34 th Hands-On Relay School

Size: px
Start display at page:

Download "34 th Hands-On Relay School"

Transcription

1 34 th Hands-On Relay School Generation Track Overview Lecture Generator Design, Connections, and Grounding 1

2 Generator Main Components Stator Core lamination Winding Rotor Shaft Poles Slip rings Stator Core Source: 2

3 Stator (Core + Winding) Winding Connections Core Lamination Winding (Roebel bars) Typical Types of Generator Windings Stator Winding: Random-Wound Coils 3

4 Typical Types of Generator Windings Stator Winding: Form-Wound Coils Typical Types of Generator Windings Stator Winding: Roebel Bars 4

5 Roebel Bars Inside Stator Slot Source: Maughan, Clyde. V., Maintenance of Turbine Driven Generators, Maughan Engineering Consultants Stator Winding Combinations Typical for Two- and Four-Pole Machines 5

6 Series Connection of Roebel Bars Series connection Source: Rotor 6

7 Classification of Synchronous Generators Synchronous Generator Classification Rotor design Cooling: Stator and rotor Field winding connection to dc source Cylindrical rotor Salient-pole rotor Direct Indirect Brush Brushless Rotor Design Salient-Pole Rotor Cylindrical Rotor 7

8 Two-Pole Round Rotor Source: Salient Pole Rotor Source: 8

9 Stator Winding Cooling Indirectly Cooled Directly Cooled Cooling Ducts, Water Cooled Bar Rotor Winding Cooling Indirectly Cooled Directly Cooled 9

10 Field Winding Connection to DC Source Brush Type Field Winding Connection to DC Source Brushless 10

11 Generator Station Arrangements Generator-Transformer Unit Generating Station Arrangements Directly Connected Generator 11

12 Synchronous Generator Grounding IEEE C Resonant grounding (Petersen Coil) Ungrounded neutral High-resistance grounding Low-resistance grounding Low-reactance grounding Effective grounding Increasing Ground Fault Current Why Ground the Neutral? Minimize damage for internal ground faults Limit mechanical stress for external ground faults Limit temporary/transient overvoltages Allow for ground fault detection Ability to coordinate generator protection with other equipment requirements 12

13 Ungrounded Neutral No intentional connection to ground Maximum ground fault current higher than for resonant grounding Excessive transient overvoltages may result High-Resistance Grounding Low value resistor connected to secondary of distribution transformer Resistor value selected to limit transient overvoltages Maximum single-phase-to-ground fault current: 5 15 A 13

14 Low-Resistance Grounding Limit ground fault current to hundreds of amperes to allow operation of selective (differential) relays Low temporary/transient overvoltages Effective Grounding A low-impedance ground connection where: X 0 / X 1 3 and R 0 / X 1 1 Ground fault current is high Low temporary overvoltages during phaseto-ground faults 14

15 Generator Capability Curves Defining Generator Capability Curve provided by the generator manufacturer Defines the generator operating limits during steady state conditions Assumes generator is connected to an infinite bus Limits are influenced by: Terminal voltage Coolant Generator construction 15

16 Generator Capability Curve for a Round Rotor Generator Generator Capability Curve for a Salient Pole Generator 16

17 17 Capability Curve Construction Phasor Diagram Round Rotor Generator ) cos( ) ( ) cos( ) sin( ) cos( ) sin( ) cos( 0 0 I V BC Xd V I V E Xd V I Xd E I V P ) sin( ) ( ) sin( ) )) cos( (( ) sin( )) cos( ( ) sin( 0 0 I V AB Xd V I V V E Xd V I Xd V E I V Q E 0 Xd I V φ A B C E 0 V Xd I Q P I

18 Power Angle Characteristic P Operation with Constant Active Power and Variable Excitation C C C Xd I Xd I Xd I E 0 I E 0 E 0 P V B A Q B B I I Q Q Xd 1.6 V 1.00 I I I E E E

19 Power Angle Characteristic P E E E V-Curves I ( p. u) cos cap. cos inductive E 0 (p.u.) Excitation Current 19

20 Operation with Constant Apparent Power and Variable Excitation C E 0 Xd I V A B Xd 1.6 V 1.00 I I Operation with Constant Excitation and Variable Active Power E 0 Theor. Stability Limit Xd I E 0 I C Xd I V A B I 20

21 Capability Curve Round Rotor Theor. Stability Limit max. P (Real Power) - V V Q Xd V (( E 0cos( )) V ) V I sin( ) Xd E V V Q Xd V E 0sin( ) V I cos( ) Xd E 0 0 P 0 Q (Reactive Power) Xd 1.6 V 1.0 Generator Fault Protection 21

22 Generator Fault Protection Stator phase faults Stator ground faults Field ground faults External faults (backup protection) Stator Phase Fault Protection Phase fault protection Percentage differential High-impedance differential Self-balancing differential Turn-to-turn fault protection Split-phase differential Split-phase self-balancing 22

23 Phase Fault Protection Percentage Differential Dual-Slope Characteristic 23

24 Phase Fault Protection High-Impedance Differential O O O Phase Fault Protection Self-Balancing Differential 24

25 Stator Winding Coils with Multiple Turns Turn-to-Turn Fault Protection Split-Phase Self-Balancing 25

26 Turn-to-Turn Fault Protection Split-Phase Percentage Differential Stator Ground Fault Protection High-impedance-grounded generators Neutral fundamental-frequency overvoltage Third-harmonic undervoltage or differential Low-frequency injection Low-impedance-grounded generators Ground overcurrent Ground directional overcurrent Restricted earth fault (REF) protection 26

27 Ground Fault in a Unit-Connected Generator T X G1 X C1 X T1 X S1 G S X G2 X C2 X S2 X T2 3R X C0 X S0 X G0 X T0 High-Impedance Grounded Generator Neutral Fundamental Overvoltage Fault Location/ % of Winding F1 / 3% F2 / 85% Voltage V Vnom 3% 3 Vnom 85% 3 27

28 Generator Flux Distribution in Air Gap Total Flux Fundamental Harmonics Generator Flux Distribution in Air Gap High-Impedance Grounded Generator Neutral Third-Harmonic Undervoltage GSU F1 V R 59GN 27TN (3) OR (2) Full Load VN3 Full Load No Load VN3 No Load VP3 VP3 No Fault Fault at F1 28

29 High-Impedance Grounded Generator Third-Harmonic Differential GSU (3) (3) V R 59GN VN3 VP3 59THD k VP3 VN3 Pickup Setting + Third-Harmonic Differential Element Generator Winding Analysis Generator data 18 poles 216 slots Winding pitch Full pitch = 216/18 = 12 slots Actual pitch = = 8 slots Actual pitch / full pitch = 8/12 = 2/3 29

30 Full-Pitch Winding 2/3 Pitch Winding Removes Third Harmonic 30

31 High-Impedance Grounded Generator Low-Frequency Injection GSU (3) OR (2) R 59GN V I 64S Coupling Filter Low-Frequency Voltage Injector Protection Measurements 100% Stator Ground Fault Protection Elements Coverage 31

32 Low-Impedance-Grounded Generator Ground Overcurrent and Directional Overcurrent Low-Impedance-Grounded Generator Ground Differential 32

33 Low-Impedance-Grounded Generator Self-Balancing Ground Differential Zero-Sequence CTs Zero-sequence CT 33

34 Field Ground Protection Field Ground Protection Types of rotors Winding failure mechanisms Importance of field ground protection Field ground detection methods Switched-DC injection principle of operation Shaft grounding brushes 34

35 Salient Pole Rotor Source: A Round Rotor Being Milled Source: Maughan, Clyde. V., Maintenance of Turbine Driven Generators, Maughan Engineering Consultants 35

36 Round Rotor End Turns Source: Main Generator Rotor Maintenance Lessons Learned - EPRI Source: Main Generator Rotor Maintenance Lessons Learned - EPRI Two-Pole Round Rotor Source: 36

37 Two-Pole Round Rotor Source: Two-Pole Round Rotor Source: 37

38 Round Rotor Slot Cross Section Coil Slot Wedge Creepage Block Retaining Ring Insulation Retaining Ring Copper Winding Winding Short Winding Ground Turn Insulation End Windings Winding Ground Slot Armor Field Winding Failure Mechanisms in Round Rotors Thermal deterioration Thermal cycling Abrasion Pollution Repetitive voltage surges 38

39 Salient Pole Cross Section Pole Body Pole Collar Winding Turn Turn Insulation Winding Ground Pole Body Insulation Winding Short Pole Collar * Strip-On-Edge Field Winding Failure Mechanisms in Salient Pole Rotors Thermal deterioration Abrasive particles Pollution Repetitive voltage surges Centrifugal forces 39

40 Importance of Field Ground Detection Presence of a single point-to-ground in field winding circuit does not affect the operation of the generator Second point-to-ground can cause severe damage to machine Excessive vibration Rotor steel and / or copper melting Rotor Ground Detection Methods Voltage divider DC injection AC injection Switched-DC injection 40

41 Voltage Divider Field Breaker Rotor and Field Winding + R3 Exciter R2 R1 Brushes Sensitive Detector Grounding Brush DC Injection Field Breaker Rotor and Field Winding Exciter + Brushes Sensitive Detector + DC Supply Grounding Brush 41

42 AC Injection Field Breaker Rotor and Field Winding Exciter + Brushes Sensitive Detector AC Supply Grounding Brush Switched-DC Injection Method Field Breaker Rotor and Field Winding Exciter + Brushes R1 Grounding Brush Rs R2 Measured Voltage 42

43 Switched DC Injection Principle of Operation Voscp VDC Voscn + Vrs Rx R Cfg Vosc Vrs Rs R Measured Voltage (Vrs) V Shaft Grounding with Carbon Brush 43

44 Shaft Grounding with Wire Bristle Brush Source: SOHRE Turbomachinery, Inc. ( Generator Abnormal Operation Protection 44

45 Generator Abnormal Operation Protection Thermal Current unbalance Loss-of-field Motoring Overexcitation Overvoltage Abnormal frequency Out-of-step Inadvertent energization Backup Stator Thermal Protection Generators With Temperature Sensors 45

46 Stator Thermal Protection Generators Without Temperature Sensors T 2 2 I I P ln 2 2 I k INOM Current Unbalance Causes Single-phase transformers Untransposed transmission lines Unbalanced loads Unbalanced system faults Open phases 46

47 Generator Current Unbalance Produces negative-sequence currents that: Cause magnetic flux that rotates in opposition to rotor Induce double-frequency currents in the rotor Rotor-Induced Currents 47

48 Negative-Sequence Current Damage Negative-Sequence Current Capability Continuous Type of Generator I 2 Max % Salient pole (C ) Connected amortisseur windings 10 Unconnected amortisseur windings 5 Cylindrical rotor (C ) Indirectly cooled 10 Directly cooled, to 350 MVA to 1250 MVA 8 (MVA 350) / to 1600 MVA 5 48

49 Negative-Sequence Current Capability Short Time 2 2 K2 I t Type of Generator I 22 t Max % Salient pole (C ) 40 Synchronous condenser (C ) 30 Cylindrical rotor (C ) Indirectly cooled 30 Directly cooled, to 800 MVA 10 Directly cooled, 801 to 1600 MVA Negative-Sequence Current Capability Short Time 49

50 Negative- Sequence Overcurrent Protection T I K I 2 2 NOM 2 Common Causes of Loss of Field Accidental field breaker tripping Field open circuit Field short circuit Voltage regulator failure Loss of field to the main exciter Loss of ac supply to the excitation system 50

51 Effects of Loss of Field Rotor temperature increases because of eddy currents Stator temperature increases because of high reactive power draw Pulsating torques may occur Power system may experience voltage collapse or lose steady-state stability Negative-Sequence Current Caused Damper Winding Damage Damper Windings 51

52 LOF Protection Using a Mho Element LOF Protection Using Negative- Offset Mho Elements 52

53 LOF Protection Using Negative- and Positive-Offset Mho Elements Zone 2 Setting Considerations 53

54 Possible Prime Mover Damage From Generator Motoring Steam turbine blade overheating Hydraulic turbine blade cavitation Gas turbine gear damage Diesel engine explosion danger from unburned fuel Small Reverse Power Flow Can Cause Damage Typical values of reverse power required to spin a generator at synchronous speed Steam turbines 0.5 3% Hydro turbines % Diesel engines 5 25% Gas turbines 50+% 54

55 Directional Power Element Q 32P1 32P2 P P1 P2 Overexcitation Protection V f f V NOM NOM Overexcitation occurs when V/f exceeds 1.05 Causes generator heating Volts/hertz (24) protection should trip generator 55

56 Core Damaged due to Overexcitation Source: Maughan, Clyde. V., Maintenance of Turbine Driven Generators, Maughan Engineering Consultants Core Damaged due to Overexcitation Source: Maughan, Clyde. V., Maintenance of Turbine Driven Generators, Maughan Engineering Consultants 56

57 Overexcitation Protection Dual-Level, Definite Time Characteristic Overexcitation Protection Inverse- and Definite Time Characteristics 57

58 Overvoltage Protection Overvoltage most frequently occurs in hydroelectric generators Overvoltage protection (59): Instantaneous element set at percent of rated voltage Time-delayed element set at approximately 110 percent of rated voltage Abnormal Frequency Protection 58

59 Possible Damage From Out-of-Step Generator Operation Mechanical stress in the machine windings Damage to shaft resulting from pulsating torques High stator core temperatures Thermal stress in the step-up transformer Single-Blinder Out-of-Step Scheme 59

60 Double-Blinder Out-of-Step Scheme Generator Inadvertent Energization Common causes: human errors, control circuit failures, and breaker flashovers The generator starts as an induction motor High currents induced in the rotor cause rapid heating High stator current 60

61 Inadvertent Energization Protection Logic Logic for Combined Breaker-Failure and Breaker-Flashover Protection 61

62 Backup Protection Directly Connected Generator Generator With Step-Up Transformer Voltage-Restrained Overcurrent Element Pickup Current 62

63 Mho Distance Element Characteristic Synchronism-Check Element 63

64 Power System Disturbance Caused by an Out-of-Synchronism Close Nominal Current: A Voltage: 6.5 kv Possible Damaging Effects During Synchronizing Shaft damage due to torque Bearing damage Loosened stator windings Loosened stator laminations 64

65 IEEE Generator Synchronizing Limits Breaker closing angle +/ 10 Generator-side voltage relative to system Frequency difference 100% to 105% +/ Hz Source: IEEE Std. C50.12 and C50.13 Issues Affecting Generator Synchronizing Voltage ratio differences Voltage angle differences Voltage, angle, and slip limits Synchronism Check relay Synchronism Check relay 65

66 Synchronism-Check Logic Overview 66

Synchronous Generators I. Spring 2013

Synchronous Generators I. Spring 2013 Synchronous Generators I Spring 2013 Construction of synchronous machines In a synchronous generator, a DC current is applied to the rotor winding producing a rotor magnetic field. The rotor is then turned

More information

Synchronous Generators I. EE 340 Spring 2011

Synchronous Generators I. EE 340 Spring 2011 Synchronous Generators I EE 340 Spring 2011 Construction of synchronous machines In a synchronous generator, a DC current is applied to the rotor winding producing a rotor magnetic field. The rotor is

More information

Sub:EE6604/DESIGN OF ELECTRICAL MACHINES Unit V SYNCHRONOUS MACHINES. 2. What are the two type of poles used in salient pole machines?

Sub:EE6604/DESIGN OF ELECTRICAL MACHINES Unit V SYNCHRONOUS MACHINES. 2. What are the two type of poles used in salient pole machines? SRI VIDYA COLLEGE OF ENGINEERING & TECHNOLOGY DEPARTMENT OF EEEE QUESTION BANK Sub:EE6604/DESIGN OF ELECTRICAL MACHINES Unit V SYNCHRONOUS MACHINES 1. Name the two types of synchronous machines. 1. Salient

More information

Electrical Theory. Generator Theory. PJM State & Member Training Dept. PJM /22/2018

Electrical Theory. Generator Theory. PJM State & Member Training Dept. PJM /22/2018 Electrical Theory Generator Theory PJM State & Member Training Dept. PJM 2018 Objectives The student will be able to: Describe the process of electromagnetic induction Identify the major components of

More information

Electrical Machines -II

Electrical Machines -II Objective Type Questions: 1. Basically induction machine was invented by (a) Thomas Alva Edison (b) Fleming (c) Nikola Tesla (d) Michel Faraday Electrical Machines -II 2. What will be the amplitude and

More information

Unit Protection System for Pumped-Storage Power Stations

Unit Protection System for Pumped-Storage Power Stations Unit Protection System for Pumped-Storage Power Stations 1. Introduction In many power systems, pumped-storage power stations are used in addition to run-of-river power stations. These power stations serve

More information

A21M. Introduction: Functional Overview: Key Protection & Control Functions:

A21M. Introduction: Functional Overview: Key Protection & Control Functions: Introduction: ASHIDA has designed economical & reliable Multifunction A21M Protection & Control System. The simple and compact construction of A21 series, A21M relay provides integrated Protection, Control

More information

ISO Rules Part 500 Facilities Division 502 Technical Requirements Section Interconnected Electric System Protection Requirements

ISO Rules Part 500 Facilities Division 502 Technical Requirements Section Interconnected Electric System Protection Requirements Applicability 1 Section 502.3 applies to: the legal owner of a generating unit directly connected to the transmission system with a maximum authorized real power rating greater than 18 MW; the legal owner

More information

L. Photo. Figure 2: Types CA-16 Relay (rear view) Photo. Figure 1: Types CA-16 Relay (front view)

L. Photo. Figure 2: Types CA-16 Relay (rear view) Photo. Figure 1: Types CA-16 Relay (front view) Figure 1: Types CA-16 Relay (front view) Photo Figure 2: Types CA-16 Relay (rear view) Photo 2 Sub 5 185A419 Sub 6 185A443 Figure 3: Internal Schematic of the Type CA-16 bus Relay or CA-26 Transformer

More information

Legal Name of the Customer (or, if an individual, individual's name): Name: Contact Person: Mailing Address: Physical Address: City: State: Zip Code:

Legal Name of the Customer (or, if an individual, individual's name): Name: Contact Person: Mailing Address: Physical Address: City: State: Zip Code: Generating Facility Level 2 or 3 Interconnection Review (For Generating Facilities with Electric Nameplate Capacities no Larger than 20 MW) Instructions An Interconnection Customer who requests a Utah

More information

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING QUESTION BANK 16EET41 SYNCHRONOUS AND INDUCTION MACHINES UNIT I SYNCHRONOUS GENERATOR 1. Why the stator core is laminated? 2. Define voltage regulation

More information

PSNH INTERCONNECTION REQUEST

PSNH INTERCONNECTION REQUEST PSNH INTERCONNECTION REQUEST Send the completed Interconnection Request and required attachments to: Public Service of New Hampshire Attn: Michael Motta, Senior Engineer Supplemental Energy Sources P.

More information

AC MOTOR TYPES. DESCRIBE how torque is produced in a single-phase AC motor. EXPLAIN why an AC synchronous motor does not have starting torque.

AC MOTOR TYPES. DESCRIBE how torque is produced in a single-phase AC motor. EXPLAIN why an AC synchronous motor does not have starting torque. Various types of AC motors are used for specific applications. By matching the type of motor to the appropriate application, increased equipment performance can be obtained. EO 1.5 EO 1.6 EO 1.7 EO 1.8

More information

ECE 325 Electric Energy System Components 6 Three Phase Induction Motors. Instructor: Kai Sun Fall 2016

ECE 325 Electric Energy System Components 6 Three Phase Induction Motors. Instructor: Kai Sun Fall 2016 ECE 325 Electric Energy System Components 6 Three Phase Induction Motors Instructor: Kai Sun Fall 2016 1 Content (Materials are from Chapters 13-15) Components and basic principles Selection and application

More information

Double earth fault in a PSP during back to back launching sequence

Double earth fault in a PSP during back to back launching sequence Double earth fault in a PSP during back to back launching sequence Jean-Louis DROMMI EDF Hydro Engineering Center, France Pump Storage Scheme, back to back launching Electricité de France Hydro Department

More information

Fall 1997 EE361: MIDTERM EXAM 2. This exam is open book and closed notes. Be sure to show all work clearly.

Fall 1997 EE361: MIDTERM EXAM 2. This exam is open book and closed notes. Be sure to show all work clearly. NAME: STUDENT NUMBER: Fall 1997 EE361: MIDTERM EXAM 2 This exam is open book and closed notes. Be sure to show all work clearly. 1. 10 points - Mechanical and Electrical Energy Relationships: A dc motor

More information

This webinar brought to you by the Relion product family Advanced protection and control IEDs from ABB

This webinar brought to you by the Relion product family Advanced protection and control IEDs from ABB This webinar brought to you by the Relion product family Advanced protection and control IEDs from ABB Relion. Thinking beyond the box. Designed to seamlessly consolidate functions, Relion relays are smarter,

More information

9. Examples of hydro energy conversion

9. Examples of hydro energy conversion 9. Examples of hydro energy conversion VATech Hydro, Austria Prof. A. Binder 9/1 Variable speed pump storage power plant Prof. A. Binder 9/2 Conventional pump storage power plant with synchronous motor-generators

More information

BHARAT ALUMINIUM COMPANY LTD. SPECIFICATIONS FOR SYNCHRONOUS GENERATOR GENERAL Make : Jinan Power Equipment Factory Type : WX2

BHARAT ALUMINIUM COMPANY LTD. SPECIFICATIONS FOR SYNCHRONOUS GENERATOR GENERAL Make : Jinan Power Equipment Factory Type : WX2 BHARAT ALUMINIUM COMPANY LTD. SPECIFICATIONS FOR SYNCHRONOUS GENERATOR 1.00.00 GENERAL 1.01.00 Make : Jinan Power Equipment Factory 1.02.00 Type : WX21Z-073LLT 1.03.00 Reference Standard : GB/T7064-2002

More information

Unit III-Three Phase Induction Motor:

Unit III-Three Phase Induction Motor: INTRODUCTION Unit III-Three Phase Induction Motor: The three phase induction motor runs on three phase AC supply. It is an ac motor. The power is transferred by means of induction. So it is also called

More information

CUSTOMER / ACCOUNT INFORMATION Electric Utility Customer Information (As shown on utility bill)

CUSTOMER / ACCOUNT INFORMATION Electric Utility Customer Information (As shown on utility bill) GENERATOR INTERCONNECTION APPLICATION Category 2 (Combined) For All Projects with Aggregate Generator Output of More Than 20 kw but Less Than or Equal to 150 kw Also Serves as Application for Category

More information

Motor Protection Fundamentals. Motor Protection - Agenda

Motor Protection Fundamentals. Motor Protection - Agenda Motor Protection Fundamentals IEEE SF Power and Energy Society May 29, 2015 Ali Kazemi, PE Regional Technical Manager Schweitzer Engineering Laboratories Irvine, CA Copyright SEL 2015 Motor Protection

More information

FINITE-ELEMENT ANALYSIS OF ACCIDENTAL ENERGIZING OF AN OFF-LINE TURBOGENERATOR*

FINITE-ELEMENT ANALYSIS OF ACCIDENTAL ENERGIZING OF AN OFF-LINE TURBOGENERATOR* Vol. 2(37), No. 1, 2017 POWER ELECTRONICS AND DRIVES DOI: 10.5277/PED170104 FINITE-ELEMENT ANALYSIS OF ACCIDENTAL ENERGIZING OF AN OFF-LINE TURBOGENERATOR* ADAM GOZDOWIAK, PIOTR KISIELEWSKI, LUDWIK ANTAL

More information

C. Figure 1. CA-16 Front View Figure 2. CA-16 Rear View

C. Figure 1. CA-16 Front View Figure 2. CA-16 Rear View Figure 1. CA-16 Front View Figure 2. CA-16 Rear View 2 2.1. Restraint Elements Each restraint element consists of an E laminated electromagnet with two primary coils and a secondary coil on its center

More information

Pretest Module 21 Units 1-3 AC Generators & Three-Phase Motors

Pretest Module 21 Units 1-3 AC Generators & Three-Phase Motors Pretest Module 21 Units 1-3 AC Generators & Three-Phase Motors 1. What are the two main parts of a three-phase 2. Which part of a three-phase squirrel-cage induction motor is a hollow core? 3. What are

More information

2014 ELECTRICAL TECHNOLOGY

2014 ELECTRICAL TECHNOLOGY SET - 1 II B. Tech I Semester Regular Examinations, March 2014 ELECTRICAL TECHNOLOGY (Com. to ECE, EIE, BME) Time: 3 hours Max. Marks: 75 Answer any FIVE Questions All Questions carry Equal Marks ~~~~~~~~~~~~~~~~~~~~~~~~~~

More information

APGENCO/APTRANSCO Assistant Engineer Electrical Previous Question Papers Q.1 The two windings of a transformer is conductively linked. inductively linked. not linked at all. electrically linked. Q.2 A

More information

CHAPTER 3 CAUSES AND EFFECTS OF ELECTRICAL FAULTS

CHAPTER 3 CAUSES AND EFFECTS OF ELECTRICAL FAULTS 22 CHAPTER 3 CAUSES AND EFFECTS OF ELECTRICAL FAULTS 3.1 INTRODUCTION A large number of asynchronous motors are used in industrial processes even in sensitive applications. Consequently, a defect can induce

More information

2.0 CONSTRUCTION AND OPERATION 3.0 CHARACTERISTICS K. CO (HI-LO) Overcurrent Relay

2.0 CONSTRUCTION AND OPERATION 3.0 CHARACTERISTICS K. CO (HI-LO) Overcurrent Relay 41-100K 2.0 CONSTRUCTION AND OPERATION The type CO relays consist of an overcurrent unit (CO), either an Indicating Switch (ICS) or an ac Auxiliary Switch (ACS) and an Indicating Instantaneous Trip unit

More information

CHAPTER 5 FAULT AND HARMONIC ANALYSIS USING PV ARRAY BASED STATCOM

CHAPTER 5 FAULT AND HARMONIC ANALYSIS USING PV ARRAY BASED STATCOM 106 CHAPTER 5 FAULT AND HARMONIC ANALYSIS USING PV ARRAY BASED STATCOM 5.1 INTRODUCTION Inherent characteristics of renewable energy resources cause technical issues not encountered with conventional thermal,

More information

DC CIRCUITS ELECTROMAGNETISM

DC CIRCUITS ELECTROMAGNETISM DC CIRCUITS 1. State and Explain Ohm s Law. Write in brief about the limitations of Ohm s Law. 2. State and explain Kirchhoff s laws. 3. Write in brief about disadvantages of series circuit and advantages

More information

Type SOQ Negative Sequence Time Overcurrent Relay

Type SOQ Negative Sequence Time Overcurrent Relay ABB Power T&D Company Inc. Power Automation & Protection Division Coral Springs, FL Allentown, PA April 1998 Supersedes DB dated August 1991 Mailed to: E,D, C/41-100B For Protection of Rotating Machinery

More information

Functions provided by measuring relays in railway equipment

Functions provided by measuring relays in railway equipment Functions provided by measuring relays in railway equipment 1-Current relays -Minimum current relays (During normal operation, if the current is present these relays are in operating position and switch

More information

The University of New South Wales. School of Electrical Engineering and Telecommunications. Industrial and Commercial Power Systems Topic 6

The University of New South Wales. School of Electrical Engineering and Telecommunications. Industrial and Commercial Power Systems Topic 6 The University of New South Wales School of Electrical Engineering and Telecommunications Industrial and Commercial Power Systems Topic 6 PROTECTIONS 1 FUNCTION OF ELECTRICAL PROTECTION SYSTEMS Problems:

More information

IEEE Northern Canada & Southern Alberta Sections, PES/IAS Joint Chapter Technical Seminar Series

IEEE Northern Canada & Southern Alberta Sections, PES/IAS Joint Chapter Technical Seminar Series IEEE Northern Canada & Southern Alberta Sections, PES/IAS Joint Chapter Technical Seminar Series Designing Electrical Systems for On-Site Power Generation Apr 04 th /05 th, 2016, Calgary/Edmonton, Alberta,

More information

Summary of Revision, IEEE C , Guide for Breaker Failure Protection of Power Circuit Breakers

Summary of Revision, IEEE C , Guide for Breaker Failure Protection of Power Circuit Breakers Summary of Revision, IEEE C37.119-2016, Guide for Breaker Failure Protection of Power Circuit Breakers Kevin Donahoe GE Grid Solutions 2018 Texas A&M Protective Relaying Conference Agenda Introduction

More information

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : ET(16EE212) Year & Sem: II-B.Tech & II-Sem UNIT I DC GENERATORS Course

More information

Reverse power relay and protection assemblies

Reverse power relay and protection assemblies Reverse power relay and protection Page 1 Issued June 1999 Changed since July 1998 Data subject to change without notice (SE980053) (SE980054) Features Micro-processor based time directionalcurrent relay/protection

More information

EE 741 Over-voltage and Overcurrent. Spring 2014

EE 741 Over-voltage and Overcurrent. Spring 2014 EE 741 Over-voltage and Overcurrent Protection Spring 2014 Causes of Over-voltages Lightning Capacitor switching Faults (where interruption occurs prior to zero current crossing) Accidental contact with

More information

EE042: Practical Power System Protection for Engineers & Technicians

EE042: Practical Power System Protection for Engineers & Technicians EE042: Practical Power System Protection for Engineers & Technicians EE042 Rev.001 CMCT COURSE OUTLINE Page 1 of 5 Training Description: This intensive course has been designed to give plant operators,

More information

EEE3441 Electrical Machines Department of Electrical Engineering. Lecture. Introduction to Electrical Machines

EEE3441 Electrical Machines Department of Electrical Engineering. Lecture. Introduction to Electrical Machines Department of Electrical Engineering Lecture Introduction to Electrical Machines 1 In this Lecture Induction motors and synchronous machines are introduced Production of rotating magnetic field Three-phase

More information

Level 2, Level 3 & Level 4 Interconnection Request Application Form (Greater than 25 kw to 10 MVA or less)

Level 2, Level 3 & Level 4 Interconnection Request Application Form (Greater than 25 kw to 10 MVA or less) Level 2, Level 3 & Level 4 Interconnection Request Application Form (Greater than 25 kw to 10 MVA or less) Interconnection Customer Contact Information Name Alternative Contact Information (if different

More information

CHAPTER 6 DESIGN AND DEVELOPMENT OF DOUBLE WINDING INDUCTION GENERATOR

CHAPTER 6 DESIGN AND DEVELOPMENT OF DOUBLE WINDING INDUCTION GENERATOR 100 CHAPTER 6 DESIGN AND DEVELOPMENT OF DOUBLE WINDING INDUCTION GENERATOR 6.1 INTRODUCTION Conventional energy resources are not sufficient to meet the increasing electrical power demand. The usages of

More information

Power Systems Trainer

Power Systems Trainer Electrical Power Systems PSS A self-contained unit that simulates all parts of electrical power systems and their protection, from generation to utilisation Key Features Simulates generation, transmission,

More information

DESIGN CONSIDERATIONS FOR APPLICATION OF SHUNT CAPACITORS IN HEAVY HATER PLANT (TUTICORIN)

DESIGN CONSIDERATIONS FOR APPLICATION OF SHUNT CAPACITORS IN HEAVY HATER PLANT (TUTICORIN) DESIGN CONSIDERATIONS FOR APPLICATION OF SHUNT CAPACITORS IN HEAVY HATER PLANT (TUTICORIN) -A.R. Subraaanian -R.A.A. Palani -J. Thomson A new 3.3 K.V. 4200 KVAR auto switching capacitor bank has been installed

More information

UNIT I SYNCHRONOUS GENERATOR PART-A

UNIT I SYNCHRONOUS GENERATOR PART-A 1. What is an alternator? UNIT I SYNCHRONOUS GENERATOR PART-A An alternator or AC generator is a synchronous machine which converts mechanical energy into electrical energy and produces alternating emf.

More information

Basics of Paralleling

Basics of Paralleling Basics of Paralleling Revised: February 1, 2017 2017 Cummins All Rights Reserved Course Objectives Participants will be able to: Discuss basic paralleling control functions to gain a better understanding

More information

This webinar brought to you by the Relion product family Advanced protection and control IEDs from ABB

This webinar brought to you by the Relion product family Advanced protection and control IEDs from ABB This webinar brought to you by the Relion product family Advanced protection and control IEDs from ABB Relion. Thinking beyond the box. Designed to seamlessly consolidate functions, Relion relays are smarter,

More information

TECHNICAL SPECIFICATION FOR INDEPENDENT POWER PRODUCERS. NB Power Customer Service and Distribution. June 2008

TECHNICAL SPECIFICATION FOR INDEPENDENT POWER PRODUCERS. NB Power Customer Service and Distribution. June 2008 NB Power Customer Service and Distribution June 2008 Prepared by: Steven Wilcox Revised by: Steven Wilcox TABLE OF CONTENTS 1.0 Introduction 4 2.0 NB Power Policy on Independent Power Production 4 3.0

More information

Figure 1. Type CWP-1 Ground Relay (Front View) Figure 2. Type CWP-1 Ground Relay (Rear View) E

Figure 1. Type CWP-1 Ground Relay (Front View) Figure 2. Type CWP-1 Ground Relay (Rear View) E Figure 1. Type CWP-1 Ground Relay (Front View) Figure 2. Type CWP-1 Ground Relay (Rear View) 41-242.5E 2 Typical 60 Hertz time product curves for the type CWP-1 relay are shown in Figure 4 with 100 volts

More information

NORTH CAROLINA INTERCONNECTION REQUEST APPLICATION FORM. Utility: Duke Energy Progress

NORTH CAROLINA INTERCONNECTION REQUEST APPLICATION FORM. Utility: Duke Energy Progress NORTH CAROLINA INTERCONNECTION REQUEST APPLICATION FORM ATTACHMENT 2 Utility: Duke Energy Progress Designated Utility Contact: Attention: Customer Owned Generation Mail Code ST13A E-Mail Address: Customerownedgeneration@duke-energy.com

More information

UNIT-I ALTERNATORS PART-A

UNIT-I ALTERNATORS PART-A UNIT-I ALTERNATORS 1. What principle is used in Alternators? 2. What are the requirements of an alternator? 3. Mention the types of alternator rotor. 4. What is hunting in alternators? 5. What are the

More information

Shunt Capacitor Bank Protection in UHV Pilot Project. Qing Tian

Shunt Capacitor Bank Protection in UHV Pilot Project. Qing Tian Shunt Capacitor Bank Protection in UHV Pilot Project Qing Tian 2012-5 INTRODUCTION State Grid Corp. of China, the largest electric power provider in the country, has first build a 1000 kv transmission

More information

The Wound-Rotor Induction Motor Part I

The Wound-Rotor Induction Motor Part I Experiment 1 The Wound-Rotor Induction Motor Part I OBJECTIVE To examine the construction of the three-phase wound-rotor induction motor. To understand exciting current, synchronous speed and slip in a

More information

ABB. Type CRQ Directional Negative Sequence Relay for Ground Protection B 1.0 APPLICATION 2.0 CONSTRUCTION AND OPERATION CAUTION

ABB. Type CRQ Directional Negative Sequence Relay for Ground Protection B 1.0 APPLICATION 2.0 CONSTRUCTION AND OPERATION CAUTION ABB Instruction Leaflet 41-163.2B Effective: January 1977 Supersedes I.L. 41-137.3A, Dated September 1974 ( ) Denotes Change Since Previous Issue Type CRQ Directional Negative Sequence Relay for Ground

More information

Level 2, Level 3 & Level 4 Interconnection Request Application Form (Greater than 10 kva to 10 MVA or less)

Level 2, Level 3 & Level 4 Interconnection Request Application Form (Greater than 10 kva to 10 MVA or less) Section 466.APPENIX C Levels 2 to 4 Application Level 2, Level 3 & Level 4 Interconnection Request Application Form (Greater than 10 kva to 10 MVA or less) Interconnection Customer Contact Information

More information

Comprehensive Technical Training

Comprehensive Technical Training Comprehensive Technical Training For Sugar Mills Staff on Operation & Maintenance of Baggase Based HP Cogeneration System Schedule: 10 th July to 13 th July, 2017 A.C. GENERATOR Topics Covered. Introduction.

More information

Single Phase Induction Motor. Dr. Sanjay Jain Department Of EE/EX

Single Phase Induction Motor. Dr. Sanjay Jain Department Of EE/EX Single Phase Induction Motor Dr. Sanjay Jain Department Of EE/EX Application :- The single-phase induction machine is the most frequently used motor for refrigerators, washing machines, clocks, drills,

More information

Short questions and answers. EE1251 Electrical Machines II

Short questions and answers. EE1251 Electrical Machines II Short questions and answers EE1251 Electrical Machines II 1. Why almost all large size Synchronous machines are constructed with rotating field system type? The following are the principal advantages of

More information

Part- A Objective Questions (10X1=10 Marks)

Part- A Objective Questions (10X1=10 Marks) Dr. Mahalingam College of Engineering and Technology, Pollachi-3 (An Autonomous Institution) CCET 3(2016Regulation) Name of Programme: B.E. (EEE) Course Code&Course Title: 16EET41 & Synchronous & Induction

More information

Lesson 16: Asynchronous Generators/Induction Generators

Lesson 16: Asynchronous Generators/Induction Generators Lesson 16: Asynchronous s/induction s ET 332b Ac Motors, s and Power Systems et332bind.ppt 1 Learning Objectives After this presentation you will be able to: Explain how an induction generator erates List

More information

SSC-JE STAFF SELECTION COMMISSION ELECTRICAL ENGINEERING STUDY MATERIAL ELECTRICAL MACHINES

SSC-JE STAFF SELECTION COMMISSION ELECTRICAL ENGINEERING STUDY MATERIAL ELECTRICAL MACHINES 1 SSC-JE STAFF SELECTION COMMISSION ELECTRICAL ENGINEERING STUDY MATERIAL 28-B/7, Jia Sarai, Near IIT, Hauz Khas, New Delhi-110016. Ph. 011-26514888. www.engineersinstitute.com 2 CONTENT 1. : DC MACHINE,

More information

Pretest Module 21 Units 1-4 AC Generators & Three-Phase Motors

Pretest Module 21 Units 1-4 AC Generators & Three-Phase Motors Pretest Module 21 Units 1-4 AC Generators & Three-Phase Motors 1. What are the two main parts of a three-phase motor? Stator and Rotor 2. Which part of a three-phase squirrel-cage induction motor is a

More information

GENERATOR & SINGLE-FUNCTION PROTECTION

GENERATOR & SINGLE-FUNCTION PROTECTION PGR-4300 Generator Ground-Fault Relay No CTs required Provides a simple method for tripping a groundfault condition on generators Use with 3- or 4-pole transfer switches Monitors neutral-to-ground integrity

More information

Data Bulletin. Ground-Censor Ground-Fault Protection System Type GC Class 931

Data Bulletin. Ground-Censor Ground-Fault Protection System Type GC Class 931 Data Bulletin 0931DB0101 July 2001 Cedar Rapids, IA, USA Ground-Censor Ground-Fault Protection System Type GC Class 931 09313063 GT Sensor Shunt Trip of Circuit Interrupter Window Area for Conductors GC

More information

Table of Contents Lesson One Lesson Two Lesson Three Lesson Four Lesson Five Lesson Six Lesson Seven Lesson Eight Lesson Nine Lesson Ten

Table of Contents Lesson One Lesson Two Lesson Three Lesson Four Lesson Five Lesson Six Lesson Seven Lesson Eight Lesson Nine Lesson Ten Table of Contents Lesson One Lesson Two Lesson Three Introduction to Single-Phase Motors...3 Split-Phase Motors...21 Capacitor Motors...37 Lesson Four Lesson Five Lesson Six Repulsion Motors...55 Universal

More information

CHAPTER 31 SYNCHRONOUS GENERATORS

CHAPTER 31 SYNCHRONOUS GENERATORS Source: POWER GENERATION HANDBOOK CHAPTER 31 SYNCHRONOUS GENERATORS Synchronous generators or alternators are synchronous machines that convert mechanical energy to alternating current (AC) electric energy.

More information

Advanced Protective Relay Training

Advanced Protective Relay Training Advanced Protective Relay Training Contact us Today for a FREE quotation to deliver this course at your company?s location. https://www.electricityforum.com/onsite-training-rfq A properly designed protection

More information

Electrical Machines II. Week 5-6: Induction Motor Construction, theory of operation, rotating magnetic field and equivalent circuit

Electrical Machines II. Week 5-6: Induction Motor Construction, theory of operation, rotating magnetic field and equivalent circuit Electrical Machines II Week 5-6: Induction Motor Construction, theory of operation, rotating magnetic field and equivalent circuit Asynchronous (Induction) Motor: industrial construction Two types of induction

More information

Characteristics of LV circuit breakers Releases, tripping curves, and limitation

Characteristics of LV circuit breakers Releases, tripping curves, and limitation Characteristics of LV circuit breakers Releases, tripping curves, and limitation Make, Withstand & Break Currents A circuit breaker is both a circuit-breaking device that can make, withstand and break

More information

ELECTRICAL POWER and POWER ELECTRONICS

ELECTRICAL POWER and POWER ELECTRONICS Introduction to ELECTRICAL POWER and POWER ELECTRONICS MUKUND R PATEL (cj* CRC Press Taylor & Francis Group Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Croup, an informa

More information

NUCLEAR OPERATIONS TRAINING ELECTRICAL SCIENCES ES-2 GENERATOR BEHAVIOR AND PROTECTION REVISION 5

NUCLEAR OPERATIONS TRAINING ELECTRICAL SCIENCES ES-2 GENERATOR BEHAVIOR AND PROTECTION REVISION 5 NUCLEAR OPERATIONS TRAINING ELECTRICAL SCIENCES ES-2 GENERATOR BEHAVIOR AND PROTECTION REVISION 5 Recommended: Original signed by: Don Cleckner Date: 10/30/06 Approved: Original signed by: Douglas O. Watson

More information

B CW POWER RELAY

B CW POWER RELAY 41-241.31B CW POWER RELAY nected in such a way that current, (I A ), leads voltage, (V BA ), by 150 degrees when the motor is operating at unity power factor. Loss of excitation to the motor causes a large

More information

Electrical Systems - Course 135 COMPOSITE ELECTRICAL PROTECTIVE SCHEMES: PART II

Electrical Systems - Course 135 COMPOSITE ELECTRICAL PROTECTIVE SCHEMES: PART II 135 05-1 Electrical Systems - Course 135 COMPOSITE ELECTRICAL PROTECTIVE SCHEMES: PART II TURBINE-GENERATOR: rhipping AND ALARM CIRCUITS i.o' I titrodljction Following on from Lessons 135.03-1 and 135.04-1,

More information

Application Note: Protection of Medium-Power Motors With SIPROTEC Compact 7SK80

Application Note: Protection of Medium-Power Motors With SIPROTEC Compact 7SK80 Application Note: Protection of Medium-Power Motors With SIPROTEC Compact 7SK80 Motor settings using the SIPROTEC Compact motor protection relay 7SK80 is explained below. Information is given on how to

More information

GENERATION, CONVERSION, OR DISTRIBUTION OF ELECTRIC POWER

GENERATION, CONVERSION, OR DISTRIBUTION OF ELECTRIC POWER XXXX H02 GENERATION, CONVERSION, OR DISTRIBUTION OF ELECTRIC POWER XXXX CONTROL OR REGULATION OF ELECTRIC MOTORS, GENERATORS, OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE

More information

Electrical Machines and Energy Systems: Overview SYED A RIZVI

Electrical Machines and Energy Systems: Overview SYED A RIZVI Electrical Machines and Energy Systems: Overview SYED A RIZVI Electrical Machines and Energy Systems Deal with the generation, transmission & distribution, and utilization of electric power. This course

More information

Instructor. Payam Zarbakhsh. Department of electrical electronics engineering

Instructor. Payam Zarbakhsh. Department of electrical electronics engineering Instructor Payam Zarbakhsh Department of electrical electronics engineering Electrical Machines Induction Motors_Note(1) Comparing with synchronous motor No dc field current is required to run the machine.

More information

ABB ! CAUTION. Type KRV Directional Overcurrent Relay E 1.0 APPLICATION 2.0 CONSTRUCTION AND OPERATION. Instruction Leaflet

ABB ! CAUTION. Type KRV Directional Overcurrent Relay E 1.0 APPLICATION 2.0 CONSTRUCTION AND OPERATION. Instruction Leaflet ABB Instruction Leaflet 41-137.2E Effective: February 1994 Supersedes I.L. 41-137.2D, Dated February 1973 ( )Denotes Change Since Previous Issue. Type KRV Directional Before putting relays into service,

More information

Short Term Course On Hydropower Development Engineering (Electrical) for Teachers of Polytechnics in Uttarakhand L33-2

Short Term Course On Hydropower Development Engineering (Electrical) for Teachers of Polytechnics in Uttarakhand L33-2 Short Term Course On Hydropower Development Engineering (Electrical) for Teachers of Polytechnics in Uttarakhand ( July 14-18, 2007) Lecture on L33-2 By S.N.Singh Senior Scientific officer ALTERNATE HYDRO

More information

Unit 32 Three-Phase Alternators

Unit 32 Three-Phase Alternators Unit 32 Three-Phase Alternators Objectives: Discuss the operation of a three-phase alternator. Explain the effect of rotation speed on frequency. Explain the effect of field excitation on output voltage.

More information

Photographs of large cities, such as Seattle, Washington, are visible reminders of how much people rely on electrical energy.

Photographs of large cities, such as Seattle, Washington, are visible reminders of how much people rely on electrical energy. Photographs of large cities, such as Seattle, Washington, are visible reminders of how much people rely on electrical energy. Generating Electric Current How is voltage induced in a conductor? According

More information

Lecture 20: Stator Control - Stator Voltage and Frequency Control

Lecture 20: Stator Control - Stator Voltage and Frequency Control Lecture 20: Stator Control - Stator Voltage and Frequency Control Speed Control from Stator Side 1. V / f control or frequency control - Whenever three phase supply is given to three phase induction motor

More information

10. Starting Method for Induction Motors

10. Starting Method for Induction Motors 10. Starting Method for Induction Motors A 3-phase induction motor is theoretically self starting. The stator of an induction motor consists of 3-phase windings, which when connected to a 3-phase supply

More information

ST. ANNE S COLLEGE OF ENGINEERING AND TECHNOLOGY 9001:2015 CERTIFIED INSTITUTION) ANGUCHETTYPALAYAM, PANRUTI

ST. ANNE S COLLEGE OF ENGINEERING AND TECHNOLOGY 9001:2015 CERTIFIED INSTITUTION) ANGUCHETTYPALAYAM, PANRUTI ST. ANNE S COLLEGE OF ENGINEERING AND TECHNOLOGY (AN ISO 9001:2015 CERTIFIED INSTITUTION) ANGUCHETTYPALAYAM, PANRUTI 607 110. EE6504 ELECTRICAL MACHINES - II UNIT I SYNCHRONOUS GENERATOR PART A 1. What

More information

ROTATING MAGNETIC FIELD

ROTATING MAGNETIC FIELD Chapter 5 ROTATING MAGNETIC FIELD 1 A rotating magnetic field is the key to the operation of AC motors. The magnetic field of the stator is made to rotate electrically around and around in a circle. Stator

More information

ESO 210 Introduction to Electrical Engineering

ESO 210 Introduction to Electrical Engineering ESO 210 Introduction to Electrical Engineering Lectures-37 Polyphase (3-phase) Induction Motor 2 Determination of Induction Machine Parameters Three tests are needed to determine the parameters in an induction

More information

Doubly fed electric machine

Doubly fed electric machine Doubly fed electric machine Doubly fed electric machines are electric motors or electric generators that have windings on both stationary and rotating parts, where both windings transfer significant power

More information

EXPERIMENT 2 THREE PHASE INDUCTION MOTOR, PART 1

EXPERIMENT 2 THREE PHASE INDUCTION MOTOR, PART 1 University f Jordan School of Engineering Department of Mechatronics Engineering Electrical Machines Lab Eng. Osama Fuad Eng. Nazmi Ashour EXPERIMENT 2 THREE PHASE INDUCTION MOTOR, PART 1 OBJECTIVES To

More information

SECTION MICROPROCESSOR TRIP UNITS FOR LV CIRCUIT BREAKERS. This section is organized as indicated below. Select desired Paragraphs.

SECTION MICROPROCESSOR TRIP UNITS FOR LV CIRCUIT BREAKERS. This section is organized as indicated below. Select desired Paragraphs. SECTION 16904 MICROPROCESSOR TRIP UNITS FOR LV CIRCUIT BREAKERS PART 2 PRODUCTS 01 MANUFACTURERS A. B. C. Eaton * * The listing of specific manufacturers above does not imply acceptance of their products

More information

KD LV Motor Protection Relay

KD LV Motor Protection Relay 1. Protection Features KD LV Motor Protection Relay Overload (for both cyclic and sustained overload conditions) Locked rotor by vectorial stall Running stall / jam Single phasing / Unbalance Earth leakage

More information

Electric Motor Controls BOMA Pre-Quiz

Electric Motor Controls BOMA Pre-Quiz Electric Motor Controls BOMA Pre-Quiz Name: 1. How does a U.P.S. (uninterruptable power supply) work? A. AC rectified to DC batteries then inverted to AC B. Batteries generate DC power C. Generator, batteries,

More information

An Introduction to Completing a NERC PRC Study

An Introduction to Completing a NERC PRC Study An Introduction to Completing a NERC PRC-019-2 Study For Synchronous and Distributed Generation Sources PRESENTED BY: MATTHEW MANLEY TEXAS A&M PROTECTIVE RELAYING CONFERENCE MARCH 26-29, 2018 Presentation

More information

SYLLABUS 1. SYNCHRONOUS GENERATOR 9 2. SYNCHRONOUS MOTOR 8

SYLLABUS 1. SYNCHRONOUS GENERATOR 9 2. SYNCHRONOUS MOTOR 8 SYLLABUS 1. SYNCHRONOUS GENERATOR 9 Constructional details Types of rotors emf equation Synchronous reactance Armature reaction Voltage regulation EMF, MMF, ZPF and A.S.A methods Synchronizing and parallel

More information

ELG4125: Flexible AC Transmission Systems (FACTS)

ELG4125: Flexible AC Transmission Systems (FACTS) ELG4125: Flexible AC Transmission Systems (FACTS) The philosophy of FACTS is to use power electronics for controlling power flow in a transmission network, thus allowing the transmission line to be loaded

More information

Protective Device Coordination ETAP Star

Protective Device Coordination ETAP Star Protective Device Coordination ETAP Star Agenda Concepts & Applications Star Overview Features & Capabilities Protective Device Type TCC Curves STAR Short-circuit PD Sequence of Operation Normalized TCC

More information

Net Metering Interconnection Requirements

Net Metering Interconnection Requirements Net Metering Interconnection Requirements Customer Generation Capacity Not Exceeding 100 kw Date: 2017-07-01 Version: 1 Revision History Date Rev. Description July 1, 2017 1 Initial Release Newfoundland

More information

Date: Name: ID: LABORATORY EXPERIMENT NO. 8 INDUCTION MOTOR/GENERATOR 8-1

Date: Name: ID: LABORATORY EXPERIMENT NO. 8 INDUCTION MOTOR/GENERATOR 8-1 Date: Name: ID: LABORATORY EXPERIMENT NO. 8 INDUCTION MOTOR/GENERATOR 8-1 OBJECT 1. To determine the general performance of a squirrel motors 2. To observe the characteristics of induction generators.

More information

2013 Grid of the Future Symposium. Utilizing Single Phase Operation Scheme on Untransposed 765kV lines for a Stability-Limited Plant

2013 Grid of the Future Symposium. Utilizing Single Phase Operation Scheme on Untransposed 765kV lines for a Stability-Limited Plant 21, rue d Artois, F-75008 PARIS CIGRE US National Committee http : //www.cigre.org 2013 Grid of the Future Symposium Utilizing Single Phase Operation Scheme on Untransposed 765kV lines for a Stability-Limited

More information

Technical Explanation for Inverters

Technical Explanation for Inverters CSM_Inverter_TG_E_1_2 Introduction What Is an Inverter? An inverter controls the frequency of power supplied to an AC motor to control the rotation speed of the motor. Without an inverter, the AC motor

More information