Egg Car Collision Project

Size: px
Start display at page:

Download "Egg Car Collision Project"

Transcription

1 Name Date Egg Car Collision Project Objective: To apply your science knowledge of momentum, energy and Newton s Laws of Motion to design and build a crashworthy vehicle. Introduction: The popularity of the automobile has brought with it some undesirable effects. Among these are air pollution, traffic jams, and traffic fatalities. Each year, thousands of people are injured or killed as a result of automobile accidents. Because of this, automotive safety design has become a major part of the auto industry. Safety engineers have concluded that passenger restraints are one safety device that could reduce automobile fatalities dramatically. Seat belts and shoulder harnesses keep passengers from being thrown from the vehicle or bounced around inside of the vehicle causing injury. Another important category of safety devices are energy absorbing devices. They absorb or cushion the impact of a collision. Some examples of energy absorbing systems include airbags, bumpers and crumple zones. The combination of passenger restraint systems and energy absorbing devices designed into a vehicle can help to save many lives. This activity will allow you to assume the role of a safety engineer as you design, install, and test various safety devices for a crash vehicle. Design Brief: As a mechanical engineer employed for a major automobile manufacturer you have been assigned the task of designing and installing safety devices for a new test vehicle. The vehicle must be aerodynamically designed and it must be able to roll along a test ramp and into an immovable object at the end of the track (e.g., the wall) while protecting the passenger (a raw egg) from injury. Materials: (For the entire class) - Test ramp (rain gutter) - triple beam or digital balance - Stop watch - meter stick - Plastic egg (crash-test dummy) - scissors - glue - markers/crayons for decorations Materials: (For each team of two) - 4 sheets of paper (maximum) - 4 cardboard wheels - 1 raw egg (simulated "live" passenger) - 1 zip lock bag (body bag) - drinking straw (for axle that connects one wheel to the next)

2 Egg Car Vocabulary: Write a complete sentence in your own words describing each term. You may use your textbook and your notes. 1. Speed- 2. Force- 3. Inertia- 4. Acceleration - 5. Friction - 6. Momentum 7. Potential Energy - 8. Kinetic Energy -

3 Rules and Requirements: 1. There can be no physical contact between you and your car once the vehicle has been released on the track. 2. The design must allow for easy removal and inspection of the egg. You may test your vehicle with a plastic egg before receiving your real egg on competition day. 3. Repairs requiring additional materials will not be allowed once the competition has begun. 4. All vehicles must display the following: a. vehicle's name b. builders names c. vehicle's width and length in cm d. vehicle's mass (without egg), in grams Pre-Construction Thought Questions: Answer the following questions using complete sentences. 1. How will the mass of the car affect its speed? 2. What can I add to my car to make the egg safe when the car hits the wall? 3. Should the egg be able to move within the car, or should it be held immobile? 4. How can the car be designed to easily remove and inspect the egg? 5. List any design features that will maximize your car s overall speed and crashworthiness.

4 Egg Car Plan Sheet In the space below, design your egg car. Draw both a side view and a top view. Label ALL parts of your vehicle. Include the measurements of all sides. Maximum Width 6.5 cm Maximum Length 16.5 cm Maximum Mass 40 grams (without egg) SIDE VIEW: TOP VIEW:

5 Competition Day! 1. You should have constructed your egg car by this time. 2. Before racing you need to document the dimensions of your car (length, width, and mass). 3. Record this data into Race Data Table # 1 below. 4. Take your car to the race track where you will test your vehicle. 5. Place your car at the top of the ramp and release. 6. Use your stopwatch to determine the time it takes for your vehicle to crash into the wall. 7. Measure the distance traveled. 8. Calculate the speed of your vehicle (Remember: Speed = distance/time) 9. Record this data into Race Data Table # 2 below. 10. Inspect and determine the condition of your egg. 11. Repeat for the remaining trials. 12. Construct a bar graph or line graph representing the speed of your vehicle for each trial. Remember to give your graph a title and label your x and y axis. 13. Complete the Post Lab Thought Questions and Class Data Summary. Race Data Table # 1 Length of car Width of car Mass of car (without egg) Mass of car (with egg) cm cm g g Race Data Table # 2 Trial Distance (m) Time (s) Speed (m/s)

6

7 Post-Race Thought Questions: Answer the following questions using complete sentences. (3-5 sentences each) 1. Explain what you were investigating in this project and why it is important. 2. Describe the problems you encountered during the design/construction process and how you solved them. 3. Did your car perform as well as you expected for both speed and crashworthiness? What problems, if any, did you encounter during your crash test? 4. Describe the strengths and weaknesses of your design. 5. Considering all the cars in your class, which design features produced the highest speeds?

8 6. Considering all the cars in your class, which design features produced the fewest cracked eggs? 7. Did the car with the greatest speed also have the greatest momentum? Explain how a slower car can have more momentum than a faster car. 8. Discuss how you would modify your car to improve its performance in terms of both speed and crashworthiness. Class Data Summary Speed of the fastest car in the class Car with the most mass (including the egg) Total number of cars crashed Number of broken eggs Number of unbroken eggs

Crash Cart Barrier Project Teacher Guide

Crash Cart Barrier Project Teacher Guide Crash Cart Barrier Project Teacher Guide Set up We recommend setting the ramp at an angle of 15 and releasing the cart 40 cm away from the barrier. While crashing the cart into a wall works, if this is

More information

Stopping distance = thinking distance + braking distance.

Stopping distance = thinking distance + braking distance. Q1. (a) A driver may have to make an emergency stop. Stopping distance = thinking distance + braking distance. Give three different factors which affect the thinking distance or the braking distance. In

More information

Newton s Hot Wheel Lab

Newton s Hot Wheel Lab Name Date Newton s Hot Wheel Lab Observation Describe the Hot Wheel you are using for the lab. QuaLitative (descriptive words) QuaNtitative (numbers) Length (inches and centimeters): Height (inches and

More information

Thinking distance in metres. Draw a ring around the correct answer to complete each sentence. One of the values of stopping distance is incorrect.

Thinking distance in metres. Draw a ring around the correct answer to complete each sentence. One of the values of stopping distance is incorrect. Q1.An investigation was carried out to show how thinking distance, braking distance and stopping distance are affected by the speed of a car. The results are shown in the table. Speed in metres per second

More information

Name: Period: Due Date: Physics Project: Balloon Powered Car

Name: Period: Due Date: Physics Project: Balloon Powered Car Name: Period: Due Date: Physics Project: Balloon Powered Car Challenge: Design and build a balloon car that will travel the greatest distance in the Balloon Car Cup. To do this, you must combine key concepts

More information

ST.MARY S CATHOLIC HIGH SCHOOL, DUBAI

ST.MARY S CATHOLIC HIGH SCHOOL, DUBAI ST.MARY S CATHOLIC HIGH SCHOOL, DUBAI YR. 9 / YR. 10 PHYSICS REVISION WORKSHEET 1. (a) In 2009 the sprinter Usain Bolt ran the 100m sprint in a time of 9.58s. Calculate his average speed during this race.

More information

1. Measure the length of the track (already set up by your teacher) in meters and record in table 1. Use a meter stick for this.

1. Measure the length of the track (already set up by your teacher) in meters and record in table 1. Use a meter stick for this. Hot Wheels Speed Lab Name: Purpose : To calculate the speed of different hot-wheels cars. Procedure: 1. Measure the length of the track (already set up by your teacher) in meters and record in table 1.

More information

Thinking distance in metres. Draw a ring around the correct answer to complete each sentence. One of the values of stopping distance is incorrect.

Thinking distance in metres. Draw a ring around the correct answer to complete each sentence. One of the values of stopping distance is incorrect. Q1.An investigation was carried out to show how thinking distance, braking distance and stopping distance are affected by the speed of a car. The results are shown in the table. Speed in metres per second

More information

The graph shows how far the car travelled and how long it took. (i) Between which points was the car travelling fastest? Tick ( ) your answer.

The graph shows how far the car travelled and how long it took. (i) Between which points was the car travelling fastest? Tick ( ) your answer. Q1. This question is about a car travelling through a town. (a) The graph shows how far the car travelled and how long it took. (i) Between which points was the car travelling fastest? Tick ( ) your answer.

More information

The stopping distance of a car is the sum of the thinking distance and the braking distance.

The stopping distance of a car is the sum of the thinking distance and the braking distance. FORCES AND BRAKING Q1. The stopping distance of a car is the sum of the thinking distance and the braking distance. The table below shows how the thinking distance and braking distance vary with speed.

More information

Q1. The graph shows the speed of a runner during an indoor 60 metres race.

Q1. The graph shows the speed of a runner during an indoor 60 metres race. Q1. The graph shows the speed of a runner during an indoor 60 metres race. (a) Calculate the acceleration of the runner during the first four seconds. (Show your working.) (b) How far does the runner travel

More information

Rocket Races. Rocket Activity. Objective Students investigate Newton s third law of motion by designing and constructing rocketpowered

Rocket Races. Rocket Activity. Objective Students investigate Newton s third law of motion by designing and constructing rocketpowered Rocket Activity Rocket Races Objective Students investigate Newton s third law of motion by designing and constructing rocketpowered racing cars. National Science Content Standards Unifying Concepts and

More information

(3) When the brake pedal of the car is pushed, brake pads press against very hard steel discs.

(3) When the brake pedal of the car is pushed, brake pads press against very hard steel discs. Q1. A car travels along a level road at 20 metres per second. (a) Calculate the distance travelled by the car in 4 seconds. (Show your working.) (b) When the brake pedal of the car is pushed, brake pads

More information

Question Papers on Momentum

Question Papers on Momentum Question Papers on Momentum Name Due Date QUESTION 6 Collisions happen on the roads in our country daily. In one of these collisions, a car of mass 1 600 kg, travelling at a speed of 30 m s -1 to the left,

More information

Momentum, Energy and Collisions

Momentum, Energy and Collisions , Energy and Collisions The of two carts on a track can be described in terms of conservation and, in some cases, energy conservation. If there is no net external force experienced by the system of two

More information

Physics 103 Lab MC-11: Elastic Collisions

Physics 103 Lab MC-11: Elastic Collisions Physics 103 Lab MC-11: Elastic Collisions Apparatus: Track 2 carts equipped with magnetic bumpers 2 motion sensors (with stands and cables) 2 cardboard vanes Computer and interface Problem You work at

More information

Exampro GCSE Physics. P2 Forces and their effects Self Study Questions Higher tier. Name: Class: Author: Date: Time: 117. Marks: 117.

Exampro GCSE Physics. P2 Forces and their effects Self Study Questions Higher tier. Name: Class: Author: Date: Time: 117. Marks: 117. Exampro GCSE Physics P2 Forces and their effects Self Study Questions Higher tier Name: Class: Author: Date: Time: 117 Marks: 117 Comments: Page 1 of 32 Q1. (a) The stopping distance of a vehicle is made

More information

Car Safety Features Exploration and Essay

Car Safety Features Exploration and Essay 1 Car Safety Features Exploration and Essay Task: One of the biggest technological advances in the development of automobiles is the vast number of safety features now available in even the least expensive

More information

Chapter 9 Motion Exam Question Pack

Chapter 9 Motion Exam Question Pack Chapter 9 Motion Exam Question Pack Name: Class: Date: Time: 63 minutes Marks: 63 marks Comments: Page of 49 The graphs in List A show how the velocities of three vehicles change with time. The statements

More information

Page 2. The go-kart always had the same mass and used the same motor.

Page 2. The go-kart always had the same mass and used the same motor. Q1.(a) Some students have designed and built an electric-powered go-kart. After testing, the students decided to make changes to the design of their go-kart. The go-kart always had the same mass and used

More information

PT1 9wk Test Study Guide

PT1 9wk Test Study Guide PT1 9wk Test Study Guide Name: Your 9-wk test is on Thursday March 28. You are required to complete this study guide by middle of class Wednesday March 27. It will be counted as an assignment grade. Complete

More information

meters Time Trials, seconds Time Trials, seconds 1 2 AVG. 1 2 AVG

meters Time Trials, seconds Time Trials, seconds 1 2 AVG. 1 2 AVG Constan t Velocity (Speed) Objective: Measure distance and time during constant velocity (speed) movement. Determine average velocity (speed) as the slope of a Distance vs. Time graph. Equipment: battery

More information

4.4. Forces Applied to Automotive Technology. The Physics of Car Tires

4.4. Forces Applied to Automotive Technology. The Physics of Car Tires Forces Applied to Automotive Technology Throughout this unit we have addressed automotive safety features such as seat belts and headrests. In this section, you will learn how forces apply to other safety

More information

Something to use as a ramp (preferably a flat surface that would enable the buggy to roll for 25 cm or more) STUDENT PAGES.

Something to use as a ramp (preferably a flat surface that would enable the buggy to roll for 25 cm or more) STUDENT PAGES. Design a Lunar Buggy OBJECTIVE To demonstrate an understanding of the Engineering Design Process while utilizing each stage to successfully complete a team challenge. PROCESS SKILLS Measuring, calculating,

More information

P5 STOPPING DISTANCES

P5 STOPPING DISTANCES P5 STOPPING DISTANCES Practice Questions Name: Class: Date: Time: 85 minutes Marks: 84 marks Comments: GCSE PHYSICS ONLY Page of 28 The stopping distance of a car is the sum of the thinking distance and

More information

The drag lift pulls the skier from the bottom to the top of a ski slope.

The drag lift pulls the skier from the bottom to the top of a ski slope. ACCELERATION Q1. Figure 1 shows a skier using a drag lift. The drag lift pulls the skier from the bottom to the top of a ski slope. The arrows, A, B, C and D represent the forces acting on the skier and

More information

Newton s First Law. Evaluation copy. Vernier data-collection interface

Newton s First Law. Evaluation copy. Vernier data-collection interface Newton s First Law Experiment 3 INTRODUCTION Everyone knows that force and motion are related. A stationary object will not begin to move unless some agent applies a force to it. But just how does the

More information

NEW CAR TIPS. Teaching Guidelines

NEW CAR TIPS. Teaching Guidelines NEW CAR TIPS Teaching Guidelines Subject: Algebra Topics: Patterns and Functions Grades: 7-12 Concepts: Independent and dependent variables Slope Direct variation (optional) Knowledge and Skills: Can relate

More information

Invention Lab. Race-Car Construction OBJECTIVES. Planning. Motion in One Dimension

Invention Lab. Race-Car Construction OBJECTIVES. Planning. Motion in One Dimension Invention Lab Motion in One Dimension Race-Car Construction OBJECTIVES Students will use appropriate lab safety procedures. use the scientific method to solve a problem. design and implement their procedure.

More information

Drive Right Chapter 5 Study Guide

Drive Right Chapter 5 Study Guide 3/23/2008 Define Gravity. Define Center of Gravity. Define Energy of Motion Define Friction. Define Traction. How does gravity affect your car going uphill? What is Tread, and how is it affected when the

More information

Q1. To get a bobsleigh moving quickly, the crew push it hard for a few metres and then jump in.

Q1. To get a bobsleigh moving quickly, the crew push it hard for a few metres and then jump in. Q1. To get a bobsleigh moving quickly, the crew push it hard for a few metres and then jump in. (a) Choose from the following words to complete the sentences below. distance energy force speed time You

More information

time in seconds Amy leaves diving board

time in seconds Amy leaves diving board 1 Amy dives from the high diving board at a swimming pool. Look at the graph of her motion. speed in m / s 15 10 Amy enters water P Q 5 0 0 0.5 1.0 1.5 2.0 2.5 time in seconds Amy leaves diving board (a)

More information

Physics 2048 Test 2 Dr. Jeff Saul Fall 2001

Physics 2048 Test 2 Dr. Jeff Saul Fall 2001 Physics 2048 Test 2 Dr. Jeff Saul Fall 2001 Name: Group: Date: READ THESE INSTRUCTIONS BEFORE YOU BEGIN Before you start the test, WRITE YOUR NAME ON EVERY PAGE OF THE EXAM. Calculators are permitted,

More information

UTCRS ELEMENTARY STEM CURRICULUM

UTCRS ELEMENTARY STEM CURRICULUM UTCRS ELEMENTARY STEM CURRICULUM Table of Contents Objectives... 4 Texas Essential Knowledge and Skills (TEKS) and National Standards... 4 TEKS Science 3-5... 4 TEKS Math 3-5... 5 International Technology

More information

Force and Motion. Downloaded from ebooks.lab-aids.com

Force and Motion. Downloaded from ebooks.lab-aids.com Force and Motion E Force and Motion I can t wait until school is over, Jack said to his friend Uma. My favorite relative, Aunt Tillie, is visiting. She drives a tour bus and today she is going to pick

More information

Regents Physics Summer Assignment. Physics: Balloon Car Lab

Regents Physics Summer Assignment. Physics: Balloon Car Lab Regents Physics Summer Assignment Name: Physics: Balloon Car Lab A rocket is simply a chamber filled with pressurized gas. A small opening called a nozzle allows the air to escape, causing thrust that

More information

Friction and Momentum

Friction and Momentum Lesson Three Aims By the end of this lesson you should be able to: understand friction as a force that opposes motion, and use this to explain why falling objects reach a terminal velocity know that the

More information

Hovercraft

Hovercraft 1 Hovercraft 2017-2018 Names: Score: / 44 Show all equations and work. Point values are shown in parentheses at the end of the question. Assume g=9.8 m/s/s for all calculations. Include units in your answer.

More information

1103 Per 9: Simple Machines-Levers

1103 Per 9: Simple Machines-Levers Name Section 1103 Per 9: Simple Machines-Levers 9.1 How do Levers Work? 1) Fulcrums and forces a) Place a meter stick on the plastic tube with the 50 cm mark directly above the tube. Place a 5 newton weight

More information

Momentum, Energy and Collisions

Momentum, Energy and Collisions Experiment 19 The of two carts on a track can be described in terms of conservation and, in some cases, energy conservation. If there is no net external force experienced by the system of two carts, then

More information

Newton s 2 nd Law Activity

Newton s 2 nd Law Activity Newton s 2 nd Law Activity Purpose Students will begin exploring the reason the tension of a string connecting a hanging mass to an object will be different depending on whether the object is stationary

More information

Additional Science. Physics Unit Physics P2 PHY2H. (Jun11PHY2H01) General Certificate of Secondary Education Higher Tier June 2011.

Additional Science. Physics Unit Physics P2 PHY2H. (Jun11PHY2H01) General Certificate of Secondary Education Higher Tier June 2011. Centre Number Surname Candidate Number For Examiner s Use Other Names Candidate Signature Examiner s Initials Additional Science Unit Physics P2 Physics Unit Physics P2 Written Paper General Certificate

More information

Write It! Station Directions

Write It! Station Directions Write It! Station Directions It is recommended that you have completed at least two of the following stations before working at this station. -Read It! -Explore It! -Watch It! -Research It! Answer each

More information

Safety Briefing on Roof Crush How a Strong Federal Roof Crush Standard Can Save Many Lives & Why the Test Must Include Both Sides of the Roof

Safety Briefing on Roof Crush How a Strong Federal Roof Crush Standard Can Save Many Lives & Why the Test Must Include Both Sides of the Roof Safety Briefing on Roof Crush How a Strong Federal Roof Crush Standard Can Save Many Lives & Why the Test Must Include Both Sides of the Roof ~ Public Citizen ~ www.citizen.org The Importance of Far Side

More information

Research and Development Objectives

Research and Development Objectives CO2 Dragster Design Research and Development Objectives Research in CO2 auto design involves the study of a few sciences related to the motion of your dragster. Aerodynamics- the study of how solid objects

More information

Intermediate 2 Momentum & Energy Past Paper questions

Intermediate 2 Momentum & Energy Past Paper questions Intermediate 2 Momentum & Energy Past Paper questions 2000-2010 2000 Q23. A chairlift at a ski resort carries skiers through a vertical distance of 400 m. (a) One of the skiers has a mass of 90.0 kg.

More information

Figure 1. What is the difference between distance and displacement?

Figure 1. What is the difference between distance and displacement? Q1.A train travels from town A to town B. Figure 1 shows the route taken by the train. Figure 1 has been drawn to scale. Figure 1 (a) The distance the train travels between A and B is not the same as the

More information

Engaging Inquiry-Based Activities Grades 3-6

Engaging Inquiry-Based Activities Grades 3-6 ELECTRICITY AND CIRCUITS Engaging Inquiry-Based Activities Grades 3-6 Janette Smith 2016 Janette Smith 2016 1 What s Inside Activity 1: Light it Up!: Students investigate different ways to light a light

More information

Unit 2: Lesson 2. Balloon Racers. This lab is broken up into two parts, first let's begin with a single stage balloon rocket:

Unit 2: Lesson 2. Balloon Racers. This lab is broken up into two parts, first let's begin with a single stage balloon rocket: Balloon Racers Introduction: We re going to experiment with Newton s Third law by blowing up balloons and letting them rocket, race, and zoom all over the place. When you first blow up a balloon, you re

More information

MODULE 6 Lower Anchors & Tethers for CHildren

MODULE 6 Lower Anchors & Tethers for CHildren National Child Passenger Safety Certification Training Program MODULE 6 Lower Anchors & Tethers for CHildren Topic Module Agenda: 50 Minutes Suggested Timing 1. Introduction 2 2. Lower Anchors and Tether

More information

Figure 1. What is the difference between distance and displacement?

Figure 1. What is the difference between distance and displacement? Q1.A train travels from town A to town B. Figure 1 shows the route taken by the train. Figure 1 has been drawn to scale. Figure 1 (a) The distance the train travels between A and B is not the same as the

More information

Vehicle Safety Research in TGGS

Vehicle Safety Research in TGGS Vehicle Safety Research in TGGS Core Knowledge of Automotive Safety and Assessment Engineer Program and Research in TGGS Vehicle fundamentals and manufacturing process Vehicle and part Assessment Crash

More information

Mechanical Systems. Section 1.0 Machines are tools that help humans do work. 1.1 Simple Machines- Meeting Human Needs Water Systems

Mechanical Systems. Section 1.0 Machines are tools that help humans do work. 1.1 Simple Machines- Meeting Human Needs Water Systems Unit 4 Mechanical Systems Section 1.0 Machines are tools that help humans do work. Define: machine- 1.1 Simple Machines- Meeting Human Needs Water Systems Then: Now: The earliest devices were devices.

More information

Teaching Aids and Materials: This week the students will: Standards addressed and expectations of Students for the week:

Teaching Aids and Materials: This week the students will: Standards addressed and expectations of Students for the week: Teacher: Subject Area: Room No: William Schraer STEM - Intro to Engineering Design 513 Lesson Week: Meeting Time Period: Day: February 2 February 6 1..5..7.. Wednesday 4 th Teaching Aids and Materials:

More information

Study concerning the loads over driver's chests in car crashes with cars of the same or different generation

Study concerning the loads over driver's chests in car crashes with cars of the same or different generation IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Study concerning the loads over driver's chests in car crashes with cars of the same or different generation Related content -

More information

Unit 8 ~ Learning Guide Name:

Unit 8 ~ Learning Guide Name: Unit 8 ~ Learning Guide Name: Instructions: Using a pencil, complete the following notes as you work through the related lessons. Show ALL work as is explained in the lessons. You are required to have

More information

Unit 6 Basic Maneuvers in a Low-Risk Environment

Unit 6 Basic Maneuvers in a Low-Risk Environment Driver Education Classroom and In-Car Curriculum Unit 6 Basic Maneuvers in a Low-Risk Environment Table of Contents Unit 6 Introduction.6-4 Overview, Objectives and Words to Know Teacher Information and

More information

Smart Spinner. Age 7+ Teacher s Notes. In collaboration with NASA

Smart Spinner. Age 7+ Teacher s Notes. In collaboration with NASA Smart Spinner Age 7+ Teacher s Notes In collaboration with NASA LEGO and the LEGO logo are trademarks of the/sont des marques de commerce de/son marcas registradas de LEGO Group. 2012 The LEGO Group. 190912

More information

Level 1 Science, 2016

Level 1 Science, 2016 90940 909400 1SUPERVISOR S Level 1 Science, 2016 90940 Demonstrate understanding of aspects of mechanics 9.30 a.m. Monday 14 November 2016 Credits: Four Achievement Achievement with Merit Achievement with

More information

A B C length 1. Look at the results that they collect for four cars passing the school. Time taken to travel length 1. in seconds

A B C length 1. Look at the results that they collect for four cars passing the school. Time taken to travel length 1. in seconds 1 This question is about speed. (a) Pupils at a school measure the time cars take to travel two 100 m lengths. Look at the diagram. A B C length 1 length 2 100 m 100 m Look at the results that they collect

More information

A STUDY OF HUMAN KINEMATIC RESPONSE TO LOW SPEED REAR END IMPACTS INVOLVING VEHICLES OF LARGELY DIFFERING MASSES

A STUDY OF HUMAN KINEMATIC RESPONSE TO LOW SPEED REAR END IMPACTS INVOLVING VEHICLES OF LARGELY DIFFERING MASSES A STUDY OF HUMAN KINEMATIC RESPONSE TO LOW SPEED REAR END IMPACTS INVOLVING VEHICLES OF LARGELY DIFFERING MASSES Brian Henderson GBB UK Ltd, University of Central Lancashire School of Forensic & Investigative

More information

BOBSLED RACERS. DESIGN CHALLENGE Build a miniature bobsled that can win a race down a slope.

BOBSLED RACERS. DESIGN CHALLENGE Build a miniature bobsled that can win a race down a slope. Grades 3 5, 6 8 30 minutes BOBSLED RACERS DESIGN CHALLENGE Build a miniature bobsled that can win a race down a slope. MATERIALS Supplies and Equipment: Stopwatch Flat-bottomed 10-foot vinyl gutters (1

More information

Rocket Activity Advanced High- Power Paper Rockets

Rocket Activity Advanced High- Power Paper Rockets Rocket Activity Advanced High- Power Paper Rockets Objective Design and construct advanced high-power paper rockets for specific flight missions. National Science Content Standards Unifying Concepts and

More information

SCI ON TRAC ENCEK WITH

SCI ON TRAC ENCEK WITH WITH TRACK ON SCIENCE PART 1: GET GOING! What s It About? The Scout Association has partnered with HOT WHEELS, the COOLEST and most iconic diecast car brand to help Beavers and Cubs explore FUN scientific

More information

Concepts of One Dimensional Kinematics Activity Purpose

Concepts of One Dimensional Kinematics Activity Purpose Concepts of One Dimensional Kinematics Activity Purpose During the activity, students will become familiar with identifying how the position, the velocity, and the acceleration of an object will vary with

More information

Design Evaluation of Fuel Tank & Chassis Frame for Rear Impact of Toyota Yaris

Design Evaluation of Fuel Tank & Chassis Frame for Rear Impact of Toyota Yaris International Research Journal of Engineering and Technology (IRJET) e-issn: 2395-0056 Volume: 03 Issue: 05 May-2016 p-issn: 2395-0072 www.irjet.net Design Evaluation of Fuel Tank & Chassis Frame for Rear

More information

Hovercraft. Dennis Papesh

Hovercraft. Dennis Papesh Hovercraft Dennis Papesh dpapesh@holyangels.cc Self-propelled Air-levitated Up to 2 battery powered motors One propeller each Description Levitate and move vehicle down track Test on knowledge of classic

More information

A) Draw the levers in your notes and use the drawings to record your results.

A) Draw the levers in your notes and use the drawings to record your results. Simple Machines Station One 1 st Class Levers This station should have 2 levers set up. One where the fulcrum is @.5m and one where it is @.65m. Don t change them in any way! You should also have Newton

More information

The Power of Your Seatbelt

The Power of Your Seatbelt Use the website: http://www.safeprogram.com/videos.php?action=1 if you need to view the videos again or if you were absent. The Power of Your Seatbelt Notice that the driver seems to be very sleepy Consider

More information

Southern Oregon University Van Safety Training for Students and Employees of the University

Southern Oregon University Van Safety Training for Students and Employees of the University Southern Oregon University Van Safety Training for Students and Employees of the University Template courtesy of George Fox University PASSENGER VAN USE POLICY All drivers must be 18, have a valid drivers

More information

Safer Vehicle Design. TRIPP IIT Delhi

Safer Vehicle Design. TRIPP IIT Delhi Safer Vehicle Design S. Mukherjee TRIPP IIT Delhi Why a risk Five horsepower Kinetic energy of about 1 KiloJoules The operator undergoes three years of fulltime training wear helmets eyeglasses their skills

More information

Angular Momentum Problems Challenge Problems

Angular Momentum Problems Challenge Problems Angular Momentum Problems Challenge Problems Problem 1: Toy Locomotive A toy locomotive of mass m L runs on a horizontal circular track of radius R and total mass m T. The track forms the rim of an otherwise

More information

TRANSPORTATION TECHNOLOGY 10

TRANSPORTATION TECHNOLOGY 10 TRANSPORTATION TECHNOLOGY 10 Description In Transportation Technology 10, students will gain knowledge of safety, use of tools, and the repair and maintenance of small gas engines. Other elements of the

More information

Name: New Document 1. Class: Date: 221 minutes. Time: 220 marks. Marks: Comments:

Name: New Document 1. Class: Date: 221 minutes. Time: 220 marks. Marks: Comments: New Document Name: Class: Date: Time: 22 minutes Marks: 220 marks Comments: Q. The diagram shows a boat pulling a water skier. The arrow represents the force on the water produced by the engine propeller.

More information

Teacher s Guide: Safest Generation Ad Activity

Teacher s Guide: Safest Generation Ad Activity Teacher s Guide: Safest Generation Ad Activity Introduction Today s 11- and 12-year-old preteens are very smart about vehicle safety. They have grown up using car seats and booster seats more consistently

More information

Speed Workshop. In this workshop we will be covering: a. Average speed b. Units c. Relative Speeds d. Distance/time graphs

Speed Workshop. In this workshop we will be covering: a. Average speed b. Units c. Relative Speeds d. Distance/time graphs Speed Workshop In this workshop we will be covering: a. Average speed b. Units c. Relative Speeds d. Distance/time graphs Average speed Speed is how quickly an object can cover a distance. You may also

More information

Electricity to Light

Electricity to Light Powerful Classroom Assessment for STC/MS Energy, Machines, and Motion Unit to be given after Lesson 4 Electricity to Light Grade 8 Inquiry Scenario Published by the Team of the Washington Office of the

More information

Impulse, Momentum, and Energy Procedure

Impulse, Momentum, and Energy Procedure Impulse, Momentum, and Energy Procedure OBJECTIVE In this lab, you will verify the Impulse-Momentum Theorem by investigating the collision of a moving cart with a fixed spring. You will also use the Work-Energy

More information

Robots from Junk. Vocabulary autonomous, center of mass, lander, robotics, rover

Robots from Junk. Vocabulary autonomous, center of mass, lander, robotics, rover Robots from Junk Teacher Background The Pathfinder rover, Sojourner, was once called the "Microrover Flight Experiment." It was designed to test the design and performance of rovers, as well as to do some

More information

Renewable Energy Sprint

Renewable Energy Sprint Next Generation Science Standards NGSS Science and Engineering Practices: Asking questions and defining problems Developing and using models Planning and carrying out investigations Analyzing and interpreting

More information

Component 5 - Physics: Energy, forces and the structure of matter

Component 5 - Physics: Energy, forces and the structure of matter SPECIMEN MATERIAL Please write clearly, in block capitals. Centre number Candidate number Surname Forename(s) Candidate signature ELC SCIENCE 5960 Externally-Set Assignment Marks Component 5 - Physics:

More information

NOTE All entries must be checked in upon arrival at MESA Day.

NOTE All entries must be checked in upon arrival at MESA Day. Hovercraft Challenge Level: Middle School Type of Contest: Team Composition of Team: 2 4 students per team Number of Teams: One entry per school Next Generation Science Standards: MS-ETS1-1., MS-ETS1-2.,

More information

Objectives. Understand defensive driving techniques. Increase awareness of safe driving behaviors

Objectives. Understand defensive driving techniques. Increase awareness of safe driving behaviors Defensive Driving Objectives Understand defensive driving techniques Increase awareness of safe driving behaviors Provide insight into identifying and anticipating hazards encountered while driving Why

More information

Pre-lab Questions: Please review chapters 19 and 20 of your textbook

Pre-lab Questions: Please review chapters 19 and 20 of your textbook Introduction Magnetism and electricity are closely related. Moving charges make magnetic fields. Wires carrying electrical current in a part of space where there is a magnetic field experience a force.

More information

SCIENCE 8. Unit 4 Booklet. Machines and Mechanical Systems

SCIENCE 8. Unit 4 Booklet. Machines and Mechanical Systems SCIENCE 8 Unit 4 Booklet Machines and Mechanical Systems TOPIC 1 REINFORCEMENT Levers Have Class BLM 4-2 Goal Identify items as Class 1, Class 2, or Class 3 levers. Introduction There are three classes

More information

Motions and Forces Propeller

Motions and Forces Propeller Motions and Forces Propeller Discovery Question What are the effects of friction on the motion of the propeller-driven cart? Introduction Thinking About the Question Materials Safety Trial I: Adding a

More information

Energy Conversions Questions CfE

Energy Conversions Questions CfE Energy Conversions Questions CfE 1) A 0.02kg mass is held at a height of 0.8m above the ground. a) Calculate the gravitational potential energy stored in the mass before it is dropped. b) i) State the

More information

White Paper. Compartmentalization and the Motorcoach

White Paper. Compartmentalization and the Motorcoach White Paper Compartmentalization and the Motorcoach By: SafeGuard, a Division of IMMI April 9, 2009 Table of Contents Introduction 3 Compartmentalization in School Buses...3 Lap-Shoulder Belts on a Compartmentalized

More information

PHYA5/2C. General Certificate of Education Advanced Level Examination June Section B. Monday 18 June am to am (JUN12PHYA52C01)

PHYA5/2C. General Certificate of Education Advanced Level Examination June Section B. Monday 18 June am to am (JUN12PHYA52C01) Centre Number Surname Candidate Number For Examinerʼs Use Other Names Candidate Signature Examinerʼs Initials General Certificate of Education Advanced Level Examination June 2012 Question 1 2 Mark Physics

More information

Dynamics Cart Accessory Track Set (2.2m version)

Dynamics Cart Accessory Track Set (2.2m version) Includes Teacher's Notes and Typical Experiment Results Instruction Manual and Experiment Guide for the PASCO scientific Model ME-9458 and ME-9452 012-05024E 6/94 Dynamics Cart Accessory Track Set (2.2m

More information

Design of Multilayer Bumper of Cars for reducing injuries to occupants

Design of Multilayer Bumper of Cars for reducing injuries to occupants Global Journal of Scientific Researches Available online at gjsr.blue-ap.org 2016 GJSR Journal. Vol. 4(2), pp. 16-22, 30 April, 2016 E-ISSN: 2311-732X Design of Multilayer Bumper of Cars for reducing injuries

More information

Mr. Freeze QUALITATIVE QUESTIONS

Mr. Freeze QUALITATIVE QUESTIONS QUALITATIVE QUESTIONS Many of the questions that follow refer to the graphs of data collected when riding Mr. Freeze with high tech data collection vests. With your I.D., you can borrow a vest without

More information

VOLKSWAGEN. Volkswagen Safety Features

VOLKSWAGEN. Volkswagen Safety Features Volkswagen Safety Features Volkswagen customers recognize their vehicles are designed for comfort, convenience and performance. But they also rely on vehicles to help protect them from events they hope

More information

FINITE ELEMENT METHOD IN CAR COMPATIBILITY PHENOMENA

FINITE ELEMENT METHOD IN CAR COMPATIBILITY PHENOMENA Journal of KONES Powertrain and Transport, Vol. 18, No. 4 2011 FINITE ELEMENT METHOD IN CAR COMPATIBILITY PHENOMENA Marcin Lisiecki Technical University of Warsaw Faculty of Power and Aeronautical Engineering

More information

Dynamics Cart Accessory Track Set (1.2m version)

Dynamics Cart Accessory Track Set (1.2m version) Includes Teacher's Notes and Typical Experiment Results Instruction Manual and Experiment Guide for the PASCO scientific Model ME-9435A and ME-9429A 012-05035E 7/94 Dynamics Cart Accessory Track Set (1.2m

More information

Protecting Occupants

Protecting Occupants Module 5.3 Protecting Occupants It s about managing natural laws and saving lives. 1 Protecting Occupants - Objectives Describe the three collisions of a crash and the effect on the restrained and unrestrained

More information

1. What are some everyday examples (that are NOT listed above) in which you use torque to complete a task?

1. What are some everyday examples (that are NOT listed above) in which you use torque to complete a task? ID: NAME: DATE: CLASS: Chapter 11: Torque Notes POGIL #1 REMEMBER: Throughout this paper, you will see some symbols. The stop sign means STOP and check with a teacher before continuing. The key means THIS

More information

5.1. Chapter 5. Is the force that pulls all things to Earth. Gravity and Energy of Motion. Driving Up Hills. Driving Down Hills

5.1. Chapter 5. Is the force that pulls all things to Earth. Gravity and Energy of Motion. Driving Up Hills. Driving Down Hills Chapter 5 Natural Laws and Car Control 5.1 Gravity and Energy of Motion Is the force that pulls all things to Earth. Driving Up Hills You will speed unless you use extra power To hold speed You must the

More information

Folksam bicycle helmets for children test report 2017

Folksam bicycle helmets for children test report 2017 2017 Folksam bicycle helmets for children test report 2017 Summary Folksam has tested nine bicycle helmets on the Swedish market for children. All helmets included in the test have previously been tested

More information

A.M. MONDAY, 19 January minutes

A.M. MONDAY, 19 January minutes Candidate Name Centre Number Candidate Number 0 GCSE 241/01 ADDITIONAL SCIENCE FOUNDATION TIER PHYSICS 2 A.M. MONDAY, 19 January 2009 45 minutes For Examiner s use Total Mark ADDITIONAL MATERIALS In addition

More information