Proteus Payload User s Guide

Size: px
Start display at page:

Download "Proteus Payload User s Guide"

Transcription

1 Proteus Payload User s Guide SCR May 5, 2011 Scaled Composites, LLC 1624 Flight Line Mojave, CA Telephone: (661) FAX: (661)

2 Release Version: Initial (9/29/03) Made available to NASA following successful checkout of Dryden Double Q-bay pod Rev A (11/30/10) Updated contact information, operating limitations, empty weight, past missions, and operating cost information. Rev B (5/5/11) Updated performance charts to reflect the 14,200lb GTOW limitation. Points of Contact New Business/Contracts: Peter Kalogiannis, Scaled Composites, Project Engineering: Sam Henney, Scaled Composites,

3 Table of Contents Proteus Summary... 5 Basic Dimensions:... 5 Weights:... 5 Flight envelope:... 5 Performance:... 5 Estimation of Maximum Cruise Range... 7 Estimation of Loiter Endurance... 8 Estimation of Aircraft Service Ceiling... 9 Overview of Integration Process, Checkout, Deployment Previous Campaigns Demonstrated External Pod Shapes Platform Availability Contracting Flight Ops Flight Safety Configuration Control Scheduling Briefings Technical Interchange Meeting Preflight Post flight Test Conduct Ground Support Equipment for Deployments Deployment Location Requirements Proteus Instrumentation Payload Volumes Generic Payload Interface Mechanical: Electrical Payload Environment Double Q-bay Pod Payload Interface Mechanical Electrical Customer Data Requirements... 28

4 List of Figures Figure 1: Proteus 3-view... 6 Figure 2: Flight Envelope... 7 Figure 3 Max Cruise Range vs. Payload Weight for 12,500 lb. GTOW... 7 Figure 4 Max Cruise Range vs. Payload Weight for 14,200 lb. GTOW... 8 Figure 5 Max Loiter Endurance vs. Payload Weight for 12,500 lb. GTOW... 8 Figure 7 Initial Service Ceiling vs. Gross Take-Off Weight... 9 Figure 8 Service Ceiling vs. Aircraft Weight Figure 9: NASA Langley Pod Figure 10: Angel Technologies & Raytheon Telecommunications Dish Figure 11: Airborne Laser Target Body Figure 12: Resistor Load Bank Attached to Proteus Center Pylon Figure 13: Sandia National Labs: Fuselage Belly Pod, Upper Fuselage Platform, Left Vertical Tail Boom Extension, Canard Cuffs Figure 14: NASA Dryden Double Q-bay Pod Figure 16: Angel Technologies and Raytheon Telecommunications Pod 3-view Figure 17: NASA Langley Pod 3-view Figure 18: Internal Payload Locations Figure 19: Fuselage Payload Volumes Figure 20: Layout of Proteus Q-bay Pod Figure 21: NASA ER2 Q-bay Layout Figure 22: ER2 Q-bay EIP... 27

5 Proteus Summary The Proteus aircraft is a multipurpose manned platform for long duration high altitude operations. In its current role, the Proteus is used for sensor development, high altitude chase and flight test. The configuration is designed to carry payloads in various areas on the aircraft. The all composite airframe is powered by two FJ44-2E turbofan engines that have been specially modified by Williams International for high altitude operation. The two pilots operate in a shirt sleeve environment in the 8 PSID pressurized cabin. The second crewmember adds flexibility to the mission by providing the capability to run various developmental payload systems without the need for ground controls. The airplane flight controls are through a reversible, mechanical, unboosted system. The retractable tricycle landing gear is powered by electro-hydraulic and the nose wheel steering is manual actuated by the crew s rudder pedals. Onboard electrical power is 28Vdc that is provided by two 400 amp starter generators. Please refer to for additional information about the Proteus. Basic Dimensions: Wing Span 77.6 ft. Wing Area ft 2 Wing Aspect Ratio 20 Canard Span 54.7 ft Canard Area ft 2 Canard Aspect Ratio 16.7 Length 56 ft. 4 in. Height 17 ft. 7 in. (approx.) Tail down angle (max) 12 (nose & main gear fully extended) Tail down angle (min) 7.3 (nose & main gear fully compressed) Weights: Gross weight 12,500 lb. (operated to 14,200 lbs with reduced g limits) Empty weight 6910 lb. Fuel weight 6176 lb. (max. possible without bladder) Minimum landing weight 5800 (no payload) Maximum landing weight 12,500 lb. Flight envelope: Proteus was designed to the FAR Part 23 normal category with limit loads of +3.2 and -1.8 g s. At light weights (<12,500 lbs) and low altitudes (<20,000 ft), the aircraft is gust limited. Above 20,000 ft the airplane is not gust restricted. Standard FAR-23 gust values have been observed in these V-N diagrams. The aircraft s speed is limited to 160 knots indicated or Mach 0.60 (whichever is lower). Performance: T/W = 0.37 sea level, gross weight (0.79 at sea level, empty) W/S = 26.1 lb/ft 2 gross weight (12.1 at landing weight) Absolute Ceiling 1-63,245 ft Service Ceiling 2 62,385 ft Service Ceiling with 2200 lbs payload 56,000 ft 1 These are actual flight test values from Oct. 25, The aircraft designed altitude limit is 72,000 feet. In its current configuration, the Proteus is thrust limited to altitude but is aerodynamically capable of higher. 2 Defined as maximum altitude for level flight as tested Oct. 27, 2000

6 Figure 1: Proteus 3-view

7 Max Range at Cruise Alt [nm] Altitude (ft) lbs Model 281 Flight Envelope Thrust Limit 7000 lbs, Clean Design Loiter 60000Thrust Limit lbs Mmo External Payload lbs Vmo Mach Number (~) Figure 2: Flight Envelope Estimation of Maximum Cruise Range Figures 2 and 3 present Proteus maximum range at a constant 45,000 ft. cruising altitude for GTOW s of 12,500 pounds. These graphs represent a full cruise mission, from take-off (at 0 ft. MSL) to landing, and incorporate fuel burn for climb and descent, plus 1 hour of reserve fuel. Range shown is for the constant altitude cruise phase of the mission only. Up to 250 nm of additional range is available if credit is given for the climb and descent portions of the flight. Max Cruise Range vs. Payload Weight; lb. GTOW; ft. const alt (Std. Day) sq. ft payload drag 1 sq. ft payload drag 2 sq. ft payload drag 3 sq. ft payload drag Payload Weight [lbs] Figure 3 Max Cruise Range vs. Payload Weight for 12,500 lb. GTOW

8 Loiter Endurance at Altitude [hrs] Max Range at Cruise Alt [nm] Max Cruise Range vs. Payload Weight: 14200lb. GTOW; ft. Const. Alt, Std. Day sq. ft. Payload 1 sq. ft. Payload 2 sq. ft. Payload 3 sq. ft. Payload ,000 11,000 12,000 13,000 14,000 Initial Weight [lbs] Figure 4 Max Cruise Range vs. Payload Weight for 14,200 lb. GTOW Estimation of Loiter Endurance Figures 5 and 6 present the loiter endurance capabilities of the Proteus aircraft at an altitude of 45,000 ft. for GTOW s of 12,500 lbs. and 14,200 lbs., respectively. These graphs represent a full loiter mission, from take-off (at 0 ft. MSL) to landing, and incorporate fuel burn for climb and descent, plus 1 hour of reserve fuel. Endurance shown is for the constant altitude loiter phase of the mission only. More than one hour of additional mission time is available if endurance credit is taken for the climb and descent portions of the flight. Loiter Endurance vs. Payload Weight; lb. GTOW; ft. const alt (Std. Day) 16 0 sq. ft payload drag 1 sq. ft payload drag 2 sq. ft payload drag 14 3 sq. ft payload drag Payload Weight [lbs] Figure 5 Max Loiter Endurance vs. Payload Weight for 12,500 lb. GTOW

9 Service Ceiling / 1000 [ft MSL] Estimation of Aircraft Service Ceiling Figure 7 illustrates the initial service ceiling of Proteus for GTOWs from 8,000 to 14,200 lbs. The initial service ceiling is the altitude obtained by a direct climb at best climb airspeed from take-off until the aircraft s vertical speed equals 100 feet per minute. Use this graph to determine the initial service ceiling for a given GTOW and known external payload drag area. 62 PROTEUS Service Ceiling (Std. Day) sq. ft payload drag 46 1 sq. ft payload drag 2 sq. ft payload drag 3 sq. ft payload drag Aircraft Weight / 1000 [lbs] Figure 7 Initial Service Ceiling vs. Gross Take-Off Weight

10 Initial Service Ceiling / 1000 [ft MSL] Figure 8 presents a plot of service ceiling versus weight for the Proteus aircraft. For missions with an altitude requirement, this graph may be used to determine the maximum weight at which the Proteus aircraft is capable of obtaining that altitude. 62 PROTEUS Initial Service Ceiling (Std. Day) sq. ft payload drag 46 1 sq. ft payload drag 2 sq. ft payload drag 3 sq. ft payload drag Aircraft GTOW / 1000 [lbs] Figure 8 Service Ceiling vs. Aircraft Weight

11 Overview of Integration Process, Checkout, Deployment A typical flight test for a payload consists of the following stages: Pod Design Pod Fabrication Pod Flight Test Sensor integration Ground testing Data Checkout Flight Flight Series Previous Campaigns Since its first flight on July 26, 1998, the Proteus aircraft has participated in numerous scientific and developmental flight test campaigns. Below is a summary of some of these flights: Paris Airshow: June 1999 This trip included the first trans-atlantic crossing for any Scaled aircraft. Proteus flew non-stop from Bangor, Maine to Paris, France to attend the air show. The aircraft flew every day during the weeklong show to demonstrate its capabilities as a telecommunications platform. Angel Telecommunications Flights: Fall 1999 and Summer 2000 Scaled build and flew a 14 ft diameter telecommunications dish to support a collaborative development program with the Raytheon Corporation and Angel Technologies. The goals of this program was met during the summer of 2000 when a videoconference was relayed via the Proteus as it flew over Los Angeles. C-IOP: Cloud Intensive Operating Period, March 2000 The first scientific campaign for Proteus was based out of Stillwater, Oklahoma. It consisted of 30 flight hours over a 1.5 week period to support the characterization of cloud properties and performed clear air validate over the DOE Cloud and Radiation Testbed (CART) site. WV-IOP: Water Vapor Intensive Operating Period, September-October 2000 Proteus once again returned to the Stillwater for overflights of the central CART facility. The goal of this campaign was to study the upper tropospheric water vapor, clear air observation validation, and underflights of the Terra satellite. World Record Flights: October 2000 The Proteus set three world records for its weight class including a maximum altitude of 63,245 ft during several flights to determine the aircraft s service ceiling with the current FJ44-2E engines. The flights were conducted jointly with support from NASA Dryden. AFWEX: ARM-FIRE Water Vapor Experiment, November-December 2000 This campaign consisting primarily of night flights where the Proteus overflew the central CART site to characterize the upper tropospheric water vapor, perform clear air observation validation, and under fly the Terra satellite. In addition, the Proteus team worked closely with NASA s DC-8 to gather co-incident scientific data sets. NAST A-P: NAST Asian-Pacific Campaign, February March 2001 This 126-flight hour science campaign consisted of operations based out of Hawaii, Japan, and Alaska. These missions took the aircraft on flights over the Pacific, Eastern Asia, and Arctic, which included an over flight of the North Pole. The programmatic goal was concurrent meteorological and air chemistry collection with ground, balloon, aircraft, and space based sensors.

12 Generator Testing: June 2001 This in-house flight-testing was conducted to determine the effects of large loads on the engine driven starter/generators. The objectives were met when 600 amps load was successfully applied the right engine with no degradation in engine thrust. CLAMS: Chesapeake Lighthouse & Aircraft Measurements for Satellites, July August 2001 During the CLAMS deployment, Proteus was based out of the NASA Wallops Flight Facility and worked closely with the other science aircraft including NASA s ER2. CLAMS had as its major goals to improve satellite-based measurement of aerosol and ocean conditions. ERAST Cooperative Detect, See, and Avoid Demonstration: March 2002 Flight-testing conducted in Las Cruces, NM in conjunction with NASA s Environmental Research Aircraft Sensor Technology Program and New Mexico State University demonstrated the ability for a ground station pilot to fly Proteus remotely and avoid other aircraft using the Skywatch collision avoidance sensor. The program also demonstrated over-the-horizon communication with ATC. Airborne Laser Target Body First Flight: February 2002 Proteus supported the development of the ABL system by flying a representative target body. This payload is thirty feet long and contains over 2000 holes for optical sensors to detect the various lasers aboard the Airborne Laser platform. IHOP: June 2002 This scientific campaign was a joint with both a P3 and DC8. The primary goal of IHOP_2002 was improved characterization of the four-dimensional (4-D) distribution of water vapor and to apply these results to improve the understanding and prediction of convective activity. Crystal-FACE: July 2002 Proteus participated in CRYSTAL-FACE with five other aircraft to investigate tropical cirrus cloud physical properties and formation processes. Flights were conducted from Key West, Florida and ranged as far south as Belize as far north as Georgia. The configuration of Proteus for this campaign included the addition of 10-foot canard and 13.5-foot wing tip extensions. Sandia National Labs Fall Experiment: November 2002 This campaign combined remote sensing and in-situ measurements of mid-latitude cirrus clouds. The base for these flights was Ponca City, Oklahoma but the operations extend into the Gulf of Mexico. The data collection for this campaign required the installation of extensive instrument suites mounted to five different locations on the aircraft consisting of over 20 sensor arrays. ERAST Non-Cooperative Detect, See, and Avoid Demonstration: April 2003 Flight-testing conducted in Mojave in conjunction with NASA to demonstrate the capability for a ground station pilot to remotely operated Proteus and to avoid other noncooperative aircraft using the Amphitech OASys radar system. Command and control of the aircraft via both line-of-sight and over-the-horizon data links was demonstrated. MP-RTIP: June 2006 December 2010 The Multi-Platform Radar Technology Insertion Program was a U.S. Air Force project led by contractor Northrop Grumman to develop the next generation of airborne air-to-air and air-to-ground radar systems. Proteus acted as a surrogate for the RQ-4B Global Hawk during the sensor development process over a 4-year period. The payload for this program was the heaviest to date.

13 KQ-X: December February 2012 The aircrew demonstrated high altitude formation flight, wake survey, optical sensor evaluation, and airborne chase for the DARPA funded study of autonomous airborne refuel between two RQ-4 Global Hawks. ARGUS November - December 2011 Autonomous Real-time Ground Ubiquitous Surveillance-Imaging System (ARGUS-IS) is a real-time, high-resolution (1.8 gigapixel), wide-area video surveillance system. The senor mounted to a gimbal installed in a customer pod was supported by Proteus from the center mounted pylon using a BRU-15 interface adapter. LARVAE: April 2012 Laminar Flow Research for Variable Environments (LARVAE) was an investigation that attempted to identify key parameters that define environmental debris accumulation and testing of leading edge coating to reduce it. Proteus flew the left boom extension with five cameras focused on the leading edge of the main wing. AXLE: December 2012 This project combined the demonstration of 5 different communication packages in the Multi Experiment Pod (MXP). Pressure vessels of this pod permitted lab equipment to be used at altitude which shortened the development time for the customer. The flight costs to the individual programs were reduced because multiple demonstrations were flown concurrently.

14 Demonstrated External Pod Shapes Figure 9: NASA Langley Pod Figure 10: Angel Technologies & Raytheon Telecommunications Dish Figure 11: Airborne Laser Target Body

15 Figure 12: Resistor Load Bank Attached to Proteus Center Pylon Figure 13: Sandia National Labs: Fuselage Belly Pod, Upper Fuselage Platform, Left Vertical Tail Boom Extension, Canard Cuffs Figure 14: NASA Dryden Double Q-bay Pod

16 Figure 15: MP-RTIP Figure 16: ARGUS

17 Platform Availability Scaled Composites keeps an ongoing schedule of existing and potential Proteus work. Due to the modular payload approach, changing payloads is a simple task. This capability enables Scaled to support multiple customers during concurrent test programs. Please contact Scaled to determine platform availability during the times you wish to fly. Contracting Contracting for flight time on the Proteus aircraft is conducted directly through Scaled Composites contracts office. The flight cost for the Proteus includes the aircraft, crew, maintenance personnel, insurance, and fuel. Adjustments to the hourly rate are made account for the actual cost of these items at time the contract is negotiated.

18 Flight Ops Flight Safety Scaled Composites, LLC has systems safety processes in place to aide in the safe conduct of flight test operations. These processes are modeled after the United States Air Force standards which include: Configuration Control In order to maintain control of the vehicle configuration, and thus ensure both safety (in knowing the precise test configuration) and test efficiency (same issue), all modifications to the vehicle are documented, in writing, in the aircraft and engineering records. This documentation is done in the following manor: Discrepancies or maintenance requirements that do not change the design of the aircraft, the Scaled Maintenance/Discrepancy forms is used. Any discrepancies identified by the flight or maintenance crews is entered in these form followed by the resolution of these issues as described in the Scaled Maintenance Plan. Modifications to the vehicle test configuration are transmitted to the Crew Chief via the Engineering Request (ER) form. Specifically, the Scaled Project Engineer (PE), the Program Business Manager (PBM) or his designee must sign off the ER before the charge are made. The Maintenance and ER status is briefed to the flight crew by the Crew Chief during the preflight mission briefing. Scheduling A Flight/Maintenance Schedule form is published in advance of the preflight briefing. This schedule will identify flight target date and times, requested fuel load, requested cg location/ballast requirements, test areas/airspace, and any special test equipment that is required. It also identifies specific crew requirements, including flight crew members, chase crew, ground support vehicles and there crew, photographers, and maintenance staff. This schedule will be approved and signed by the Test Director or his designee. Briefings There are three types of flight briefings: the Technical Interchange Meeting, Preflight Briefing, and Post flight Briefing. Technical Interchange Meeting Prior to a Preflight briefing, a Technical Interchange Meeting (TIM) will be held amongst the appropriate Scaled and customer engineering and test personnel, with no limitations to attendance. This meeting can be held face-to-face, via telephony or other means. The goal of the TIM is to attain concurrence regarding specific tests requested for the next flight. It is expected that both Scaled and the customer will have input to this process, with Scaled providing recommendations for either modifications or specific tests to be performed, and the customer requesting specific data or modifications. All aircraft configuration modifications will be handled per the Scaled ER process. From the specific requests during this meeting, and the overall test plan, Scaled will prepare its specific flight cards for the next flight. The Scaled Mission Director or his designee will initial the test cards before the flight is conducted. Preflight There will be a face-to-face preflight briefing held before each flight, in accordance with the Scaled Mission Briefing Guide (MBG). Participants will include all those designated on the flight/maintenance schedule or otherwise invited by the Scaled Test Director. The Test Pilot will conduct the briefing. The goals is to review the test vehicle status, the requirements of other participants, and the specific conduct of the tests to be performed. Tests

19 not specifically briefed will not be conducted during the flight without the mutual agreement of the Scaled Test Director and the Test Pilot. Post Flight There will be a face-to-face post flight briefing held immediately after each flight, in accordance with the MBG. Participants will be the same as for the preflight briefing. The Scaled Test Pilot will conduct the briefing, to include review of discrepancies and maintenance items, significant test results, and recommendations for any issues and for the next flight. At this meeting, a tentative schedule will be set for the next flight, and for the activities required to support it. Test Conduct Once the airplane has had its preflight inspection, no one will approach the airplane in the hangar or on the ramp without specific concurrence of the Crew Chief. All personnel not specifically involved with a ground or flight test will remain a safe distance from the airplane at all times, and shall not approach the airplane or interfere with the test without the concurrence of the Crew Chief or his designee. Only Scaled vehicles, unless otherwise agreed, will be allowed on the Scaled ramp during tests. All vehicle movements on the ramp, taxiways, or runways, will adhere to Mojave Airport and Scaled directions and regulations. Any special accommodations for spectators, photographers, etc., must be coordinated in advance with Scaled and the Mojave Airport or the facility where the flight operations are based. The test team monitoring specific flight or ground tests will be segregated from non-participants to minimize any interference with the team s responsibilities. This is a safety requirement as this team is critical to the safe conduct of the tests. Ground Support Equipment for Deployments The simple design approach and commercial off the shelf systems allow Proteus to deploy worldwide without the need for extensive ground support equipment. The minimum required is: Hangar (door must be 80 ft wide x 18 ft high and hangar must be at least 60 ft deep) 28V Ground Power Cart (for payload and avionics checkout in the hangar) Start cart (for engine start) Aircrew oxygen (2-4 bottles) Standard compressed nitrogen (2 bottles) Tug/truck Approved fuels in order of preference - Jet A, Jet A1, JP8 Deployment Location Requirements Runway length: At least 5000 ft (dependant upon the payload weight) Runway width: Minimum 75 ft Type of surface: asphalt/concrete Operational thresholds (cross winds, visibility etc.) - Aircraft's crosswind limit is 15 knots. Proteus cannot fly in icing conditions or moderate turbulence. Max landing weight is 12,500 lbs.

20 Proteus Instrumentation VHF x 3/UHF/Satcom relay Proteus is currently equipped with 3 VHF (118.0mHz mHz) radios, 1 UHF ( to MHz) radio and an Inmarsat Mini-M satcom system. The VHF and UHF radios provide line of sight communication with approximately 150 nmi of a base station radio. Beyond those distances, the Proteus crew and communicate directly with scientists on the ground via the satcom. However, the satcom is not used in the current configuration. LOS/OTH telemetry Proteus is equipped with both a line of sight and over the horizon data link that is available to payloads. Both data links utilize an RS232 data format. The LOS link provides a full duplex bandwidth of 115.2KBps while the OTH link provides a bandwidth of 2.4KBps. Depending on ground station antenna set-up and location, the LOS link typically has a range of 30 nautical miles. INS The Proteus aircraft is equipped with a NovAtel SPAN GPS aided inertial system. This INS is mounted in the lower cabin forward of the aft pressure bulkhead. It broadcasts aircraft attitude, position, and rate information over serial data lines that are collected by an onboard data acquisition system. Scaled Composites can provide Information on packet decoding as required. GPS Navigation Navigational information is provided by two Garmin GNS430W packages. These are all in one GPS/NAV/Comm providing WAAS-certified GPS, 200-channel ILS/VOR with localizer/glideslope and 10 watt output 2280-channel capacity comms. GPS Splitter/Antennas The Proteus is equipped with a GPS splitter that can provide GPS signals to the various aircraft payloads. The GPS Source S14 splitter receives its signal from a Sensor Systems Antenna P/N S This is an L1 active antenna that receives its voltage through the splitter (splitter blocks DC from other avionics). If necessary, other GPS antennas can be adapted to existing mounts on top of the Proteus fuselage. Autopilot This in-house developed system directly provides altitude and heading hold capabilities. When couple with the GNS430 it can provide accurate course guidance to with a few hundred feet. Power The Proteus starter/generators can supply upto 800 amps of 28VDC power. For service life reason the output is nominally limited to 200 amps per starter/generator. There are inverters in the Proteus cabin that have a 1kVA rating at 110VAC/60 Hz. Payloads requiring other types of power should plan on supplying their own inverters or auxiliary power units Onboard real time data system & PC Proteus has an onboard flight test data acquisition systems capable of recording up to 100 channels of data. These can be transfer post flight or real time via a telemetry link.

21 Payload Volumes As shown in Figure 16-17, several pressurized and unpressurized locations are available on the aircraft for the integration of customer equipment. As shown previously, the aircraft has carried many different pods on the centerline pylon (capable of upto 2000 lbs) including the: Angel Technologies and Raytheon Telecommunications Pod 14 ft. diameter profile 35 inches deep with 1 foot of fuselage clearance Mounted at 12 Bank Angle Figure 16: Angel Technologies and Raytheon Telecommunications Pod 3-view

22 NASA Langley Science Pod 18.7 ft. long 45 inch x 45 inch front profile with 1 foot fuselage clearance Figure 17: NASA Langley Pod 3-view Several other areas on the aircraft have been configured to carry instruments include the: Fuselage Center Section (unpressurized) 40 inch diameter, 8 feet length Superboom Option (unpressurized) Extending vertical tail booms forward 80 for an equivalent volume of 80 x 33 diameter Figure 18: Internal Payload Locations

23 Figure 19: Fuselage Payload Volumes Generic Payload Interface Mechanical: Depending on the depth of the customer s instrument, Proteus external pods can be mounted either directly to the fuselage or to an existing belly pylon. The centerline pylon accepts a standard ejector style bombrack (BRU-22) that can carry up to 2000 lbs (22" spacing on hard points). Electrical The Proteus Payload Electrical ICD summarizes the interfaces between the aircraft and payloads. The current version of this document is revision 1.5 shown below. Power: Left Side Bus: 225-amp In-line fuse and Leach MS24185-D2 400 Amp Relay Set #1: 28V (1), GND wire (1), 1/0 Gage Wire Wire Current Rating = 245 Amps Termination = Terminal Lugs, 3/8 Hole 5 ft Drop Length from Fuselage at FS365 Right Side Bus: 130-amp In-line fuse and Leach MS24185-D2 400 Amp Relay 325-amp In-line fuse and Eaton Aerospace MS24185-D1 400 Amp Relay Set #2: 28V (1), GND wire (1), 2Gage Wire (connected to Leach Relay) Wire Current Rating = 180 Amps Termination = Terminal Lugs, 3/8 Hole 5 ft Drop Length from Fuselage at FS365

24 GPS Signal: RG400 Coax with BNC Male connector 20 ft Drop Length from Fuselage at FS365 Sensor Systems Antenna P/N S signal passed through GPS Source S14 Splitter Payload Connector:MS3476L22-55S, M R2255N 10 ft Drop length from Fuselage at FS365 All lines run to cockpit connector (identical sequence) as follows: Pin Signal Pin Signal Pin Signal A Pair 1 X Shield 7 t 20 awg B Pair 1 Y Pair 8 u 20 awg C Shield 1 Z Pair 8 v 20 awg D Pair 2 a 20 awg w 20 awg E Pair 2 b 20 awg x 20 awg F Shield 2 c 20 awg y 20 awg G Shield 3 d 20 awg z 20 awg H Pair 3 e 20 awg AA 20 awg J Pair 3 f 20 awg BB 20 awg K Pair 4 g 20 awg CC 20 awg L Pair 4 h 20 awg DD 20 awg M Shield 4 i 20 awg EE 20 awg N Pair 5 j 20 awg FF 20 awg P Pair 5 k 20 awg GG 20 awg R Shield 5 m 20 awg HH 20 awg S Pair 6 n 20 awg T Pair 6 p 20 awg U Shield 6 q 20 awg V Pair 7 r 20 awg W Pair 7 s 20 awg * 20 awg wire rated at 3 amps ** Twisted pair wiring rated at 3 amps Cockpit Connector:MS3470L22-55P, M R2255N Note: Connector mates with Payload connector above Recommended length of cockpit control box cable = 10 feet min Ethernet: RJ45 (female) Recommended length of cockpit Ethernet cable = 10 feet min Recommended length of pod Ethernet cable = 20 feet min

25 Payload Environment Both the NASA Langley and NASA Dryden have documented the Proteus characteristics. This data may be obtained by contacting the following individuals: NASA Langley: Anna Noe NASA Dryden: Bob Curry The Proteus by the nature of the airframe and the high bypass turbofan engines provides a low vibration and shock environment. The most rigorous vibration levels are encountered during taxi, takeoff, and landing. Depending on pod power consumption, the temperature within the pod is typically deg F warmer that standard ISA temperatures. In addition, for unpressurized payloads, pressure within the pod closely matches the standard atmospheric tables. Double Q-bay Pod Payload Interface Mechanical The Proteus double equipment bay pod was designed to conform to the payload volume requirements specified in the NASA ER-2 Investigator s Handbook. As in the ER-2 installation, each Q-bay is limited to a total weight of 900 lbs (including attachment rack). 3 Please refer to Appendix A of the NASA ER-2 Investigator s Handbook for more information on the NASA Q-bay. Figure 20: Layout of Proteus Q-bay Pod 3 Each of the Q-bay rack attachment points (1 forward, 2 aft) cannot exceed a 300 lb limit load per Lockheed drawings.

26 Electrical Figure 21: NASA ER2 Q-bay Layout 4 The Proteus double equipment bay pod will have the same interface as NASA s ER2 aircraft. NASA will supply EIP boxes such that the payload interface will be seamless regardless of science platform. Please refer to Chapter 6 of the ER2 Airborne Laboratory Experimenter s Handbook for more information on the electrical interface. 4 Taken from the August 2002 revision of the NASA ER2 Experimenter s Handbook.

27 Figure 22: ER2 Q-bay EIP 5 5 Taken from the August 2002 revision of the NASA ER2 Experimenter s Handbook.

28 Customer Data Requirements To help Scaled Composites respond to customer inquiries in a timely manner and plan appropriately, the following payload information provided. Principal Investigator Name: Institution: Address: Phone: Fax: Instrument Name: Purpose: Size (if multiple components, please identify each item): Weight: Power: Special Requirements (pressurization, nitrogen purge, ram air cooling, etc.): Brief Description of Proposed Operations Typical Flight Profile: Typical Flight Duration: Number of Flights: Length of Deployment: Deployment Geographic Location: Proteus Interface Is inertial or GPS information required? Is onboard data recording using Proteus system required? If yes, number of parameters and sample rate? Is a pilot and/or test engineer interface required (laptop, stunt box, or other)? Is telemetry required? If yes, what are the number of channels and approximate data rates? Status What is the instrument readiness condition? Where will build up and integration be performed? Sponsor and Funding Sponsoring Agency: When will the proposal would be submitted: When will funding would start: Deployment Timeline:

GRC Aircraft Operations Office

GRC Aircraft Operations Office GRC Aircraft Operations Office Glenn Research Center Aircraft Operations 1 Mission Provide safety, operational, and engineering oversight to all GRC research experiments involving flight, including non-nasa

More information

Predator B: The Multi-Role UAV

Predator B: The Multi-Role UAV Predator B: The Multi-Role UAV June 2002 Report Documentation Page Form Approved OMB No. 0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour per response,

More information

German Aerospace Center Flight Operations

German Aerospace Center Flight Operations German Aerospace Center Flight Operations Introduction DLR is Germany s aerospace research center and space agency with about 4700 employees in 31 research institutes distributed over 8 main research centers

More information

Program Summary Model 281 Proteus

Program Summary Model 281 Proteus Program Summary Model 281 Proteus Proteus Name Suggested by Peter Lert A sea-god in Greek mythology who was capable of changing his shape at will [Collins English Dictionary]. In Greek mythology, PROTEUS

More information

Answer Key. Page 1 of 10

Answer Key. Page 1 of 10 Name: Answer Key Score: [1] When range and economy of operation are the principal goals, the pilot must ensure that the airplane will be operated at the recommended A. equivalent airspeed. B. specific

More information

SPECIAL MISSION AIRCRAFT

SPECIAL MISSION AIRCRAFT SPECIAL MISSION AIRCRAFT precision from above FACTS AND SPECIFICATIONS DA42 MPP Guardian - Facts and Specifications Power plant Engine Propeller Fuel grades 2x AUSTRO ENGINE AE300 (168 hp, turbo charged)

More information

Bild : Bernhard Mühr German Aerospace Center Flight Operations

Bild : Bernhard Mühr  German Aerospace Center Flight Operations German Aerospace Center Flight Operations Bild : Bernhard Mühr www.wolkenatlas.de Introduction DLR is Germany s aerospace research center and space agency with about 4700 employees in 31 research institutes

More information

Predator ACTD. Presentation To NDIA IOT&E

Predator ACTD. Presentation To NDIA IOT&E Predator ACTD Presentation To NDIA IOT&E Tier 2 ACTD Highlights Program run by Joint Program Office (JPO) GOAL: rapid deployment of long endurance medium unmanned ISR platform Performance objectives: Over

More information

AN ADVANCED COUNTER-ROTATING DISK WING AIRCRAFT CONCEPT Program Update. Presented to NIAC By Carl Grant November 9th, 1999

AN ADVANCED COUNTER-ROTATING DISK WING AIRCRAFT CONCEPT Program Update. Presented to NIAC By Carl Grant November 9th, 1999 AN ADVANCED COUNTER-ROTATING DISK WING AIRCRAFT CONCEPT Program Update Presented to NIAC By Carl Grant November 9th, 1999 DIVERSITECH, INC. Phone: (513) 772-4447 Fax: (513) 772-4476 email: carl.grant@diversitechinc.com

More information

European Aviation Safety Agency

European Aviation Safety Agency Page 1/8 European Aviation Safety Agency EASA TYPE CERTIFICATE DATA SHEET Cirrus Design SF50 Type Certificate Holder: Cirrus Design Corporation 4515 Taylor Circle Duluth, Minnesota 55811 United States

More information

Innovating the future of disaster relief

Innovating the future of disaster relief Innovating the future of disaster relief American Helicopter Society International 33rd Annual Student Design Competition Graduate Student Team Submission VEHICLE OVERVIEW FOUR VIEW DRAWING INTERNAL COMPONENTS

More information

Formation Flying Experiments on the Orion-Emerald Mission. Introduction

Formation Flying Experiments on the Orion-Emerald Mission. Introduction Formation Flying Experiments on the Orion-Emerald Mission Philip Ferguson Jonathan P. How Space Systems Lab Massachusetts Institute of Technology Present updated Orion mission operations Goals & timelines

More information

This Flight Planning Guide is published for the purpose of providing specific information for evaluating the performance of the Cessna Corvalis TT.

This Flight Planning Guide is published for the purpose of providing specific information for evaluating the performance of the Cessna Corvalis TT. May 2010 TABLE OF CONTENTS This Flight Planning Guide is published for the purpose of providing specific information for evaluating the performance of the Cessna Corvalis TT. This guide is developed from

More information

CENTAUR OPTIONALLY-PILOTED AIRCRAFT ULTIMATE FLEXIBILITY FOR AIRBORNE SENSING

CENTAUR OPTIONALLY-PILOTED AIRCRAFT ULTIMATE FLEXIBILITY FOR AIRBORNE SENSING CENTAUR OPTIONALLY-PILOTED AIRCRAFT ULTIMATE FLEXIBILITY FOR AIRBORNE SENSING CENTAUR A NEW LEVEL OF OPERATIONAL FLEXIBILITY Aurora Flight Sciences Centaur combines the best of manned and unmanned surveillance

More information

Aeronautical Systems Center

Aeronautical Systems Center Aeronautical Systems Center Global Hawk Program Overview Michael Johnston 303 AESG/LG DSN: 787-4047 Comm: 937-255-4047 michael.johnston@wpafb.af.mil RQ-4A Global Hawk System Global Hawk: High-altitude,

More information

Chapter 10 Miscellaneous topics - 2 Lecture 39 Topics

Chapter 10 Miscellaneous topics - 2 Lecture 39 Topics Chapter 10 Miscellaneous topics - 2 Lecture 39 Topics 10.3 Presentation of results 10.3.1 Presentation of results of a student project 10.3.2 A typical brochure 10.3 Presentation of results At the end

More information

BY HOEYCOMB AEROSPACE TECHNOLOGIES. HC-330 HYBRID-POWERED ALL- ELECTRICITY DRIVEN four-rotor UAV

BY HOEYCOMB AEROSPACE TECHNOLOGIES. HC-330 HYBRID-POWERED ALL- ELECTRICITY DRIVEN four-rotor UAV BY HOEYCOMB AEROSPACE TECHNOLOGIES HC-330 HYBRID-POWERED ALL- ELECTRICITY DRIVEN four-rotor UAV Content SYSTEM SPECIFICATI- ON TYPICAL USING PROCESS OVERVIEW SUBSYSTEM SPECIFICATI- ON 1 OVERVIEW System

More information

Electric Penguin s philosophy:

Electric Penguin s philosophy: UNMANNED PLATFORMS AND SUBSYSTEMS Datasheet v 1.1 Penguin BE Electric Unmanned Platform Up to 110 minutes of endurance 2 with 2.8 kg payload 23 liters of payload volume Quick replaceable battery cartridge

More information

Prototyping Collision Avoidance for suas

Prototyping Collision Avoidance for suas Prototyping Collision Avoidance for Michael P. Owen 5 December 2017 Sponsor: Neal Suchy, FAA AJM-233 DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited. Trends in Unmanned

More information

Flight Test Evaluation of C-130H Aircraft Performance with NP2000 Propellers

Flight Test Evaluation of C-130H Aircraft Performance with NP2000 Propellers Flight Test Evaluation of C-130H Aircraft Performance with NP2000 Propellers Lance Bays Lockheed Martin - C-130 Flight Sciences Telephone: (770) 494-8341 E-Mail: lance.bays@lmco.com Introduction Flight

More information

Hawker Beechcraft Corporation on March 26, 2007

Hawker Beechcraft Corporation on March 26, 2007 DEPARTMENT OF TRANSPORTATION FEDERAL AVIATION ADMINISTRATION A00010WI Revision 8 Hawker Beechcraft 390 March 26, 2007 TYPE CERTIFICATE DATA SHEET NO. A00010WI This data sheet, which is part of Type Certificate

More information

CHAPTER 1 AIRCRAFT GENERAL

CHAPTER 1 AIRCRAFT GENERAL CHAPTER 1 AIRCRAFT GENERAL INTRODUCTION This manual provides a description of the major airframe and engine systems in the Cessna Citation Mustang (Figure 1-1). This material does not supersede, nor is

More information

German Aerospace Center Flight Operations

German Aerospace Center Flight Operations German Aerospace Center Flight Operations Introduction DLR is Germany s aerospace research center and space agency with about 4700 employees in 31 research institutes distributed over 8 main research centers

More information

2006 CESSNA CITATION CJ3 SN 525B-0086

2006 CESSNA CITATION CJ3 SN 525B-0086 MACH 0.737 PASSENGERS 6-8 RANGE (NM) 1,875 AIRCRAFT LISTING DETAILS: Total Hours: 2,599 Total Landings: 2,166 ENGINES: WILLIAMS FJ44-3A Left Right Serial Number: 141181 141182 Hours Since New: 2,600 2,600

More information

DEPARTMENT OF TRANSPORTATION FEDERAL AVIATION ADMINISTRATION TYPE CERTIFICATE DATA SHEET NO. A49NM

DEPARTMENT OF TRANSPORTATION FEDERAL AVIATION ADMINISTRATION TYPE CERTIFICATE DATA SHEET NO. A49NM DEPARTMENT OF TRANSPORTATION FEDERAL AVIATION ADMINISTRATION A49NM Jetcruzer 450 June 14, 1994 TYPE CERTIFICATE DATA SHEET NO. A49NM This data sheet which is a part of Type Certificate A49NM, prescribes

More information

LOG OF REVISIONS. Model G58 Baron (Serials TH-2125 and After) Pilot s Operating Handbook and FAA Approved Airplane Flight Manual

LOG OF REVISIONS. Model G58 Baron (Serials TH-2125 and After) Pilot s Operating Handbook and FAA Approved Airplane Flight Manual LOG OF REVISIONS Model G58 Baron (Serials TH-2125 and After) Pilot s Operating Handbook and FAA Approved Airplane Flight Manual Revision A12 - May, 2015 Title Page LOEP LOR Section 1 All Reformatted to

More information

PENGUIN B UAV PLATFORM

PENGUIN B UAV PLATFORM UNMANNED PLATFORMS AND SUBSYSTEMS Datasheet v.0 PENGUIN B UAV PLATFORM Penguin B platform ready for payload and autopilot integration 0+ hour endurance Fuel injected engine option Up to 10 kg payload capacity

More information

North American F-86F Sabre USER MANUAL. Virtavia F-86F Sabre DTG Steam Edition Manual Version 1

North American F-86F Sabre USER MANUAL. Virtavia F-86F Sabre DTG Steam Edition Manual Version 1 North American F-86F Sabre USER MANUAL 0 Introduction The F-86 Sabre was a natural replacement for the F-80 Shooting Star. First introduced in 1949 for the United States Air Force, the F-86 featured excellent

More information

Jay Gundlach AIAA EDUCATION SERIES. Manassas, Virginia. Joseph A. Schetz, Editor-in-Chief. Blacksburg, Virginia. Aurora Flight Sciences

Jay Gundlach AIAA EDUCATION SERIES. Manassas, Virginia. Joseph A. Schetz, Editor-in-Chief. Blacksburg, Virginia. Aurora Flight Sciences Jay Gundlach Aurora Flight Sciences Manassas, Virginia AIAA EDUCATION SERIES Joseph A. Schetz, Editor-in-Chief Virginia Polytechnic Institute and State University Blacksburg, Virginia Published by the

More information

EWADE th European Workshop on Aircraft Design Education - Naples 2011

EWADE th European Workshop on Aircraft Design Education - Naples 2011 EWADE 2011 10th European Workshop on Aircraft Design Education - Naples 2011 Regional turboprop conversion for purposes supposing auxiliary engine installation. Technical and economical analysis Prof.

More information

TYPE-CERTIFICATE DATA SHEET

TYPE-CERTIFICATE DATA SHEET TYPE-CERTIFICATE DATA SHEET NO. EASA.IM.A.073 for Beechcraft 390 (PREMIER I and IA) Type Certificate Holder: Textron Aviation Inc. One Cessna Boulevard Wichita, Kansas 67215 USA For Models: Model 390 1

More information

WHEN BORDER SECURITY MATTERS

WHEN BORDER SECURITY MATTERS WHEN BORDER SECURITY MATTERS WHEN BORDER SECURITY MATTERS Archangel performs long-range Intelligence, Surveillance and Reconnaissance (ISR) and standoff precision strike missions while maintaining a Common

More information

NASA - USLI Presentation 1/23/2013. University of Minnesota: USLI CDR 1

NASA - USLI Presentation 1/23/2013. University of Minnesota: USLI CDR 1 NASA - USLI Presentation 1/23/2013 2013 USLI CDR 1 Final design Key features Final motor choice Flight profile Stability Mass Drift Parachute Kinetic Energy Staged recovery Payload Integration Interface

More information

DEPARTMENT OF TRANSPORTATION FEDERAL AVIATION ADMINISTRATION TYPE CERTIFICATE DATA SHEET NO. 1A13

DEPARTMENT OF TRANSPORTATION FEDERAL AVIATION ADMINISTRATION TYPE CERTIFICATE DATA SHEET NO. 1A13 DEPARTMENT OF TRANSPORTATION FEDERAL AVIATION ADMINISTRATION TYPE CERTIFICATE DATA SHEET NO. 1A13 1A13 Revision 27 Revo, Inc. COLONIAL C-1 COLONIAL C-2 LAKE LA-4 LAKE LA-4A LAKE LA-4P LAKE LA-4-200 LAKE

More information

The Experience. Another supersonic FUR pod is flying with the US Navy on an A-6E Intruder aircraft in an extensive trials program.

The Experience. Another supersonic FUR pod is flying with the US Navy on an A-6E Intruder aircraft in an extensive trials program. The Experience From the mid 1970's, GEC Sensors has been closely associated with the pioneering work on passive pilot night vision systems carried out by the Royal Aircraft Establishment at Farnborough

More information

SILENT SUPERSONIC TECHNOLOGY DEMONSTRATION PROGRAM

SILENT SUPERSONIC TECHNOLOGY DEMONSTRATION PROGRAM 25 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES SILENT SUPERSONIC TECHNOLOGY DEMONSTRATION PROGRAM Akira Murakami* *Japan Aerospace Exploration Agency Keywords: Supersonic, Flight experiment,

More information

RFC Dallas, Inc. AIRCRAFT QUESTIONNAIRE (6/3/2018) "A Safe Pilot Knows His Equipment"

RFC Dallas, Inc. AIRCRAFT QUESTIONNAIRE (6/3/2018) A Safe Pilot Knows His Equipment RFC Dallas, Inc. AIRCRAFT QUESTIONNAIRE (6/3/2018) "A Safe Pilot Knows His Equipment" NAME: Date: Aircraft: Bonanza Registration Number: Serial Number: The purpose of this questionnaire is to aid the pilot

More information

The Airplane That Could!

The Airplane That Could! The Airplane That Could! Critical Design Review December 6 th, 2008 Haoyun Fu Suzanne Lessack Andrew McArthur Nicholas Rooney Jin Yan Yang Yang Agenda Criteria Preliminary Designs Down Selection Features

More information

PREMIER I SN RB-83 RANGE (NM) 850 PASSENGERS 6 KNOTS 451 CONTACT: MATT STRINGFELLOW I

PREMIER I SN RB-83 RANGE (NM) 850 PASSENGERS 6 KNOTS 451 CONTACT: MATT STRINGFELLOW I KNOTS 451 PASSENGERS 6 RANGE (NM) 850 AIRCRAFT LISTING DETAILS: Total Hours: 2594 ENGINES: Williams FJ44-2A Left Right Total Hours: 2558 2594 Engine Cycles: 2307 2327 AIRCRAFT HIGHLIGHTS: Mark V FA2100

More information

2010 EMBRAER PHENOM 100 SN

2010 EMBRAER PHENOM 100 SN MACH 0.7 PASSENGERS 5 RANGE (NM) 1,178 AIRCRAFT LISTING DETAILS: Total Hours: 900 STANDARD AVIONICS: Garmin G1000 Prodigy Avionics Suite Three 12.4 Inch Active Matrix Liquid Crystal displays Dual AHRS

More information

In 2003, A-Level Aerosystems (ZALA AERO) was founded by current company President Alexander Zakharov, since then he has led

In 2003, A-Level Aerosystems (ZALA AERO) was founded by current company President Alexander Zakharov, since then he has led A-Level Aerosystems In 2003, A-Level Aerosystems (ZALA AERO) was founded by current company President Alexander Zakharov, since then he has led the company to be a leader in the micro UAV market in Russian

More information

2009 EMBRAER PHENOM 100 SN

2009 EMBRAER PHENOM 100 SN MACH 0.65 PASSENGERS 4 RANGE (NM) 1,178 AIRCRAFT LISTING DETAILS: Total Hours: 1552 STANDARD AVIONICS: Garmin G1000 Prodigy Avionics Suite Three 12.4 Inch Active Matrix Liquid Crystal displays Dual AHRS

More information

Appenidix E: Freewing MAE UAV analysis

Appenidix E: Freewing MAE UAV analysis Appenidix E: Freewing MAE UAV analysis The vehicle summary is presented in the form of plots and descriptive text. Two alternative mission altitudes were analyzed and both meet the desired mission duration.

More information

2010 CITATION MUSTANG SN

2010 CITATION MUSTANG SN KNOTS 340 PASSENGERS 5 RANGE (NM) 1,200 AIRCRAFT LISTING DETAILS: Total Hours: 710 Total Landings: 631 ENGINES: PRATT & WHITNEY PW 615F-A #1 #2 Total Hours: 710 710 Engine Cycles: 617 617 Serial Numbers:

More information

THE AIRCRAFT FLEET. UV 18-A Twin Otter (2) Pelican (2) Sentry BK 30 UAV (5) SPA-10

THE AIRCRAFT FLEET. UV 18-A Twin Otter (2) Pelican (2) Sentry BK 30 UAV (5) SPA-10 THE AIRCRAFT FLEET UV 18-A Twin Otter (2) Pelican (2) Sentry BK 30 UAV (5) SPA-10 Marina Facility 3500 ft runway - manned operations only 30,000 sq ft maintenance hangar Instrumentation and Calibration

More information

Deliverable 3 Autonomous Flight Record

Deliverable 3 Autonomous Flight Record Deliverable 3 Autonomous Flight Record 2012 UAV Outback Challenge Search and Rescue Challenge www.canberrauav.com Proudly Sponsored by: Paul Tridgell Terry Porter Grant Morphett Ron Graham Page 1 of 11

More information

AIAA Foundation Undergraduate Team Aircraft Design Competition. RFP: Cruise Missile Carrier

AIAA Foundation Undergraduate Team Aircraft Design Competition. RFP: Cruise Missile Carrier AIAA Foundation Undergraduate Team Aircraft Design Competition RFP: Cruise Missile Carrier 1999/2000 AIAA FOUNDATION Undergraduate Team Aircraft Design Competition I. RULES 1. All groups of three to ten

More information

2008 SOCATA TBM850 SN 494

2008 SOCATA TBM850 SN 494 MACH 0.46 PASSENGERS 4 RANGE (NM) 1,200 AIRFRAME 1720 Hours Since New 1700 Landings Since New ENGINE: PRATT & WHITNEY PT6A-66D 3,000 TBO (3500 TBO being approved by Socata) 0 Since Hot Section by Pratt

More information

CESSNA 172S NAV III VFR CHECKOUT POH EXAMINATION (Based on N1129K, serial no. 172S revised 10/05/06)

CESSNA 172S NAV III VFR CHECKOUT POH EXAMINATION (Based on N1129K, serial no. 172S revised 10/05/06) INTRODUCTION, POH CESSNA 172S NAV III VFR CHECKOUT POH EXAMINATION (Based on N1129K, serial no. 172S10315 - revised 10/05/06) 1. Rate of climb at sea level: 2. Service ceiling: 3. Takeoff performance,

More information

BAYLOR UNIVERSITY DEPARTMENT OF ENGINEERING. EGR 4347 Analysis and Design of Propulsion Systems Fall 2002 ASSIGNMENT GUIDELINES

BAYLOR UNIVERSITY DEPARTMENT OF ENGINEERING. EGR 4347 Analysis and Design of Propulsion Systems Fall 2002 ASSIGNMENT GUIDELINES BAYLOR UNIVERSITY DEPARTMENT OF ENGINEERING EGR 4347 Analysis and Design of Propulsion Systems Fall 2002 Design Project I Dr Van Treuren 100 points ASSIGNMENT GUIDELINES For this assignment, you may work

More information

Cessna Citation Model Stats

Cessna Citation Model Stats Cessna Citation Model Stats Cessna Citation Sovereign - Dimensions Length 63 ft 6 in (19.35 m) Height 20 ft 4 in (6.20 m) Wingspan 72 ft 4 in (22.04 m) Wing Wing Area Wing Sweep Wheelbase Tread 516 sq

More information

Team 2. AAE451 System Requirements Review. Chad Carmack Aaron Martin Ryan Mayer Jake Schaefer Abhi Murty Shane Mooney

Team 2. AAE451 System Requirements Review. Chad Carmack Aaron Martin Ryan Mayer Jake Schaefer Abhi Murty Shane Mooney Team 2 AAE451 System Requirements Review Chad Carmack Aaron Martin Ryan Mayer Jake Schaefer Abhi Murty Shane Mooney Ben Goldman Russell Hammer Donnie Goepper Phil Mazurek John Tegah Chris Simpson Outline

More information

UNCLASSIFIED FY 2017 OCO. FY 2017 Base

UNCLASSIFIED FY 2017 OCO. FY 2017 Base Exhibit R-2, RDT&E Budget Item Justification: PB 2017 Air Force Date: February 2016 3600: Research, Development, Test & Evaluation, Air Force / BA 2: Applied Research COST ($ in Millions) Prior Years FY

More information

Ejemplos de aeronaves existentes similares a las propuestas en los RFP 2007

Ejemplos de aeronaves existentes similares a las propuestas en los RFP 2007 Ejemplos de aeronaves existentes similares a las propuestas en los RFP 2007 UAV Sergio Esteban sesteban@us.es 1 Advanced Technologies and Engineering Co (Pty) Ltd (ATE). Vulture Production: Production

More information

The 38M Aerostat: A New System for Surveillance

The 38M Aerostat: A New System for Surveillance AIAA 5th Aviation, Technology, Integration, and Operations Conference (ATIO) 26-28 September 2005, Arlington, Virginia AIAA 2005-7443 The 38M Aerostat: A New System for Surveillance John A. Krausman *

More information

Span m [65.16 ft] Length m [43.89 ft] Height m [12.08 ft]

Span m [65.16 ft] Length m [43.89 ft] Height m [12.08 ft] MPA Multirole Patrol Aircraft Dimensions Span 21.378 m [65.16 ft] Length 14.400 m [43.89 ft] Height 3.964 m [12.08 ft] Weights Max Takeoff (MTOW) Max Landing (MLW) Zero Fuel (ZFW) Mission Payload (mission

More information

RFC Dallas, Inc. AIRCRAFT QUESTIONNAIRE (9/25/2016) "A Safe Pilot Knows His Equipment"

RFC Dallas, Inc. AIRCRAFT QUESTIONNAIRE (9/25/2016) A Safe Pilot Knows His Equipment RFC Dallas, Inc. AIRCRAFT QUESTIONNAIRE (9/25/2016) "A Safe Pilot Knows His Equipment" NAME: Date: Aircraft: Cessna 182Q Registration Number: N631S Serial Number: The purpose of this questionnaire is to

More information

2011 EMBRAER PHENOM 100 SN

2011 EMBRAER PHENOM 100 SN MACH 0.70 OCCUPANTS 7 RANGE (NM) 1,178 AIRCRAFT LISTING DETAILS: Total Hours: 900 STANDARD AVIONICS: Garmin G1000 Prodigy Avionics Suite Three 12.4 Inch Active Matrix Liquid Crystal displays Dual AHRS

More information

CESSNA SECTION 4. Unless otherwise noted, the following speeds are based on a maximum weight of 2550 pounds and may be used for any lesser weight.

CESSNA SECTION 4. Unless otherwise noted, the following speeds are based on a maximum weight of 2550 pounds and may be used for any lesser weight. CESSNA SECTION 4 INTRODUCTION Section 4 provides procedures and amplified instructions for normal operations using standard equipment. Normal procedures associated with optional systems can be found in

More information

PIAGGIO AERO P.1HH HammerHead UAS

PIAGGIO AERO P.1HH HammerHead UAS Medium Altitude Long Endurance ISR Unmanned Aerial System Dimensions Span 15.600 m [51.18 ft] Length 14.408 m [47.27 ft] Height 3.980 m [13.05 ft] Areas Wing 18.00 m2 [193.75 ft2] Horizontal Tail 3.834

More information

FLASHCARDS AIRCRAFT. Courtesy of the Air Safety Institute, a Division of the AOPA Foundation, and made possible by AOPA Services Corporation.

FLASHCARDS AIRCRAFT. Courtesy of the Air Safety Institute, a Division of the AOPA Foundation, and made possible by AOPA Services Corporation. AIRCRAFT FLASHCARDS Courtesy of the Air Safety Institute, a Division of the AOPA Foundation, and made possible by AOPA Services Corporation. Knowing your aircraft well is essential to safe flying. These

More information

Attitude And Direction

Attitude And Direction CIRRUS AIRPLANE MAINTENANCE MANUAL Attitude And Direction CHAPTER 34-20: ATTITUDE AND DIRECTION GENERAL 34-20: ATTITUDE AND DIRECTION 1. General This section contains information pertaining to those portions

More information

FACT SHEET SPACE SHUTTLE EXTERNAL TANK. Space Shuttle External Tank

FACT SHEET SPACE SHUTTLE EXTERNAL TANK. Space Shuttle External Tank Lockheed Martin Space Systems Company Michoud Operations P.O. Box 29304 New Orleans, LA 70189 Telephone 504-257-3311 l FACT SHEET SPACE SHUTTLE EXTERNAL TANK Program: Customer: Contract: Company Role:

More information

1998 CESSNA CITATION ULTRA SN

1998 CESSNA CITATION ULTRA SN AIRCRAFT LISTING DETAILS: Total Hours: 3703 AVIONICS: Honeywell Primus 1000 Avionics Dual RNZ-851 Navigation Radios Dual RCZ-850 Communications Radios ENGINES: Pratt & Whitney JT15D-5D Left Right Total

More information

Airborne Collision Avoidance System X U

Airborne Collision Avoidance System X U Airborne Collision Avoidance System X U Concept and Flight Test Summary TCAS Program Office March 31, 2015 Briefing to Royal Aeronautical Society DAA Workshop Agenda Introduction ACAS Xu Concept 2014 Flight

More information

AVIATION OPERATIONAL MEASURES FOR FUEL AND EMISSIONS REDUCTION WORKSHOP Weight Management

AVIATION OPERATIONAL MEASURES FOR FUEL AND EMISSIONS REDUCTION WORKSHOP Weight Management Weight Management Florentina Viscotchi Section Chief C Series Aircraft Configuration To reduce fuel consumption, Mass Properties Discipline can help on two parameters. Weight Reduce aircraft weight Center

More information

2007 CESSNA CITATION CJ3 SN 525B-0147

2007 CESSNA CITATION CJ3 SN 525B-0147 MACH.737 PASSENGERS 6-8 RANGE (NM) 1,875 AIRCRAFT LISTING DETAILS: Total Hours: 4183.5 AVIONICS: Collins Pro Line 21, 3 Screen EFIS Dual Collins Pro Line 21 Flight Guidance Computer Dual Colins VHF-4000

More information

EMBRAER PHENOM 100 SN RANGE (NM) 1,178 OCCUPANTS 7 MACH 0.70 CONTACT: GREG OSWALD I

EMBRAER PHENOM 100 SN RANGE (NM) 1,178 OCCUPANTS 7 MACH 0.70 CONTACT: GREG OSWALD I MACH 0.70 OCCUPANTS 7 RANGE (NM) 1,178 AIRCRAFT LISTING DETAILS: Total Hours: 1245 ENGINES: Pratt & Whitney PW617F-E Left Right Total Hours: 1245 1245 Engine Cycles: 890 890 AIRCRAFT HIGHLIGHTS: ADS-B

More information

by Greg Whiley Aussie Star Flight Simulation

by Greg Whiley Aussie Star Flight Simulation Flying the BAe 146 200/300 Version 2 by Greg Whiley Aussie Star Flight Simulation INTENTIALLY LEFT BLANK Greg Whiley Aussie Star Flight Simulation 2 Version Date Revision Version 1.0 25 June 2014 Original

More information

MS1-A Military Spaceplane System and Space Maneuver Vehicle. Lt Col Ken Verderame Air Force Research Laboratory 27 October 1999

MS1-A Military Spaceplane System and Space Maneuver Vehicle. Lt Col Ken Verderame Air Force Research Laboratory 27 October 1999 MS1-A Military Spaceplane System and Space Maneuver Vehicle Lt Col Ken Verderame Air Force Research Laboratory 27 October 1999 ReentryWorkshop_27Oct99_MS1-AMSP-SMV_KV p 2 MS-1A Military Spaceplane System

More information

2008 CITATION MUSTANG SN

2008 CITATION MUSTANG SN KNOTS 340 PASSENGERS 5 RANGE (NM) 1,200 AIRCRAFT LISTING DETAILS: Total Hours: 1410 Total Landings: 1200 ENGINES: PRATT & WHITNEY PW 615F-A #1 #2 Total Hours: 1410 1410 Engine Cycles: 1210 1210 Serial

More information

CITATION CJ2 SN 525A-0159 RANGE (NM) 1,400 PASSENGERS 8 MACH 0.72 CONTACT: MATT STRINGFELLOW I

CITATION CJ2 SN 525A-0159 RANGE (NM) 1,400 PASSENGERS 8 MACH 0.72 CONTACT: MATT STRINGFELLOW I MACH 0.72 PASSENGERS 8 RANGE (NM) 1,400 AIRCRAFT LISTING DETAILS: Total Hours: 2320 AVIONICS: Collins Pro-Line 21 Avionics Two Tube EFIS System with Autopilot Garmin GTN-750 Garmin GTN-650 ENGINES: Williams

More information

CITATION MUSTANG SN RANGE (NM) PASSENGERS 4 KNOTS 340 CONTACT: DAVID LEE 1,200 I

CITATION MUSTANG SN RANGE (NM) PASSENGERS 4 KNOTS 340 CONTACT: DAVID LEE 1,200 I KNOTS 340 PASSENGERS 4 RANGE (NM) 1,200 AIRCRAFT LISTING DETAILS: Total Hours: 2000 ENGINES: Pratt & Whitney PW615F-A Left Right Total Hours: 2000 1970 Engine Cycles: 1225 1205 AIRCRAFT HIGHLIGHTS: Synthetic

More information

Backgrounder. The Boeing ecodemonstrator Program

Backgrounder. The Boeing ecodemonstrator Program Backgrounder Boeing Commercial Airplanes P.O. Box 3707 MC 21-70 Seattle, Washington 98124-2207 www.boeing.com The Boeing ecodemonstrator Program To support the long-term sustainable growth of aviation,

More information

2010 EMBRAER PHENOM 100 SN N524KA

2010 EMBRAER PHENOM 100 SN N524KA MACH 0.70 OCCUPANTS 6 RANGE (NM) 1,178 AIRCRAFT LISTING DETAILS: Total Hours: 1135 ENGINES: Pratt & Whitney PW617F-E Left Right Total Hours: 1135 1135 Engine Cycles: 990 990 AIRCRAFT HIGHLIGHTS: Garmin

More information

CITATION MUSTANG SN RANGE (NM) 1,200 PASSENGERS 4 KNOTS 340 CONTACT: DAVID LEE I

CITATION MUSTANG SN RANGE (NM) 1,200 PASSENGERS 4 KNOTS 340 CONTACT: DAVID LEE I KNOTS 340 PASSENGERS 4 RANGE (NM) 1,200 AIRCRAFT LISTING DETAILS: Total Hours: 1550 ENGINES: Pratt & Whitney PW615F-A Left Right Total Hours: 1550 1550 AIRCRAFT HIGHLIGHTS: ADS-B Out Cessna Service Center

More information

DUCHESS BE-76 AND COMMERCIAL MULTI ADD-ON ORAL REVIEW FOR CHECKRIDE

DUCHESS BE-76 AND COMMERCIAL MULTI ADD-ON ORAL REVIEW FOR CHECKRIDE DUCHESS BE-76 AND COMMERCIAL MULTI ADD-ON ORAL REVIEW FOR CHECKRIDE The Critical Engine The critical engine is the engine whose failure would most adversely affect the airplane s performance or handling

More information

OASIS. Standby Instrument System. Installation Manual. Aerosonic Corporation September 18, N. Hercules Ave. Clearwater, FL USA

OASIS. Standby Instrument System. Installation Manual. Aerosonic Corporation September 18, N. Hercules Ave. Clearwater, FL USA OASIS Standby Instrument System Installation Manual Aerosonic Corporation September 18, 2012 1212 N. Hercules Ave. Clearwater, FL 33765 USA INSTALLATION MANUAL OASIS Original Aerosonic Standby Instrument

More information

PROLIFERATION LANDMINES DEFENSE ADVICE. Airships

PROLIFERATION LANDMINES DEFENSE ADVICE. Airships 191 AUVSI.qxd:AUVSI_Feb08 1/19/09 10:29 AM PROLIFERATION Page c1 LANDMINES DEFENSE ADVICE Airships w w w. a u v s i. o r g VOLUME 27 NO.2 Februar y 2009 2 7 0 0 S o u t h Q u i n c y S t r e e t, S u i

More information

Analysts/Fund Managers Visit 19 April Autonomous Systems and Future Capability Mark Kane

Analysts/Fund Managers Visit 19 April Autonomous Systems and Future Capability Mark Kane Analysts/Fund Managers Visit 19 April 2007 Autonomous Systems and Future Capability Mark Kane The Rationale for UAVs The Rationale for UAVs UAVs generally seen to carry out the dull, dirty, and dangerous

More information

VERTICAL TAKEOFF/VERTICAL LANDING SUBORBITAL REUSABLE LAUNCH VEHICLES PAYLOAD USER S GUIDE

VERTICAL TAKEOFF/VERTICAL LANDING SUBORBITAL REUSABLE LAUNCH VEHICLES PAYLOAD USER S GUIDE VERTICAL TAKEOFF/VERTICAL LANDING SUBORBITAL REUSABLE LAUNCH VEHICLES PAYLOAD USER S GUIDE Approved for Public Release. Cleared for Open Publication by Office of Security Review, Department of Defense

More information

LOW BOOM FLIGHT DEMONSTRATOR (LBFD)

LOW BOOM FLIGHT DEMONSTRATOR (LBFD) Concept Development of the Quiet Supersonic Technology Aircraft LOW BOOM FLIGHT DEMONSTRATOR (LBFD) Peter Iosifidis Program Manager Overview Background Why Now for a Quiet Supersonic Technology X-plane?

More information

2001 CITATION CJ2 SN 525A-0019

2001 CITATION CJ2 SN 525A-0019 MACH 0.72 PASSENGERS 7 RANGE (NM) 1,400 AIRCRAFT LISTING DETAILS: Total Hours: 3720 Total Landings: 3334 ENGINES: Williams FJ44-2C Left Right Total Hours: 3692 3728 Engine Cycles: 3296 3235 AIRCRAFT HIGHLIGHTS:

More information

HAWKER 400XP SN RK-465 RANGE (NM) 1,519 PASSENGERS 8 KTAS 450 CONTACT: DAVID LEE I

HAWKER 400XP SN RK-465 RANGE (NM) 1,519 PASSENGERS 8 KTAS 450 CONTACT: DAVID LEE I KTAS 450 PASSENGERS 8 RANGE (NM) 1,519 AIRCRAFT LISTING DETAILS: Total Hours: 3350 AVIONICS: Collins ProLine 4 Avionics Suite w/ 3-Tube EFIS Dual Collins FLS-4000 Flight Control System Collins TWS-850

More information

AT-10 Electric/HF Hybrid VTOL UAS

AT-10 Electric/HF Hybrid VTOL UAS AT-10 Electric/HF Hybrid VTOL UAS Acuity Technologies Robert Clark bob@acuitytx.com Summary The AT-10 is a tactical size hybrid propulsion VTOL UAS with a nose camera mount and a large payload bay. Propulsion

More information

DemoSat-B User s Guide

DemoSat-B User s Guide January 5, 2013 Authors: Chris Koehler & Shawn Carroll Revisions Revision Description Date Approval DRAFT Initial release 7/31/2009 1 Updated for 2011 2012 program dates, added revision page 9/27/11 LEM

More information

Cygnus Payload Accommodations: Supporting ISS Utilization

Cygnus Payload Accommodations: Supporting ISS Utilization The Space Congress Proceedings 2018 (45th) The Next Great Steps Feb 27th, 1:30 PM Cygnus Payload Accommodations: Supporting ISS Utilization Frank DeMauro Vice President and General Manager, Advanced Programs

More information

CHAPTER 4 AIRWORTHINESS LIMITATIONS

CHAPTER 4 AIRWORTHINESS LIMITATIONS Section Title CHAPTER 4 AIRWORTHINESS LIMITATIONS 4-10 Airworthiness Limitations..................................... 4.1 4-20 Additional Limitations....................................... 4.3 4-21 Parts

More information

Fire Fighting Equipment Development - Unmanned Aerial Vehicle Trials. Ripley Valley Rural Fire Brigade - August 2010

Fire Fighting Equipment Development - Unmanned Aerial Vehicle Trials. Ripley Valley Rural Fire Brigade - August 2010 Fire Fighting Equipment Development - Unmanned Aerial Vehicle Trials Ripley Valley Rural Fire Brigade - August 2010 The Brigade offered to help evaluate the capabilities of an Unmanned Aerial Vehicle (UAV)

More information

Baltic Marine Environment Protection Commission

Baltic Marine Environment Protection Commission Baltic Marine Environment Protection Commission Maritime Working Group Tallinn, Estonia, 6-8 September 2016 MARITIME 16-2016 Document title Information about remote sensing of SO 2 emissions from ships

More information

Proposed Special Condition for limited Icing Clearances Applicable to Large Rotorcraft, CS 29 or equivalent. ISSUE 1

Proposed Special Condition for limited Icing Clearances Applicable to Large Rotorcraft, CS 29 or equivalent. ISSUE 1 Proposed Special Condition for limited Icing Clearances Applicable to Large Rotorcraft, CS 29 or equivalent. ISSUE 1 Introductory note: The hereby presented Special Condition has been classified as important

More information

CHAPTER 3 LIFE-LIMITED COMPONENTS

CHAPTER 3 LIFE-LIMITED COMPONENTS CHAPTER 3 LIFE-LIMITED COMPONENTS Section Title 3.100 Life-Limited Components..................................... 3.1 3.110 Time-in-Service Records................................... 3.1 3.120 Fatigue

More information

AIR TRACTOR, INC. OLNEY, TEXAS

AIR TRACTOR, INC. OLNEY, TEXAS TABLE OF CONTENTS LOG OF REVISIONS... 2 DESCRIPTION... 4 SECTION 1 LIMITATIONS... 5 SECTION 2 NORMAL PROCEDURES... 8 SECTION 3 EMERGENCY PROCEDURES... 8 SECTION 4 MANUFACTURER'S SECTION - PERFORMANCE...

More information

2000/2001 AIAA FOUNDATION Undergraduate Team Aircraft Design Competition

2000/2001 AIAA FOUNDATION Undergraduate Team Aircraft Design Competition 2000/2001 AIAA FOUNDATION Undergraduate Team Aircraft Design Competition I. RULES 1. All groups of 3 to 10 undergraduate AIAA branch or at-large Student Members are eligible and encouraged to participate.

More information

SURVEYOR-H. Technical Data. Max speed 120 km/h. Engine power 7.2 hp. Powerplant Modified Zenoah G29E. Fuel tank volume 3.6 l

SURVEYOR-H. Technical Data. Max speed 120 km/h. Engine power 7.2 hp. Powerplant Modified Zenoah G29E. Fuel tank volume 3.6 l rev. 28.10.14 * features & specifications are subject to change without notice. Technical Data Max speed 120 km/h Engine power 7.2 hp Powerplant Modified Zenoah G29E Fuel tank volume 3.6 l Payload with

More information

Airborne Measurements Programs

Airborne Measurements Programs Airborne Measurements Programs Francesco Cairo Istituto di Scienze dell'atmosfera e del Clima, ISAC-CNR Roma Summary Why airborne measurements Available platforms in Europe and USA Ongoing and future activity

More information

CITATION MUSTANG SN RANGE (NM) 1,200 PASSENGERS 4 KNOTS 340 CONTACT: DAVID LEE I

CITATION MUSTANG SN RANGE (NM) 1,200 PASSENGERS 4 KNOTS 340 CONTACT: DAVID LEE I KNOTS 340 PASSENGERS 4 RANGE (NM) 1,200 AIRCRAFT LISTING DETAILS: Total Hours: 1993 STANDARD AVIONICS: Garmin G1000 Integrated Avionics Suite Dual 10.4 PFDs Single 15 MFD ENGINES: Pratt & Whitney PW615F-A

More information

Mike Gibbons Paul Summers John Murnane

Mike Gibbons Paul Summers John Murnane Outpacing threats in a 2030+ A2/AD environment affordably! RROI 13-01092 - BDS Mike Gibbons Paul Summers John Murnane August 27, 2013 Capability Continuum Evolution of the Super Hornet Mission Systems

More information

Technical report A-054/1999 APPENDICES

Technical report A-054/1999 APPENDICES Technical report A-054/1999 APPENDICES 95 Technical report A-054/1999 APPENDIX A Photographs, figures and graphs 97 Figure 1 Figure 2 MAIN WRECKAGE Aircraft Figure 3.1 Aerial View Figure 3.2 Main Wreckage

More information

Test like you Train Train like you Fight

Test like you Train Train like you Fight War-Winning Winning Capabilities On Time, On Cost Test like you Train Train like you Fight How Today s s Complexity Drives Future Range Requirements Major General David J. Eichhorn AFFTC Commander This

More information