PERFORMANCE AND DESIGN ANALYSIS OF REGENERATIVE BRAKING SYSTEM

Size: px
Start display at page:

Download "PERFORMANCE AND DESIGN ANALYSIS OF REGENERATIVE BRAKING SYSTEM"

Transcription

1 PERFORMANCE AND DESIGN ANALYSIS OF REGENERATIVE BRAKING SYSTEM Dr. Deo Raj Tiwari 1, Vinod Kumar 2 1,2 Associate Professor, IIMT College of Engineering Greater Noida, (India) ABSTRACT A vehicle supported for rolling movement on a track by a first set of wheels driven by an electric motor and a second empowered set of wheels is provided with an improved braking system. The braking system includes a brake pedal which can be depressed to generate a brake demand signal, a regenerative braking system associated with the electric motor and a friction braking system attached to the empowered wheels. Control circuit, which regulates the operation of the two brake systems, serves normally to actuate the regenerative braking system in response to the brake demand signal and to actuate the friction braking system only when the brake demand signal exceeds a predetermined level which corresponds normally to the maximum regenerative braking available. Under slippery rail conditions, a detector indicates slippage of the wheels relative to the rails during regenerative braking and immediately actuates the friction braking system to produce additional braking in proportion. Keywords: Regenerative Braking, Hybrid Vehicle, Power train, RESS I. THEORY Regenerative braking is a method to capture and store the kinetic energy of a moving item, and then be used to reaccelerate it. Regenerative braking is not industry specific, but can be difficult to implement cost effectively 1. In most application a heavy load must be stopped and started frequently. The action of starting and stopping is controlled to limit power required. In Industrial applications, the acceleration time and the deceleration time is usually easy to determine and microprocessor controlled 2. In an automotive drive train application, the braking energy will be much greater than the accelerating energy for a much shorter time. Electric regenerative braking in industrial applications is not known for being efficient. Generating and storing energy over a wide rpm and torque range is difficult. All systems have an operating voltage. When a generator rpm varies, so does the voltage output. The amperage varies with load. All the variable speed control electronic systems that have been looked at are not averaging over 80% efficiency driving a varying load over their operating speed range. No data has been found on the efficiency of any regenerative system. Some of the new systems are using power electronics, but the cost and efficiency has not proven to offset the cost of prop pitch control 3. The most common application for hydraulic regenerative braking is in hydraulic elevators. Most have a hydraulic cylinder to raise the car, when letting the load down the flow pressure is diverted to accumulators. Hydraulic hybrid drives currently being developed use a swash plate pump/motor and valves to divert the flow and pressure to accumulators. Neither of these systems have great efficiencies based on the calculations. 419 P a g e

2 One of the greatest challenges in regenerative braking is converting low energy inputs to a higher energy level required for peek acceleration power. For these reasons current electric or hydraulic hybrids cannot be considered as long term winners in saving energy. In theory if all the kinetic energy could be captured and reused for reacceleration, the only power required for a vehicle is to overcome wind, rolling resistance and climbing hills. II. HYBRID VEHICLE A hybrid vehicle (HV) is a vehicle that uses two or more distinct power or fuel sources such as An on-board rechargeable energy storage system (RESS) and a fueled power source for vehicle propulsion: (1) Internal Combustion Engine (2) Transmission (3) Electric motor (4) Power Electronics system (5) Fuel tank (6) Battery pack Hybrid electric vehicles are a combination of an internal combustion engine (1) and a battery and electric motor (3) of an electric vehicle. In current hybrids, both the engine (1) and the electric motor (3) are connected to the wheels by the same transmission (2) Intelligent power electronics (4) is a device that decides when to use the motor or internal combustion engine and when to store regenerated electricity in the battery (6) for future use. In a hybrid, when the brakes are applied, the motor becomes a generator. This generator uses the kinetic energy of the vehicle to generate electricity. The electricity is stored in the battery for later use. A simple way to think of a hybrid is to think of a moped. There is a gas powered engine and the second form of energy is your foot. Imagine if, instead of using your foot every time you needed to kick the ground, you could take the kinetic energy your body makes by pulling your foot up or setting it down, and storing it in the board. That would be similar to what the battery/engine hybrid does for a vehicle. Unlike all-electric vehicles, hybrid vehicles do not need to be plugged into an external source of electricity. Gasoline stored in a conventional fuel tank (5) provides all the energy the hybrid vehicle needs. 420 P a g e

3 III. PROBLEM STATEMENT Need arises for regenerative braking system is due to drawback in conventional friction based brake. We know that, the conventional friction based brake, however, is 0% efficient in terms of recovering the kinetic energy lost in deceleration. By using regenerative brake, this efficiency reaches 30% of electric generation. Another drawback of vehicle is starting problem in cold season. To reduce this drawback, we can use electrical energy from battery of R.B.S. and rotate main shaft of the engine easily. For three decades now, the second commandment of every automotive engineer right behind reducing cost has been to reduce fuel consumption and finding the alternative of fossil fuels. The drive to use less fossil fuel has dictated the design of engines, transmissions and control systems for decades. Now, it is pushing the development of completely different technologies for generating power. In spite of all these improvements, the energy efficiency of the most modern production car is still less than 20 percent. Most of the energy used to move the vehicle at any speed over any distance is thrown away as heat. About half of that wasted energy goes through the brakes. Today, almost every manufacturer is developing ways to recover a significant portion of that wasted energy with regenerative brake. While the technology itself is often complex, the concept is quite simple: Brakes slow and stop a car by converting kinetic energy, the energy of motion into heat energy, which is then dissipated to the air. We burn fuel to make heat and put kinetic energy into the car, and then we throw that energy away as waste heat. The goal of regenerative brake is to recover some of that energy, store it and then use it to put the car into motion again. It is estimated that regenerative brake can eventually be developed to recover about half the energy we now waste as braking heat. Depending on the type of vehicle, this would reduce fuel consumption by 10 to 25 percent below current levels. IV. DESIGN ANALYSIS: 4.1 Design of Shaft: Shaft is designed on the basis of consideration that shaft is subjected to combined twisting moment and bending moment. 421 P a g e

4 Let τ = Shear stress T = twisting moment M = bending moment Te = equivalent twisting moment Te = (M 2 +T 2 ), According to maximum shear stress theory, the maximum shear stress in the shaft, load on the Shaft =3.5x9.8=34.3N, Length of the Shaft =90.0 Maximum Bending Moment = N-mm. P = 2xπNxT/ 60= 2x3.14x250xT/60 =.5x1000 T =23885 N-mm Te = (M 2 +T 2 ) = ( ) = Te = (3.14/16) xτxd 3 d =14.5mm Therefore desired diameter of shaft is 16mm. Total 4.2 Design of belt: ( T1/T2) =e (µxθxcosecβ) Sin(α) =(r2/r1)/x =(100-50)/(2x60) α =24.60deg Angle of lap( θ)= 180-2α = 180-2x24.6 θ = 130 deg=2.268rad. Groove Angle =30 deg. T1=e (.3x2.268x2) T2 =3.9T2 T1-T2=955.4 T1 = T2 = x3.14xN2 (T1-T2) x(100/2) =.5x1000x1000 N2 =100rpm, Length of belt, L =3.14x (r2-r1) +2X + ((r2-r1)/x) 2 = 1.435mm 4.3 D.C. Motor Capacity : 12V RPM : 200 Wheel Dia: 50mm 4.4 Stepper Motor Output : 6V RPM : 125 Base plate : 660x360x25mm 3 Shaft : 16mm Dia., Length-900mm Motor wheel : 50 mm Dia. Pulley : 100mm Dia. Main Wheel : 400mm Dia. Brake Wheel : 220mm Dia. Gen.Wheel : 80mm Dia. Spring (K) : 50N/m 422 P a g e

5 PICTURES OF MODEL AND PARTS V. EXPERIMENTAL RESULT OF MODEL: Output voltage ranges from 5.5 to 6.0 volt Output current ranges from 90 to 100 ma Time taken to full stop from maximum speed to zero is 28 to 40 second Average output voltage (V) = ( ) / 2= 5.75 V Average output current (I) = (90+100) / 2 = 95 ma Average time taken to full stop (t) = ( ) / 2=34 sec Electrical energy stored (E) = V * (I i - I f ) / 2 * t = 5.75 * (95 0) / 2 * 10* 34 (I f = 0 and 1 ma =10-3 A)= 9.23 J Mass of one wheel (M) =1250 gm = kg Radius of wheel (R) = 200 mm= 0.2 m Maximum Average speed (N) = 325 rpm Speed ranges, before braking, from 300 to 350 rpm Angular velocity (ω) = 2πN/ 60=34 rad / sec Moment of inertia of two wheel = 2* MR 2 (taking wheel as a ring ) = 2*1.250*0.2 2 = 0.1 kg/ m 2 Rotational kinetic energy (K) = ½ I ω 2 = ½ 0.1 * 34 2 = J 423 P a g e

6 Braking efficiency (η) = Electrical energy stored / Initial rotational kinetic energy = 9.23 / =.1596J => η = % VI. CONCLUSION Regenerative Braking System is used in the Hybrid Car. This system is a method to capture & store the kinetic energy of a moving item, & then be used to reaccelerate it. In vehicle we apply the paddle brakes dually fitted with gear assembly and an AC generator to produce electrical energy with a small wheel. This wheel, when come into contact with main shaft, moves and rotates the gear assembly to provide a reassemble torque to run an AC generator for mechanical to electrical energy production. The electrical energy is than converted to ripple DC to provide charging voltage to 6V chargeable battery. Further this battery can be utilized to run fan/bulb or to provide initial torque to vehicle. VII. SCOPE FOR FUTURE WORK The Civic Hybrid uses the standard transmission behind the engine configuration. Because the Integrated Starter/Alternator provides regenerative brake, the transmission handles both positive and negative power delivery. The ultra thin, brushless DC motor is installed between the engine (below, in red) and the transmission. Honda figured out how to make the motor smaller by winding the poles asymmetrically, achieving 27 percent greater space efficiency. The closer poles not only reduce the size of the motor, but also improve torque. Regenerative brake can be extremely powerful. According to Craig Van Battenberg who teaches Honda and Toyota hybrid service at Automotive Career Development Center in Worcester, MA, no more than 17 percent of its capability is used in these cars to avoid putting people into the windshield. Even at that low level of use, in a typical mixture of highway and around-town driving regenerative brake can recover about 20 percent of the energy normally wasted as brake heat. This reduces the drawdown of the battery charge, extends the overall life of the battery pack and reduces fuel consumption. Right now, the Honda Insight, Toyota Prius and Honda Civic hybrid are the only production cars that use regenerative brake. However, regenerative brake has been used in trains, elevators and other industrial equipment for almost a century, and it will likely be used on many more cars and light trucks in the next decade. The technologies for recovering kinetic energy vary greatly, and some ideas are more promising than others. Here s a look at what s being seriously developed for automotive use. 424 P a g e

7 Now days, one of the leading automobile company General Motors is using this concept in their hybrid vehicle. This is used as storage of electric energy in battery.the concept is used by General Motor through using two electric motor A & B.Battery is connected to engine control unit. Energy control unit are connected to two electric motors that are used to drive two output shafts. Regenerative braking system will be highly used by most of automobile company for fuel alternative. Many problem such as starting of engine, driving on hill station, lighting system, fans,air conditioning are regulate through this concept. The efficiency of system will enhance by regenerative braking system. VIII. LIMITATIONS OF THE SYSTEM Traditional friction-based braking is still used with electrical regenerative braking for the following reasons: The regenerative braking effect rapidly reduces at lower speed; therefore the friction brake is still required in order to bring the vehicle to a complete halt. The friction brake is a necessary back-up in the event of failure of the regenerative brake. The amount of electrical energy capable of dissipation is limited by either the capacity of the supply system to absorb this energy or on the state of charge of the battery or capacitors. No regenerative braking effect can occur if another electrical component on the same supply system is not currently drawing power or if the battery or capacitors are already charged. For this reason, it becomes essential to incorporate dynamic braking also for absorbing the excess energy. REFERENCES [1] Crouse W. H., Automotive engines, McGraw Hill International, 8 th edition,1995. [2] Singh Kirpal Automobile Engineering,Vol.2,(page.30) [3] Ganeshan V. Internal Combustion Engines, 4 th edition, paperback-16, Apr [4} Cleg S. J. A review of Regenerative Braking Systems, Working paper-471(1996), Institute of Transport Studies, University of Leeds, U. K. [5] Discussion on the Regenerative Braking of Electric Vehicles (Hellmund), Pittsburg PA, Transaction of the American Institute of Electrical Engineers 36, p68, Retrieved 11 March, P a g e

Fundamentals and Classification of Hybrid Electric Vehicles Ojas M. Govardhan (Department of mechanical engineering, MIT College of Engineering, Pune)

Fundamentals and Classification of Hybrid Electric Vehicles Ojas M. Govardhan (Department of mechanical engineering, MIT College of Engineering, Pune) RESEARCH ARTICLE OPEN ACCESS Fundamentals and Classification of Hybrid Electric Vehicles Ojas M. Govardhan (Department of mechanical engineering, MIT College of Engineering, Pune) Abstract: Depleting fossil

More information

i-eloop Regenerative Braking System

i-eloop Regenerative Braking System i-eloop Regenerative Braking System Abstract Dibya Narayan Behera, Subham Chattopadhyay, Sanjib Banerjee, Soumya Swaroop Swain 1 Asst Professor, 2, 3, 4 B.Tech Mechanical Students. USubham9470@gmail.comU31T

More information

Application Information

Application Information Moog Components Group manufactures a comprehensive line of brush-type and brushless motors, as well as brushless controllers. The purpose of this document is to provide a guide for the selection and application

More information

ENERGY EXTRACTION FROM CONVENTIONAL BRAKING SYSTEM OF AUTOMOBILE

ENERGY EXTRACTION FROM CONVENTIONAL BRAKING SYSTEM OF AUTOMOBILE Proceedings of the International Conference on Mechanical Engineering 2009 (ICME2009) 26-28 December 2009, Dhaka, Bangladesh ICME09- ENERGY EXTRACTION FROM CONVENTIONAL BRAKING SYSTEM OF AUTOMOBILE Aktaruzzaman

More information

Investigation into the Potential Fuel Savings from the use of Hydraulic Regenerative Systems in Heavy Vehicles.

Investigation into the Potential Fuel Savings from the use of Hydraulic Regenerative Systems in Heavy Vehicles. Investigation into the Potential Fuel Savings from the use of Hydraulic Regenerative Systems in Heavy Vehicles. Paul L. Matheson Dr. Jacek Stecki Postgraduate Student Supervisor (Associate Professor) Department

More information

A Study of the Two Wheeler Retarder Type Dynamometer System

A Study of the Two Wheeler Retarder Type Dynamometer System A Study of the Two Wheeler Retarder Type Dynamometer System Nilesh R. Mate 1, Prof. D. Y. Dhande 2 P.G. Student, Department of Mechanical Engineering, A.I.S.S.M.S. College of Engineering, Pune, India 1

More information

FREE ENERGY GENERATION BY USING FLYWHEEL

FREE ENERGY GENERATION BY USING FLYWHEEL FREE ENERGY GENERATION BY USING FLYWHEEL Mr. Yuvraj Kisan Lad 1, Mr. Suraj Uddhav Pendhe 2, Mr. Suraj Rajendra Walkunde 3, Mr. Sagar Namdev Raut 4, Mr. A. R. Kadam 5 1,2,3,4 Department of Mechanical Engineering,

More information

COMPARISON OF ELECTRIC VEHICLE TO THE INTERNAL COMBUSTION ENGINE VEHICLE AND ITS FUTURE SCOPE

COMPARISON OF ELECTRIC VEHICLE TO THE INTERNAL COMBUSTION ENGINE VEHICLE AND ITS FUTURE SCOPE COMPARISON OF ELECTRIC VEHICLE TO THE INTERNAL COMBUSTION ENGINE VEHICLE AND ITS FUTURE SCOPE ABSTRACT Umang Prajapati Electrical Engineering, Pandit Deendayal Petroleum University, India Internal combustion

More information

Electromagnetic Fully Flexible Valve Actuator

Electromagnetic Fully Flexible Valve Actuator Electromagnetic Fully Flexible Valve Actuator A traditional cam drive train, shown in Figure 1, acts on the valve stems to open and close the valves. As the crankshaft drives the camshaft through gears

More information

An Improved Regenerative Braking System

An Improved Regenerative Braking System An Improved Regenerative Braking System EDGSN 100 Penn State December 16, 2014 Nick Dermo Burook Affa Will Maloney Naman Kabra Executive Summary In the Delphi design project, MAD-K Inc. worked to come

More information

Design of Alternative Automatic Transmission for Electric Mopeds Ameya Bhusari 1, Saurabh Rege 2

Design of Alternative Automatic Transmission for Electric Mopeds Ameya Bhusari 1, Saurabh Rege 2 Design of Alternative Automatic Transmission for Electric Mopeds Ameya Bhusari 1, Saurabh Rege 2 1 Department of Mechanical, Maharashtra Institute of Technology, PUNE-38 2 Department of Mechanical, Modern

More information

Design & Development of Regenerative Braking System at Rear Axle

Design & Development of Regenerative Braking System at Rear Axle International Journal of Advanced Mechanical Engineering. ISSN 2250-3234 Volume 8, Number 2 (2018), pp. 165-172 Research India Publications http://www.ripublication.com Design & Development of Regenerative

More information

Azure Dynamics is a leading developer of highly efficient, cost-effective and environmentally friendly hybrid-electric ( HEV ) and electric ( EV )

Azure Dynamics is a leading developer of highly efficient, cost-effective and environmentally friendly hybrid-electric ( HEV ) and electric ( EV ) Hybrid-Electric Vehicles Part of the Solution Mike Byers Director of Fleet Sales Azure Dynamics Presentation Summary Who is Azure Dynamics? External Environment Hybrid 101 Hybrid Benefits Azure Dynamics

More information

Semi-Active Suspension for an Automobile

Semi-Active Suspension for an Automobile Semi-Active Suspension for an Automobile Pavan Kumar.G 1 Mechanical Engineering PESIT Bangalore, India M. Sambasiva Rao 2 Mechanical Engineering PESIT Bangalore, India Abstract Handling characteristics

More information

ENERGY RECOVERY SYSTEM FROM THE VEHICLE DAMPERS AND THE INFLUENCE OF THE TANK PRESSURE

ENERGY RECOVERY SYSTEM FROM THE VEHICLE DAMPERS AND THE INFLUENCE OF THE TANK PRESSURE The 3rd International Conference on Computational Mechanics and Virtual Engineering COMEC 2009 29 30 OCTOBER 2009, Brasov, Romania ENERGY RECOVERY SYSTEM FROM THE VEHICLE DAMPERS AND THE INFLUENCE OF THE

More information

DYNAMIC BRAKES FOR DC MOTOR FED ELECTRIC VEHICLES

DYNAMIC BRAKES FOR DC MOTOR FED ELECTRIC VEHICLES DYNAMIC BRAKES FOR DC MOTOR FED ELECTRIC VEHICLES Nair Rajiv Somrajan 1 and Sreekanth P.K 2 1 PG Scholar Department of Electrical Engineering, Sree Buddha College of Engineering, Pattoor, Alappuzh 2 Assistance

More information

UNIT - 4 TESTING OF DC MACHINES

UNIT - 4 TESTING OF DC MACHINES UNIT - 4 TESTING OF DC MACHINES Testing of DC machines can be broadly classified as i) Direct method of Testing ii) Indirect method of testing DIRECT METHOD OF TESTING: In this method, the DC machine is

More information

ENERGY MANAGEMENT FOR VEHICLE POWER NETS

ENERGY MANAGEMENT FOR VEHICLE POWER NETS F24F368 ENERGY MANAGEMENT FOR VEHICLE POWER NETS Koot, Michiel, Kessels, J.T.B.A., de Jager, Bram, van den Bosch, P.P.J. Technische Universiteit Eindhoven, The Netherlands KEYWORDS - Vehicle power net,

More information

Automotive Research and Consultancy WHITE PAPER

Automotive Research and Consultancy WHITE PAPER Automotive Research and Consultancy WHITE PAPER e-mobility Revolution With ARC CVTh Automotive Research and Consultancy Page 2 of 16 TABLE OF CONTENTS Introduction 5 Hybrid Vehicle Market Overview 6 Brief

More information

Flywheel energy storage retrofit system

Flywheel energy storage retrofit system Flywheel energy storage retrofit system for hybrid and electric vehicles Jan Plomer, Jiří First Faculty of Transportation Sciences Czech Technical University in Prague, Czech Republic 1 Content 1. INTRODUCTION

More information

ANALYSIS OF CONTROL SYSTEMS FOR VEHICLE HYBRID POWERTRAINS

ANALYSIS OF CONTROL SYSTEMS FOR VEHICLE HYBRID POWERTRAINS 105 ISSN 1648-4142 print / ISSN 1648-3480 online TRANSPORT www.transport.vgtu.lt TRANSPORT 2007, Vol XXII, No 2, 105 110 ANALYSIS OF CONTROL SYSTEMS FOR VEHICLE HYBRID POWERTRAINS Siarhei Kliauzovich Dept

More information

A REVIEW ON STIRLING ENGINES

A REVIEW ON STIRLING ENGINES A REVIEW ON STIRLING ENGINES Neeraj Joshi UG Student, Department of Mechanical Engineering, Sandip Foundation s Sandip Institute of Technology and Research Centre,Mahiravani, Nashik Savitribai Phule Pune

More information

International Journal of Emerging Trends in Science and Technology

International Journal of Emerging Trends in Science and Technology International Journal of Emerging Trends in Science and Technology Flywheel Energy Storage With Mechanical Input-Output For Regenerative Braking N.Karthik Kumaran [1], R.S.Shandeep[2],I.Esther Maria[3],M.Durga

More information

ELECTROMAGNETIC BRAKING SYSTEM

ELECTROMAGNETIC BRAKING SYSTEM ELECTROMAGNETIC BRAKING SYSTEM 1 Krunal Prajapati, 2Rahul Vibhandik, 3Devendrasinh Baria, 4Yash Patel Student, Automobile department, Laxmi institute of Technology, Sarigam-Valsad. Gujarat Corresponding

More information

Thermal Stress Analysis of Diesel Engine Piston

Thermal Stress Analysis of Diesel Engine Piston International Conference on Challenges and Opportunities in Mechanical Engineering, Industrial Engineering and Management Studies 576 Thermal Stress Analysis of Diesel Engine Piston B.R. Ramesh and Kishan

More information

Research on Skid Control of Small Electric Vehicle (Effect of Velocity Prediction by Observer System)

Research on Skid Control of Small Electric Vehicle (Effect of Velocity Prediction by Observer System) Proc. Schl. Eng. Tokai Univ., Ser. E (17) 15-1 Proc. Schl. Eng. Tokai Univ., Ser. E (17) - Research on Skid Control of Small Electric Vehicle (Effect of Prediction by Observer System) by Sean RITHY *1

More information

Alternative Fuels for Cars. Ian D. Miller Theodore Roosevelt Elem.

Alternative Fuels for Cars. Ian D. Miller Theodore Roosevelt Elem. Alternative Fuels for Cars Ian D. Miller Theodore Roosevelt Elem. The Problem Everyone is running out of petroleum. We get lots of things from it: gasoline, plastic, diesel, and any number of other things.

More information

Analysis of Parametric Studies on the Impact of Piston Velocity Profile On the Performance of a Single Cylinder Diesel Engine

Analysis of Parametric Studies on the Impact of Piston Velocity Profile On the Performance of a Single Cylinder Diesel Engine IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X, Volume 12, Issue 2 Ver. II (Mar - Apr. 2015), PP 81-85 www.iosrjournals.org Analysis of Parametric Studies

More information

Design and Implementation of an Efficient Regenerative Braking System for a PMSM Drive

Design and Implementation of an Efficient Regenerative Braking System for a PMSM Drive Design and Implementation of an Efficient Regenerative Braking System for a PMSM Drive 1 Peter K. Abraham Department of Electrical Engineering National Institute of Technology Calicut, India Dr. S. Ashok

More information

IJRASET 2015: All Rights are Reserved I. INTRODUCTION

IJRASET 2015: All Rights are Reserved I. INTRODUCTION Electricity Generation by Speed Breaker Using Spur Gear Mechanism Nidhi V Bhavsar 1, Vishal A Shah 2 Department of Mechanical Engineering, C.U.Shah University Abstract - The energy Exigence is a bottleneck

More information

UNIT-1 Drive Characteristics

UNIT-1 Drive Characteristics UNIT-1 Drive Characteristics DEFINITION: Systems employed for motion control are called as DRIVES Drives may employ any of the prime movers such as diesel or petrol engine, gas or steam turbines, steam

More information

FLYWHEEL POWER GENERATION AND MULTIPLICATION

FLYWHEEL POWER GENERATION AND MULTIPLICATION FLYWHEEL POWER GENERATION AND MULTIPLICATION Chaganti Srinivas Bhaskar 1, Chaganti Bala 2 1,2Cow and Calf Dairy Farms Limited (Research Institute), Hyderabad, Telangana State, India ---------------------------------------------------------------------***----------------------------------------------------------------------

More information

PARALLEL HYBRID ELECTRIC VEHICLES: DESIGN AND CONTROL. Pierre Duysinx. LTAS Automotive Engineering University of Liege Academic Year

PARALLEL HYBRID ELECTRIC VEHICLES: DESIGN AND CONTROL. Pierre Duysinx. LTAS Automotive Engineering University of Liege Academic Year PARALLEL HYBRID ELECTRIC VEHICLES: DESIGN AND CONTROL Pierre Duysinx LTAS Automotive Engineering University of Liege Academic Year 2015-2016 1 References R. Bosch. «Automotive Handbook». 5th edition. 2002.

More information

Managing regeneration in RoboteQ controllers

Managing regeneration in RoboteQ controllers Managing regeneration in RoboteQ controllers Application Note Introduction Electrical motors are reversible machines; they can function as motors or as generators. A motor receives electrical power from

More information

REGENERATIVE BRAKING FOR AN ELECTRIC VEHICLE USING HYBRID ENERGY STORAGE SYSTEM

REGENERATIVE BRAKING FOR AN ELECTRIC VEHICLE USING HYBRID ENERGY STORAGE SYSTEM International Journal of Electrical and Electronics Engineering Research (IJEEER) ISSN 2250-155X Vol. 3, Issue 4, Oct 2013, 35-42 TJPRC Pvt. Ltd. REGENERATIVE BRAKING FOR AN ELECTRIC VEHICLE USING HYBRID

More information

STUDY AND ANALYSIS OF CONNECTING ROD PARAMETERS USING ANSYS

STUDY AND ANALYSIS OF CONNECTING ROD PARAMETERS USING ANSYS International Journal of Mechanical Engineering and Technology (IJMET) Volume 7, Issue 4, July Aug 2016, pp.212 220, Article ID: IJMET_07_04_022 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=7&itype=4

More information

Strategies for Sustainable Energy

Strategies for Sustainable Energy Strategies for Sustainable Energy Lecture 3. Consumption Part I ENG2110-01 College of Engineering Yonsei University it Spring, 2011 Prof. David Keffer Review Homework #1 Class Discussion 1. What fraction

More information

Waste Heat Recovery from an Internal Combustion Engine

Waste Heat Recovery from an Internal Combustion Engine Waste Heat Recovery from an Internal Combustion Engine Design Team Josh Freeman, Matt McGroarty, Rob McGroarty Greg Pellegrini, Ming Wood Design Advisor Professor Mohammed Taslim Abstract A substantial

More information

Design of Road Power Generator (RPG):an Alternate Energy Source for Sustainability

Design of Road Power Generator (RPG):an Alternate Energy Source for Sustainability Design of Road Power Generator (RPG):an Alternate Energy Source for Sustainability Ashwin Chandwani 1* Amit N. Patel 1# Abhay Kothari 2 Department of Electrical Engineering Institute of Technology, Nirma

More information

FEASIBILITY STYDY OF CHAIN DRIVE IN WATER HYDRAULIC ROTARY JOINT

FEASIBILITY STYDY OF CHAIN DRIVE IN WATER HYDRAULIC ROTARY JOINT FEASIBILITY STYDY OF CHAIN DRIVE IN WATER HYDRAULIC ROTARY JOINT Antti MAKELA, Jouni MATTILA, Mikko SIUKO, Matti VILENIUS Institute of Hydraulics and Automation, Tampere University of Technology P.O.Box

More information

Design of Back stopper Mechanism for Automobiles

Design of Back stopper Mechanism for Automobiles Design of Back stopper Mechanism for Automobiles Sneha.H.Dhoria #1, B.Sandeep #2, G.Narendra Santosh Kumar #3, M.Srivatsava #4 #1,2 Assistant Professor, Department of Mechanical Engineering, R.V.R& JC

More information

Direct Injection Ethanol Boosted Gasoline Engines: Biofuel Leveraging For Cost Effective Reduction of Oil Dependence and CO 2 Emissions

Direct Injection Ethanol Boosted Gasoline Engines: Biofuel Leveraging For Cost Effective Reduction of Oil Dependence and CO 2 Emissions Direct Injection Ethanol Boosted Gasoline Engines: Biofuel Leveraging For Cost Effective Reduction of Oil Dependence and CO 2 Emissions D.R. Cohn* L. Bromberg* J.B. Heywood Massachusetts Institute of Technology

More information

Keywords: Von Mises, Piston, Thermal Analysis, Pressure, CATIAV5R20, ANSYS14 I. INTRODUCTION

Keywords: Von Mises, Piston, Thermal Analysis, Pressure, CATIAV5R20, ANSYS14 I. INTRODUCTION Finite Element Analysis of IC Engine Piston Using Thermo Mechanical Approach 1 S.Sathishkumar, Dr.M.Kannan and 3 V.Raguraman, 1 PG Scholar, Professor, 3 Assistant professor, 1,,3 Department of Mechanical

More information

Regenerative Braking System Using Ultracapacitor For Electric Vehicles

Regenerative Braking System Using Ultracapacitor For Electric Vehicles Regenerative Braking System Using Ultracapacitor For Electric Vehicles Akash Kothari 1, Akshay Patel 2, Komal Koli 3, Shabbir Governor 4 1,2,3,4 Electronics and Telecommunications Engineering, St. John

More information

Technical Guide No. 7. Dimensioning of a Drive system

Technical Guide No. 7. Dimensioning of a Drive system Technical Guide No. 7 Dimensioning of a Drive system 2 Technical Guide No.7 - Dimensioning of a Drive system Contents 1. Introduction... 5 2. Drive system... 6 3. General description of a dimensioning

More information

A Research Oriented Study On Waste Heat Recovery System In An Ic Engine

A Research Oriented Study On Waste Heat Recovery System In An Ic Engine International Journal of Engineering Inventions e-issn: 2278-7461, p-issn: 2319-6491 Volume 3, Issue 12 [December. 2014] PP: 72-76 A Research Oriented Study On Waste Heat Recovery System In An Ic Engine

More information

The University of Melbourne Engineering Mechanics

The University of Melbourne Engineering Mechanics The University of Melbourne 436-291 Engineering Mechanics Tutorial Twelve General Plane Motion, Work and Energy Part A (Introductory) 1. (Problem 6/78 from Meriam and Kraige - Dynamics) Above the earth

More information

P5 STOPPING DISTANCES

P5 STOPPING DISTANCES P5 STOPPING DISTANCES Practice Questions Name: Class: Date: Time: 85 minutes Marks: 84 marks Comments: GCSE PHYSICS ONLY Page of 28 The stopping distance of a car is the sum of the thinking distance and

More information

Examining the braking energy recovery in a vehicle with a hybrid drive system

Examining the braking energy recovery in a vehicle with a hybrid drive system Examining the braking energy recovery in a vehicle with a hybrid drive system ANDRZEJ GAJEK 1, PIOTR STRZĘPEK 2 Cracow University of Technology Summary Results of examining the braking energy recovery

More information

ELECTRIC BICYCLE A Green Alternative to Urban Commuting

ELECTRIC BICYCLE A Green Alternative to Urban Commuting ELECTRIC BICYCLE A Green Alternative to Urban Commuting An electric bicycle, also known as an e-bike or booster bike, is a bicycle with an integrated electric motor which can be used for propulsion. E-bikes

More information

Regenerative Braking System for Series Hybrid Electric City Bus

Regenerative Braking System for Series Hybrid Electric City Bus Page 0363 Regenerative Braking System for Series Hybrid Electric City Bus Junzhi Zhang*, Xin Lu*, Junliang Xue*, and Bos Li* Regenerative Braking Systems (RBS) provide an efficient method to assist hybrid

More information

Acura Hybrid Vehicle FAQs

Acura Hybrid Vehicle FAQs 1. What is a hybrid vehicle? A hybrid vehicle uses two distinct kinds of power. In the automotive world, a hybrid car usually uses a gasoline engine in combination with one or more electric motors to propel

More information

Session 5 Wind Turbine Scaling and Control W. E. Leithead

Session 5 Wind Turbine Scaling and Control W. E. Leithead SUPERGEN Wind Wind Energy Technology Session 5 Wind Turbine Scaling and Control W. E. Leithead Supergen 2 nd Training Seminar 24 th /25 th March 2011 Wind Turbine Scaling and Control Outline Introduction

More information

LECTURE-23: Basic concept of Hydro-Static Transmission (HST) Systems

LECTURE-23: Basic concept of Hydro-Static Transmission (HST) Systems MODULE-6 : HYDROSTATIC TRANSMISSION SYSTEMS LECTURE-23: Basic concept of Hydro-Static Transmission (HST) Systems 1. INTRODUCTION The need for large power transmissions in tight space and their control

More information

Development of a Clutch Control System for a Hybrid Electric Vehicle with One Motor and Two Clutches

Development of a Clutch Control System for a Hybrid Electric Vehicle with One Motor and Two Clutches Development of a Clutch Control System for a Hybrid Electric Vehicle with One Motor and Two Clutches Kazutaka Adachi*, Hiroyuki Ashizawa**, Sachiyo Nomura***, Yoshimasa Ochi**** *Nissan Motor Co., Ltd.,

More information

Study Solution of Induction Motor Dynamic Braking

Study Solution of Induction Motor Dynamic Braking 13 th International Conference on DEVELOPMENT AND APPLICATION SYSTEMS, Suceava, Romania, May 19-1, 016 Study Solution of Induction Motor Dynamic raking Mihai Rata 1,, Gabriela Rata 1, 1 Faculty of Electrical

More information

Numerical Analysis of Speed Optimization of a Hybrid Vehicle (Toyota Prius) By Using an Alternative Low-Torque DC Motor

Numerical Analysis of Speed Optimization of a Hybrid Vehicle (Toyota Prius) By Using an Alternative Low-Torque DC Motor Numerical Analysis of Speed Optimization of a Hybrid Vehicle (Toyota Prius) By Using an Alternative Low-Torque DC Motor ABSTRACT Umer Akram*, M. Tayyab Aamir**, & Daud Ali*** Department of Mechanical Engineering,

More information

(a) A 36 volt battery powers the electric motor. The battery is made using individual 1.2 volt cells.

(a) A 36 volt battery powers the electric motor. The battery is made using individual 1.2 volt cells. Q1.The picture shows an electric bicycle. The bicycle is usually powered using a combination of the rider pedalling and an electric motor. (a) A 36 volt battery powers the electric motor. The battery is

More information

Published by: PIONEER RESEARCH & DEVELOPMENT GROUP ( 1

Published by: PIONEER RESEARCH & DEVELOPMENT GROUP (  1 Advanced Development Of Semi-Automatic Traction Control System Using Differential Unit ABSTRACT S.Jesu Benner 1, M.Mugesh 2, R.Sunil 3 1,2,3 UNIVERSITY COLLEGE OF ENGINEERING ARNI, ARNI, TAMIL NADU, INDIA

More information

Chapter 7: DC Motors and Transmissions. 7.1: Basic Definitions and Concepts

Chapter 7: DC Motors and Transmissions. 7.1: Basic Definitions and Concepts Chapter 7: DC Motors and Transmissions Electric motors are one of the most common types of actuators found in robotics. Using them effectively will allow your robot to take action based on the direction

More information

Simulation of Brake Pressure Multiplier (BPM) through ANSYS 14.0 For Effective Braking in ATV

Simulation of Brake Pressure Multiplier (BPM) through ANSYS 14.0 For Effective Braking in ATV RESEARCH ARTICLE OPEN ACCESS Simulation of Brake Pressure Multiplier (BPM) through ANSYS 14.0 For Effective Braking in ATV Ronak Bandil 2, Anand Baghel 1,Akash Singh Parihar 2, Shubham Kumar Verma 2,Vikas

More information

Real-world to Lab Robust measurement requirements for future vehicle powertrains

Real-world to Lab Robust measurement requirements for future vehicle powertrains Real-world to Lab Robust measurement requirements for future vehicle powertrains Andrew Lewis, Edward Chappell, Richard Burke, Sam Akehurst, Simon Pickering University of Bath Simon Regitz, David R Rogers

More information

High performance and low CO 2 from a Flybrid mechanical kinetic energy recovery system

High performance and low CO 2 from a Flybrid mechanical kinetic energy recovery system High performance and low CO 2 from a Flybrid mechanical kinetic energy recovery system A J Deakin Torotrak Group PLC. UK Abstract Development of the Flybrid Kinetic Energy Recovery System (KERS) has been

More information

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July ISSN BY B.MADHAN KUMAR

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July ISSN BY B.MADHAN KUMAR International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 485 FLYING HOVER BIKE, A SMALL AERIAL VEHICLE FOR COMMERCIAL OR. SURVEYING PURPOSES BY B.MADHAN KUMAR Department

More information

SHC Swedish Centre of Excellence for Electromobility

SHC Swedish Centre of Excellence for Electromobility SHC Swedish Centre of Excellence for Electromobility Cost effective electric machine requirements for HEV and EV Anders Grauers Associate Professor in Hybrid and Electric Vehicle Systems SHC SHC is a national

More information

Use of Aqueous Double Layer Ultracapacitor using Hybrid CDI-ED Technology for the use in Hybrid Battery Systems

Use of Aqueous Double Layer Ultracapacitor using Hybrid CDI-ED Technology for the use in Hybrid Battery Systems Use of Aqueous Double Layer Ultracapacitor using Hybrid CDI-ED Technology for the use in Hybrid Battery Systems Overview By Robert Atlas, Aqua EWP,LLC. September 2007 Aqua EWP. has for the last 10 years

More information

PLUGGING BRAKING FOR ELECTRIC VEHICLES POWERED BY DC MOTOR

PLUGGING BRAKING FOR ELECTRIC VEHICLES POWERED BY DC MOTOR PLUGGING BRAKING FOR ELECTRIC VEHICLES POWERED BY DC MOTOR Nair Rajiv Somrajan 1 and Sreekanth P.K. 2 1 PG Scholar Department of Electrical Engineering, Sree Buddha College of Engineering, Pattoor, Alappuzha

More information

DESIGN AND DEVELOPMENT OF A TEST RIG TO ESTIMATE FATIGUE LIFE OF THE TIMING BELT OF I. C. ENGINE

DESIGN AND DEVELOPMENT OF A TEST RIG TO ESTIMATE FATIGUE LIFE OF THE TIMING BELT OF I. C. ENGINE DESIGN AND DEVELOPMENT OF A TEST RIG TO ESTIMATE FATIGUE LIFE OF THE TIMING BELT OF I. C. ENGINE Ramrajesh H. Deshmukh 1, Mukund B. Patwardhan 2 1 Student, Design Engineering, Walchand college of Engineering,

More information

Fig Electromagnetic Actuator

Fig Electromagnetic Actuator This type of active suspension uses linear electromagnetic motors attached to each wheel. It provides extremely fast response, and allows regeneration of power consumed by utilizing the motors as generators.

More information

Closed Loop Control of Separately Excited DC Motor

Closed Loop Control of Separately Excited DC Motor Closed Loop Control of Separately Excited DC Motor Vikramarajan Jambulingam Electrical and Electronics Engineering, VIT University, India. Abstract: In this project the mathematical model for closed loop

More information

Since the necessity of the wireless and mobiles electronic devices, the estimation of state

Since the necessity of the wireless and mobiles electronic devices, the estimation of state State of Charge Introduction Since the necessity of the wireless and mobiles electronic devices, the estimation of state of charge is being one of the most relevant researches on engineering field. One

More information

CONCEPTUAL DESIGN OF A NEW TYPE OF ENGINE FOR VARIOUS APPLICATIONS WITH EXPECTED 10% HIGHER OVERALL EFFICIENCY

CONCEPTUAL DESIGN OF A NEW TYPE OF ENGINE FOR VARIOUS APPLICATIONS WITH EXPECTED 10% HIGHER OVERALL EFFICIENCY International Journal of Mechanical and Production Engineering Research and Development (IJMPERD ) Vol.1, Issue 2 Dec 2011 58-65 TJPRC Pvt. Ltd., CONCEPTUAL DESIGN OF A NEW TYPE OF ENGINE FOR VARIOUS APPLICATIONS

More information

1/7. The series hybrid permits the internal combustion engine to operate at optimal speed for any given power requirement.

1/7. The series hybrid permits the internal combustion engine to operate at optimal speed for any given power requirement. 1/7 Facing the Challenges of the Current Hybrid Electric Drivetrain Jonathan Edelson (Principal Scientist), Paul Siebert, Aaron Sichel, Yadin Klein Chorus Motors Summary Presented is a high phase order

More information

A FEASIBILITY STUDY ON WASTE HEAT RECOVERY IN AN IC ENGINE USING ELECTRO TURBO GENERATION

A FEASIBILITY STUDY ON WASTE HEAT RECOVERY IN AN IC ENGINE USING ELECTRO TURBO GENERATION A FEASIBILITY STUDY ON WASTE HEAT RECOVERY IN AN IC ENGINE USING ELECTRO TURBO GENERATION S.N.Srinivasa Dhaya Prasad 1 N.Parameshwari 2 1 Assistant Professor, Department of Automobile Engg., SACS MAVMM

More information

DESIGN AND IMPLEMENTATION OF HYBRID REGENARATIVE SMART BLDC MOTOR DRIVE ELECTRIC VEHICLE

DESIGN AND IMPLEMENTATION OF HYBRID REGENARATIVE SMART BLDC MOTOR DRIVE ELECTRIC VEHICLE DESIGN AND IMPLEMENTATION OF HYBRID REGENARATIVE SMART BLDC MOTOR DRIVE ELECTRIC VEHICLE Afroz pasha 1, Akshay R.V 2, Rajath S 3, Jerome Edward 4, Sudakaran P 5 1 Afroz Pasha, Assistant Professor, Dept.

More information

Technical Report Con Rod Length, Stroke, Piston Pin Offset, Piston Motion and Dwell in the Lotus-Ford Twin Cam Engine. T. L. Duell.

Technical Report Con Rod Length, Stroke, Piston Pin Offset, Piston Motion and Dwell in the Lotus-Ford Twin Cam Engine. T. L. Duell. Technical Report - 1 Con Rod Length, Stroke, Piston Pin Offset, Piston Motion and Dwell in the Lotus-Ford Twin Cam Engine by T. L. Duell May 24 Terry Duell consulting 19 Rylandes Drive, Gladstone Park

More information

Cathode material for batteries the safe bridge to e-mobility

Cathode material for batteries the safe bridge to e-mobility Innovation Spotlight Life Power P2 Andrew Silver Cathode material for batteries the safe bridge to e-mobility Issue: Summer 2012 Lithium iron phosphate is at present the only inherently safe cathode material

More information

A Study on Energy Usage Efficiency Improvement Scheme in 48V Multi-axis Robot System

A Study on Energy Usage Efficiency Improvement Scheme in 48V Multi-axis Robot System International Journal of echanical Engineering and Robotics Research Vol. 6, No. 3, ay 2017 A Study on Energy Usage Efficiency Improvement Scheme in 48V ulti-axis Robot System Sang Hun Lee and Young Duck

More information

Redesign of Drive Shaft`s tripod Assembly, to improve the performance & reduce failure

Redesign of Drive Shaft`s tripod Assembly, to improve the performance & reduce failure IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X, Volume 11, Issue 2 Ver. IV (Mar- Apr. 2014), PP 81-87 Redesign of Drive Shaft`s tripod Assembly, to improve

More information

Driven Damped Harmonic Oscillations

Driven Damped Harmonic Oscillations Driven Damped Harmonic Oscillations Page 1 of 8 EQUIPMENT Driven Damped Harmonic Oscillations 2 Rotary Motion Sensors CI-6538 1 Mechanical Oscillator/Driver ME-8750 1 Chaos Accessory CI-6689A 1 Large Rod

More information

G Prasad 1, Venkateswara Reddy M 2, Dr. P V N Prasad 3, Dr. G Tulasi Ram Das 4

G Prasad 1, Venkateswara Reddy M 2, Dr. P V N Prasad 3, Dr. G Tulasi Ram Das 4 Speed control of Brushless DC motor with DSP controller using Matlab G Prasad 1, Venkateswara Reddy M 2, Dr. P V N Prasad 3, Dr. G Tulasi Ram Das 4 1 Department of Electrical and Electronics Engineering,

More information

Friction Characteristics Analysis for Clamping Force Setup in Metal V-belt Type CVTs

Friction Characteristics Analysis for Clamping Force Setup in Metal V-belt Type CVTs 14 Special Issue Basic Analysis Towards Further Development of Continuously Variable Transmissions Research Report Friction Characteristics Analysis for Clamping Force Setup in Metal V-belt Type CVTs Hiroyuki

More information

Mellivora: A Battery Experiment

Mellivora: A Battery Experiment Mellivora: A Battery Experiment Overview Team Introduction Problem Our Approach Technological Innovations Design Alternatives Design Specifications Block Diagram Individual Subsystems MDR Deliverables

More information

Features IN THIS CHAPTER

Features IN THIS CHAPTER CHAPTER THREE 3Special Features IN THIS CHAPTER Motor Braking Regeneration Solutions Sharing the Power Bus: V Bus+ and V Bus- Current Foldback (I T Limit) Front Panel Test Points Resolver Alignment ➂ Special

More information

Analysis of Eclipse Drive Train for Wind Turbine Transmission System

Analysis of Eclipse Drive Train for Wind Turbine Transmission System ISSN 2395-1621 Analysis of Eclipse Drive Train for Wind Turbine Transmission System #1 P.A. Katre, #2 S.G. Ganiger 1 pankaj12345katre@gmail.com 2 somu.ganiger@gmail.com #1 Department of Mechanical Engineering,

More information

Design and Development of Micro Controller Based Automatic Engine Cooling System

Design and Development of Micro Controller Based Automatic Engine Cooling System International Journal of Engineering Research and Technology. ISSN 0974-3154 Volume 6, Number 6 (2013), pp. 753-558 International Research Publication House http://www.irphouse.com Design and Development

More information

1. INTRODUCTION. Anti-lock Braking System

1. INTRODUCTION. Anti-lock Braking System 1. INTRODUCTION Car manufacturers world wide are vying with each other to invent more reliable gadgets there by coming closer to the dream of the Advanced safety vehicle or Ultimate safety vehicle, on

More information

Design and Development Of Opposite Piston Engine

Design and Development Of Opposite Piston Engine ISSN (Online) : 2319-8753 ISSN (Print) : 2347-6710 International Journal of Innovative Research in Science, Engineering and Technology Volume 3, Special Issue 3, March 2014 2014 IEEE International Conference

More information

Motional emf. as long as the velocity, field, and length are mutually perpendicular.

Motional emf. as long as the velocity, field, and length are mutually perpendicular. Motional emf Motional emf is the voltage induced across a conductor moving through a magnetic field. If a metal rod of length L moves at velocity v through a magnetic field B, the motional emf is: ε =

More information

KEYWORDS: ANSYS, Clamping effects, Leaf spring, Pro-E. International Journal of Computational Engineering Research Vol, 03 Issue, 10

KEYWORDS: ANSYS, Clamping effects, Leaf spring, Pro-E. International Journal of Computational Engineering Research Vol, 03 Issue, 10 International Journal of Computational Engineering Research Vol, 03 Issue, 10 Leaf Spring Analysis with Eyes Using FEA B.Mahesh Babu 1, D.Muralidhar Yadav 2, N.Ramanaiah 3 1 Assistant Professor, Dr.Samuel

More information

Energy in Electrical Systems

Energy in Electrical Systems Energy in Electrical Systems Outline Review of Last time Electric Fields and Work Conservation Laws Kirchhoff s Voltage Law Kirchhoff s Current Law Energy in Capacitors, Batteries and Molecules 1 TRUE

More information

MECA0500: PARALLEL HYBRID ELECTRIC VEHICLES. DESIGN AND CONTROL. Pierre Duysinx

MECA0500: PARALLEL HYBRID ELECTRIC VEHICLES. DESIGN AND CONTROL. Pierre Duysinx MECA0500: PARALLEL HYBRID ELECTRIC VEHICLES. DESIGN AND CONTROL Pierre Duysinx Research Center in Sustainable Automotive Technologies of University of Liege Academic Year 2017-2018 1 References R. Bosch.

More information

Analysis of Torsional Vibration in Elliptical Gears

Analysis of Torsional Vibration in Elliptical Gears The The rd rd International Conference on on Design Engineering and Science, ICDES Pilsen, Czech Pilsen, Republic, Czech August Republic, September -, Analysis of Torsional Vibration in Elliptical Gears

More information

SWIRL MEASURING EQUIPMENT FOR DIRECT INJECTION DIESEL ENGINE

SWIRL MEASURING EQUIPMENT FOR DIRECT INJECTION DIESEL ENGINE SWIRL MEASURING EQUIPMENT FOR DIRECT INJECTION DIESEL ENGINE G.S.Gosavi 1, R.B.Solankar 2, A.R.Kori 3, R.B.Chavan 4, S.P.Shinde 5 1,2,3,4,5 Mechanical Engineering Department, Shivaji University, (India)

More information

SAE Baja - Drivetrain

SAE Baja - Drivetrain SAE Baja - Drivetrain By Ricardo Inzunza, Brandon Janca, Ryan Worden Team 11A Concept Generation and Selection Document Submitted towards partial fulfillment of the requirements for Mechanical Engineering

More information

Chapter The Automobile

Chapter The Automobile Chapter The Automobile Objectives After studying this chapter, you will be able to: Identify and describe primary parts within major automotive systems. Explain the frequent electronic interaction of major

More information

Powertrain Efficiency Technologies. Turbochargers

Powertrain Efficiency Technologies. Turbochargers Powertrain Efficiency Technologies Turbochargers Turbochargers increasingly are being used by automakers to make it possible to use downsized gasoline engines that consume less fuel but still deliver the

More information

A REVIEW OF TWO WHEELER VEHICLES REAR SHOCK ABSORBER

A REVIEW OF TWO WHEELER VEHICLES REAR SHOCK ABSORBER A REVIEW OF TWO WHEELER VEHICLES REAR SHOCK ABSORBER Ganapati Somanna Vhanamane SVERI s College of Engineering Pandharpur, Solapur, India Dr. B. P. Ronge SVERI s College of Engineering Pandharpur, Solapur,

More information

FLYWHEEL BASED KINETIC ENERGY RECOVERY SYSTEMS (KERS) INTEGRATED IN VEHICLES

FLYWHEEL BASED KINETIC ENERGY RECOVERY SYSTEMS (KERS) INTEGRATED IN VEHICLES FLYWHEEL BASED KINETIC ENERGY RECOVERY SYSTEMS (KERS) INTEGRATED IN VEHICLES THOMAS MATHEWS Department of Mechanical Engineering, Sir MVIT, Hunasamaranahalli, Bangalore, Karnataka, 562 157, India tljc90@gmail.com

More information

REGENERATIVE BRAKING SYSTEM FOR THE CAR

REGENERATIVE BRAKING SYSTEM FOR THE CAR REGENERATIVE BRAKING SYSTEM FOR THE CAR Venkateswara Reddy Gogulamudi a, Uma Valliappan b and K. V. Vijesh c Mechanical Department/Machine Design Section, Indian Institute of Technology Madras, Chennai,

More information