ISO Acceptance and re-verification tests for Coordinate Measuring Machines. a brief introduction

Similar documents
2 HEXAGON MANUFACTURING INTELLIGENCE HexagonMI.com

UNDERSTANDING CMM SPECIFICATIONS AND CALIBRATION METHODS

Measuring on Machine Tools m&h Touch Probe Systems

Quindos the Ultimate Software package for Gears, Gear Tools and other Special Applications

Verifying the accuracy of involute gear measuring machines R.C. Frazer and J. Hu Design Unit, Stephenson Building, University ofnewcastle upon Tyne,

CRYSTA-APEX (Standard Accuracy) Pages 602 to 607. STRATO-APEX (High Accuracy) Page 608. LEGEX (Ultra-high Accuracy) Page 610

INDUSTRIAL METROLOGY ENGINEERING AND SERVICES OUR ENTERPRISE

using a low force 3D touch probe

Coordinate Measuring Machines. Catalog No. E16010(3) A Production-line Coordinate Measuring System Designed for the Needs of Today

MACH Series. In-line CNC Coordinate Measuring System MICROCORD. A Production-line Coordinate Measuring System Designed for the Needs of Today

Dispensette. Testing Instructions (SOP) 1. Introduction. May 2009

Artisan Technology Group is your source for quality new and certified-used/pre-owned equipment

RT800 Roundness Measurement Systems

Height Master Page 345. Check Master Page 349. Calibration Tools Page 354

Functional Safety Plant Safety and Personal Security. SIL 3, PL e

CALIBRATION SYSTEM CERTIFICATE

RT500 RT800. Roundness Measurement Systems

QUINDOS. the Analysis tool for Metrology

testing and measuring instruments for vehicle wheels

Axial-radial cylindrical roller bearings

10 Thrust ball bearings

VITLAB Dispenser. Standard Operating Procedure (SOP)

High Pressure Filters HD 044 HD 064. Flangeable Operating pressure up to 500 bar Nominal flow rate up to 105 l/min e

Brake caliper machining: improve process control and reduce inspection costs

Single direction thrust ball bearings Double direction thrust ball bearings

Eddy Current Displacement Transducer Specifications

Permanent Multipath Clamp-On Transit Time Flow Meter

HARMONIC GEARHEAD. Features & Benefits Specifications... 53

ISO INTERNATIONAL STANDARD. Mechanical vibration Rotor balancing Part 21: Description and evaluation of balancing machines

Perfect Liquid Handling PRECISE RESULTS WITH INNOVATIVE TECHNOLOGY

Schedule of Accreditation issued by United Kingdom Accreditation Service 2 Pine Trees, Chertsey Lane, Staines-upon-Thames, TW18 3HR, UK

Industrial Components. Internal gear pumps DHPC3, DHPC5, DHPC6

EIPC3 EIPC5 EIPC6. Internal gear pumps. eckerle.com

Measuring Threaded Holes

M Series 140.D Data Sheet. Two-Point Controller with Moving-Iron or Moving-Coil Movement 90 Dial RW 96 RP 96

MAE 322 Machine Design Shafts -3. Dr. Hodge Jenkins Mercer University

INTERNATIONAL STANDARD

Lever Type Dial Indicators Dial Test Indicators

Eddy Current Displacement Transducer Specifications

MAXXMILL Vertical milling center for 5-sided machining MILLING

CIRCOGRAPH Sensor systems Rotating Head Ro 35 P Rotating Head Ro 35 L

Hugo Reckerth GmbH. tool. Individual Spindle Solutions. of the tools

TECHNICAL SPECIFICATIONS FOR A WATER COOLED ACTIVELY SHIELDED GRADIENT SYSTEM WITH RT SHIM SET SGRAD 205/120/HD

Axial Piston Fixed Motor A2FNM for Fan Drives and Flywheel Mass

Digimar 816 CL. Versatile. User-friendly operation... The measuring program... Precise measuring results...

Measuring. Affordable. Effective. Instruments

Dr. TRETTER AG. Tolerance Rings. safe cost-effective fast assembly

Ch. 169 DIESEL SMOKE MEASUREMENT CHAPTER 169. DIESEL SMOKE MEASUREMENT PROCEDURE

YOUR MITUTOYO PROMOTION

DR magnetic piston. Compact Magnetic Sophisticated

Industrial Components. Internal gear pumps DHPH2, DHPH3, DHPH5, DHPH6

Lever Type Dial Indicators Dial Test Indicators

TESATAST Standard Models

LS 025 LS 035 In-line mounting Connection up to G¾ / -12 SAE Nominal flow rate up to 33 l/min / 8.7 gpm

EIPS2 INTERNAL GEAR PUMPS

Main Catalogue. EichenbergerGewinde. 100 % Swiss made

Axial Piston Fixed Pump A17FNO Series 10

Product Information ECN 425 EQN 437. Absolute Rotary Encoders with Hollow Shaft and Expanding Ring Coupling for Safety-Related Applications

Highest Performance: SPH Series

4 Self aligning ball bearings

Set your Mobile Phones to Silent Respect your colleagues no private conversations Be on time

EIPH2 EIPH3 EIPH5 EIPH6

Proposal for amendments to Regulation No.79 (Steering equipment)

TECHNICAL INFORMATION

HD 790 HD 990 In-line mounting Operating pressure up to 630 bar Nominal flow rate up to l/min

Product information PI Disk-type tool turret

Price List. Calibration Fee

D 162 D 232 D 332 In-line mounting Operating pressure up to 63 bar Nominal flow rate up to 350 l/min

AGR Series Gear-Driven Rotary Stages

More power with every stroke...

Features of the Ball Screw

Titrette and Digital Burette

AR Series with PLE Gearhead

BALLSCREW INSPECTION CERTIFICATE Inspected by HEWLETT PACKARD Laser Measuring System

SCM SAE. Other advantages: Sunfab s SCM SAE is a range of robust axial piston motors especially suitable for mobile hydraulics.

ES 074 ES 094 Tank top mounting Connection up G1¼ Nominal flow rate up to 80 l/min

HD 790 HD 990 In-line mounting Operating pressure up to 630 bar / 9137 psi Nominal flow rate up to l/min / gpm

MECHANICAL CONDITION MONITORING ON ROTARY KILNS. Measurement Tools for the Cement Industry

Milling spindles / H line Up to speed fast: Dynamic and robust for high loads

ES 134 ES 144 Tank top mounting Connection up to SAE 1½ Nominal flow rate up to 130 l/min

Return-Suction Filters E 068 E 088. In-line mounting Connection up to G¾ Nominal flow rate up to 100 l/min e

ISO 2953 INTERNATIONAL STANDARD. Mechanical vibration Balancing machines Description and evaluation

Lever Type Dial Indicators Dial Test Indicators SMALL TOOL INSTRUMENTS AND DATA MANAGEMENT

Panel-mounted Thermostats

alpha Value Line - NPR Sizing and Technical Data Efficient Flexible Reliable

2-Circuit Axial Piston Fixed Pump A18FDO

FEM ANALYSIS OF CONNECTING ROD FOR STATIONARY ENGINE. Republic

SCM M2. Other advantages:

RESM rotary scale. System features

POWER PRICE UNI. powerful UNF METAL. UNCPower. power ful GOLD FOR. powerful TOP GEOMETRIES UNF PERFECT CHOICE VER. perfect thread form.

E 068 E 088 In-line mounting Connection up to G¾ Nominal flow rate up to 100 l/min

MOTOR SCM ISO

POWERGEAR. Miniature NEW. Actual Size. Impressively small and incredibly powerful.

Competence in lab plastics. MEASUREMENT ACCURACY TO THE HIGHEST DEGREE

产品技术规范. Product Name: Product Technical Specification SMARTSTONE. No.: CPFL0002 Version: A Issued date: Page 1 of 16

MITUTOYO'S 80 YEAR ANNIVERSARY PROMOTION

Crawler Crane LR

WSS/WSS-L White paper

Lever-Type Dial Indicators SMALL TOOL INSTRUMENTS AND DATA MANAGEMENT DIAL TEST INDICATORS. Bulletin No. 2232

Inprocess Measuring on Machine Tools

Transcription:

ISO 10360 Acceptance and re-verification tests for Coordinate Measuring Machines a brief introduction

ISO 10360 Acceptance and re-verification Tests for Coordinate Measuring Machines (CMMs) Consisting of: ISO 10360-1 (2000): Vocabulary (1) ISO 10360-2 (2001): CMMs used for measuring size ISO 10360-3 (2000): CMMs with the axis of a rotary table as the fourth axis ISO 10360-4 (2000): CMMs used in scanning measuring mode ISO 10360-5 (2000): CMMs using multiple-stylus probing system ISO 10360-6 (1999): Estimation of errors in computing Gaussian associated features (1) (1) Not dealt with in this introduction A brief introduction Since 1994 the ISO 10360»Acceptance and re-verification Tests for Coordinate Measuring Machines«is in force. This standard describes the procedures to verify the performance of Coordinate Measuring Machines (CMMs). Before purchasing a CMM, it is important to get familiar with the basics of this standard. The following pages are intended as a guide through the ISO 10360. Some terms and definitions have been simplified for a more easy understanding. Although the ISO 10360 is an international accepted standard, there are still CMM makers who specify their CMMs according to other outdated national standards, such as VDI/VDE 2617 (German) or B89 (American). Only if customers insist on specifications based on ISO 10360, they can compare the performance of CMMs made by different manufacturers. The original ISO standards can be obtained for example through publishing house Beuth at www.beuth.de.

ISO 10360-2 CMMs used for measuring size Volumetric Length Measuring Error E Volumetric Probing Error P (Form Error of the CMM) Test procedure A set of 5 length gauges is measured 3 times in 7 spatial positions. Total number of measurements: 5 x 3 x 7 = 105. 100% of results must be within the specification. A reference sphere is measured with 25 evenly distributed points. P = (Rmax - Rmin = Sphere form) => Form error of the CMM General remark: The ISO 10360 also uses the terms MPE E, MPE P, MPE THP etc. MPE stand for Maximum Permitted Error. In CMM metrology the specifications are colloquially referred to as just E, P, THP etc. 3

ISO 10360-2 Where do E and P apply? Volumetric Length Measuring Error E describes the CMM error when measuring Distances Diameters Position Tolerance Volumetric Probing Error P describes the CMM error at all form inspections Free Form Tolerances Straightness Flatness Roundness Cylindricity in single point modus. 4

ISO 10360-3 CMMs with the axis of a rotary table as the fourth axis Rotary table Errors are: Radial Error FR - Tangential Error FT - Axial Error FA Test procedure 1.. 3. 4. Fix spheres A and B on RT. (recom.: h = 400, r = 200mm). (1) Measure sphere B and set centerpoint to zero (0,0,0). Measure sphere A in 14 positons: 7 positions from 0 to 720 7 positions from 720 to 0. Measure sphere B in 14 positions: 7 from 0 to 720 7 from 720 to 0 At the last position (28) measure sphere A one more time 6. Rotary table error - Radial FR = Max. range in X (A or B) Rotary table error - Tangential FT = Max. range in Y (A or B) Rotary table error - Axial FA = Max. range in Z (A or B) 5. Calculate range of X, Y and Z for A and B. (1) The errors of a rotary table generally increase with h, radius r and table load. 5

ISO 10360-3 CMMs with the axis of a rotary table as fourth axis Evaluation of a rotary table test according to ISO 10360-3 Position Angle Measured Coordinates for No. Test sphere A Test sphere B X A Y A Z A X B Y B Z B 0 0 401.6647 0.0000-398.276 0,0000 0,0000 0,0000 1 103 401.6632 0.0011-398.2285 - - - 2 206 401.6631-0.0016-398.2270 - - - 3 309 401.6625-0.0014-398.22 92 - - - 4 412 401.6652 0.0012-398.2285 - - - 5 515 401.6648 0.0009-398.2290 - - - 6 618 401.6660-0.0011-398.2270 - - - 7 721 401.6646-0.0018-398.2263 - - - 8 618 401.6658-0.0015-398.2273 - - - 9 515 401.6635 0.0006-398.2265 - - - 10 412 401.6623 0.0003-398.2260 - - - 11 309 401.6649-0.0011-398.2264 - - - 12 206 401.6640 0.0009-398.2278 - - - 13 103 401.6638 0.0004-398.2285 - - - 14 0 401.6655-0.0013-398.2277 0.0012-0.0011 0.0015 15-103 - - - -0.0005 0.0005 0.0007 16-206 - - - -0.0011 0.0009-0.0003 17-309 - - - 0.0014 0.0014-0.0010 18-412 - - - 0.0020 0.0000 0.0002 19-515 - - - 0.0001-0.0019 0.0012 20-618 - - - -0.0010-0.0010 0.0012 21-721 - - - 0.0017 0.0016 0.0009 22-618 - - - -0.0003 0.0003 0.0013 23-515 - - - -0.0009-0.0003-0.0008 24-412 - - - -0.0017-0.0018-0.0003 25-309 - - - 0.0011 0.0004 0.0006 26-206 - - - 0.0018 0.0015 0.0004 27-103 - - - 0.0005 0.0004 0.0014 28 0 401.6628 0.0020-398.2290-0.0018-0.0009-0.0007 Rotary Table Error FR A FT A FA A FR B FT B FA B Test result: 3.7µm 3.8µm 3.2µm 3.8 3.5 2.5 Rotary table error in radial direction FR = 3.8µm Rotary table error in tangential direction FT = 3.8µm Rotary table error in axial direction FA = 3.2µm Marked with are the maximum deviations. Remark: Rotary table errors are always specified for Rotary table and CMM. The same rotary table used on different types of CMMs will have different specifications. 6

ISO 10360-4 CMMs used in scanning measuring mode Scanning Probing Error THP 2 1 3 4 Test procedure A reference sphere, Ø 25 mm, is scanned at 4 defined lines. THP is the range of all radii (spere form, i.e. Form Error of the CMM in scanning mode). Important: The scanning measuring error depends on the scanning speed. Therefore the CMM maker has to specifiy the THPvalue with the corresponding total measuring time, for example THP = 1.5 µm at t = 45 sec. Where does THP apply? THP defines the measuring error of the CMM for Form Measurements: Straightness Flatness Roundness Cylindricity Free Form Tolerances when the CMM is used in scanning mode. Note: THP means scanning on a Predefined path, collecting a High density of points. The ISO 10360-4 describes also test procedures for TLP, THN and TLN. But they are usually not specified in CMM metrology. 7

ISO 10360-5 CMMs using multiple-stylus probing system Multiple Stylus Errors of Location, Size and Form Fixed probing system Articulating probing system Test procedure Qualify 5 orthogonal styli of length L. Qualify 1 stylus (length 20 mm) with extension L E in 5 orthogonal positions. A high precision reference sphere is measured with each stylus resp. with each qualified position. Every sphere measurement takes 25 probings, total number of probings is 5 x 25 = 125. Evaluations (1) : Multiple Stylus Location Error ML resp. AL = Max. Range of the 5 centre coordinates in X, Y or Z. Multiple Stylus Size Error MS resp. AS = Deviation from the calibrated diameter (all 125 points). Multiple Stylus Form Error MF resp. AF = Form error of the calculated sphere (all 125 points). (1) A stands for articulating probe system M stands for fixed probe system 8

ISO 10360-5 CMMs using multiple-stylus probing system Multiple Stylus Errors of Location, Size and Form: Evaluations Multiple Stylus Size Error AS / MS (1) over 125 points from 5 different styli (fixed head) or 5 different orientations (articulating head). Multiple Stylus Form Error AF / MF (1) over 125 points from 5 different styli (fixed head) or 5 different orientations (articulating head). Multiple Stylus Location Error AL / ML (1) Biggest axial distance in X, Y or Z between the 5 measured center points. (1) A stands for articulating probe system M stands for fixed probe system 9

ISO 10360-5 Where do AL, AS and AF apply? Multi Stylus Probing Errors for CMMs with articulating probe system AL (Location), AS (Size) and AF (Form) have to be considered, if for a measurement of a feature the probe system has to be articulated. Example: CMM specs: E = 2.4 + L / 300; P = 2.8µm AL = 4.8µm; AS = 1.9µm AF = 8.6µm Measuring feature: Distance 500 ±0.030 Max. CMM measuring error for this feature: = AL + E = 4.8 + 2.4 + 500 / 300 = 4.8 + 2.4 + 1.7 => 8.9µm 10

ISO 10360-5 Where do ML, MS and MF apply? Multi Stylus Probing Errors for CMMs with a fixed probe system ML (Location), MS (Size) and MF (Form) have to be considered, if for a measurement of a feature more than 1 stylus is used. Max. CMM measuring error for this feature: = ML + E = 1.9 + 0.9 + 500 / 600 = 1.9 + 0.9 + 0.8 => 3.6µm Example: CMM specs: E = 0.9 + L / 600; P = 0.9µm ML = 1.9µm; MS = 0.5µm MF = 3.0µm Measured feature: Distance 500 ±0.030 Max. CMM measuring error for this feature: = E = 0.9 + 500 / 600 = 0.9 + 0.8 => 1.7µm In this case the multiple styli error ML has to be considered. 11

Attention should also be paid to the following restrictions 1. Styli For which styli are the stated measuring errors valid? For information on that please check the fine print in the data sheets. Regarding this important subject there are big differences between the various CMM makers. For example the specification for the length measuring error E is given by 3 different CMM makers for the following styli: CMM maker A: CMM maker B: CMM maker C: scale 1 : 3 Attention: If the data sheet does not clearly specify, for which styli length and diameter the stated measuring errors are valid check with the manufacturer. 2. Environment, throughput and part material When evaluating the measuring errors of a CMM, it is also important to know: For which temperature range and temperature gradients are the stated specifications valid? For which machine dynamics (probing frequency, acceleration and moving speed) are the stated specifications valid? For which part material are the stated specifications valid? For steel (coefficient of expansion 11.5µm/m/K) or only for Invar/Zerodur (coefficient of expansion close to 0µm/m/K) 12

Ratio of CMM measuring error to tolerance CMM Capability Charts This chart is used to determine which CMM specification E is required in order to measure a distance or a diameter with a given tolerance. Tolerance Distance or diameter [mm] [mm] 50 100 200 400 600 1000 2000 ± 0.003 0.3+ L / 1000 ± 0.005 0.5 + L / 900 0.4 + L / 1000 0.3 + L / 1000 ± 0.007 0.7 + L / 700 0.5 + L / 500 0.5 + L / 1000 0.3 + L / 1000 ± 0.010 0.9 + L / 400 0.8 + L / 500 0.6 + L / 500 0.5 + L / 800 0.4 + L / 1000 ± 0.015 1.3 + L / 300 1.2 + L / 350 0.9 + L / 350 0.7 + L / 500 0.6 + L / 800 0.4 + L / 900 ± 0.020 1.8 + L / 200 1.6 + L / 250 1.3 + L / 300 0.9 + L / 350 0.8 + L / 500 0.6 + L / 700 ± 0.030 2.8 + L / 200 2.6 + L / 250 2.2 + L / 250 1.7 + L / 300 1.5 + L / 400 1.0 + L / 500 ± 0.050 4.7 + L / 150 4.3 + L / 150 4.0 + L / 200 3.0 + L / 200 2.6 + L / 400 1.7 + L / 300 1.0 + L / 500 ± 0.070 6.5 + L / 100 6.0 + L / 100 5.7 + L / 150 5.0 + L / 200 4.0 + L / 200 2.0 + L / 200 2.0 + L / 400 ± 0.100 9.5 + L / 100 9.0 + L / 100 8.0 + L / 100 6.0 + L / 100 6.0 + L / 150 5.0 + L / 200 4.4 + L / 350 Example: A diameter of 400 mm has a tolerance of ± 0.010 mm. For the inspection of this feature a CMM with a length measuring error of E = 0.5 + L / 800 [µm] or better is required. CMM Capability Analysis By entering all critical features in the Excel chart below, the ratio of CMM error to tolerance for all features can be easily determined CMM type Leitz Reference 15.9.7 Measuring error according to ISO 10360-2 E = 0.9 + L / 400 [µm] No. feature nom. value upper tol. lower tol. CMM error % of the ratio [mm] [mm] [mm] [mm] tolerance 1 diameter 8 0.010-0.010 ± 0.0009 9 % 1 : 10.9 2 distance 985 0.015-0.015 ± 0.0034 22 % 1 : 4.5 3 distance 38 0.010-0.010 ± 0.0010 10 % 1 : 10.1 4 diameter 320 0.010-0.010 ± 0.0017 17 % 1 : 5.9 5 diameter 336 0.020-0.020 ± 0.0017 9 % 1 : 11.5 6 diameter 86 0.000-0.024 ± 0.0011 9 % 1 : 10.8 7 distance 168 0.025 0.000 ± 0.0013 11 % 1 : 9.5 8 distance 70 0.012-0.012 ± 0.0011 9 % 1 : 11.2 13

Example: Test report according to ISO 10360-2 Volumetric length measuring error E 14

Example: Test report according to ISO 10360-4 Volumetric scanning probing error THP 15

Leitz The Leitz brand as part of Hexagon Metrology stands for high accuracy coodinate measuring machines, gear inspection centers and probes. Leitz measurement systems master quality assurance tasks equally well both in metrology labs as well as on the shop floor. The development and production are located in Wetzlar, Germany. For more than 30 years Leitz has been offering its customers the best innovative measurement technology available. The primary goal remains offering modern solutions for demanding measurement tasks. Hexagon Metrology Hexagon Metrology is a part of the Hexagon group and brings leading brands from the field of industrial metrology under one roof. Hexagon Metrology GmbH Leitz Division Siegmund-Hiepe-Str. 2-12 35578 Wetzlar Germany E-mail contact.leitz@hexagonmetrology.com Tel 06441 207 0 Fax 06441 207 122 www.leitz-metrology.com www.hexagonmetrology.com M42-510-004-231 2010 Hexagon Metrology GmbH All rights reserved. Printed in Germany, February 2010 16