CHAPTER 7 CONCLUSION

Size: px
Start display at page:

Download "CHAPTER 7 CONCLUSION"

Transcription

1 125 CHAPTER 7 CONCLUSION 7.1 CONCLUSION Motors of rating less than 15 HP form 80 % of the motor population in India. In agriculture, the commonly used ratings of motors are 5 HP (3.7 kw) and 3 HP. The design for low capital cost is standardised in these motors. In India, rewinding is prevalent and most of the rewinders are not well informed. Because of the high probability that the value of the stator winding variables in a large population of motors, deviate from even the Standard efficiency design, performed according to the design for lower capital cost, enormous amount of needless energy consumption occurs. This takes place predominantly in the agricultural sector and to a lesser extent in the Industrial sector in India. In typical 1.5kW and 15kW three phase induction motors, copper loss (and particularly the stator copper loss) dominates. Hence, due to variation in the stator winding, in the form of reduction in conductor size and reduction in number of turns per coil from the optimal conductor area and turns per coil from the optimal number of turns per coil distribution, enormous amount of power is wasted. For example in the reported design of three phase induction motor of 3.7 kw under test, which is commonly used in Indian agricultural and

2 126 industrial sectors, an efficiency reduction of 5.1 and 5.35 percentage points from the original Energy-efficient design occurs due to a reduction of a single turn per coil and a reduction of one SWG respectively from the original design data. Hence, there is a large potential to avoid unwarranted energy consumption by operating-efficiency improvement in such motors. Unwarranted energy consumption and performance deterioration due to improper windings that occur in Custom-designed three phase squirrel cage induction motors Rewound three phase squirrel cage induction motors operating at End-user s site Conventional tests are not adequate to determine the quality of custom- designed motors in the manufacturing line before assembly of the motor itself. The other tests are not able to determine the unknown stator winding data in operational three phase induction motors. Hence, they cannot offer a solution to the above stated efficiency and performance reduction. This Reduction in efficiency and needless energy consumption can be avoided respectively by: Evolving a Quality Assurance approach. The approach is for non-destructive manufacturing-line Quality assurance of low horse power Custom-designed three phase squirrel cage induction motors. It consists of a proposed method to determine the standard stator for Surge comparison test. Evolving an Analysis Approach for improving the operatingefficiency of the motors. This includes a non-destructive

3 127 method, employable in the field, to determine three unknown winding data viz., Number of Parallel Circuits in each Phase (NPCP), Number of Turns per Coil (NTPC) and Conductor cross-sectional area (CA) used in the stator winding of a rewound low horse power three phase induction motor of a particular design. Then, these data are compared with the master file, which consists of winding data from manufacturers to major service providers, to determine if improper winding is present in the rewound motor of the particular design and if it is the cause for operation of the motor at low efficiency at the end-user s site. This thesis is basically an experimental work, which attempts at restoring the efficiency to the operating-efficiency level achieved by the original design and thus, to avoid the unwarranted energy consumption and performance deterioration that are caused due to improper windings, by implementing the winding as per designer s specification. It also explores for possible efficiency improvement in induction motors of Standard efficiency design above its original design efficiency level by using conductor of cross sectional area higher than the conductor cross- sectional area as per the Standard efficiency design, provided the slot size permits. The necessary tests for both the solutions are a proposed EMF test, Resistance measurement test, Visual inspection test for determination of approximate conductor cross-sectional area and determination of length(s) of mean turn(s). A mathematical proof for the theoretical validity of the proposed algorithms employed is expounded. It evolves that there exists a unique solution for determining three unknowns (the Number of parallel circuits in each phase, Number of turns per coil and Conductor area) that can take only

4 128 discrete values from two equality relations (in the form of EMF test and Resistance measurement tests) and a constraint (in the form of Visual inspection test). Experiments carried out on motors of three different configurations to determine the validity of the proposed quality assurance methods are reported. Experiments carried out on motors of five different configurations to determine the validity of the proposed methods in the analysis approach are reported. The methods provide accurate results Quality Assurance Approach In this Quality Assurance approach, a non-destructive method is carried out before assembling the stator and rotor of custom-designed motors. The search conductor that is placed inside the stator bore, for the EMF test is removed, once the test is over. Therefore, performing Quality Assurance on a stator by means of the proposed approach is non-intrusive. Once the tests are over, a Forward algorithm for determining the standard stator is used for the Quality assurance of Low horse power cage induction motors. The motor stators which have winding that deviates either in conductor SWG or in turn per coil implemented, from the designer s specification, is rejected during the Quality Assurance approach. Hence, the approach can assure the quality of the motors accurately. The manufacturer can opt for producing a model motor before going in for producing a batch of custom designed machines. If they produce a model machine then lead time will be introduced in execution of an order for custom-designed machines; Loss of time, energy and money will occur.

5 129 Further, since the drive in industry is for reducing the overheads, the winding work is also sub-contracted. Hence, producing model motors for custom designed motors are not in practice. Hence, adopting the proposed approach of quality assurance can be an easier approach for quality assurance. Even if the conventional end-of-line Quality Assurance test may detect that a motor operates below the design efficiency level, it can be done so only after building the entire machine. This involves time and energy wastage. Thus the Quality Assurance approach helps in avoiding unwarranted performance reduction that includes efficiency as well as avoids unwarranted reduction in life of the motors Analysis Approach for Efficiency Improvement On the other hand, while determining the winding configuration in a motor that is operational in the field as per the proposed method for determination of unknown winding data, the stator has to be disassembled from the rotor. Here, the test may be termed intrusive. However, the level of intrusion can be minimised, if the planning for the test is done when the motor is taken up for scheduled preventive maintenance work. Once the tests are over, a Reverse algorithm for determination of unknown winding data is carried out in the method to determine the improper winding in the Rewound motors. The proposed algorithm for determining the winding data can differentiate a winding with either a slight deviation of Conductor crosssectional area (CA) from the designer s specified SWG or deviation in the Number of turns deviating from the designer specified NTPC. Hence, the

6 130 method is effective in determining winding data accurately. This measure will be applicable in countries like India, Brazil etc Proposed Measures for Achieving Higher Operational Efficiency The winding data for motors of common ratings are provided by manufacturers to major service providers. If such winding data is not available, they may be arrived at through design. Therefore, suitable recommendations for corrective measures can be made for restoring the efficiency to the operational efficiency level achieved through the original design or in the case of Standard efficiency design, for improving the efficiency of the motor above the original design-efficiency level, to the enduser. Restoration to Operating-Efficiency Level Achieved through Original Design: For an improperly Rewound motor that has fewer turns than that in the winding specification for the particular design efficiency level, the recommendation should be to rewind the motor so that it has the required number of turns as per the original winding specification. If stator slot size does not permit larger winding conductor than the winding specification for the design, then a conductor whose cross sectional area sticks to the requirement of the design for that particular efficiency category is used for rewinding. The above recommendation will be applicable to improperly rewound energy efficient motors also. Efficiency Improvement Measure: In the case of Standard efficiency design motors, if the improperly rewound motor has Conductor cross sectional area smaller than that required by the winding specification for

7 131 the design efficiency level, then the following recommendation is to be adopted. If the stator slot size permits, winding conductor with crosssectional area higher than the requirement for that Standard efficiency design can be employed. This recommendation will be mainly applicable to improperly rewound motors of Standard efficiency. These recommendations are also applicable to Standard efficiency design motors that have not been rewound. If slot size permits insertion of conductors of increased cross-sectional area, the ohmic losses in the stator will be reduced and there will be efficiency improvement. All the measures discussed here improve the efficiency of the motor from its earlier operating efficiency. This could be achieved even without any modification of the core. Throughout the thesis work, the discussions are based on three phase squirrel cage induction motors. It is obvious that a machine can be used either as a motor or a generator. Hence, the discussions in the thesis may also be applicable for all machines with three phase windings in the stator such as Induction generators, Synchronous generators and Synchronous motors. The time needed for testing and calculation in the proposed nondestructive methods is about 20 minutes. The time may be further reduced by computerizing the calculation part. Further reduction of time for testing may be achieved by automating the solutions. Energy requirement for the proposed non-destructive methods are minimal as the tests necessary for the solutions do not belong to the load test category, which requires comparatively large amount of power.

8 132 A simple and a sophisticated mechanical set-up used for aligning the rotor concentric to the stator are developed. The simple mechanical set-up is portable and can easily be employed in the field Benefits to the End-User By following the efficiency restoration / improvement measures, efficiency is restored to the operational efficiency level achieved through the original design or even better efficiencies can be achieved in the motor, which had improper winding. In the reported motors B and C of 3.7 kw Energyefficient design that had improper winding in them, a net efficiency improvement of over 4.5 percentage points could be achieved by rewinding them with proper winding. If the reported motor after the efficiency restoration measure operates in the industrial sector for 7200 hours per year, the potential electricity savings in kwh per motor per year is The value of electricity saved works to the tune of INR 3,596, with the electricity rate considered to be INR 3 per kwh. The pay back period for the amount spent towards the efficiency restoration measure is 1.8 years. Avoiding the unwarranted temperature rise in motors with improper winding, by rectifying the impropriety in the motor, will result in avoiding the unwarranted reduction in the life of the motor. It may even lead to reduced temperature rise in cases when the level of efficiency is raised by employing conductor of cross-sectional area higher than the design data for low capital cost design during the proposed efficiency improvement measure. This will ultimately result in increased life of the motor. Therefore, by avoidance of improper winding in both the solutions presented in the thesis, efficiency and life of the motor are either restored to the operational efficiency level achieved through the original design or even improved further above the original design-efficiency level. Thus, energy

9 133 efficiency can be achieved with the help of the proposed non-destructive approaches Feasibility of Implementation The proposed approaches are applicable to motors of all winding configurations employed for low horse power three phase squirrel cage induction motors. The proposed Quality Assurance and Analysis Approaches are within the capability of winders. By issuing easy-to-understand literature and hands-on training for a day, they will be able to carry out the proposed approaches for efficiency improvement. The service providers and industries who carry out the proposed analysis approach on three phase stators can maintain an inventory of test exciters for each of the common combinations of possible stator bore and number of poles. This procedure will be particularly suitable for motors of lower ratings, as they occur in the agricultural and industrial sectors, where lower-power motors are used in large numbers. The efficiency restoration / improvement measure is applicable to motors of Standard efficiency and energy-efficient designs. The manufacturer s who manufacture custom-designed motors, can obviously maintain an inventory of test exciters for each of the common combinations of possible stator bore and common number of poles they produce. The cost for this will be relatively less compared with the benefits of the quality assurance approach, in terms of reducing overheads and good will it can earn.

10 134 A preliminary conclusion from the simplified cost-benefit analysis is that the measure is likely to be cost-effective in industrial motors but not in agriculture. However, the above statement does not take into account additional benefits from the rewinding procedure. For instance, the life of the motor will also be restored or improved further due to reduced heating Recommendations The Analysis approach for efficiency improvement is highly recommended for Indian industrial sector, where the operating hours per year of motors is relatively higher than that of agricultural sector motors and where rewinding is prevalent. Lowest initial cost for a rewind motor should not be the major selection criterion as a low quality rewind will cost more because of wasted electrical energy. Standards of motor repair should be strictly adhered to so as to ensure that the rebuilt motor has the correct bearing fit, correct cooling, correct winding, and that it will run without vibration. All motor stators should be screened by a core loss test prior to stripping to identify motor with heavily damaged stator iron for possible replacement or to have the iron repaired and reinsulated if it is a critical motor that is not immediately replaceable. All the motors should have a core loss test after stripping as a proof that no damage was done in the stripping process. Good rewinding practices should be adopted while rewinding the motors to avoid unwarranted efficiency reductions.

11 135 There is no substitute for quality. Demand for quality should be there. Inspection for quality should be there. Testing for quality in both new and rebuilt electric motors has to be done. Hand winding may be followed. This will reduce the length of overhang and also may reduce stray load loss. Incentives to be given by the government so that it encourages those who wish to implement energy conservation measures. 7.2 FUTURE SCOPE A possible scope to carry out further research is to determine the winding data in motors that have Number of In hands greater than one. Automation of the proposed non-destructive methods is another possible future scope.

CHAPTER 6 RESULTS AND DISCUSSION

CHAPTER 6 RESULTS AND DISCUSSION 72 CHAPTER 6 RESULTS AND DISCUSSION 6.1 INTRODUCTION The earlier chapters discuss the problems that occur due to improper winding in three phase induction motors, the methodological basis for the approaches

More information

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION CHAPTER 1 INTRODUCTION 1.1 CONSERVATION OF ENERGY Conservation of electrical energy is a vital area, which is being regarded as one of the global objectives. Along with economic scheduling in generation

More information

CHAPTER 6 CONCLUSION

CHAPTER 6 CONCLUSION 108 CHAPTER 6 CONCLUSION This work investigates the energy conservation through efficiency improvement in an induction motor by Die-cast Copper Rotor (DCR) Technology. The possibility of the efficiency

More information

CHAPTER 3 EFFICIENCY IMPROVEMENT IN CAGE INDUCTION MOTORS BY USING DCR TECHNOLOGY

CHAPTER 3 EFFICIENCY IMPROVEMENT IN CAGE INDUCTION MOTORS BY USING DCR TECHNOLOGY 37 CHAPTER 3 EFFICIENCY IMPROVEMENT IN CAGE INDUCTION MOTORS BY USING DCR TECHNOLOGY 3.1 INTRODUCTION This chapter describes, a comparison of the performance characteristics of a 2.2 kw induction motor

More information

CHAPTER 6 DESIGN AND DEVELOPMENT OF DOUBLE WINDING INDUCTION GENERATOR

CHAPTER 6 DESIGN AND DEVELOPMENT OF DOUBLE WINDING INDUCTION GENERATOR 100 CHAPTER 6 DESIGN AND DEVELOPMENT OF DOUBLE WINDING INDUCTION GENERATOR 6.1 INTRODUCTION Conventional energy resources are not sufficient to meet the increasing electrical power demand. The usages of

More information

AC MOTOR TYPES. DESCRIBE how torque is produced in a single-phase AC motor. EXPLAIN why an AC synchronous motor does not have starting torque.

AC MOTOR TYPES. DESCRIBE how torque is produced in a single-phase AC motor. EXPLAIN why an AC synchronous motor does not have starting torque. Various types of AC motors are used for specific applications. By matching the type of motor to the appropriate application, increased equipment performance can be obtained. EO 1.5 EO 1.6 EO 1.7 EO 1.8

More information

CHAPTER 4 HARDWARE DEVELOPMENT OF DUAL ROTOR RADIAL FLUX PERMANENT MAGNET GENERATOR FOR STAND-ALONE WIND ENERGY SYSTEMS

CHAPTER 4 HARDWARE DEVELOPMENT OF DUAL ROTOR RADIAL FLUX PERMANENT MAGNET GENERATOR FOR STAND-ALONE WIND ENERGY SYSTEMS 66 CHAPTER 4 HARDWARE DEVELOPMENT OF DUAL ROTOR RADIAL FLUX PERMANENT MAGNET GENERATOR FOR STAND-ALONE WIND ENERGY SYSTEMS 4.1 INTRODUCTION In this chapter, the prototype hardware development of proposed

More information

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION 1 CHAPTER 1 INTRODUCTION 1.1 MOTIVATION OF THE RESEARCH Electrical Machinery is more than 100 years old. While new types of machines have emerged recently (for example stepper motor, switched reluctance

More information

APPLICATION OF VARIABLE FREQUENCY TRANSFORMER (VFT) FOR INTEGRATION OF WIND ENERGY SYSTEM

APPLICATION OF VARIABLE FREQUENCY TRANSFORMER (VFT) FOR INTEGRATION OF WIND ENERGY SYSTEM APPLICATION OF VARIABLE FREQUENCY TRANSFORMER (VFT) FOR INTEGRATION OF WIND ENERGY SYSTEM A THESIS Submitted in partial fulfilment of the requirements for the award of the degree of DOCTOR OF PHILOSOPHY

More information

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION 1 CHAPTER 1 INTRODUCTION 1.1 ELECTRICAL MOTOR This thesis address the performance analysis of brushless dc (BLDC) motor having new winding method in the stator for reliability requirement of electromechanical

More information

CHAPTER THREE DC MOTOR OVERVIEW AND MATHEMATICAL MODEL

CHAPTER THREE DC MOTOR OVERVIEW AND MATHEMATICAL MODEL CHAPTER THREE DC MOTOR OVERVIEW AND MATHEMATICAL MODEL 3.1 Introduction Almost every mechanical movement that we see around us is accomplished by an electric motor. Electric machines are a means of converting

More information

Starting of Induction Motors

Starting of Induction Motors 1- Star Delta Starter The method achieved low starting current by first connecting the stator winding in star configuration, and then after the motor reaches a certain speed, throw switch changes the winding

More information

Sub:EE6604/DESIGN OF ELECTRICAL MACHINES Unit V SYNCHRONOUS MACHINES. 2. What are the two type of poles used in salient pole machines?

Sub:EE6604/DESIGN OF ELECTRICAL MACHINES Unit V SYNCHRONOUS MACHINES. 2. What are the two type of poles used in salient pole machines? SRI VIDYA COLLEGE OF ENGINEERING & TECHNOLOGY DEPARTMENT OF EEEE QUESTION BANK Sub:EE6604/DESIGN OF ELECTRICAL MACHINES Unit V SYNCHRONOUS MACHINES 1. Name the two types of synchronous machines. 1. Salient

More information

2014 ELECTRICAL TECHNOLOGY

2014 ELECTRICAL TECHNOLOGY SET - 1 II B. Tech I Semester Regular Examinations, March 2014 ELECTRICAL TECHNOLOGY (Com. to ECE, EIE, BME) Time: 3 hours Max. Marks: 75 Answer any FIVE Questions All Questions carry Equal Marks ~~~~~~~~~~~~~~~~~~~~~~~~~~

More information

Cooling Enhancement of Electric Motors

Cooling Enhancement of Electric Motors Cooling Enhancement of Electric Motors Authors : Yasser G. Dessouky* and Barry W. Williams** Dept. of Computing & Electrical Engineering Heriot-Watt University Riccarton, Edinburgh EH14 4AS, U.K. Fax :

More information

General Purpose Permanent Magnet Motor Drive without Speed and Position Sensor

General Purpose Permanent Magnet Motor Drive without Speed and Position Sensor General Purpose Permanent Magnet Motor Drive without Speed and Position Sensor Jun Kang, PhD Yaskawa Electric America, Inc. 1. Power consumption by electric motors Fig.1 Yaskawa V1000 Drive and a PM motor

More information

EXPERIMENT 2 THREE PHASE INDUCTION MOTOR, PART 1

EXPERIMENT 2 THREE PHASE INDUCTION MOTOR, PART 1 University f Jordan School of Engineering Department of Mechatronics Engineering Electrical Machines Lab Eng. Osama Fuad Eng. Nazmi Ashour EXPERIMENT 2 THREE PHASE INDUCTION MOTOR, PART 1 OBJECTIVES To

More information

The Wound-Rotor Induction Motor Part I

The Wound-Rotor Induction Motor Part I Experiment 1 The Wound-Rotor Induction Motor Part I OBJECTIVE To examine the construction of the three-phase wound-rotor induction motor. To understand exciting current, synchronous speed and slip in a

More information

INDUCTION MOTOR. There is no physical electrical connection to the secondary winding, its current is induced

INDUCTION MOTOR. There is no physical electrical connection to the secondary winding, its current is induced INDUCTION MOTOR INTRODUCTION An induction motor is an alternating current motor in which the primary winding on one member (usually the stator) is connected to the power source and a secondary winding

More information

ECE 325 Electric Energy System Components 6 Three Phase Induction Motors. Instructor: Kai Sun Fall 2016

ECE 325 Electric Energy System Components 6 Three Phase Induction Motors. Instructor: Kai Sun Fall 2016 ECE 325 Electric Energy System Components 6 Three Phase Induction Motors Instructor: Kai Sun Fall 2016 1 Content (Materials are from Chapters 13-15) Components and basic principles Selection and application

More information

9. Examples of hydro energy conversion

9. Examples of hydro energy conversion 9. Examples of hydro energy conversion VATech Hydro, Austria Prof. A. Binder 9/1 Variable speed pump storage power plant Prof. A. Binder 9/2 Conventional pump storage power plant with synchronous motor-generators

More information

Institute of Technology, Nirma University B. Tech. Sem. V: Electrical Engineering 2EE305: ELECTRICAL MACHINES II. Handout: AC Commutator Motors

Institute of Technology, Nirma University B. Tech. Sem. V: Electrical Engineering 2EE305: ELECTRICAL MACHINES II. Handout: AC Commutator Motors Institute of Technology, Nirma University B. Tech. Sem. V: Electrical Engineering 2EE305: ELECTRICAL MACHINES II Handout: AC Commutator Motors Prepared by: Prof. T. H. Panchal Learning Objective: Introduction

More information

SERVICE SHOP NOTES. Use ohmmeter to check the resistance between the leads.

SERVICE SHOP NOTES. Use ohmmeter to check the resistance between the leads. SERVICE SHOP NOTES LIMA MAC SELF VOLTAGE REGULATED GENERATORS Troubleshooting Tips Symptom: Engine bogs down or stalls even at no load. Problem: Main stator has one or more taps wound or connected incorrectly.

More information

Pretest Module 21 Unit 4 Single-Phase Motors

Pretest Module 21 Unit 4 Single-Phase Motors Pretest Module 21 Unit 4 Single-Phase Motors 1. What are the four main components of a single-phase motor? Rotor, stator, centrifugal switch, end bells and bearings 2. How is a rotating field created in

More information

Rotor Position Detection of CPPM Belt Starter Generator with Trapezoidal Back EMF using Six Hall Sensors

Rotor Position Detection of CPPM Belt Starter Generator with Trapezoidal Back EMF using Six Hall Sensors Journal of Magnetics 21(2), 173-178 (2016) ISSN (Print) 1226-1750 ISSN (Online) 2233-6656 http://dx.doi.org/10.4283/jmag.2016.21.2.173 Rotor Position Detection of CPPM Belt Starter Generator with Trapezoidal

More information

Abstract- A system designed for use as an integrated starter- alternator unit in an automobile is presented in this paper. The

Abstract- A system designed for use as an integrated starter- alternator unit in an automobile is presented in this paper. The An Integrated Starter-Alternator System Using Induction Machine Winding Reconfiguration G. D. Martin, R. D. Moutoux, M. Myat, R. Tan, G. Sanders, F. Barnes University of Colorado at Boulder, Department

More information

CSDA Best Practice. Hi-Cycle Concrete Cutting Equipment. Effective Date: Oct 1, 2010 Revised Date:

CSDA Best Practice. Hi-Cycle Concrete Cutting Equipment. Effective Date: Oct 1, 2010 Revised Date: CSDA Best Practice Title: Hi-Cycle Concrete Cutting Equipment Issue No: CSDA-BP-010 : Oct 1, 2010 Revised : Introduction Hi-cycle/high frequency concrete cutting equipment has become more prevalent in

More information

Date: Name: ID: LABORATORY EXPERIMENT NO. 8 INDUCTION MOTOR/GENERATOR 8-1

Date: Name: ID: LABORATORY EXPERIMENT NO. 8 INDUCTION MOTOR/GENERATOR 8-1 Date: Name: ID: LABORATORY EXPERIMENT NO. 8 INDUCTION MOTOR/GENERATOR 8-1 OBJECT 1. To determine the general performance of a squirrel motors 2. To observe the characteristics of induction generators.

More information

Chapter 3.2: Electric Motors

Chapter 3.2: Electric Motors Part I: Objective type questions and answers Chapter 3.2: Electric Motors 1. The synchronous speed of a motor with 6 poles and operating at 50 Hz frequency is. a) 1500 b) 1000 c) 3000 d) 750 2. The efficiency

More information

A Comparative Performance Analysis DCR and DAR Squirrel Cage 3-Phase Induction Motor

A Comparative Performance Analysis DCR and DAR Squirrel Cage 3-Phase Induction Motor A Comparative Performance Analysis DCR and DAR Squirrel Cage 3-Phase Induction Motor 1 Ashish Choubey, 2 Rupali Athanere 1 Assistant Professor, 2 M.E. Student (HVPS Engg) 1,2 Deptt of Electrical Engineering

More information

COMPARISON OF ENERGY EFFICIENCY DETERMINATION METHODS FOR THE INDUCTION MOTORS

COMPARISON OF ENERGY EFFICIENCY DETERMINATION METHODS FOR THE INDUCTION MOTORS COMPARISON OF ENERGY EFFICIENCY DETERMINATION METHODS FOR THE INDUCTION MOTORS Bator Tsybikov 1, Evgeniy Beyerleyn 1, *, and Polina Tyuteva 1 1 Tomsk Polytechnic University, 634050, Tomsk, Russia Abstract.

More information

PAC TRAINING PUMP MOTORS

PAC TRAINING PUMP MOTORS PAC TRAINING PUMP MOTORS 1 Basics Magnet supported from above N S N S Since unlike poles repel each other, the magnet will rotate Stationary Magnet 2 Basics N S Stationary Magnet 3 Basics N N S S Stationary

More information

STUDY ON MAXIMUM POWER EXTRACTION CONTROL FOR PMSG BASED WIND ENERGY CONVERSION SYSTEM

STUDY ON MAXIMUM POWER EXTRACTION CONTROL FOR PMSG BASED WIND ENERGY CONVERSION SYSTEM STUDY ON MAXIMUM POWER EXTRACTION CONTROL FOR PMSG BASED WIND ENERGY CONVERSION SYSTEM Ms. Dipali A. Umak 1, Ms. Trupti S. Thakare 2, Prof. R. K. Kirpane 3 1 Student (BE), Dept. of EE, DES s COET, Maharashtra,

More information

Energy Efficient Motors

Energy Efficient Motors Energy Efficient Motors Why High Efficiency Motors? Electric motors responsible for 40% of global electricity usage Drive pumps, fans, compressors, and many other mechanical traction equipment International

More information

IMPROVING MOTOR SYSTEM EFFICIENCY WITH HIGH EFFICIENCY BELT DRIVE SYSTEMS

IMPROVING MOTOR SYSTEM EFFICIENCY WITH HIGH EFFICIENCY BELT DRIVE SYSTEMS IMPROVING MOTOR SYSTEM EFFICIENCY WITH HIGH EFFICIENCY BELT DRIVE SYSTEMS Contents Introduction Where to Find Energy Saving Opportunities Power Transmission System Efficiency Enhancing Motor System Performance

More information

694 Electric Machines

694 Electric Machines 694 Electric Machines 9.1 A 4-pole wound-rotor induction motor is used as a frequency changer. The stator is connected to a 50 Hz, 3-phase supply. The load is connected to the rotor slip rings. What are

More information

9/7/2010. Chapter , The McGraw-Hill Companies, Inc. MOTOR CLASSIFICATION. 2010, The McGraw-Hill Companies, Inc.

9/7/2010. Chapter , The McGraw-Hill Companies, Inc. MOTOR CLASSIFICATION. 2010, The McGraw-Hill Companies, Inc. Chapter 2 MOTOR CLASSIFICATION 1 In general, motors are classified according to the type of power used (AC or DC) and the motor's principle of operation. AC DC Motor Family Tree 2 DC MOTOR CONNECTIONS

More information

CHAPTER 4 MODELING OF PERMANENT MAGNET SYNCHRONOUS GENERATOR BASED WIND ENERGY CONVERSION SYSTEM

CHAPTER 4 MODELING OF PERMANENT MAGNET SYNCHRONOUS GENERATOR BASED WIND ENERGY CONVERSION SYSTEM 47 CHAPTER 4 MODELING OF PERMANENT MAGNET SYNCHRONOUS GENERATOR BASED WIND ENERGY CONVERSION SYSTEM 4.1 INTRODUCTION Wind energy has been the subject of much recent research and development. The only negative

More information

Chapter 3.1: Electrical System

Chapter 3.1: Electrical System Part-I: Objective type Questions and Answers Chapter 3.1: Electrical System 1. The heat input required for generating one kilo watt-hour of electrical output is called as. a) Efficiency b) Heat Rate c)

More information

Question Number: 1. (a)

Question Number: 1. (a) Session: Summer 2008 Page: 1of 8 Question Number: 1 (a) A single winding machine cannot generate starting torque. During starting the switch connects the starting winding via the capacitor. The capacitor

More information

Principles of Electrical Engineering

Principles of Electrical Engineering D.C GENERATORS Principle of operation of D.C machines, types of D.C Generators, e.m.f equation of D.C Generator, O.C.C of a D.C Shunt Generator, Load characteristics of D.C.Generators GENERATOR PRINCIPLE:

More information

DEPARTMENT OF EI ELECTRICAL MACHINE ASSIGNMENT 1

DEPARTMENT OF EI ELECTRICAL MACHINE ASSIGNMENT 1 It is the mark of an educated mind to be able to entertain a thought without accepting it. DEPARTMENT OF EI ELECTRICAL MACHINE ASSIGNMENT 1 1. Explain the Basic concepts of rotating machine. 2. With help

More information

Lecture 20: Stator Control - Stator Voltage and Frequency Control

Lecture 20: Stator Control - Stator Voltage and Frequency Control Lecture 20: Stator Control - Stator Voltage and Frequency Control Speed Control from Stator Side 1. V / f control or frequency control - Whenever three phase supply is given to three phase induction motor

More information

LT Motors. Efficiency level1 motors Cat No: LTM/Cat/01/Dec.2009

LT Motors. Efficiency level1 motors Cat No: LTM/Cat/01/Dec.2009 LT Motors Efficiency level1 motors Cat No: LTM/Cat/01/Dec.2009 Energy Efficient Motors - Level I 0.37 kw to 225 kw From 80 to 355 Frame EFF Level 1 ENERGY EFFICIENT MOTORS LEVEL 1 Crompton Greaves has

More information

EE6351 ELECTRIC DRIVES AND CONTROL UNIT-1 INTRODUTION

EE6351 ELECTRIC DRIVES AND CONTROL UNIT-1 INTRODUTION EE6351 ELECTRIC DRIVES AND CONTROL UNIT-1 INTRODUTION 1. What is meant by drive and electric drive? Machines employed for motion control are called drives and may employ any one of the prime movers for

More information

Pretest Module 21 Units 1-4 AC Generators & Three-Phase Motors

Pretest Module 21 Units 1-4 AC Generators & Three-Phase Motors Pretest Module 21 Units 1-4 AC Generators & Three-Phase Motors 1. What are the two main parts of a three-phase motor? Stator and Rotor 2. Which part of a three-phase squirrel-cage induction motor is a

More information

Circuit Diagram For Speed Control Of Slip Ring Induction Motor

Circuit Diagram For Speed Control Of Slip Ring Induction Motor Circuit Diagram For Speed Control Of Slip Ring Induction Motor A wound-rotor motor is a type of induction motor where the rotor windings are Compared to a squirrel-cage rotor, the rotor of the slip ring

More information

Comprehensive Technical Training

Comprehensive Technical Training Comprehensive Technical Training For Sugar Mills Staff on Operation & Maintenance of Baggase Based HP Cogeneration System Schedule: 10 th July to 13 th July, 2017 A.C. GENERATOR Topics Covered. Introduction.

More information

Transient analysis of a new outer-rotor permanent-magnet brushless DC drive using circuit-field-torque coupled timestepping finite-element method

Transient analysis of a new outer-rotor permanent-magnet brushless DC drive using circuit-field-torque coupled timestepping finite-element method Title Transient analysis of a new outer-rotor permanent-magnet brushless DC drive using circuit-field-torque coupled timestepping finite-element method Author(s) Wang, Y; Chau, KT; Chan, CC; Jiang, JZ

More information

Electrical Machines II. Week 5-6: Induction Motor Construction, theory of operation, rotating magnetic field and equivalent circuit

Electrical Machines II. Week 5-6: Induction Motor Construction, theory of operation, rotating magnetic field and equivalent circuit Electrical Machines II Week 5-6: Induction Motor Construction, theory of operation, rotating magnetic field and equivalent circuit Asynchronous (Induction) Motor: industrial construction Two types of induction

More information

Historical Development

Historical Development TOPIC 3 DC MACHINES DC Machines 2 Historical Development Direct current (DC) motor is one of the first machines devised to convert electrical power into mechanical power. Its origin can be traced to the

More information

Research on the Structure of Linear Oscillation Motor and the Corresponding Applications on Piston Type Refrigeration Compressor

Research on the Structure of Linear Oscillation Motor and the Corresponding Applications on Piston Type Refrigeration Compressor International Conference on Informatization in Education, Management and Business (IEMB 2015) Research on the Structure of Linear Oscillation Motor and the Corresponding Applications on Piston Type Refrigeration

More information

Higher National Unit Specification. General information for centres. Electrical Motors and Motor Starting. Unit code: DV9M 34

Higher National Unit Specification. General information for centres. Electrical Motors and Motor Starting. Unit code: DV9M 34 Higher National Unit Specification General information for centres Unit title: Electrical Motors and Motor Starting Unit code: DV9M 34 Unit purpose: This Unit has been developed to provide candidates with

More information

Design Improvement of the Premium Efficiency Induction Motor for Higher Efficiency & Cost Reduction

Design Improvement of the Premium Efficiency Induction Motor for Higher Efficiency & Cost Reduction Design Improvement of the Premium Efficiency Induction Motor for Higher Efficiency & Cost Reduction Mr. Mayur K. Nehete Research Scholar, Department of Electrical Engineering, Bharati idyapeeth (Deemed

More information

14 Single- Phase A.C. Motors I

14 Single- Phase A.C. Motors I Lectures 14-15, Page 1 14 Single- Phase A.C. Motors I There exists a very large market for single-phase, fractional horsepower motors (up to about 1 kw) particularly for domestic use. Like many large volume

More information

Electrical Machines -II

Electrical Machines -II Objective Type Questions: 1. Basically induction machine was invented by (a) Thomas Alva Edison (b) Fleming (c) Nikola Tesla (d) Michel Faraday Electrical Machines -II 2. What will be the amplitude and

More information

COMPARATIVE STUDY ON MAGNETIC CIRCUIT ANALYSIS BETWEEN INDEPENDENT COIL EXCITATION AND CONVENTIONAL THREE PHASE PERMANENT MAGNET MOTOR

COMPARATIVE STUDY ON MAGNETIC CIRCUIT ANALYSIS BETWEEN INDEPENDENT COIL EXCITATION AND CONVENTIONAL THREE PHASE PERMANENT MAGNET MOTOR COMPARATIVE STUDY ON MAGNETIC CIRCUIT ANALYSIS BETWEEN INDEPENDENT COIL EXCITATION AND CONVENTIONAL THREE PHASE PERMANENT MAGNET MOTOR A. Nazifah Abdullah 1, M. Norhisam 2, S. Khodijah 1, N. Amaniza 1,

More information

BELT-DRIVEN ALTERNATORS

BELT-DRIVEN ALTERNATORS CHAPTER 13 BELT-DRIVEN ALTERNATORS INTRODUCTION A generator is a machine that converts mechanical energy into electrical energy using the principle of magnetic induction. This principle is based on the

More information

LEAP - Life Expectancy Analysis Program For Electrical Rotating Machines. Marcio Gennari ABB Brazil Automation Products Machines Service Osasco

LEAP - Life Expectancy Analysis Program For Electrical Rotating Machines. Marcio Gennari ABB Brazil Automation Products Machines Service Osasco LEAP - Life Expectancy Analysis Program For Electrical Rotating Machines Marcio Gennari ABB Brazil Automation Products Machines Service Osasco LEAP - Introduction ABB India (excellence center in insulation

More information

Most home and business appliances operate on single-phase AC power. For this reason, singlephase AC motors are in widespread use.

Most home and business appliances operate on single-phase AC power. For this reason, singlephase AC motors are in widespread use. Chapter 5 Most home and business appliances operate on single-phase AC power. For this reason, singlephase AC motors are in widespread use. A single-phase induction motor is larger in size, for the same

More information

Energy Conservation By Energy Efficient Motor In Industry (Case Study Of Polyplast Industry)

Energy Conservation By Energy Efficient Motor In Industry (Case Study Of Polyplast Industry) Energy Conservation By Energy Efficient Motor In Industry (Case Study Of Polyplast Industry) Mrs. Devangi J. Jain, Mrs. Shweta Y. Prajapati 1 Lecturer in Electrical engineering department BBIT, devangijjain@gmail.com

More information

48 V Traction Drives for the BEV Mass Market

48 V Traction Drives for the BEV Mass Market 48 V Traction Drives for the BEV Mass Market Dieter Gerling Universität der Bundeswehr München 48 V Traction Drives for the BEV Mass Market development of costs for battery packs estimated for Tesla Model

More information

Project Summary Fuzzy Logic Control of Electric Motors and Motor Drives: Feasibility Study

Project Summary Fuzzy Logic Control of Electric Motors and Motor Drives: Feasibility Study EPA United States Air and Energy Engineering Environmental Protection Research Laboratory Agency Research Triangle Park, NC 277 Research and Development EPA/600/SR-95/75 April 996 Project Summary Fuzzy

More information

Field coil From Wikipedia, the free encyclopedia

Field coil From Wikipedia, the free encyclopedia Page 1 of 6 Field coil From Wikipedia, the free encyclopedia A field coil is an electromagnet used to generate a magnetic field in an electro-magnetic machine, typically a rotating electrical machine such

More information

CHAPTER 3 CAUSES AND EFFECTS OF ELECTRICAL FAULTS

CHAPTER 3 CAUSES AND EFFECTS OF ELECTRICAL FAULTS 22 CHAPTER 3 CAUSES AND EFFECTS OF ELECTRICAL FAULTS 3.1 INTRODUCTION A large number of asynchronous motors are used in industrial processes even in sensitive applications. Consequently, a defect can induce

More information

Modelling and Simulation Analysis of the Brushless DC Motor by using MATLAB

Modelling and Simulation Analysis of the Brushless DC Motor by using MATLAB International Journal of Innovative Technology and Exploring Engineering (IJITEE) Modelling and Simulation Analysis of the Brushless DC Motor by using MATLAB G.Prasad, N.Sree Ramya, P.V.N.Prasad, G.Tulasi

More information

ESO 210 Introduction to Electrical Engineering

ESO 210 Introduction to Electrical Engineering ESO 210 Introduction to Electrical Engineering Lectures-37 Polyphase (3-phase) Induction Motor 2 Determination of Induction Machine Parameters Three tests are needed to determine the parameters in an induction

More information

"Motors, Power, and Data Loggers Greg Jourdan-Wenatchee Valley College Tuesday, May 8, Sessions Session 1-8:30-9:25 a.m. Motors 101 Session

Motors, Power, and Data Loggers Greg Jourdan-Wenatchee Valley College Tuesday, May 8, Sessions Session 1-8:30-9:25 a.m. Motors 101 Session "Motors, Power, and Data Loggers Greg Jourdan-Wenatchee Valley College Tuesday, May 8, 2018 3 Sessions Session 1-8:30-9:25 a.m. Motors 101 Session 2-9:30-10:25 a.m. Power and Motors Session 3-10:30-10:25

More information

Single Phase Induction Motor. Dr. Sanjay Jain Department Of EE/EX

Single Phase Induction Motor. Dr. Sanjay Jain Department Of EE/EX Single Phase Induction Motor Dr. Sanjay Jain Department Of EE/EX Application :- The single-phase induction machine is the most frequently used motor for refrigerators, washing machines, clocks, drills,

More information

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK 16EET41 SYNCHRONOUS AND INDUCTION MACHINES UNIT I SYNCHRONOUS GENERATOR 1. Why the stator core is laminated? 2. Define voltage regulation

More information

CHAPTER 6 INTRODUCTION TO MOTORS AND GENERATORS

CHAPTER 6 INTRODUCTION TO MOTORS AND GENERATORS CHAPTER 6 INTRODUCTION TO MOTORS AND GENERATORS Objective Describe the necessary conditions for motor and generator operation. Calculate the force on a conductor carrying current in the presence of the

More information

Power Factor Improvement

Power Factor Improvement Power Factor Improvement The following devices and equipments are used for Power Factor Improvement. Static Capacitor Synchronous Condenser Phase Advancer 1. Static Capacitor We know that most of the industries

More information

BHARAT ALUMINIUM COMPANY LTD. SPECIFICATIONS FOR SYNCHRONOUS GENERATOR GENERAL Make : Jinan Power Equipment Factory Type : WX2

BHARAT ALUMINIUM COMPANY LTD. SPECIFICATIONS FOR SYNCHRONOUS GENERATOR GENERAL Make : Jinan Power Equipment Factory Type : WX2 BHARAT ALUMINIUM COMPANY LTD. SPECIFICATIONS FOR SYNCHRONOUS GENERATOR 1.00.00 GENERAL 1.01.00 Make : Jinan Power Equipment Factory 1.02.00 Type : WX21Z-073LLT 1.03.00 Reference Standard : GB/T7064-2002

More information

SIMULINK Based Model for Determination of Different Design Parameters of a Three Phase Delta Connected Squirrel Cage Induction Motor

SIMULINK Based Model for Determination of Different Design Parameters of a Three Phase Delta Connected Squirrel Cage Induction Motor IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 7, Issue 4 (Sep. - Oct. 2013), PP 25-32 SIMULINK Based Model for Determination of Different

More information

Development of High-Efficiency Permanent Magnet Synchronous Generator for Motorcycle Application

Development of High-Efficiency Permanent Magnet Synchronous Generator for Motorcycle Application Development of High-Efficiency Permanent Magnet Synchronous Generator for Motorcycle Application Toshihiko Noguchi, Yuki Kurebayashi, Tetsuya Osakabe, and Toshihisa Takagi Shizuoka University and Suzuki

More information

PRIMELINE. Induction Generator. Now Introducing Single Bearing Designs. Simple, Reliable Power For Wind or Engine Driven Applications

PRIMELINE. Induction Generator. Now Introducing Single Bearing Designs. Simple, Reliable Power For Wind or Engine Driven Applications PRIMELINE Induction Generator Now Introducing Single Bearing Designs Simple, Reliable Power For Wind or Engine Driven Applications ISO 9001: 2000 Certified PRIMELINE Induction Generator General Description

More information

Design Guidelines For Recycling AC Induction Motors

Design Guidelines For Recycling AC Induction Motors American Journal of Applied Sciences 3 (10) 2054-2058, 2006 ISSN 1546-9239 2006 Science Publications Design Guidelines For Recycling AC Induction Motors D. Ismail, K. Anayet, N. Indra, M. Dina M.M. Ahmad,

More information

Primary Heat Transport (PHT) Motor Rotor Retaining Ring Failure

Primary Heat Transport (PHT) Motor Rotor Retaining Ring Failure 1 Primary Heat Transport (PHT) Motor Rotor Retaining Ring Failure Ali Malik Components & Equipment Eng. Ontario Power Generation - Darlington Nuclear 2 Ontario Power Generation Darlington Darlington Nuclear

More information

Development of Copper Rotor of AC Induction Motor

Development of Copper Rotor of AC Induction Motor Australian Journal of Basic and Applied Sciences, 4(12): 5941-5946, 2010 ISSN 1991-8178 Development of Copper Rotor of AC Induction Motor I. Daut, K. Anayet, A. Fauzi Electrical Energy & Industrial Electronic

More information

2. ELECTRIC MOTORS. 2.1 Introduction. 2.2 Motor Types

2. ELECTRIC MOTORS. 2.1 Introduction. 2.2 Motor Types 2. ELECTRIC MOTORS Syllabus Electric motors: Types, Losses in induction motors, Motor efficiency, Factors affecting motor performance, Rewinding and motor replacement issues, Energy saving opportunities

More information

G PULLAIAH COLLEGE OF ENGINEERING & TECHNOLOGY DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING

G PULLAIAH COLLEGE OF ENGINEERING & TECHNOLOGY DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING G PULLAIAH COLLEGE OF ENGINEERING & TECHNOLOGY DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING ENERGY AUDITING AND DEMAND SIDE MANAGEMENT (15A02706) UNIT-2 ENERGY EFFICIENT MOTORS AND POWER FACTOR IMPROVEMENT

More information

1.1 Block Diagram of Drive Components of Electric Drive & their functions. Power Processor / Modulator. Control. Unit

1.1 Block Diagram of Drive Components of Electric Drive & their functions. Power Processor / Modulator. Control. Unit Introduction Motion control is required in large number of industrial and domestic applications like transportations, rolling mills, textile machines, fans, paper machines, pumps, washing machines, robots

More information

Regulation: R16 Course & Branch: B.Tech EEE

Regulation: R16 Course & Branch: B.Tech EEE SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (Descriptive) Subject with Code : Electrical Machines-II (16EE215) Regulation: R16 Course & Branch: B.Tech

More information

Double earth fault in a PSP during back to back launching sequence

Double earth fault in a PSP during back to back launching sequence Double earth fault in a PSP during back to back launching sequence Jean-Louis DROMMI EDF Hydro Engineering Center, France Pump Storage Scheme, back to back launching Electricité de France Hydro Department

More information

Lab Electrical Power Engineering I

Lab Electrical Power Engineering I INSTITUT FÜR ELEKTRISCHE MASCHINEN RHEINISCH-WESTFÄLISCHE TECHNISCHE HOCHSCHULE AACHEN Lab Electrical Power Engineering I Test 3: Induction machine with squirrel cage rotor and slip ring rotor 1 Experiment

More information

Handout Activity: HA773

Handout Activity: HA773 Charging system HA773-2 Handout Activity: HA773 Charging system The charging system allows for a means to recharge the battery and allow for electrical usage of components in the vehicle. The charging

More information

Efficiency Analysis of Rewinding Induction Motor with DTC-SVM Control Technique

Efficiency Analysis of Rewinding Induction Motor with DTC-SVM Control Technique Volume 4 Issue 4 December 2016 ISSN: 2320-9984 (Online) International Journal of Modern Engineering & Management Research Website: www.ijmemr.org Efficiency Analysis of Rewinding Induction Motor with DTC-SVM

More information

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad - 500 043 MECHANICAL ENGINEERING ASSIGNMENT Name : Electrical and Electronics Engineering Code : A40203 Class : II B. Tech I Semester Branch :

More information

EXPERIMENTAL VERIFICATION OF INDUCED VOLTAGE SELF- EXCITATION OF A SWITCHED RELUCTANCE GENERATOR

EXPERIMENTAL VERIFICATION OF INDUCED VOLTAGE SELF- EXCITATION OF A SWITCHED RELUCTANCE GENERATOR EXPERIMENTAL VERIFICATION OF INDUCED VOLTAGE SELF- EXCITATION OF A SWITCHED RELUCTANCE GENERATOR Velimir Nedic Thomas A. Lipo Wisconsin Power Electronic Research Center University of Wisconsin Madison

More information

ELECTRICAL MAINTENANCE

ELECTRICAL MAINTENANCE ELECTRICAL MAINTENANCE II PRACTICAL JOURNAL DATA 1 EXPERIMENT NO. 1 AIM: TO FIND VOLTAGE RATIO OF A GIVEN TRANSFORMER. CIRCUIT DIAGRAM: OBSERVATION TABLE: Sr.No. 1 2 3 4 Primary Voltage (V 1 ) Secondary

More information

Part- A Objective Questions (10X1=10 Marks)

Part- A Objective Questions (10X1=10 Marks) Dr. Mahalingam College of Engineering and Technology, Pollachi-3 (An Autonomous Institution) CCET 3(2016Regulation) Name of Programme: B.E. (EEE) Course Code&Course Title: 16EET41 & Synchronous & Induction

More information

Turbogenerators. With Top Performance for Steam and Gas Applications. Specifically tailored 4-pole Synchronous Turbogenerators

Turbogenerators. With Top Performance for Steam and Gas Applications. Specifically tailored 4-pole Synchronous Turbogenerators Turbogenerators With Top Performance for Steam and Gas Applications Specifically tailored 4-pole Synchronous Turbogenerators siemens.com / automation 2 Top Performance Turbogenerators for Steam and Gas

More information

GNS Series & GNP Series of High-Efficiency IPM Motors

GNS Series & GNP Series of High-Efficiency IPM Motors GNS Series & GNP Series of High-Efficiency IPM Motors HIROSE Hideo NAKAZONO Hitoshi ABSTRACT Attempting to reduce energy use, as well as rapid resource demands rise, has been a problem worldwide in recent

More information

How to implement higher efficiency motors

How to implement higher efficiency motors How to implement higher efficiency motors Higher efficiency motors (HEMs) cost less to run than conventional motors. The savings they realise can quickly outweigh their additional cost to purchase, and

More information

Universal motor From Wikipedia, the free encyclopedia

Universal motor From Wikipedia, the free encyclopedia Page 1 of 8 Universal motor From Wikipedia, the free encyclopedia The universal motor is so named because it is a type of electric motor that can operate on AC or DC power. It is a commutated serieswound

More information

GROUP OF INSTITUTIONS :: PUTTUR UNIT I SINGLE PHASE TRANSFORMERS

GROUP OF INSTITUTIONS :: PUTTUR UNIT I SINGLE PHASE TRANSFORMERS SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (Descriptive) Subject with Code : Electrical Machines-II (16EE215) Course & Branch: B.Tech EEE Regulation:

More information

Renewable Energy Systems 13

Renewable Energy Systems 13 Renewable Energy Systems 13 Buchla, Kissell, Floyd Chapter Outline Generators 13 Buchla, Kissell, Floyd 13-1 MAGNETISM AND ELECTROMAGNETISM 13-2 DC GENERATORS 13-3 AC SYNCHRONOUS GENERATORS 13-4 AC INDUCTION

More information

ELECTRIC MACHINES OPENLAB 0.2 kw

ELECTRIC MACHINES OPENLAB 0.2 kw THIS SYSTEM IS A COMPLETE SET OF COMPONENTS AND MODULES SUITABLE FOR ASSEMBLING THE ROTATING ELECTRIC MACHINES, BOTH FOR DIRECT CURRENT AND FOR ALTERNATING CURRENT. STUDENTS CAN PERFORM A CRITICAL AND

More information

Pretest Module 21 Units 1-3 AC Generators & Three-Phase Motors

Pretest Module 21 Units 1-3 AC Generators & Three-Phase Motors Pretest Module 21 Units 1-3 AC Generators & Three-Phase Motors 1. What are the two main parts of a three-phase 2. Which part of a three-phase squirrel-cage induction motor is a hollow core? 3. What are

More information