions (1) All Questions are Compulsory. (2) Answer each next main Question on a new page. (3) Illustrate your answers with neat sketches wherever necessary. (4)

More information

Internal Combustion Engine. Prepared by- Md Ferdous Alam Lecturer, MEE, SUST

Internal Combustion Engine. Prepared by- Md Ferdous Alam Lecturer, MEE, SUST Internal Combustion Engine Prepared by- Md Ferdous Alam Lecturer, MEE, SUST What is an Engine? -a machine designed to convert one form of energy into mechanical energy Two types of engines : 1. Internal

More information

Studying Turbocharging Effects on Engine Performance and Emissions by Various Compression Ratios

Studying Turbocharging Effects on Engine Performance and Emissions by Various Compression Ratios American Journal of Energy and Power Engineering 2017; 4(6): 84-88 http://www.aascit.org/journal/ajepe ISSN: 2375-3897 Studying Turbocharging Effects on Engine Performance and Emissions by arious Compression

More information

FEASIBILITY STYDY OF CHAIN DRIVE IN WATER HYDRAULIC ROTARY JOINT

FEASIBILITY STYDY OF CHAIN DRIVE IN WATER HYDRAULIC ROTARY JOINT FEASIBILITY STYDY OF CHAIN DRIVE IN WATER HYDRAULIC ROTARY JOINT Antti MAKELA, Jouni MATTILA, Mikko SIUKO, Matti VILENIUS Institute of Hydraulics and Automation, Tampere University of Technology P.O.Box

More information

Attention is drawn to the following places, which may be of interest for search:

Attention is drawn to the following places, which may be of interest for search: F01B MACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES (of rotary-piston or oscillating-piston type F01C; of non-positive-displacement type F01D; internal-combustion

More information

Torque steer effects resulting from tyre aligning torque Effect of kinematics and elastokinematics

Torque steer effects resulting from tyre aligning torque Effect of kinematics and elastokinematics P refa c e Tyres of suspension and drive 1.1 General characteristics of wheel suspensions 1.2 Independent wheel suspensions- general 1.2.1 Requirements 1.2.2 Double wishbone suspensions 1.2.3 McPherson

More information

Internal Combustion Engines

Internal Combustion Engines Internal Combustion Engines Reading Problems 8-3 8-7 8-35, 8-45, 8-52 Definitions 1. spark ignition: a mixture of fuel and air is ignited by a spark plug applications requiring power to about 225 kw (300

More information

COMPRESSIBLE FLOW ANALYSIS IN A CLUTCH PISTON CHAMBER

COMPRESSIBLE FLOW ANALYSIS IN A CLUTCH PISTON CHAMBER COMPRESSIBLE FLOW ANALYSIS IN A CLUTCH PISTON CHAMBER Masaru SHIMADA*, Hideharu YAMAMOTO* * Hardware System Development Department, R&D Division JATCO Ltd 7-1, Imaizumi, Fuji City, Shizuoka, 417-8585 Japan

More information

Development of Two-stage Electric Turbocharging system for Automobiles

Development of Two-stage Electric Turbocharging system for Automobiles Development of Two-stage Electric Turbocharging system for Automobiles 71 BYEONGIL AN *1 NAOMICHI SHIBATA *2 HIROSHI SUZUKI *3 MOTOKI EBISU *1 Engine downsizing using supercharging is progressing to cope

More information

Research of the Effectiveness of Use of New Mechanism in Reciprocating Compressors

Research of the Effectiveness of Use of New Mechanism in Reciprocating Compressors Purdue University Purdue e-pubs International Compressor Engineering Conference School of Mechanical Engineering 2000 Research of the Effectiveness of Use of New Mechanism in Reciprocating Compressors

More information

e t Performance of Extended Inlet and Extended Outlet Tube on Single Expansion Chamber for Noise Reduction

e t Performance of Extended Inlet and Extended Outlet Tube on Single Expansion Chamber for Noise Reduction e t International Journal on Emerging Technologies 7(1): 37-41(2016) ISSN No. (Print) : 0975-8364 ISSN No. (Online) : 2249-3255 Performance of Extended Inlet and Extended Outlet Tube on Single Expansion

More information

Exhaust Gas Waste Heat Recovery and Utilization System in IC Engine

Exhaust Gas Waste Heat Recovery and Utilization System in IC Engine IJIRST International Journal for Innovative Research in Science & Technology Volume 1 Issue 11 April 2015 ISSN (online): 2349-6010 Exhaust Gas Waste Heat Recovery and Utilization System in IC Engine Alvin

More information

Noise Reduction in a Reciprocating Compressor by Optimizing the Suction Muffler

Noise Reduction in a Reciprocating Compressor by Optimizing the Suction Muffler Noise Reduction in a Reciprocating Compressor by Optimizing the Suction Muffler Katakama Nagarjuna ¹ K.Sreenivas² ¹ M.tech student, ²Professor, dept of mechanical engineering kits, markapur, A.P, INDIA

More information

THERMODYNAMICS. T85D - Internal Combustion Engine Test Bed

THERMODYNAMICS. T85D - Internal Combustion Engine Test Bed THERMODYNAMICS T85D - Internal Combustion Engine Test Bed 1. General Didacta s T85D Internal Combustion Engine Test Bed has been specially designed for use in testing laboratories, and to ensure the greatest

More information

FLUID DYNAMICS TRANSIENT RESPONSE SIMULATION OF A VEHICLE EQUIPPED WITH A TURBOCHARGED DIESEL ENGINE USING GT-POWER

FLUID DYNAMICS TRANSIENT RESPONSE SIMULATION OF A VEHICLE EQUIPPED WITH A TURBOCHARGED DIESEL ENGINE USING GT-POWER GT-SUITE USERS CONFERENCE FRANKFURT, OCTOBER 20 TH 2003 FLUID DYNAMICS TRANSIENT RESPONSE SIMULATION OF A VEHICLE EQUIPPED WITH A TURBOCHARGED DIESEL ENGINE USING GT-POWER TEAM OF WORK: A. GALLONE, C.

More information

UNIVERSITY POLYTECHNIC B.I.T., MESRA, RANCHI COURSE STRUCTURE. (W.E.F Batch Students) (Total Unit 7.5) Sessional Unit Code

UNIVERSITY POLYTECHNIC B.I.T., MESRA, RANCHI COURSE STRUCTURE. (W.E.F Batch Students) (Total Unit 7.5) Sessional Unit Code COURSE STRUCTURE (W.E.F. 2011 Batch Students) (Total Unit 7.5) Course Theory Unit Course Sessional Unit Code Code DAE 4001 Thermal Engineering 1.0 DAE 4002 Thermal Engineering Lab. 0.5 DAE 4003 Fluid Mechanics

More information

Approved by AICTE, Government of India & affiliated to Dr. A.P.J. Abdul Kalam Technical University, Lucknow Department of Mechanical Engineering

Approved by AICTE, Government of India & affiliated to Dr. A.P.J. Abdul Kalam Technical University, Lucknow Department of Mechanical Engineering Experiment No. - 1 Object: Study and working of four stroke petrol engine. Apparatus Required: S. No. Name of Apparatus Specifications Model of Four stroke petrol engine NA Figure 1: Working of four stroke

More information

Alternative Propulsion for Automobiles

Alternative Propulsion for Automobiles Alternative Propulsion for Automobiles . Cornel Stan Alternative Propulsion for Automobiles Cornel Stan West Saxon University Zwickau, Germany Translation from the German language edition: Alternative

More information

White Paper Waulis Motors Ltd. Tapio Pohjalainen

White Paper Waulis Motors Ltd. Tapio Pohjalainen White Paper 00114 Tapio Pohjalainen +358 40 864 9224 tapio.pohjalainen@waulis.com Abstract Trends in automotive industry for engine performance both in regulatory requirements and customer expectations

More information

MHI Integrally Geared Type Compressor for Large Capacity Application and Process Gas Application

MHI Integrally Geared Type Compressor for Large Capacity Application and Process Gas Application MHI Integrally Geared Type for Large Capacity Application and Process Gas Application NAOTO YONEMURA* 1 YUJI FUTAGAMI* 1 SEIICHI IBARAKI* 2 This paper introduces an outline of the structures, features,

More information

Research on the Structure of Linear Oscillation Motor and the Corresponding Applications on Piston Type Refrigeration Compressor

Research on the Structure of Linear Oscillation Motor and the Corresponding Applications on Piston Type Refrigeration Compressor International Conference on Informatization in Education, Management and Business (IEMB 2015) Research on the Structure of Linear Oscillation Motor and the Corresponding Applications on Piston Type Refrigeration

More information

Test Which component has the highest Energy Density? A. Accumulator. B. Battery. C. Capacitor. D. Spring.

Test Which component has the highest Energy Density? A. Accumulator. B. Battery. C. Capacitor. D. Spring. Test 1 1. Which statement is True? A. Pneumatic systems are more suitable than hydraulic systems to drive powerful machines. B. Mechanical systems transfer energy for longer distances than hydraulic systems.

More information

STEAM-ENGINE AND PROFESSOR OF MECHANISM AND APPLIED MECHANICS IN THE UNIVERSITY OF CAMBRIDGE. CAMBRIDGE: AT THE UNIVERSITY PRESS.

STEAM-ENGINE AND PROFESSOR OF MECHANISM AND APPLIED MECHANICS IN THE UNIVERSITY OF CAMBRIDGE. CAMBRIDGE: AT THE UNIVERSITY PRESS. THE STEAM-ENGINE AND OTHEE HEAT-ENGINES BY J. A. EWING, M.A., B.Sc, F.E.S., M.INST.C.E., PROFESSOR OF MECHANISM AND APPLIED MECHANICS IN THE UNIVERSITY OF CAMBRIDGE. CAMBRIDGE: AT THE UNIVERSITY PRESS.

More information

NEW CONCEPT OF A ROCKER ENGINE KINEMATIC ANALYSIS

NEW CONCEPT OF A ROCKER ENGINE KINEMATIC ANALYSIS Journal of KONES Powertrain and Transport, Vol. 19, No. 3 2012 NEW CONCEPT OF A ROCKER ENGINE KINEMATIC ANALYSIS Miros aw Szymkowiak Kochanowskiego Street 13, 64-100 Leszno, Poland e-mail: szymkowiak@op.pl

More information

Chapter 15. Inertia Forces in Reciprocating Parts

Chapter 15. Inertia Forces in Reciprocating Parts Chapter 15 Inertia Forces in Reciprocating Parts 2 Approximate Analytical Method for Velocity and Acceleration of the Piston n = Ratio of length of ConRod to radius of crank = l/r 3 Approximate Analytical

More information

Unit WorkBook 4 Level 4 ENG U13 Fundamentals of Thermodynamics and Heat Engines UniCourse Ltd. All Rights Reserved. Sample

Unit WorkBook 4 Level 4 ENG U13 Fundamentals of Thermodynamics and Heat Engines UniCourse Ltd. All Rights Reserved. Sample Pearson BTEC Levels 4 Higher Nationals in Engineering (RQF) Unit 13: Fundamentals of Thermodynamics and Heat Engines Unit Workbook 4 in a series of 4 for this unit Learning Outcome 4 Internal Combustion

More information