INTERNATIONAL JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY (IJEET)

Size: px
Start display at page:

Download "INTERNATIONAL JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY (IJEET)"

Transcription

1 INTERNATIONAL JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY (IJEET) International Journal of Electrical Engineering and Technology (IJEET), ISSN (Print), ISSN (Print) ISSN (Online) Volume 5, Issue 7, July (2014), pp IAEME: Journal Impact Factor (2014): (Calculated by GISI) IJEET I A E M E HYBRID GROUNDING IN OFF-SHORE UTILITY PLANT PANKAJ KUMAR 1, PANKAJ RAI 2, NIRANJAN KUMAR 3 1 (Electrical Engg Department, BIT Sindri) 2 (Electrical Engg Department, BIT Sindri/VBU, Hazaribag, India) 3 (Electrical Engg Department, NIT, Jamshedpur, India) ABSTRACT The electrical power system in offshore oil & gas installation, consists of a large distribution network, generally operating in island mode i.e., without grid support. For a compact utility plate form design, multiple gas turbine-generators without generator transformers, feed directly to 11kV switchgear. Such a configuration however, introduces high capacitive charging current (Ico), which is more than the preferred high resistance grounding of generator neutral through 10A, 10sec resistor, to safeguard the generator core from damage during an earth fault. Therefore, some utility prefers to select low resistance grounding to limit the fault current above Ico; however this can cause severe damage to generator core. Generally, oil & gas installation is a customized design. So, earthing scheme of 11kV generating utility system should be selected judiciously at basic engineering stage to avoid equipment damage and protection mal-operation during operation. Different methods of earthing scheme are available to mitigate the same. One of the method is presented here in which generator neutral is connected to high resistance grounding and 11kV switchgear connected to low resistance grounding though zig-zag transformer, subject to single grounding operation at a time. Prior to synchronization or under complete load throw scenario, generator circuit breaker is opened. So, an earth fault in generator or evacuation system, create over-voltage or ferro-resonance conditions, stressing insulation of generator and associated system. This is mitigated by putting neutral earthing resistor into service at generator neutral. This paper presents the experience learned in designing neutral earthing scheme for off-shore utility plant in view of high capacitive charging current at 11kV voltage level, outlines impact on stator core damage, mitigation and conclusion. Keywords: EDG (Emergency diesel Generator), FEED (Front End Engineering Design), GCB (Generator Circuit Breaker), GRP (Generator Relay Panel), GTG (Gas Turbine Generator), GT (Generator Transformer), HRG (High Resistance Grounding), LRG (Low Resistance Grounding), NER (Neutral Earthing Resistor), NET (Neutral Earthing Transformer). 12

2 I. INTRODUCTION Synchronous Generators are installed at Utility Plate form. They are driven by aeroderivative gas turbine and/or industrial gas turbine & diesel engines to supply un-interrupted reliable power to different plate forms to meet process requirement. A typical single line diagram is shown in Fig-1. NER with Breaker-C, CBCT & 67N relay are not shown for simplicity, although applicable to other generator. It is imperative for System design engineer to pay particular attention to applications of multiple generators connected directly to 11kV bus-bar without generator transformer (fig-1). Such a configuration introduces high capacitive charging current (Ico), more than the preferred high resistance grounding of generator neutral through 10A, 10sec NER, to safeguard the generator core from damage during an earth fault. Therefore, some utility select low resistance grounding to limit the fault current above Ico and try to mitigate the risk of core damage by reducing earth fault protection clearing time. Fig-1: Typical single line diagram with multiple generators II. CAPACITIVE CHARGING CURRENT Generator transformer, approximately equal to generator rating in MVA, occupies substantial space & weight on utility plate form. Necessary handling arrangement for GT maintenance further adds to space/weight. Thus for a compact utility plate form design, GT is generally not considered, unless technically required which results into a power system where multiple generators, feeding directly to 11kV Switchgear, refer a typical single line diagram in Fig-1. Such a configuration 13

3 however, increases the capacitive charging current (Ico), which needs to be mitigated through equipment design and protection. The electrical network at 11kV voltage level consists of 11kV cables, generators motors, service transformers and feeders, spread to various plate forms, introducing significant capacitive charging current, which could be of the order of 20A to 200A [1]. Thus, low resistance grounding is an option, could be considered for further analysis for limiting the fault current. Multiple generators can operate with unequal loading during parallel operation along with low resistance grounding also contribute to increase in 3 rd harmonics. The winding pitch of generator could be 2/3 rd or 5/6 th ; however both contribute to 3 rd harmonic voltage, displaced by (electrical degrees). The third harmonic & fundamental phase voltages are co-phasal and their effect is felt in the zero sequence circuit, in the form of a circulating current at the third harmonic frequency. The magnitude of this current is determined by the third harmonic driving voltage and the third harmonic impedance of the zero sequence circuit. The third harmonic current can circulate only if a closed zero sequence path is available for the generator third harmonic voltage to drive it, refer fig-4 for example. The magnitude of generated third harmonic voltage is [1] U3= (Ia/In) 2.72 (If/Ifn) Where U3 (%) is the measured third harmonic voltage, Ia (Amp)-Armature current In (Amp) Rated armature current, If is calculated field current Ifn is the calculated field current at rated output power Industry always prefers for a proven designed generator. Reducing the winding pitch to 2/3rd reduces 3rd harmonic as compared to 5/6 th winding pitch, however rotor pole surface losses is increased by 6 times approx. and generator output reduced by 15%. Therefore for same output, generator size needs to be increased, requiring more space & weight and introducing large impact on utility plate form design. It may be noted that in off-shore utility, sub-system are arranged horizontally & vertically, while in onshore plant the same is arranged horizontally. Hence, for a standard proven generator, the manufacturer offers 5/6 th winding pitch generator. [A] GENERATOR CORE DAMAGE CURVE - Manufacturer s damage curve of generator stator should always be referred for the magnitude and duration of allowable earth fault current, so that iron core is prevented from damage during fault. Core damage is considered more severe than winding damage [7]. Fig. 2 is a typical set of damage curves for generator, showing three regions where there are negligible, little, and serious core burning area. 15A, 10sec Negligible burning to generator iron core 65A-200A for time duration selected according to the curve for little / slight damage to generator iron core Thus, earth fault current could be limited to 200A, subject to earth fault protection clearance time is reduced to 100ms, to enable core to withstand higher fault current, in slight burning area. So, for 90A fault current, the earth fault protection clearance time could be set for 800ms. [B] NEUTRAL EARTHING RESISTOR - Due to high capacitive charging current and stringent specification requirement for 11kV NER with IP54 protection, the size of NER becomes quite large. Higher the degree of protection, higher is the size of NER because of heat dissipation. Thus NERs needs more space, hence difficult to accommodate in compact utility plate form. Usually, short time 14

4 rating of NER is 10sec. with temperature rise of C [6]. In view of high temperature, it is essential to place NER in safe area, not in hazardous area. For Industrial generator, NER can be placed in Main terminal box of generator. However, in case of ExnA generator, NER cannot be placed in Main terminal box or Line side cubicle of generator, otherwise Exn certification cannot achieved due to temperature class limit T4 i.e., C. Thus, it is imperative to judiciously select both continuous & short-time rating and degree of protection of NER. Fig.-2: Typical curve for arc burning on generator stator core lamination III. CHOICE OF GROUNDING METHODS The choice of grounding method should provide safety, reliability, and continuity of service desired for the oil & gas distribution system. IEEE Standard [8] lists several reasons for limiting the ground fault current by resistance grounding: 1. To reduce burning and melting effects in faulted electrical equipment, such as switchgear, transformers, cables, and rotating machines. 2. To reduce mechanical stresses in circuits and apparatus carrying fault currents. 15

5 3. To reduce electrical-shock hazard to personnel caused by stray ground fault currents in the ground return path. 4. To reduce the arc blast or flash hazard to personnel who may have accidentally caused or who happen to be in close proximity to the ground fault. 5. To reduce the momentary line voltage dip occasioned by the occurrence and clearing of a ground fault. 6. To secure control of transient over-voltages while at the same time avoiding the shutdown of a faulty circuit on the occurrence of the first ground fault (high resistance grounding). For directly connected parallel operating generators, the system neutral grounding scheme should be selected carefully because of high capacitive charging current of 75A at 11kV. Selection of system grounding scheme should ensure that no circulating 3 rd harmonic current be allowed in the neutral circuits of the generators when they are operated in parallel. Generally, high resistance grounding (HRG) is preferred for generators to minimize generator core damage by using NER of 10A, 10sec however, low resistance grounding (LRG) is also used in off-shore installation where Ico is high. Due to 75A capacitive charging current, HRG is not recommended. Low resistance grounding (LRG) through NER - Higher fault current is good for sensitive & selective relaying, limiting transient over-voltages to moderate values, and potential cost savings over other grounding methods. However, the main drawback is the possibility of significant burning of the generator stator core (Refer Fig-2). In addition, because of IP54 and generator core guarantee for 75A fault current, this scheme is found not suitable as illustrated above (Refer II-B). There are a certain issues, which needs a particular attention- 1. While using low resistance grounding it is recommended to have single NER in service at a time, to reduce 3rd harmonic circulating current flow. So, with bus-coupler in closed condition (refer fig-1), only one NET should be in service and other in switch-off condition. When bus-coupler is off, then both NET should be in service. Hence NET should be designed for 2x100% rating. There should not be parallel grounding of generators. Parallel grounding means generators shown in fig-1 are having their NER in service. 2. Even though there is no parallel grounding, there will still be capacitive leakage currents at 11kV voltage level due to generators and large network of 11kV cable length to motors, service transformers and feeders, spread to various plate forms. This current will flow through the generator neutral earthing resistor. Thus, for a ground fault in the stator winding occurring together with low resistance grounding, the stator core will be severely damaged (fig-2). In view of above, Hybrid grounding is a better option, combining best features of both low resistance and high resistance grounding methods [2]. This requires 3 no NER (HRG) with degree of protection defined to IP23 & 2 no Zig-Zag Grounding Transformer (LRG), which means more space & weight, however is insignificant and can be accommodated at Utility plate form. For Industrial generator, NER can be installed within main terminal box of the generator. For ExnA generator [10], NER cannot be placed within Main terminal box or Line side cubicle of generator otherwise Exn certification cannot be achieved due to temperature class limit (T4=200 0 C), while NER temperature can be up to C [5]. In that scenario, 3 no NER along with 2 no NET are to be placed in safe area. Generator neutral is earthed through 10A, 10sec NER with breaker for NER switch-in/off (fig-3). During normal operation, only one Zig-Zag Grounding Transformer with resistor R G has to be kept in service while generator NERs is kept switched off. Under bus-coupler closed condition, second NET should be off (fig-1 & fig-4). Prior to synchronization or under complete load throw scenario of a generator, the corresponding NER should be put into service as GCB is opened. 16

6 Fig-3: Hybrid Earthing scheme with Zig-Zag transformer Neutral earthing transformer is connected in star/broken delta (fig-4). The primary winding is solidly earthed and secondary in broken delta having loading resistor with Over-Voltage relay (59N) [8]. The loading resistor is designed to limit the zero-sequence Fig-4: Hybrid Earthing scheme showing fault current without NER current in secondary to limit the earth fault current to 90A. Earthing transformer/loading resistor is designed to withstanding the earth fault current for 10 sec (min). 17

7 Fault Scenario-1 - During an earth fault in 11kV switchgear or any of the outgoing feeders (fig-1), the loading resistor across the NET broken delta restricts the fault current to 90A and allows overvoltage protection 59N to detect the over-voltage to immediate tripping of the faulty circuit. In addition, the loading resistor provides damping to over-voltage due to Ferro-resonance condition [3] [4] [5]. Fault Scenario-2 During an earth fault in generator or evacuation system, GRP (having directional earth fault protection operation (67N) & Instantaneous ground overcurrent protection (50G), Generator Differential Protection (87G) and Over-voltage Protection (59N) - Part of numerical Generator Protection) initiates tripping of GCB and Excitation & Field Breaker, closing of GTG shut-off valve and simultaneous closing of generator NER within 150ms through lock out relay (86), so as to avoid build-up of stress on insulation of generator and associated system. Under the above fault scenario, there are over voltages due to following- 1. Sudden load throw 2. Over-voltage due to single phase to ground 3. Ferro-resonance conditions [3] [4] [5]. Thus, fault is mitigated through employing Hybrid earthing scheme. Grounding scheme in offshore installation should be finalized judiciously during basic engineering design or FEED. Capacitive leakage current needs to be calculated [9] based on layout and similar plant database, to be validated later during detailed engineering. Earth Fault protection clearing time should always be derived from generator core damage curve. Degree of protection should be correctly defined; otherwise NER size would be large, which requires more space at Utility plate form. IV. CONCLUSION Capacitive leakage current should be judiciously calculated during Front End Engineering Design (FEED) or Basic engineering design stage. Earth Fault Protection clearing time should always be obtained from generator manufacturer supplied core damage curve. It is imperative to carefully select both continuous & short-time rating and degree of protection of NER otherwise this has impact on NER size, which can lead to a layout issue. While selecting earthing scheme, layout of the utility plant in which generator & electrical system including NER and NET with loading resistor are placed, must be considered. NER and NET with loading resistor should always be installed in Safe area (Non-hazardous area). During normal operation, one NET at 11kV bus is in service with bus-coupler closed and all generator NERs are isolated. To avoid coordination problems, it may be imperative to remove supplementary protection and NER (HRG), when the generator is operated in connection with 11kV switchgear (i.e., normal mode) with LRG in service. Such a hybrid arrangement offers the best features of both high resistance grounding and low resistance grounding into the power system. V. REFERENCES [1] Handbook of Electrical Engineering: For Practitioners in the Oil, Gas and Petrochemical Industry - by Alan L. Sheldrake. [2] Earth fault protection for synchronous Machines, International Application Treaty under PCT, published on 13 May [3] Grounding and ground fault protection of multiple generator installations on medium voltage industrial and commercial power systems Part 1-4, An IEEE/IAS WG Report. 18

8 [4] System Grounding and Ground-Fault Protection in the Petrochemical Industry: A need for a Better Understanding, John P. Nelson, Fellow, IEEE Transaction on Industry on Industry Applications, Vol. 38, No. 6, November / December [5] State-of-the Art Medium Voltage Generator Grounding and Ground Fault Protection of Multiple Generator Installations, David Shipp, Eaton Electrical, Warrendale, Pennsylvania. [6] IEEE 32- IEEE Standard Requirements, Terminology, and Test Procedures for Neutral Grounding Devices. [7] IEEE IEEE Recommended Practice for Grounding of Industrial and Commercial Power Systems. [8] IEEE 242-IEEE Recommended Practice for Protection and Coordination of Industrial and Commercial Power Systems. [9] Industrial Power System, Shoib Khan, CRC Press. [10] IEC60079:15: Explosive atmospheres: Equipment protection by type of protection "n". [11] Sumit Kumar and Prof.Dr.A.A Godbole, Performance Improvement of Synchronous Generator by Stator Winding Design, International Journal of Electrical Engineering & Technology (IJEET), Volume 4, Issue 3, 2013, pp , ISSN Print: , ISSN Online: [12] Archana Singh, Prof. D.S.Chauhan and Dr.K.G.Upadhyay, Effect of Reactive Power Valuation of Generators in Deregulated Electricity Markets, International Journal of Electrical Engineering & Technology (IJEET), Volume 3, Issue 1, 2012, pp , ISSN Print: , ISSN Online: [13] Mosleh Maiet Al-Harthi and Sherif Salama Mohamed Ghoneim, Measurements the Earth Surface Potential for Different Grounding System Configurations using Scale Model, International Journal of Electrical Engineering & Technology (IJEET), Volume 3, Issue 2, 2012, pp , ISSN Print: , ISSN Online:

The Case for Hybrid Generator Grounding

The Case for Hybrid Generator Grounding I-Gard Hybrid Generator Whitepaper 1 The Case for Hybrid Generator Sergio Panetta March 10, 2014 VP of Engineering, I-Gard Medium Voltage Generators are not designed to withstand full fault current during

More information

Grounding Of Standby & Emergency Power Systems

Grounding Of Standby & Emergency Power Systems July / August 2007 ELECTRICAL LINE 53 Grounding Of Standby & Emergency Power Systems By Andrew Cochran Power continuity is essential in many industrial and commercial installations where a trip out due

More information

6545(Print), ISSN (Online) Volume 4, Issue 2, March April (2013), IAEME & TECHNOLOGY (IJEET)

6545(Print), ISSN (Online) Volume 4, Issue 2, March April (2013), IAEME & TECHNOLOGY (IJEET) INTERNATIONAL International Journal of JOURNAL Electrical Engineering OF ELECTRICAL and Technology (IJEET), ENGINEERING ISSN 0976 & TECHNOLOGY (IJEET) ISSN 0976 6545(Print) ISSN 0976 6553(Online) Volume

More information

Three days training program (Oct 5-7) on. Substation Earthing, Industrial earthing and Neutral earthing. at IEI Mysore, Karnataka India

Three days training program (Oct 5-7) on. Substation Earthing, Industrial earthing and Neutral earthing. at IEI Mysore, Karnataka India Three days training program (Oct 5-7) on Substation Earthing, Industrial earthing and Neutral earthing at IEI Mysore, Karnataka India Training program is helpful for students, Engineers working in Design

More information

34 th Hands-On Relay School

34 th Hands-On Relay School 34 th Hands-On Relay School Generation Track Overview Lecture Generator Design, Connections, and Grounding 1 Generator Main Components Stator Core lamination Winding Rotor Shaft Poles Slip rings Stator

More information

Unit Protection System for Pumped-Storage Power Stations

Unit Protection System for Pumped-Storage Power Stations Unit Protection System for Pumped-Storage Power Stations 1. Introduction In many power systems, pumped-storage power stations are used in addition to run-of-river power stations. These power stations serve

More information

2000 Cooper Bussmann, Inc. Page 1 of 9 10/04/00

2000 Cooper Bussmann, Inc. Page 1 of 9 10/04/00 DO YOU KNOW THE FACTS ABOUT SINGLE-POLE INTERRUPTING RATINGS? YOU MAY BE IN TROUBLE! Typical plant electrical systems use three-phase distribution schemes. As an industry practice, short-circuit calculations

More information

Chapter 6 Generator-Voltage System

Chapter 6 Generator-Voltage System Chapter 6 Generator-Voltage System 6-1. General The generator-voltage system described in this chapter includes the leads and associated equipment between the generator terminals and the low-voltage terminals

More information

DESIGN CONSIDERATIONS FOR APPLICATION OF SHUNT CAPACITORS IN HEAVY HATER PLANT (TUTICORIN)

DESIGN CONSIDERATIONS FOR APPLICATION OF SHUNT CAPACITORS IN HEAVY HATER PLANT (TUTICORIN) DESIGN CONSIDERATIONS FOR APPLICATION OF SHUNT CAPACITORS IN HEAVY HATER PLANT (TUTICORIN) -A.R. Subraaanian -R.A.A. Palani -J. Thomson A new 3.3 K.V. 4200 KVAR auto switching capacitor bank has been installed

More information

Double earth fault in a PSP during back to back launching sequence

Double earth fault in a PSP during back to back launching sequence Double earth fault in a PSP during back to back launching sequence Jean-Louis DROMMI EDF Hydro Engineering Center, France Pump Storage Scheme, back to back launching Electricité de France Hydro Department

More information

White Paper. Ground Fault Application Guide. WL Low Voltage Power Circuit Breakers

White Paper. Ground Fault Application Guide. WL Low Voltage Power Circuit Breakers White Paper Ground Fault Application Guide WL Low Voltage Power Circuit Breakers Table of Contents Introduction 3 Need for ground fault tripping 3 Requirements from industry standards 3 National Electrical

More information

SLOVAK UNIVERSITY OF TECHNOLOGY Faculty of Material Science and Technology in Trnava ELECTRICAL ENGINEERING AND ELECTRONICS.

SLOVAK UNIVERSITY OF TECHNOLOGY Faculty of Material Science and Technology in Trnava ELECTRICAL ENGINEERING AND ELECTRONICS. SLOVAK UNIVERSITY OF TECHNOLOGY Faculty of Material Science and Technology in Trnava ELECTRICAL ENGINEERING AND ELECTRONICS Róbert Riedlmajer TRNAVA 2007 Unit 14 - Fundamentals of power system protection

More information

Study of Fault Currents and Relay Coordination of a Chemical Industry After Integrating with PV Generation and Simulation with a Software.

Study of Fault Currents and Relay Coordination of a Chemical Industry After Integrating with PV Generation and Simulation with a Software. Study of Fault Currents and Relay Coordination of a Chemical Industry After Integrating with PV Generation and Simulation with a Software. B. Ramakoti #1, S. Hari Prasad Babu #2, K. Aravinda Swamy #3,

More information

Power Systems Trainer

Power Systems Trainer Electrical Power Systems PSS A self-contained unit that simulates all parts of electrical power systems and their protection, from generation to utilisation Key Features Simulates generation, transmission,

More information

Net Metering Interconnection Requirements

Net Metering Interconnection Requirements Net Metering Interconnection Requirements Customer Generation Capacity Not Exceeding 100 kw Date: 2017-07-01 Version: 1 Revision History Date Rev. Description July 1, 2017 1 Initial Release Newfoundland

More information

3.2. Current Limiting Fuses. Contents

3.2. Current Limiting Fuses. Contents .2 Contents Description Current Limiting Applications................. Voltage Rating.......................... Interrupting Rating....................... Continuous Current Rating................ Fuse

More information

Design considerations for generator set mounted paralleling breakers

Design considerations for generator set mounted paralleling breakers Our energy working for you. Design considerations for generator set mounted paralleling breakers White Paper Hassan Obeid, Application Group Cummins Power Generation Cummins Power Systems has been delivering

More information

Grounding Systems. Resistance. Resistance Grounding Systems Contents

Grounding Systems. Resistance. Resistance Grounding Systems Contents Resistance Systems.0-1 Resistance Systems Contents Resistance Systems High Resistance System Medium Voltage...............1-1 High Resistance System Low Voltage..................2-1 Specifications See

More information

Voltage Sag Mitigation in IEEE 6 Bus System by using STATCOM and UPFC

Voltage Sag Mitigation in IEEE 6 Bus System by using STATCOM and UPFC IJSTE - International Journal of Science Technology & Engineering Volume 2 Issue 01 July 2015 ISSN (online): 2349-784X Voltage Sag Mitigation in IEEE 6 Bus System by using STATCOM and UPFC Ravindra Mohana

More information

Unified requirements for systems with voltages above 1 kv up to 15 kv

Unified requirements for systems with voltages above 1 kv up to 15 kv (1991) (Rev.1 May 2001) (Rev.2 July 2003) (Rev.3 Feb 2015) (Corr.1 June 2018) Unified requirements for systems with voltages above 1 kv up to 15 kv 1. General 1.1 Field of application The following requirements

More information

FAULT ANALYSIS FOR VOLTAGE SOURCE INVERTER DRIVEN INDUCTION MOTOR DRIVE

FAULT ANALYSIS FOR VOLTAGE SOURCE INVERTER DRIVEN INDUCTION MOTOR DRIVE International Journal of Electrical Engineering & Technology (IJEET) Volume 8, Issue 1, January- February 2017, pp. 01 08, Article ID: IJEET_08_01_001 Available online at http://www.iaeme.com/ijeet/issues.asp?jtype=ijeet&vtype=8&itype=1

More information

Pankaj Khali, ABB India Limited Representing :ABB Switzerland limited, September 2016 Generator Circuit-Breakers. Technical Seminar: PLN

Pankaj Khali, ABB India Limited Representing :ABB Switzerland limited, September 2016 Generator Circuit-Breakers. Technical Seminar: PLN Pankaj Khali, ABB India Limited Representing :ABB Switzerland limited, September 2016 Generator Circuit-Breakers Technical Seminar: PLN Agenda Advantages of Generator Circuit-Breakers Criteria of Selection

More information

PSNH INTERCONNECTION REQUEST

PSNH INTERCONNECTION REQUEST PSNH INTERCONNECTION REQUEST Send the completed Interconnection Request and required attachments to: Public Service of New Hampshire Attn: Michael Motta, Senior Engineer Supplemental Energy Sources P.

More information

Wind Power Plants with VSC Based STATCOM in PSCAD/EMTDC Environment

Wind Power Plants with VSC Based STATCOM in PSCAD/EMTDC Environment 2012 2nd International Conference on Power and Energy Systems (ICPES 2012) IPCSIT vol. 56 (2012) (2012) IACSIT Press, Singapore DOI: 10.7763/IPCSIT.2012.V56.2 Wind Power Plants with VSC Based STATCOM in

More information

Shunt Capacitor Bank Protection in UHV Pilot Project. Qing Tian

Shunt Capacitor Bank Protection in UHV Pilot Project. Qing Tian Shunt Capacitor Bank Protection in UHV Pilot Project Qing Tian 2012-5 INTRODUCTION State Grid Corp. of China, the largest electric power provider in the country, has first build a 1000 kv transmission

More information

Net Metering Interconnection Requirements. Customer Generation Capacity Not Exceeding 100 kw. Date: Version: 1

Net Metering Interconnection Requirements. Customer Generation Capacity Not Exceeding 100 kw. Date: Version: 1 Net Metering Interconnection Requirements Customer Generation Capacity Not Exceeding 100 kw Date: 2017-07-01 Version: 1 Revision History Date Rev. Description July 01, 2017 1 Initial release Newfoundland

More information

EE 741 Over-voltage and Overcurrent. Spring 2014

EE 741 Over-voltage and Overcurrent. Spring 2014 EE 741 Over-voltage and Overcurrent Protection Spring 2014 Causes of Over-voltages Lightning Capacitor switching Faults (where interruption occurs prior to zero current crossing) Accidental contact with

More information

EE042: Practical Power System Protection for Engineers & Technicians

EE042: Practical Power System Protection for Engineers & Technicians EE042: Practical Power System Protection for Engineers & Technicians EE042 Rev.001 CMCT COURSE OUTLINE Page 1 of 5 Training Description: This intensive course has been designed to give plant operators,

More information

IEEE Northern Canada & Southern Alberta Sections, PES/IAS Joint Chapter Technical Seminar Series

IEEE Northern Canada & Southern Alberta Sections, PES/IAS Joint Chapter Technical Seminar Series IEEE Northern Canada & Southern Alberta Sections, PES/IAS Joint Chapter Technical Seminar Series Designing Electrical Systems for On-Site Power Generation Apr 04 th /05 th, 2016, Calgary/Edmonton, Alberta,

More information

2013 Grid of the Future Symposium. Utilizing Single Phase Operation Scheme on Untransposed 765kV lines for a Stability-Limited Plant

2013 Grid of the Future Symposium. Utilizing Single Phase Operation Scheme on Untransposed 765kV lines for a Stability-Limited Plant 21, rue d Artois, F-75008 PARIS CIGRE US National Committee http : //www.cigre.org 2013 Grid of the Future Symposium Utilizing Single Phase Operation Scheme on Untransposed 765kV lines for a Stability-Limited

More information

INTERCONNECTION STANDARDS FOR PARALLEL OPERATION OF SMALL-SIZE GENERATING FACILITIES KILOWATTS IN THE STATE OF NEW JERSEY

INTERCONNECTION STANDARDS FOR PARALLEL OPERATION OF SMALL-SIZE GENERATING FACILITIES KILOWATTS IN THE STATE OF NEW JERSEY INTERCONNECTION STANDARDS FOR PARALLEL OPERATION OF SMALL-SIZE GENERATING FACILITIES 10-100 KILOWATTS IN THE STATE OF NEW JERSEY January 1, 2005 Rockland Electric Company 390 West Route 59 Spring Valley,

More information

BHARAT ALUMINIUM COMPANY LTD. SPECIFICATIONS FOR SYNCHRONOUS GENERATOR GENERAL Make : Jinan Power Equipment Factory Type : WX2

BHARAT ALUMINIUM COMPANY LTD. SPECIFICATIONS FOR SYNCHRONOUS GENERATOR GENERAL Make : Jinan Power Equipment Factory Type : WX2 BHARAT ALUMINIUM COMPANY LTD. SPECIFICATIONS FOR SYNCHRONOUS GENERATOR 1.00.00 GENERAL 1.01.00 Make : Jinan Power Equipment Factory 1.02.00 Type : WX21Z-073LLT 1.03.00 Reference Standard : GB/T7064-2002

More information

Development of Electrical Power System Simulator.

Development of Electrical Power System Simulator. Development of Electrical Power System Simulator. G. Adedokun, M.Eng., MNSE, R.Eng. Department of Electrical/Electronics Engineering, Osun State College of Technology, Esa-Oke, Nigeria * E-mail: adedokun_gb@yahoo.com

More information

TECHNICAL SPECIFICATION FOR INDEPENDENT POWER PRODUCERS. NB Power Customer Service and Distribution. June 2008

TECHNICAL SPECIFICATION FOR INDEPENDENT POWER PRODUCERS. NB Power Customer Service and Distribution. June 2008 NB Power Customer Service and Distribution June 2008 Prepared by: Steven Wilcox Revised by: Steven Wilcox TABLE OF CONTENTS 1.0 Introduction 4 2.0 NB Power Policy on Independent Power Production 4 3.0

More information

Legal Name of the Customer (or, if an individual, individual's name): Name: Contact Person: Mailing Address: Physical Address: City: State: Zip Code:

Legal Name of the Customer (or, if an individual, individual's name): Name: Contact Person: Mailing Address: Physical Address: City: State: Zip Code: Generating Facility Level 2 or 3 Interconnection Review (For Generating Facilities with Electric Nameplate Capacities no Larger than 20 MW) Instructions An Interconnection Customer who requests a Utah

More information

6/4/2017. Advances in technology to address safety. Thomas A. Domitrovich, P.E., LEED AP VP, Technical Sales Eaton

6/4/2017. Advances in technology to address safety. Thomas A. Domitrovich, P.E., LEED AP VP, Technical Sales Eaton Advances in technology to address safety Thomas A. Domitrovich, P.E., LEED AP VP, Technical Sales Eaton 1 Advances in technology could mean use existing technology & back to basics Advances in safety are

More information

Air-insulated switchgear UniGear type ZS1

Air-insulated switchgear UniGear type ZS1 Air-insulated switchgear UniGear type ZS1 ABB Power Technologies / 1-7074 D 12-03-2003 - Air-insulated switchgear UniGear type ZS1 ABB Power Technologies / 2-7075 D 1 2-03-2003 - Rated voltage kv 12 17.5

More information

Modelling and Analysis of Thyristor Controlled Series Capacitor using Matlab/Simulink

Modelling and Analysis of Thyristor Controlled Series Capacitor using Matlab/Simulink Modelling and Analysis of Thyristor Controlled Series Capacitor using Matlab/Simulink Satvinder Singh Assistant Professor, Department of Electrical Engg. YMCA University of Science & Technology, Faridabad,

More information

Medium Voltage Metal Enclosed Thyristor Switched Harmonic Filter Banks

Medium Voltage Metal Enclosed Thyristor Switched Harmonic Filter Banks Medium Voltage Metal Enclosed Thyristor Switched Harmonic Filter Banks Product Selection & Application Guide Product Description GE's Thyristor Switched Harmonic Filter Banks (TSC), are custom designed

More information

Power System Stability Analysis on System Connected to Wind Power Generation with Solid State Fault Current Limiter

Power System Stability Analysis on System Connected to Wind Power Generation with Solid State Fault Current Limiter IJSTE - International Journal of Science Technology & Engineering Volume 2 Issue 2 August 2015 ISSN (online): 2349-784X Power System Stability Analysis on System Connected to Wind Power Generation with

More information

Induction Generator: Excitation & Voltage Regulation

Induction Generator: Excitation & Voltage Regulation Induction Generator: Excitation & Voltage Regulation A.C. Joshi 1, Dr. M.S. Chavan 2 Lecturer, Department of Electrical Engg, ADCET, Ashta 1 Professor, Department of Electronics Engg, KIT, Kolhapur 2 Abstract:

More information

Dynamic Behaviour of Asynchronous Generator In Stand-Alone Mode Under Load Perturbation Using MATLAB/SIMULINK

Dynamic Behaviour of Asynchronous Generator In Stand-Alone Mode Under Load Perturbation Using MATLAB/SIMULINK International Journal Of Engineering Research And Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 14, Issue 1 (January 2018), PP.59-63 Dynamic Behaviour of Asynchronous Generator

More information

Study of Fault Clearing by A Circuit Breaker In Presence of A Shunt Capacitor Bank

Study of Fault Clearing by A Circuit Breaker In Presence of A Shunt Capacitor Bank Day 2 - Session V-B 299 Study of Fault Clearing by A Circuit Breaker In Presence of A Shunt Capacitor Bank Murali Kandakatla, B. Kondala Rao, Gopal Gajjar ABB Ltd., Maneja, Vadodara, India Thane Introduction

More information

FAULT ANALYSIS OF AN ISLANDED MICRO-GRID WITH DOUBLY FED INDUCTION GENERATOR BASED WIND TURBINE

FAULT ANALYSIS OF AN ISLANDED MICRO-GRID WITH DOUBLY FED INDUCTION GENERATOR BASED WIND TURBINE FAULT ANALYSIS OF AN ISLANDED MICRO-GRID WITH DOUBLY FED INDUCTION GENERATOR BASED WIND TURBINE Yunqi WANG, B.T. PHUNG, Jayashri RAVISHANKAR School of Electrical Engineering and Telecommunications The

More information

4-Day Power System Analysis, Coordination, System Studies

4-Day Power System Analysis, Coordination, System Studies 4-Day Power System Analysis, Coordination, System Studies Contact us Today for a FREE quotation to deliver this course at your company?s location. https://www.electricityforum.com/onsite-training-rfq Our

More information

UBC Technical Guidelines Section Edition Commissioning of Electrical Systems Page 1 of 5

UBC Technical Guidelines Section Edition Commissioning of Electrical Systems Page 1 of 5 Page 1 of 5 1.0 GENERAL 1.1 Coordination Requirements.1 UBC Building Operations Electrical Technical Support.2 UBC Energy & Water Services 2.0 REQUIREMENTS FOR COMMISSIONING AND TESTING 2.1 Testing.1 Unit

More information

Switchgear and Distribution Systems for Engineers and Technicians

Switchgear and Distribution Systems for Engineers and Technicians Switchgear and Distribution Systems for Engineers and Technicians WHAT YOU WILL LEARN: How to identify typical characteristics of an industrial distribution system Become familiar with the main components

More information

Analysis of Eclipse Drive Train for Wind Turbine Transmission System

Analysis of Eclipse Drive Train for Wind Turbine Transmission System ISSN 2395-1621 Analysis of Eclipse Drive Train for Wind Turbine Transmission System #1 P.A. Katre, #2 S.G. Ganiger 1 pankaj12345katre@gmail.com 2 somu.ganiger@gmail.com #1 Department of Mechanical Engineering,

More information

An Alternative to Reduce Medium-Voltage Transient Recovery Voltage Peaks

An Alternative to Reduce Medium-Voltage Transient Recovery Voltage Peaks An Alternative to Reduce Medium-Voltage Transient Recovery Voltage Peaks D. M. Nobre W. L. A. Neves B. A. de Souza Departamento de Engenharia Elétrica - UFPB Av. Aprígio Veloso, 882 Bodocongó 58.109-970,

More information

Recent Trades in Distribution System

Recent Trades in Distribution System Scientific Journal of Impact Factor(SJIF): 3.134 e-issn(o): 2348-4470 p-issn(p): 2348-6406 International Journal of Advance Engineering and Research Development Volume 2,Issue 3, March -2015 Recent Trades

More information

PROTECTION OF THREE PHASE INDUCTION MOTOR AGAINST VARIOUS ABNORMAL CONDITIONS

PROTECTION OF THREE PHASE INDUCTION MOTOR AGAINST VARIOUS ABNORMAL CONDITIONS PROTECTION OF THREE PHASE INDUCTION MOTOR AGAINST VARIOUS ABNORMAL CONDITIONS Professor.S.N.Agrawal 1, Chinmay S. Vairagade 2, Jeevak Lokhande 3, Saurabh Chikate 4, Shahbaz khan 5, Neha Makode 6, Shivani

More information

The University of New South Wales. School of Electrical Engineering and Telecommunications. Industrial and Commercial Power Systems Topic 6

The University of New South Wales. School of Electrical Engineering and Telecommunications. Industrial and Commercial Power Systems Topic 6 The University of New South Wales School of Electrical Engineering and Telecommunications Industrial and Commercial Power Systems Topic 6 PROTECTIONS 1 FUNCTION OF ELECTRICAL PROTECTION SYSTEMS Problems:

More information

ABB POWER SYSTEMS CONSULTING

ABB POWER SYSTEMS CONSULTING ABB POWER SYSTEMS CONSULTING DOMINION VIRGINIA POWER Offshore Wind Interconnection Study 2011-E7406-1 R1 Summary Report Prepared for: DOMINION VIRGINIA POWER Report No.: 2011-E7406-1 R1 Date: 29 February

More information

Review paper on Fault analysis and its Limiting Techniques.

Review paper on Fault analysis and its Limiting Techniques. Review paper on Fault analysis and its Limiting Techniques. Milap Akbari 1, Hemal Chavda 2, Jay Chitroda 3, Neha Kothadiya 4 Guided by: - Mr.Gaurang Patel 5 ( 1234 Parul Institute of Engineering &Technology,

More information

Visual comparison of Plain & Hazy PP Film

Visual comparison of Plain & Hazy PP Film ECOVAR High Voltage Power Capacitors are manufactured at our Sinnar Plant in India which is an ISO 9001 accredited facility & houses a computer aided design manufacturing processing and testing infrastructure

More information

VOLUME: IIIC SCHEDULE IIIC/4 11 KV AND 3.3 KV SWITCHGEARS

VOLUME: IIIC SCHEDULE IIIC/4 11 KV AND 3.3 KV SWITCHGEARS VOLUME: IIIC SCHEDULE IIIC/4 11 KV AND 3.3 KV SWITCHGEARS A. 11 KV SWITCHGEAR 1.0 SWITCHGEAR ASSEMBLY 1.1 Make : 1.2 Type : 1.3 Reference Standard : 1.4 Voltage (Nom./Max.) KV : 1.5 Phase, Frequency No,Hz.

More information

Journal of American Science 2015;11(11) Integration of wind Power Plant on Electrical grid based on PSS/E

Journal of American Science 2015;11(11)   Integration of wind Power Plant on Electrical grid based on PSS/E Integration of wind Power Plant on Electrical grid based on PSS/E S. Othman ; H. M. Mahmud 2 S. A. Kotb 3 and S. Sallam 2 Faculty of Engineering, Al-Azhar University, Cairo, Egypt. 2 Egyptian Electricity

More information

RULE 21 GENERATING FACILITY INTERCONNECTION APPLICATION SMUD s Distribution System - (SMUD FORM 2655)

RULE 21 GENERATING FACILITY INTERCONNECTION APPLICATION SMUD s Distribution System - (SMUD FORM 2655) - (SMUD FORM 2655) A. Applicability: This Generating Facility Interconnection Application (Application) shall be used to request the interconnection of a Generating Facility to Sacramento Municipal Utility

More information

ASSESSING BEHAVOIR OF THE OUTER CROWBAR PROTECTION WITH THE DFIG DURING GRID FAULT

ASSESSING BEHAVOIR OF THE OUTER CROWBAR PROTECTION WITH THE DFIG DURING GRID FAULT 2 nd International Conference on Energy Systems and Technologies 18 21 Feb. 2013, Cairo, Egypt ASSESSING BEHAVOIR OF THE OUTER CROWBAR PROTECTION WITH THE DFIG DURING GRID FAULT Mohamed Ebeed 1, Omar NourEldeen

More information

Outdoor live tank SF6 circuit breaker EDT with integrated current transformer up to 72.5 kv

Outdoor live tank SF6 circuit breaker EDT with integrated current transformer up to 72.5 kv Outdoor live tank SF6 circuit breaker EDT with integrated current transformer up to 72.5 kv SF6 circuit breaker EDT with integrated current transformer ABB is a world leader in live tank circuit breaker

More information

Summary of Revision, IEEE C , Guide for Breaker Failure Protection of Power Circuit Breakers

Summary of Revision, IEEE C , Guide for Breaker Failure Protection of Power Circuit Breakers Summary of Revision, IEEE C37.119-2016, Guide for Breaker Failure Protection of Power Circuit Breakers Kevin Donahoe GE Grid Solutions 2018 Texas A&M Protective Relaying Conference Agenda Introduction

More information

Advanced Protective Relay Training

Advanced Protective Relay Training Advanced Protective Relay Training Contact us Today for a FREE quotation to deliver this course at your company?s location. https://www.electricityforum.com/onsite-training-rfq A properly designed protection

More information

POWER ELECTRONIC CONTROL OF INDUCTION GENERATOR USED IN SMALL HYDRO POWER SYSTEM

POWER ELECTRONIC CONTROL OF INDUCTION GENERATOR USED IN SMALL HYDRO POWER SYSTEM INTERNATIONAL JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY (IJEET) Proceedings of the International Conference on Emerging Trends in Engineering and Management (ICETEM14) ISSN 0976 6545(Print) ISSN 0976

More information

AGN Unbalanced Loads

AGN Unbalanced Loads Application Guidance Notes: Technical Information from Cummins Generator Technologies AGN 017 - Unbalanced Loads There will inevitably be some applications where a Generating Set is supplying power to

More information

ELECTRICAL POWER and POWER ELECTRONICS

ELECTRICAL POWER and POWER ELECTRONICS Introduction to ELECTRICAL POWER and POWER ELECTRONICS MUKUND R PATEL (cj* CRC Press Taylor & Francis Group Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Croup, an informa

More information

Range 16A to 63A. Sensitivity 30mA, 100mA, 300mA, 500mA. Execution Double Pole, Four Pole. Specification IEC / IS : 2000

Range 16A to 63A. Sensitivity 30mA, 100mA, 300mA, 500mA. Execution Double Pole, Four Pole. Specification IEC / IS : 2000 The flow of current through electrical facilities always involves risks. Poorly insulated equipment, faulty wires and incorrect use of an electrical devise cause currents to flow through the wrong path

More information

A comparison of metal-enclosed load interrupter (ME) switchgear and metal-clad (MC) switchgear

A comparison of metal-enclosed load interrupter (ME) switchgear and metal-clad (MC) switchgear Robert J. Gustin Eaton Fellow Application Engineer, P. E. Southfield, Michigan Definitions Metal-enclosed load interrupter switchgear type ME Metal-enclosed switchgear is defined in ANSI C37.20.3-1987,

More information

CUSTOMER / ACCOUNT INFORMATION Electric Utility Customer Information (As shown on utility bill)

CUSTOMER / ACCOUNT INFORMATION Electric Utility Customer Information (As shown on utility bill) GENERATOR INTERCONNECTION APPLICATION Category 2 (Combined) For All Projects with Aggregate Generator Output of More Than 20 kw but Less Than or Equal to 150 kw Also Serves as Application for Category

More information

Company Directive STANDARD TECHNIQUE: SD4O/1. Standard HV Connection Arrangements

Company Directive STANDARD TECHNIQUE: SD4O/1. Standard HV Connection Arrangements Company Directive STANDARD TECHNIQUE: SD4O/1 Standard HV Connection Arrangements Policy Summary This document specifies the standard arrangements for HV metered connections. NOTE: The current version of

More information

School of Electrical and Information Engineering. ELEC High Voltage. University of Sydney. Dr Keith Mitchell. Engineering

School of Electrical and Information Engineering. ELEC High Voltage. University of Sydney. Dr Keith Mitchell. Engineering University of Sydney School of Electrical and Information Engineering Dr Keith Mitchell ELEC 5205 - High Voltage Engineering ELEC 5205 - High Voltage Engineering 3. Switchgear Types of Power System Switchgear

More information

Outdoor Distribution (15 kv through 25 kv) S&C Fault Tamer Fuse Limiter

Outdoor Distribution (15 kv through 25 kv) S&C Fault Tamer Fuse Limiter Outdoor Distribution (5 kv through 25 kv) S&C Fault Tamer Fuse Limiter Introducing S&C s new generation of pole-top transformer protection... Application Although the S&C Fault Tamer Fuse Limiter handles

More information

Performance Analysis of Transient Stability on a Power System Network

Performance Analysis of Transient Stability on a Power System Network Performance Analysis of Transient Stability on a Power System Network Ramesh B Epili 1, Dr.K.Vadirajacharya 2 Department of Electrical Engineering Dr. Babasaheb Ambedkar Technological University, Lonere

More information

MAGNETIC MOTOR STARTERS

MAGNETIC MOTOR STARTERS Chapter 6 MAGNETIC MOTOR STARTERS 1 The basic use for the magnetic contactor is for switching power in resistance heating elements, lighting, magnetic brakes, or heavy industrial solenoids. Contactors

More information

C1000 Series Automatic Cap Bank

C1000 Series Automatic Cap Bank C1000 Series Automatic Cap Bank Metal Enclosed - Medium Voltage Capacitors Assemblies Fixed / Auto Medium Voltage 5, 15, 25 and 35 kv Class Customized to your specifications The Reactive Power Solution

More information

INTERNATIONAL JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY (IJEET)

INTERNATIONAL JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY (IJEET) INTERNATIONAL JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY (IJEET) Proceedings of the 2 nd International Conference on Current Trends in Engineering and Management ICCTEM -2014 ISSN 0976 6545(Print)

More information

INTER PLANT STANDARD STEEL INDUSTRY SPECIFICATION FOR STATIC EXCITATION CONVERTORS FOR SYNCHRONOUS MOTORS (FIRST REVISION)

INTER PLANT STANDARD STEEL INDUSTRY SPECIFICATION FOR STATIC EXCITATION CONVERTORS FOR SYNCHRONOUS MOTORS (FIRST REVISION) INTER PLANT STANDARD STEEL INDUSTRY I P S S SPECIFICATION FOR STATIC EXCITATION CONVERTORS FOR SYNCHRONOUS MOTORS (FIRST REVISION) Corresponding IS does not exist IPSS: 1-10-036-12 0 FOREWORD 0.1 This

More information

Date Issued: 10 August 2009 Status: ISSUED Review Date: 10 August 2011 Ref: NS5.3 DISTRIBUTED GENERATION TECHNICAL REQUIREMENTS TABLE OF CONTENTS

Date Issued: 10 August 2009 Status: ISSUED Review Date: 10 August 2011 Ref: NS5.3 DISTRIBUTED GENERATION TECHNICAL REQUIREMENTS TABLE OF CONTENTS Date Issued: 10 August 2009 Status: ISSUED Review Date: 10 August 2011 Ref: NS5.3 DISTRIBUTED GENERATION TECHNICAL REQUIREMENTS TABLE OF CONTENTS 1. PURPOSE AND SCOPE OF THIS DOCUMENT... 3 2. DEFINITIONS...

More information

S&C Fault Tamer Fuse Limiter. Outdoor Distribution (15 kv through 25 kv)

S&C Fault Tamer Fuse Limiter. Outdoor Distribution (15 kv through 25 kv) S&C Fault Tamer Fuse Limiter Outdoor Distribution (5 kv through 25 kv) Introducing S&C s new generation of pole-top transformer protection... Application Although the S&C Fault Tamer Fuse Limiter handles

More information

Use of STATCOM for Improving Dynamic Performance of Wind Farms Connected in Power Grid

Use of STATCOM for Improving Dynamic Performance of Wind Farms Connected in Power Grid Use of STATCOM for Improving Dynamic Performance of Wind Farms Connected in Power Grid K. B. Mohd. Umar Ansari 1 PG Student [EPES], Dept. of EEE, AKG Engineering College, Ghaziabad, Uttar Pradesh, India

More information

Guidelines for connection of generators:

Guidelines for connection of generators: Guidelines for connection of generators: Greater than 30 kva, and not greater than 10 MW, to the Western Power distribution network January, 2017. EDM 32419002 / DM 13529244 Page 1 of 14 Contents 1 INTRODUCTION...

More information

FINITE-ELEMENT ANALYSIS OF ACCIDENTAL ENERGIZING OF AN OFF-LINE TURBOGENERATOR*

FINITE-ELEMENT ANALYSIS OF ACCIDENTAL ENERGIZING OF AN OFF-LINE TURBOGENERATOR* Vol. 2(37), No. 1, 2017 POWER ELECTRONICS AND DRIVES DOI: 10.5277/PED170104 FINITE-ELEMENT ANALYSIS OF ACCIDENTAL ENERGIZING OF AN OFF-LINE TURBOGENERATOR* ADAM GOZDOWIAK, PIOTR KISIELEWSKI, LUDWIK ANTAL

More information

Sub:EE6604/DESIGN OF ELECTRICAL MACHINES Unit V SYNCHRONOUS MACHINES. 2. What are the two type of poles used in salient pole machines?

Sub:EE6604/DESIGN OF ELECTRICAL MACHINES Unit V SYNCHRONOUS MACHINES. 2. What are the two type of poles used in salient pole machines? SRI VIDYA COLLEGE OF ENGINEERING & TECHNOLOGY DEPARTMENT OF EEEE QUESTION BANK Sub:EE6604/DESIGN OF ELECTRICAL MACHINES Unit V SYNCHRONOUS MACHINES 1. Name the two types of synchronous machines. 1. Salient

More information

AIR INSULATED EXTENDABLE SWITCHGEAR UP TO 12KV GUIDE

AIR INSULATED EXTENDABLE SWITCHGEAR UP TO 12KV GUIDE AIR INSULATED EXTENDABLE SWITCHGEAR UP TO 12KV GUIDE Certificate Number FM35831 APPLICATION Typical Uses and Classification The MSGair switchgear is used in transformer and switching substations mainly

More information

Guideline No.: E-07(201610) E-07 TRANSFORMERS. Issued date: October 28,2016. China Classification Society

Guideline No.: E-07(201610) E-07 TRANSFORMERS. Issued date: October 28,2016. China Classification Society Guideline No.: E-07(201610) E-07 TRANSFORMERS Issued date: October 28,2016 China Classification Society Foreword: This Guide is a part of CCS Rules, which contains technical requirements, inspection and

More information

(by authors Jouko Niiranen, Slavomir Seman, Jari-Pekka Matsinen, Reijo Virtanen, and Antti Vilhunen)

(by authors Jouko Niiranen, Slavomir Seman, Jari-Pekka Matsinen, Reijo Virtanen, and Antti Vilhunen) Technical Paper: Low voltage ride-through testing of wind turbine converters at ABB helps wind turbines meet the requirements of IEC 61400-21 more quickly (by authors Jouko Niiranen, Slavomir Seman, Jari-Pekka

More information

Michigan State University Construction Standards SECONDARY UNIT SUBSTATIONS PAGE

Michigan State University Construction Standards SECONDARY UNIT SUBSTATIONS PAGE PAGE 261116-1 SECTION 261116 PART 1 - GENERAL 1.1 RELATED DOCUMENTS A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections,

More information

Enhancement of Transient Stability Using Fault Current Limiter and Thyristor Controlled Braking Resistor

Enhancement of Transient Stability Using Fault Current Limiter and Thyristor Controlled Braking Resistor > 57 < 1 Enhancement of Transient Stability Using Fault Current Limiter and Thyristor Controlled Braking Resistor Masaki Yagami, Non Member, IEEE, Junji Tamura, Senior Member, IEEE Abstract This paper

More information

A21M. Introduction: Functional Overview: Key Protection & Control Functions:

A21M. Introduction: Functional Overview: Key Protection & Control Functions: Introduction: ASHIDA has designed economical & reliable Multifunction A21M Protection & Control System. The simple and compact construction of A21 series, A21M relay provides integrated Protection, Control

More information

Research on Transient Stability of Large Scale Onshore Wind Power Transmission via LCC HVDC

Research on Transient Stability of Large Scale Onshore Wind Power Transmission via LCC HVDC Research on Transient Stability of Large Scale Onshore Wind Power Transmission via LCC HVDC Rong Cai, Mats Andersson, Hailian Xie Corporate Research, Power and Control ABB (China) Ltd. Beijing, China rong.cai@cn.abb.com,

More information

E-12 Low-voltage Switchboard

E-12 Low-voltage Switchboard Guideline No.E-12 (201510) E-12 Low-voltage Switchboard Issued date: 20 October 2015 China Classification Society Foreword This Guide is a part of CCS Rules, which contains technical requirements, inspection

More information

CHAPTER 3 CAUSES AND EFFECTS OF ELECTRICAL FAULTS

CHAPTER 3 CAUSES AND EFFECTS OF ELECTRICAL FAULTS 22 CHAPTER 3 CAUSES AND EFFECTS OF ELECTRICAL FAULTS 3.1 INTRODUCTION A large number of asynchronous motors are used in industrial processes even in sensitive applications. Consequently, a defect can induce

More information

A system fault contribution of 750 mva shall be used when determining the required interrupting rating for unit substation equipment.

A system fault contribution of 750 mva shall be used when determining the required interrupting rating for unit substation equipment. General Unit substations shall be 500 kva minimum, 1500 kva maximum unless approved otherwise by the University. For the required configuration of University substations see Standard Electrical Detail

More information

Joslyn Clark Controls, Inc. Simple, Safe, Retrofit Programs to Significantly Extend Life of Existing Circuit Breakers

Joslyn Clark Controls, Inc. Simple, Safe, Retrofit Programs to Significantly Extend Life of Existing Circuit Breakers Joslyn Clark Controls, Inc. Simple, Safe, Retrofit Programs to Significantly Extend Life of Existing Circuit Breakers 2 Introduction This discussion describes in detail retrofitting medium voltage circuit

More information

Grid Stability Analysis for High Penetration Solar Photovoltaics

Grid Stability Analysis for High Penetration Solar Photovoltaics Grid Stability Analysis for High Penetration Solar Photovoltaics Ajit Kumar K Asst. Manager Solar Business Unit Larsen & Toubro Construction, Chennai Co Authors Dr. M. P. Selvan Asst. Professor Department

More information

Guideline No.: E-07(201712) E-07 TRANSFORMERS. Issued date: December 26, China Classification Society

Guideline No.: E-07(201712) E-07 TRANSFORMERS. Issued date: December 26, China Classification Society Guideline No.: E-07(201712) E-07 TRANSFORMERS Issued date: December 26, 2017 China Classification Society Foreword: This Guide is a part of CCS Rules, which contains technical requirements, inspection

More information

Statcom Operation for Wind Power Generator with Improved Transient Stability

Statcom Operation for Wind Power Generator with Improved Transient Stability Advance in Electronic and Electric Engineering. ISSN 2231-1297, Volume 4, Number 3 (2014), pp. 259-264 Research India Publications http://www.ripublication.com/aeee.htm Statcom Operation for Wind Power

More information

Data Bulletin. Ground-Censor Ground-Fault Protection System Type GC Class 931

Data Bulletin. Ground-Censor Ground-Fault Protection System Type GC Class 931 Data Bulletin 0931DB0101 July 2001 Cedar Rapids, IA, USA Ground-Censor Ground-Fault Protection System Type GC Class 931 09313063 GT Sensor Shunt Trip of Circuit Interrupter Window Area for Conductors GC

More information

Performance Analysis of Medium Voltage Induction Motor Using Stator Current Profile

Performance Analysis of Medium Voltage Induction Motor Using Stator Current Profile Performance Analysis of Medium Voltage Induction Motor Using Stator Current Profile W.Rajan Babu 1, Dr.C.S.Ravichandran 2, V.Matheswaran 3 Assistant Professor, Department of EEE, Sri Eshwar College of

More information

Jemena Electricity Networks (Vic) Ltd

Jemena Electricity Networks (Vic) Ltd Jemena Electricity Networks (Vic) Ltd Embedded Generation - Technical Access Standards Embedded Generation - 5 MW or Greater ELE SP 0003 Public 1 October 2014 TABLE OF CONTENTS TABLE OF CONTENTS Abbreviations...

More information

CHAPTER 5 FAULT AND HARMONIC ANALYSIS USING PV ARRAY BASED STATCOM

CHAPTER 5 FAULT AND HARMONIC ANALYSIS USING PV ARRAY BASED STATCOM 106 CHAPTER 5 FAULT AND HARMONIC ANALYSIS USING PV ARRAY BASED STATCOM 5.1 INTRODUCTION Inherent characteristics of renewable energy resources cause technical issues not encountered with conventional thermal,

More information