HOSEI UNIVERSITY. Orange2015. Design Report

Size: px
Start display at page:

Download "HOSEI UNIVERSITY. Orange2015. Design Report"

Transcription

1 HOSEI UNIVERSITY Orange2015 Design Report Tetsuo Kinoshita, Tomoya Yoshida, Shinnosuke Tokuda, Mikito Takahashi, Yoshitaka Fukuda, Kazuki Fukuda, Yosuke Takebayashi, Yasuhito Takeuchi, Kosei Horichi and Sumika Shimokawa May 15, 2015 Faculty Advisor Statement I hereby certify that the engineering design on Orange2015 was done by the current student team and has been significant and equivalent to what might be awarded credit in a senior design course. Signed Date Prof. Kazuyuki Kobayashi May 15, 2015 Prof. Kazuyuki Kobayashi Faculty of Science and Engineering, Hosei University Kajinocho Koganei, Tokyo , Japan ; ikko@hosei.ac.jp

2 IGVC2015-Orange2015 ORANGE2015 Hosei University Tetsuo Kinoshita, Tomoya Yoshida, Shinnosuke Tokuda, Mikito Takahashi, Yoshitaka Fukuda, Kazuki Fukuda, Yosuke Takebayashi, Yasuhito Takeuchi, Kosei Horichi and Sumika Shimokawa Kazuyuki Kobayashi & INTRODUCTION The Autonomous Robotics Laboratory (ARL) research team at Hosei University is proud to present Orange2015 for the 23 rd annual Intelligent Ground Vehicle Competition. Our original robot was based on a conventional wheelchair chassis, limiting the modification of both hardware and software. Through team discussion, we resolved the failures of the previous year by adopting a new concept, Suitcase-aware mobile robot, to realize a compact size and next-generation mobile robot. To build this robot, various requirements are considered in the design process. Our new design, Orange2015, accommodates the required hardware and software modifications. The most significant change in Orange2015 is the new chassis that replaces the wheelchair chassis. The significant innovations of Orange2015 are summarized in Figure 1. 1

3 Figure 1. Significant innovations of Orange2015 TEAM ORGANIZATION Our team comprises two doctor of philosophy students, six Masters students, and two undergraduates. The team is divided into a team leader and three groups; mechanical, electronic, and software. The roles of each team member are presented in Figure 2. The team leader supervises the three groups and holds discussions with them. The total development time of Orange2015 was 1200 man hours. 2

4 Figure 2. Team organization DESIGN PROCESS For international teams (outside of the United States), the size and weight of the mobile robot must be considered in the design process. Our robot must be transported from Japan. Through team discussion, we developed the Suitcase-aware mobile robot concept, considering the size of a standard suitcase and improved speed control accuracy (maximum and minimum speeds) of the mobile robot. Adopting this concept, we replaced the conventional electric wheelchair chassis of our mobile robot with a completely new chassis model. As shown in Figure 3, our new mobile robot satisfies several requirements. Figure 3. Requirements for IGVC mobile robot 3

5 Requirements for IGVC rules/international team The Orange2015 chassis must fit into a typical air-flown suitcase. Because the depth of the suitcase is limited, the Orange2015 chassis is decomposed into a lower and an upper part, each within the suitcase dimensions. Figure 4 compares the decomposed chassis and suitcase. To transport Orange2015 by air, we need only two suitcases. Figure 4. Lower and upper parts of chassis packed into suitcases To satisfy the IGVC rules and ensure safe operation, the Orange2015 chassis covered with urethane foam as shown in Figure 5. The urethane foam is lightweight and protects the Orange2015 sensors and circuits from obstacle collision impacts. Figure 6 demonstrates that Orange2015 satisfies the IGVC size requirements. Figure 5. CAD of Orange2015 Figure 6. Size comparison between IGVC rules and Orange2015 4

6 Table 1. Payload requirements Requirements Payload space Sufficient power to carry the system Payload size: inches Payload weight: 20 pounds Implementation/Solution Payload space solution: The inside of the upper part ( inches) To meet power requirements: Selection of sufficiently powered motor to carry the weight (including payload weight). 9.5 inches 9.5 inches 20.3 inches Requirements Accurate control from 1 5 mph Table 2. Speed requirements (1 5 mph) Implementation/Solution The chassis constructed from cylindrical aluminum frames enables lightweight configuration. Lightweight configuration requires smaller and lower-torque motors. Employment of new intelligent motor driver enables accurate speed control. Requirements for performance Table 3. Speed requirements (reaction times) Requirements Improve reaction times Implementation/Solution Apply code refactoring and reorganize the modular function-based programming. Table 4. Software requirements Requirements Implementation/Solution Lane following Omnidirectional camera-based image processing. Obstacle avoidance Improved new obstacle avoidance algorithm based on new 3D-LIDAR. 5

7 Waypoint Navigation Improved waypoint navigation algorithm, including 3D-LIDAR. Requirements for mobile robot Table 5. Safety requirements Requirements Safety Light Mechanical E-stop (2 3 feet height from ground) Wireless E-stop (minimum of 100 feet) Implementation/Solution Employ the three-color LED button that performs dual functions of E-stop and safety light. Newly developed ZigBee based wireless E-stop controller. Table 6. Reliability requirements Requirements Implementation/Solution To enhance running stability of Orange2015, the circuit box and payload position are lowered to reduce the barycentric position of Orange2015. Reliability considerations Install insulators and suspension to reduce the effect of vibrations on the circuit box, sensor and laptop computer. Insulator Table 7. Durability requirements Requirements Implementation/Solution Cylindrical aluminum frames ensure a rigid chassis. Durability considerations Expired batteries are easily replaced with fully charged batteries, enabling long-time experiments in outdoor environments. 6

8 MECHANICAL DESIGN Because Orange2014 was based on an electric wheelchair, the hardware specifications limited its maximum speed to 2.7 mph (4.5 km/h). To attain the maximum speed stipulated in the IGVC2015 rules (5 km/h), we constructed Orange2015 anew with new motors installed on a lightweight chassis. The lightweight chassis is constructed from reconfigurable cylindrical aluminum frames. Consequently, the size and weight of Orange2015 are significantly smaller than those of Orange To stabilize the moving capability of Orange2015, we lowered the barycentric position of the circuit box. As shown in Figure 7, the Orange2015 system weighs over 50% less than Orange2014. Figure 7. Weight comparison between Orange2014 and Orange2015 Frame Figure 8 illustrates cylindrical aluminum frames used in the chassis construction. These unique cylindrical frames connect only in four directions, ensuring stuffiness of the joint junctions; moreover, it is lightweight, rigid, and easily assembled and reconfigured. Figure 9 shows the CAD design of the Orange2015 chassis constructed from these frames. 7

9 Figure 8. Cylindrical aluminum frame Figure 9. CAD of Orange2015 chassis Circuit Box The new chassis design required a redesign of the circuit box. The insulators and circuit box are installed at low height to reduce the barycentric position of Orange2015. The insulators protect the electric circuit from vibration. Figure 10. Circuit Box ELECTRICAL DESIGN Electrical design To enable long-duration outdoor experiments, we install rapidly changeable batteries, as shown in Figure 11. As the laptop PC has its own battery, we can replace expired batteries with fully charged ones without system shutdown, ensuring continuous operation during longer outdoor experiments. 8

10 Figure 11. Rapidly changeable batteries Figure 12 schematizes the electrical power and signal configuration of Orange2015. The motor and peripheral devices are powered by a nickel hydride battery (24 V; 6.7 A h), which is rapidly replaced as mentioned above. Figure 12. Electrical power and signal configuration of Orange

11 3D-LIDAR This year, we replace our handmade 3D-LIDAR with a commercially available low-cost 3D-LIDAR (Hokuyo, YVT-X002), which ensures high reliability. The new 3D-LIDAR weighs 52% less, and occupies 87% less volume, than our original 3D-LIDAR. Figure 13 shows example of three-dimentional shapes which are captured by using 3D-LIDAR. Figure 13. Visual performance Emergency stop/safety Light The three-color LED button performs dual functions of E-stop and safety light. For safety and visibility purposes, the E-stop buttons (Figure 14) are arranged around the mobile robot (at the left, right and back sides). Figure 14. E-stop buttons When the mobile robot power is turned on, the three-color LEDs perform as mechanical E-stop buttons, and glow solid red. As the mobile robot is run through the computer, the color changes from solid red to flashing red and finally to green. In the green state (indicating autonomous mode), the LEDs operate as safety lights. 10

12 SOFTWARE DESIGN In the software part, the electric wheelchair controller installed in Orange2014 is replaced by a new motor driver (YP-Spur), which accurately controls the speed and trajectory of the mobile robot. The YP-Spur is based on Yamabico Project-Spur (YP-Spur) developed at the University of Tsukuba, Japan. The YP-Spur enhances the speed and trajectory control through feedback and feed forward controls of the mobile robot dynamics. Although changing from the electric wheelchair controller to a mobile robot motor controller requires significant hardware modifications, we realize a rapid prototype by programming a YP-spur/MATLAB bridge function. Furthermore, we improve the existing MATLAB controller code by a refactoring method. In this manner, we can improve the speed and trajectory control using the Orange2014 MATLAB program and saving considerable development time. Figure 15 shows the four modules of the mobile robot controlling software. The modules are run sequentially, with each process subsuming the decision of the previous module. As shown in Figure 15, the modules are waypoint navigation, line following, path planning, and obstacle avoidance. Figure 15. Flow diagram of the four modules programmed in Orange2015 Waypoint navigation Self-localization. The mobile robot retrieves its self-position from GPS. If the GPS signal becomes unreliable, self-localization is performed by a Simultaneous Localization and Mapping (SLAM) algorithm based on LIDAR and omnidirectional camera data. Self-localization from LIDAR and camera data is performed by a map matching technique, in which the mobile robot searches a global map for points that match its surrounding local map. Path Planning. To ensure robust and stable path planning for the mobile robot, we employ a potential path planning method. In the first stage, a potential field map is created from LIDAR data and lanes detected from the omnidirectional camera (Figure 16). In the second stage, the mobile robot s path is generated by an A-star search algorithm. The first and second stages are iterated to obtain a safe and robust path from the current position to the next waypoint. 11

13 Figure 16. Generated potential field map Lane Following Lane following proceeds in two steps as follows: (1) lane detection and (2) lane following. The lane detection procedure of Orange2015 is presented in Figure 17. The lane following procedure considers the white lanes as obstacles. Panels (a) and (b) of Figure 17 are the original image captured by the omnidirectional camera and the reconstructed ground image, respectively. After reconstruction, the RGB color image is converted to a gray scale image, using the B component only (panel (c)). The gray image is then binarized by template matching (panel (d)). The isolated noise in the binary image is removed using Quad tree. The resulting filtered image is shown in panel (e). After recognizing the lines in the image, the mobile robot evaluates the eigenvector of the lines, and uses it to interpolate the disconnections. The eigenvector and interpolated images are presented in panels (f) and (g), respectively. Figure 17. Lane detection procedure 12

14 Obstacle detection Fence detection. Accurate, stable fence detection is a major challenge in Auto-Nav functioning. In particular, the fence opening, which is divided into two areas, is randomly relocated along the fence at the start of each run. Passage through a fence opening is illustrated in Figure 18. Figure 18. Passage through the opening of a fence Flag detection. The flag area presents two problems. First, flags are thin structures that are seldom detected by the mobile robot s LIDAR. Second, the mobile robot needs to turn to the left of the red flags and right of the blue flags. To solve both problems, the flags are recorded in a grid map and the waypoint is generated as the flags are passed. Figure 19 shows the robot running through a flagged area, along with the generated grid map. Figure 19. Process of passing through a flagged area Avoidance Avoidance is the most important function of the mobile robot controller. To improve the accuracy and sensing speed, surrounding environmental obstacles are detected by two different LIDARs. The avoidance module combines the obstacles detected by LIDAR with the lines detected by the omnidirectional camera, analyzes the environmental situation, and generates the shortest and safest path for the mobile robot. 13

15 PERFORMANCE This section discusses the performance of Orange2015. Table 8. Performance of Orange2015 Measurement Performance prediction Performance result Speed 5.0 km/h (3.1 mph) 5.0 km/h (3.1 mph) Ramp climbing ability 9.0 incline 8.9 incline Reaction time 0.19 s 0.18 s Battery life 3.5 h 3.0 h Obstacle detection distance 0 8 m (0 27 feet) 0 8 m (0 27 feet) Waypoint navigation ±0.10 m (±0.33 feet) ±0.14 m (±0.46 feet) Cost Table 9. Estimated developmental cost of Orange2015 Components Retail cost Team cost Description 3D-LIDAR $8,000 $0 YVT-X002 (3D-URG) Motor, gear and encoder $1,000 $1,000 Maxon RE-40-GP42C-HEDL5540 Motor driver $315 $315 TF-2MD3-R6 LIDAR $4,000 $0 HOKUYO UTM-30LX Omnidirectional camera $2,613 $0 VS-C42N-TK USB video capture cable $50 $0 I-O DATA GV-USB2 Fiber optic gyroscope $5,800 $0 Japan Aviation Electronics Industry JG-35FD DGPS $2,414 $0 Hemisphere A100 Laptop personal computer $790 $790 ex.computer note N1500J-721/E Mechanical parts $1,000 $1,000 Various mechanical components Electronic parts $500 $500 Various electrical components Total $26,482 $3,605 CONCLUSION In this study, we presented the design and implementation of Orange2015. Our new concept, Suitcase-aware mobile robot, satisfies three major requirements: 1. Complies with the IGVC rules and fit into a standard suitcase for air travel 2. Meets the specified performance 3. Meets the mobile robot specifications 14

16 To satisfy the above requirements, we designed and built a new chassis mobile robot from the bottom up. Moreover, to comply with the altered rules established in the IGVC2015, we incorporated a new 3D-LIDAR module, omnidirectional camera, and a new refactored image processing algorithm to realize a robust and reliable robotic system. We look forward to a favorable placement of Orange2015 in this year s IGVC. REFERENCES 1 Kanayama.,Y. and Yuta, S. Vehicle path specification by a sequence of straight lines, IEEE Robotics and Automation, pp , Lei Tang, Songyi Dian, Gangxu Gu, Kuni Zhou, Suihe Wang, and Xinghuan Feng. A novel potential field method for obstacle avoidance and path planning of mobile robot, IEEE Computer Science and Information Technology (ICCSIT), pp ,

UNIVERSITÉ DE MONCTON FACULTÉ D INGÉNIERIE. Moncton, NB, Canada PROJECT BREAKPOINT 2015 IGVC DESIGN REPORT UNIVERSITÉ DE MONCTON ENGINEERING FACULTY

UNIVERSITÉ DE MONCTON FACULTÉ D INGÉNIERIE. Moncton, NB, Canada PROJECT BREAKPOINT 2015 IGVC DESIGN REPORT UNIVERSITÉ DE MONCTON ENGINEERING FACULTY FACULTÉ D INGÉNIERIE PROJECT BREAKPOINT 2015 IGVC DESIGN REPORT UNIVERSITÉ DE MONCTON ENGINEERING FACULTY IEEEUMoncton Student Branch UNIVERSITÉ DE MONCTON Moncton, NB, Canada 15 MAY 2015 1 Table of Content

More information

GCAT. University of Michigan-Dearborn

GCAT. University of Michigan-Dearborn GCAT University of Michigan-Dearborn Mike Kinnel, Joe Frank, Siri Vorachaoen, Anthony Lucente, Ross Marten, Jonathan Hyland, Hachem Nader, Ebrahim Nasser, Vin Varghese Department of Electrical and Computer

More information

INTRODUCTION Team Composition Electrical System

INTRODUCTION Team Composition Electrical System IGVC2015-WOBBLER DESIGN OF AN AUTONOMOUS GROUND VEHICLE BY THE UNIVERSITY OF WEST FLORIDA UNMANNED SYSTEMS LAB FOR THE 2015 INTELLIGENT GROUND VEHICLE COMPETITION University of West Florida Department

More information

Vehicle Design Competition Written Report NECTAR 2000

Vehicle Design Competition Written Report NECTAR 2000 8th Intelligent Ground Vehicle Competition Vehicle Design Competition Written Report NECTAR 2000 Actually, we would like to taste the NECTAR after winning the first prize in 2000. Watanabe Laboratory Systems

More information

2016 IGVC Design Report Submitted: May 13, 2016

2016 IGVC Design Report Submitted: May 13, 2016 2016 IGVC Design Report Submitted: May 13, 2016 I certify that the design and engineering of the vehicle by the current student team has been significant and equivalent to what might be awarded credit

More information

Oakland University Presents:

Oakland University Presents: Oakland University Presents: I certify that the engineering design present in this vehicle is significant and equivalent to work that would satisfy the requirements of a senior design or graduate project

More information

Eurathlon Scenario Application Paper (SAP) Review Sheet

Eurathlon Scenario Application Paper (SAP) Review Sheet Scenario Application Paper (SAP) Review Sheet Team/Robot Scenario FKIE Reconnaissance and surveillance in urban structures (USAR) For each of the following aspects, especially concerning the team s approach

More information

Cilantro. Old Dominion University. Team Members:

Cilantro. Old Dominion University. Team Members: Cilantro Old Dominion University Faculty Advisor: Dr. Lee Belfore Team Captain: Michael Micros lbelfore@odu.edu mmicr001@odu.edu Team Members: Ntiana Sakioti Matthew Phelps Christian Lurhakumbira nsaki001@odu.edu

More information

Eurathlon Scenario Application Paper (SAP) Review Sheet

Eurathlon Scenario Application Paper (SAP) Review Sheet Scenario Application Paper (SAP) Review Sheet Team/Robot Scenario FKIE Autonomous Navigation For each of the following aspects, especially concerning the team s approach to scenariospecific challenges,

More information

Centurion II Vehicle Design Report Bluefield State College

Centurion II Vehicle Design Report Bluefield State College Centurion II Vehicle Design Report Bluefield State College Ground Robotic Vehicle Team, May 2003 I, Dr. Robert Riggins,Professor of the Electrical Engineering Technology Department at Bluefield State College

More information

PATH TO SUCCESS: AN ANALYSIS OF 2016 INTELLIGENT GROUND VEHICLE COMPETITION (IGVC) AUTONOMOUS VEHICLE DESIGN AND IMPLEMENTATION

PATH TO SUCCESS: AN ANALYSIS OF 2016 INTELLIGENT GROUND VEHICLE COMPETITION (IGVC) AUTONOMOUS VEHICLE DESIGN AND IMPLEMENTATION GVSETS 2016 PATH TO SUCCESS: AN ANALYSIS OF 2016 INTELLIGENT GROUND VEHICLE COMPETITION (IGVC) AUTONOMOUS VEHICLE DESIGN AND IMPLEMENTATION Andrew Kosinski US Army TARDEC Bernard Theisen 586-574-8750 bernard.theisens.army.mil

More information

DELHI TECHNOLOGICAL UNIVERSITY TEAM RIPPLE Design Report

DELHI TECHNOLOGICAL UNIVERSITY TEAM RIPPLE Design Report DELHI TECHNOLOGICAL UNIVERSITY TEAM RIPPLE Design Report May 16th, 2018 Faculty Advisor Statement: I hereby certify that the development of vehicle, described in this report has been equivalent to the

More information

ISA Intimidator. July 6-8, Coronado Springs Resort Walt Disney World, Florida

ISA Intimidator. July 6-8, Coronado Springs Resort Walt Disney World, Florida ISA Intimidator 10 th Annual Intelligent Ground Vehicle Competition July 6-8, 2002- Coronado Springs Resort Walt Disney World, Florida Faculty Advisor Contact Roy Pruett Bluefield State College 304-327-4037

More information

Princess Sumaya University for Technology

Princess Sumaya University for Technology IGVC2014-E500 Princess Sumaya University for Technology Hamza Al-Beeshawi, Enas Al-Zmaili Raghad Al-Harasis, Moath Shreim Jamille Abu Shash Faculty Name:Dr. Belal Sababha Email:b.sababha@psut.edu.jo I

More information

iwheels 3 Lawrence Technological University

iwheels 3 Lawrence Technological University 5-15-2017 iwheels 3 Lawrence Technological University Team Captain: Devson Butani dbutani@ltu.edu Faculty Advisors: CJ Chung Jonathan Ruszala Gordon Stein Team Members: Sean Bleicher Kevin Cox Nirmit Changani

More information

RED RAVEN, THE LINKED-BOGIE PROTOTYPE. Ara Mekhtarian, Joseph Horvath, C.T. Lin. Department of Mechanical Engineering,

RED RAVEN, THE LINKED-BOGIE PROTOTYPE. Ara Mekhtarian, Joseph Horvath, C.T. Lin. Department of Mechanical Engineering, RED RAVEN, THE LINKED-BOGIE PROTOTYPE Ara Mekhtarian, Joseph Horvath, C.T. Lin Department of Mechanical Engineering, California State University, Northridge California, USA Abstract RedRAVEN is a pioneered

More information

Control of Mobile Robots

Control of Mobile Robots Control of Mobile Robots Introduction Prof. Luca Bascetta (luca.bascetta@polimi.it) Politecnico di Milano Dipartimento di Elettronica, Informazione e Bioingegneria Applications of mobile autonomous robots

More information

Super Squadron technical paper for. International Aerial Robotics Competition Team Reconnaissance. C. Aasish (M.

Super Squadron technical paper for. International Aerial Robotics Competition Team Reconnaissance. C. Aasish (M. Super Squadron technical paper for International Aerial Robotics Competition 2017 Team Reconnaissance C. Aasish (M.Tech Avionics) S. Jayadeep (B.Tech Avionics) N. Gowri (B.Tech Aerospace) ABSTRACT The

More information

UMD-SMART: Un-Manned Differentially Steered Multi-purpose. GCAT: GPS enabled Conventional-steered Autonomous Transporter

UMD-SMART: Un-Manned Differentially Steered Multi-purpose. GCAT: GPS enabled Conventional-steered Autonomous Transporter UMD-SMART: Un-Manned Differentially Steered Multi-purpose Autonomous Robust Transporter And GCAT: GPS enabled Conventional-steered Autonomous Transporter V. Varghese, S. Makam, M. Cinpinski, E.Mordovanaki,

More information

N.J.A.V. (New Jersey Autonomous Vehicle) 2013 Intelligent Ground Vehicle Competition

N.J.A.V. (New Jersey Autonomous Vehicle) 2013 Intelligent Ground Vehicle Competition N.J.A.V. (New Jersey Autonomous Vehicle) 2013 Intelligent Ground Vehicle Competition Department of Mechanical Engineering The College of New Jersey Ewing, New Jersey Team Members: Michael Bauer, Christopher

More information

Automated Driving - Object Perception at 120 KPH Chris Mansley

Automated Driving - Object Perception at 120 KPH Chris Mansley IROS 2014: Robots in Clutter Workshop Automated Driving - Object Perception at 120 KPH Chris Mansley 1 Road safety influence of driver assistance 100% Installation rates / road fatalities in Germany 80%

More information

MOLLEBot. MOdular Lightweight, Load carrying Equipment Bot

MOLLEBot. MOdular Lightweight, Load carrying Equipment Bot MOLLEBot MOdular Lightweight, Load carrying Equipment Bot Statement of Effort: I certify that the engineering design of the vehicle described in this report, MOLLEBot, has been significant and equivalent

More information

LTU Challenger. TEAM MEMBERS: Andrey Chernolutskiy Vincent Shih-Nung Chen. Faculty Advisor's Statement:

LTU Challenger. TEAM MEMBERS: Andrey Chernolutskiy Vincent Shih-Nung Chen. Faculty Advisor's Statement: LTU Challenger TEAM MEMBERS: Andrey Chernolutskiy Vincent Shih-Nung Chen Faculty Advisor's Statement: The work that the LTU Challenger student team performed with regards to design and implementation was

More information

Journal of Emerging Trends in Computing and Information Sciences

Journal of Emerging Trends in Computing and Information Sciences Pothole Detection Using Android Smartphone with a Video Camera 1 Youngtae Jo *, 2 Seungki Ryu 1 Korea Institute of Civil Engineering and Building Technology, Korea E-mail: 1 ytjoe@kict.re.kr, 2 skryu@kict.re.kr

More information

Table of Contents. Abstract... Pg. (2) Project Description... Pg. (2) Design and Performance... Pg. (3) OOM Block Diagram Figure 1... Pg.

Table of Contents. Abstract... Pg. (2) Project Description... Pg. (2) Design and Performance... Pg. (3) OOM Block Diagram Figure 1... Pg. March 5, 2015 0 P a g e Table of Contents Abstract... Pg. (2) Project Description... Pg. (2) Design and Performance... Pg. (3) OOM Block Diagram Figure 1... Pg. (4) OOM Payload Concept Model Figure 2...

More information

NJAV New Jersey Autonomous Vehicle

NJAV New Jersey Autonomous Vehicle The Autonomous Vehicle Team from TCNJ Presents: NJAV New Jersey Autonomous Vehicle Team Members Mark Adkins, Cynthia De Rama, Jodie Hicks, Kristen Izganics, Christopher Macock, Stephen Saudargas, Brett

More information

Steering Actuator for Autonomous Driving and Platooning *1

Steering Actuator for Autonomous Driving and Platooning *1 TECHNICAL PAPER Steering Actuator for Autonomous Driving and Platooning *1 A. ISHIHARA Y. KUROUMARU M. NAKA The New Energy and Industrial Technology Development Organization (NEDO) is running a "Development

More information

The Lug-n-Go. Team #16: Anika Manzo ( ammanzo2), Brianna Szczesuil (bszcze4), Gregg Lugo ( gclugo2) ECE445 Project Proposal: Spring 2018

The Lug-n-Go. Team #16: Anika Manzo ( ammanzo2), Brianna Szczesuil (bszcze4), Gregg Lugo ( gclugo2) ECE445 Project Proposal: Spring 2018 The Lug-n-Go Team #16: Anika Manzo ( ammanzo2), Brianna Szczesuil (bszcze4), Gregg Lugo ( gclugo2) ECE445 Project Proposal: Spring 2018 TA: Mickey Zhang Introduction 1.1 Problem Statement and Objective

More information

Vehicle Design Report: UBC Snowbots Avalanche

Vehicle Design Report: UBC Snowbots Avalanche IGVC2014-Avalanche Vehicle Design Report: UBC Snowbots Avalanche University of British Columbia Navid Fattahi, Jarek Ignas-Menzies, Jannicke Pearkes, Arjun Sethi, Jason Raymundo, Edward Li, Andres Rama,

More information

TENNESSEE STATE UNIVERSITY COLLEGE OF ENGINEERING, TECHNOLOGY AND COMPUTER SCIENCE

TENNESSEE STATE UNIVERSITY COLLEGE OF ENGINEERING, TECHNOLOGY AND COMPUTER SCIENCE TENNESSEE STATE UNIVERSITY COLLEGE OF ENGINEERING, TECHNOLOGY AND COMPUTER SCIENCE PRESENTS TSU-TIGER An Autonomous Robotic Ground Vehicle Technical Report 10 th Intelligent Ground Vehicle Competition

More information

Technical Robustness and Quality

Technical Robustness and Quality Technical Robustness and Quality www.teamrush27.net Rock Solid Robot Page Title 1-4 Robustness In Concept And Fabrication 5 Creative Concepts For Tomorrow s Technology 6-8 Rock Solid Controls 9-10 Effectively

More information

SELF DRIVING VEHICLE WITH CONTROL SYSTEM USING STEREOVISION TECHNIQUE

SELF DRIVING VEHICLE WITH CONTROL SYSTEM USING STEREOVISION TECHNIQUE SELF DRIVING VEHICLE WITH CONTROL SYSTEM USING STEREOVISION TECHNIQUE Kekan S M*, Dr. Mittal S K Department of Electrical Engineering, G.H. Raisoni Institute of Engineering and Technology, Wagholi, Pune-412207,

More information

THIRTEENTH ANNUAL INTERNATIONAL GROUND VEHICLE COMPETITION. Design Report

THIRTEENTH ANNUAL INTERNATIONAL GROUND VEHICLE COMPETITION. Design Report THIRTEENTH ANNUAL INTERNATIONAL GROUND VEHICLE COMPETITION ALVIN-VI Design Report Susmita Bhandari, Matthew Gillette, Sam Lin, Bozidar Marinkovic, David Pietrocola, Maria Restrepo, Regardt Schonborn, Advisor

More information

Problem Definition Review

Problem Definition Review Problem Definition Review P16241 AUTONOMOUS PEOPLE MOVER PHASE III Team Agenda Background Problem Statement Stakeholders Use Scenario Customer Requirements Engineering Requirements Preliminary Schedule

More information

Syllabus: Automated, Connected, and Intelligent Vehicles

Syllabus: Automated, Connected, and Intelligent Vehicles Page 1 of 8 Syllabus: Automated, Connected, and Intelligent Vehicles Part 1: Course Information Description: Automated, Connected, and Intelligent Vehicles is an advanced automotive technology course that

More information

REU: Improving Straight Line Travel in a Miniature Wheeled Robot

REU: Improving Straight Line Travel in a Miniature Wheeled Robot THE INSTITUTE FOR SYSTEMS RESEARCH ISR TECHNICAL REPORT 2013-12 REU: Improving Straight Line Travel in a Miniature Wheeled Robot Katie Gessler, Andrew Sabelhaus, Sarah Bergbreiter ISR develops, applies

More information

VT-LEONARDO. Team Members Adam Shoemaker, ME Chuong Nguyen,ME Labiba Quaiyum,ME Navneet Nagi,ME

VT-LEONARDO. Team Members Adam Shoemaker, ME Chuong Nguyen,ME Labiba Quaiyum,ME Navneet Nagi,ME VT-LEONARDO Team Members Adam Shoemaker, ME Chuong Nguyen,ME Labiba Quaiyum,ME Navneet Nagi,ME Faculty Advisor Statement I hereby certify that the engineering design on VT-Leonardo was done by the current

More information

Segway Robotic Mobility Platform (RMP) Specifications

Segway Robotic Mobility Platform (RMP) Specifications Segway Robotic Mobility Platform (RMP) Specifications Proven Durability, Reliability, and Performance The Segway RMP takes the performance and engineering prowess demonstrated in the Segway Personal Transporter

More information

Braking Performance Improvement Method for V2V Communication-Based Autonomous Emergency Braking at Intersections

Braking Performance Improvement Method for V2V Communication-Based Autonomous Emergency Braking at Intersections , pp.20-25 http://dx.doi.org/10.14257/astl.2015.86.05 Braking Performance Improvement Method for V2V Communication-Based Autonomous Emergency Braking at Intersections Sangduck Jeon 1, Gyoungeun Kim 1,

More information

RB-Mel-03. SCITOS G5 Mobile Platform Complete Package

RB-Mel-03. SCITOS G5 Mobile Platform Complete Package RB-Mel-03 SCITOS G5 Mobile Platform Complete Package A professional mobile platform, combining the advatages of an industrial robot with the flexibility of a research robot. Comes with Laser Range Finder

More information

Club Capra- Minotaurus Design Report

Club Capra- Minotaurus Design Report Table of content Introduction... 3 Team... 3 Cost... 4 Mechanical design... 4 Structure of Minotaurus... 5 Drive train... 6 Electronics... 7 Batteries... 7 Power supply... 7 System signal processing...

More information

DESIGN, SIMULATION AND TESTING OF SHRIMP ROVER USING RECURDYN

DESIGN, SIMULATION AND TESTING OF SHRIMP ROVER USING RECURDYN Ready 12th Symposium on Advance Space Technologies in Robotics and Automation, ESA / ESTEC, Noordwijk, The Nethelands DESIGN, SIMULATION AND TESTING OF SHRIMP ROVER USING RECURDYN Shivesh Kumar, Raghavendra

More information

Le développement technique des véhicules autonomes

Le développement technique des véhicules autonomes Shaping the future Le développement technique des véhicules autonomes Renaud Dubé, Roland Siegwart, ETH Zurich www.asl.ethz.ch www.wysszurich.ch Fribourg, 23 Juin 2016 Renaud Dubé 23.06.2016 1 Content

More information

ZF Advances Key Technologies for Automated Driving

ZF Advances Key Technologies for Automated Driving Page 1/5, January 9, 2017 ZF Advances Key Technologies for Automated Driving ZF s See Think Act supports self-driving cars and trucks ZF and NVIDIA provide computing power to bring artificial intelligence

More information

Development of Relief Valve Automatic assembly technology

Development of Relief Valve Automatic assembly technology Development of Relief Valve Automatic assembly technology Technology Explanation Development of Relief Valve Automatic assembly technology TAKIGUCHI Masaki Abstract Construction machinery is equipped with

More information

Highly dynamic control of a test bench for highspeed train pantographs

Highly dynamic control of a test bench for highspeed train pantographs PAGE 26 CUSTOMERS Highly dynamic control of a test bench for highspeed train pantographs Keeping Contact at 300 km/h Electric rail vehicles must never lose contact with the power supply, not even at the

More information

Daedalus Autonomous Vehicle

Daedalus Autonomous Vehicle Daedalus Autonomous Vehicle June 20, 2002 Team Members: Nicole Anthony Byron Collins Michael Fleming Chuck Liebal Michelle Nicholas Matthew Schmid Required Statement from Faculty Advisor I, Dr. Charles

More information

Proudly Presents: Sparta. Intelligent Ground Vehicle Competition Team Members

Proudly Presents: Sparta. Intelligent Ground Vehicle Competition Team Members Proudly Presents: Sparta Intelligent Ground Vehicle Competition 2011 Team Members Phil Barnett, Dan Bosse, Nick Cappello, Andrew Donihe, Ben Edwards, Takeshi Ei, David Griffin, Steve Hinderlider, Ed Miller,

More information

Moksha. Unmanned Ground Vehicle. M S Ramaiah Institute of Technology s entry into the 2011 Intelligent Ground Vehicle Competition

Moksha. Unmanned Ground Vehicle. M S Ramaiah Institute of Technology s entry into the 2011 Intelligent Ground Vehicle Competition Moksha Unmanned Ground Vehicle M S Ramaiah Institute of Technology s entry into the 2011 Intelligent Ground Vehicle Competition Team Members: Pavan Kumar P N, Pramod Bhat M, Akshay Vishwas Joshi, Pavan

More information

AIAA Foundation Undergraduate Team Aircraft Design Competition. RFP: Cruise Missile Carrier

AIAA Foundation Undergraduate Team Aircraft Design Competition. RFP: Cruise Missile Carrier AIAA Foundation Undergraduate Team Aircraft Design Competition RFP: Cruise Missile Carrier 1999/2000 AIAA FOUNDATION Undergraduate Team Aircraft Design Competition I. RULES 1. All groups of three to ten

More information

John Klaus Robert Cooper Thilina Fernando Zoe Morozko

John Klaus Robert Cooper Thilina Fernando Zoe Morozko Faculty Advisors: Dr. Dan Kirk Greg Peebles Justin Treptow Alex Morrese Alexis Mendez Casselle Russell John Klaus Robert Cooper Thilina Fernando Zoe Morozko Paul Martin Ben Burnett Damian Harasiuk 1 Launch

More information

Department of Electrical and Computer Science

Department of Electrical and Computer Science Department of Electrical and Computer Science Howard University Washington, DC 20059 EECE 401 & 402 Senior Design Final Report By Team AutoMoe Tavares Kidd @ 02744064 Lateef Adetona @02732398 Jordan Lafontant

More information

Development of Feedforward Anti-Sway Control for Highly efficient and Safety Crane Operation

Development of Feedforward Anti-Sway Control for Highly efficient and Safety Crane Operation 7 Development of Feedforward Anti-Sway Control for Highly efficient and Safety Crane Operation Noriaki Miyata* Tetsuji Ukita* Masaki Nishioka* Tadaaki Monzen* Takashi Toyohara* Container handling at harbor

More information

Wheeled Mobile Robots

Wheeled Mobile Robots Wheeled Mobile Robots Most popular locomotion mechanism Highly efficient on hard and flat ground. Simple mechanical implementation Balancing is not usually a problem. Three wheels are sufficient to guarantee

More information

On the role of AI in autonomous driving: prospects and challenges

On the role of AI in autonomous driving: prospects and challenges On the role of AI in autonomous driving: prospects and challenges April 20, 2018 PhD Outreach Scientist 1.3 million deaths annually Road injury is among the major causes of death 90% of accidents are caused

More information

SAE Mini BAJA: Suspension and Steering

SAE Mini BAJA: Suspension and Steering SAE Mini BAJA: Suspension and Steering By Zane Cross, Kyle Egan, Nick Garry, Trevor Hochhaus Team 11 Project Progress Submitted towards partial fulfillment of the requirements for Mechanical Engineering

More information

The University of Detroit Mercy Presents BAZINGA! IGVC 2012 Design Report

The University of Detroit Mercy Presents BAZINGA! IGVC 2012 Design Report The University of Detroit Mercy Presents BAZINGA! IGVC 2012 Design Report Team Members Peter Sutherland Herta Llusho Stephanie Musante Michael Nagrant Xingzhong Zhang Bo Cui Eyad Zieno Yu-Ting Wu Faculty

More information

Deep Learning Will Make Truly Self-Driving Cars a Reality

Deep Learning Will Make Truly Self-Driving Cars a Reality Deep Learning Will Make Truly Self-Driving Cars a Reality Tomorrow s truly driverless cars will be the safest vehicles on the road. While many vehicles today use driver assist systems to automate some

More information

Statement of Work Requirements Verification Table - Addendum

Statement of Work Requirements Verification Table - Addendum Statement of Work Requirements Verification Table - Addendum Vehicle Requirements Requirement Success Criteria Verification 1.1 No specific design requirement exists for the altitude. The altitude is a

More information

2015 AUVSI UAS Competition Journal Paper

2015 AUVSI UAS Competition Journal Paper 2015 AUVSI UAS Competition Journal Paper Abstract We are the Unmanned Aerial Systems (UAS) team from the South Dakota School of Mines and Technology (SDSM&T). We have built an unmanned aerial vehicle (UAV)

More information

EPSRC-JLR Workshop 9th December 2014 TOWARDS AUTONOMY SMART AND CONNECTED CONTROL

EPSRC-JLR Workshop 9th December 2014 TOWARDS AUTONOMY SMART AND CONNECTED CONTROL EPSRC-JLR Workshop 9th December 2014 Increasing levels of autonomy of the driving task changing the demands of the environment Increased motivation from non-driving related activities Enhanced interface

More information

Automatic Driving Control for Passing through Intersection by use of Feature of Electric Vehicle

Automatic Driving Control for Passing through Intersection by use of Feature of Electric Vehicle Page000031 EVS25 Shenzhen, China, Nov 5-9, 2010 Automatic Driving Control for Passing through Intersection by use of Feature of Electric Vehicle Takeki Ogitsu 1, Manabu Omae 1, Hiroshi Shimizu 2 1 Graduate

More information

Intelligent Power Management of Electric Vehicle with Li-Ion Battery Sheng Chen 1,a, Chih-Chen Chen 2,b

Intelligent Power Management of Electric Vehicle with Li-Ion Battery Sheng Chen 1,a, Chih-Chen Chen 2,b Applied Mechanics and Materials Vols. 300-301 (2013) pp 1558-1561 Online available since 2013/Feb/13 at www.scientific.net (2013) Trans Tech Publications, Switzerland doi:10.4028/www.scientific.net/amm.300-301.1558

More information

Protection & Control / Commissioning Engineer

Protection & Control / Commissioning Engineer Protection & Control / Commissioning Engineer Are you ready to be a technology pioneer? Oil and gas factories 3000 meters underwater, heavy locomotive traction motors, electric vehicle chargers that deliver

More information

The College of New Jersey

The College of New Jersey The College of New Jersey 2008 Intelligent Ground Vehicle Competition Entry Saturday May 31 st, 2008 Team Members: Jerry Wallace Brian Fay Michael Ziller Chapter 1 - Mechanical Systems (Brian Fay) 1.1

More information

Centurion Vehicle Design Report Bluefield State College Ground Robotic Vehicle Team, July 2002

Centurion Vehicle Design Report Bluefield State College Ground Robotic Vehicle Team, July 2002 Centurion Vehicle Design Report Bluefield State College Ground Robotic Vehicle Team, July 2002 Faculty Advisor Dr. Robert Riggins Professor of Electrical Engineering Technology Bluefield State College

More information

A Measuring Method for the Level of Consciousness while Driving Vehicles

A Measuring Method for the Level of Consciousness while Driving Vehicles A Measuring Method for the Level of Consciousness while Driving Vehicles T.Sugimoto 1, T.Yamauchi 2, A.Tohshima 3 1 Department of precision Machined Engineering College of Science and Technology Nihon

More information

Laird Thermal Systems Application Note. Cooling Solutions for Automotive Technologies

Laird Thermal Systems Application Note. Cooling Solutions for Automotive Technologies Laird Thermal Systems Application Note Cooling Solutions for Automotive Technologies Table of Contents Introduction...3 Lighting...3 Imaging Sensors...4 Heads-Up Display...5 Challenges...5 Solutions...6

More information

Detailed Design Review

Detailed Design Review Detailed Design Review P16241 AUTONOMOUS PEOPLE MOVER PHASE III Team 2 Agenda Problem Definition Review Background Problem Statement Project Scope Customer Requirements Engineering Requirements Detailed

More information

ADVANCES IN INTELLIGENT VEHICLES

ADVANCES IN INTELLIGENT VEHICLES ADVANCES IN INTELLIGENT VEHICLES MIKE BROWN SWRI 1 OVERVIEW Intelligent Vehicle Research Platform MARTI Intelligent Vehicle Technologies Cooperative Vehicles / Infrastructure Recent Demonstrations Conclusions

More information

Autonomous Vehicle Team Of Virginia Tech

Autonomous Vehicle Team Of Virginia Tech 2001 2002 Autonomous Vehicle Team Of Virginia Tech Team members: Eric Slominski Joong-Kyoo Park Christopher Terwelp Patrick Forman Ian Hovey Jared Mach Joseph Roan Merritt Draney Required Faculty Advisor

More information

Robotic Device for Cleaning of Photovoltaic Arrays V2

Robotic Device for Cleaning of Photovoltaic Arrays V2 Robotic Device for Cleaning of Photovoltaic Arrays V2 Design Team Greg Belogolovsky, Steve Bennett, Istvan Hauer, Salome Morales, Leonid Nemiro Design Advisor Constantinos Mavroidis, Ph.D. Richard Ranky,

More information

STUDYING THE POSSIBILITY OF INCREASING THE FLIGHT AUTONOMY OF A ROTARY-WING MUAV

STUDYING THE POSSIBILITY OF INCREASING THE FLIGHT AUTONOMY OF A ROTARY-WING MUAV SCIENTIFIC RESEARCH AND EDUCATION IN THE AIR FORCE AFASES2017 STUDYING THE POSSIBILITY OF INCREASING THE FLIGHT AUTONOMY OF A ROTARY-WING MUAV Cristian VIDAN *, Daniel MĂRĂCINE ** * Military Technical

More information

World premiere at Hannover Messe: ZF s highly automated forklift can see, think and act

World premiere at Hannover Messe: ZF s highly automated forklift can see, think and act Page 1/5, April 23, 2018 World premiere at Hannover Messe: ZF s highly automated forklift can see, think and act High-speed innovations: Technology company transfers expertise from other divisions to the

More information

: MOBILE ROBOTS CAPSTONE DESIGN COURSE

: MOBILE ROBOTS CAPSTONE DESIGN COURSE 2006-635: MOBILE ROBOTS CAPSTONE DESIGN COURSE Fernando Rios-Gutierrez, University of Minnesota-Duluth He received his M.S. and Ph.D. degrees from Tulane University. Currently, he is an Assistant Professor

More information

Development of Variable Geometry Turbocharger Contributes to Improvement of Gasoline Engine Fuel Economy

Development of Variable Geometry Turbocharger Contributes to Improvement of Gasoline Engine Fuel Economy Development of Variable Geometry Turbocharger Contributes to Improvement of Gasoline Engine Fuel Economy 30 MOTOKI EBISU *1 YOSUKE DANMOTO *1 YOJI AKIYAMA *2 HIROYUKI ARIMIZU *3 KEIGO SAKAMOTO *4 Every

More information

REGULATORY APPROVAL OF AN AI-BASED AUTONOMOUS VEHICLE. Alex Haag Munich,

REGULATORY APPROVAL OF AN AI-BASED AUTONOMOUS VEHICLE. Alex Haag Munich, REGULATORY APPROVAL OF AN AI-BASED AUTONOMOUS VEHICLE Alex Haag Munich, 10.10.2017 10/9/17 Regulatory Approval of an AI-based Autonomous Vehicle 2 1 INTRO Autonomous Intelligent Driving, GmbH Launched

More information

Autonomous cars navigation on roads opened to public traffic: How can infrastructure-based systems help?

Autonomous cars navigation on roads opened to public traffic: How can infrastructure-based systems help? Autonomous cars navigation on roads opened to public traffic: How can infrastructure-based systems help? Philippe Bonnifait Professor at the Université de Technologie de Compiègne, Sorbonne Universités

More information

Hybrid Nanopositioning Systems with Piezo Actuators

Hybrid Nanopositioning Systems with Piezo Actuators Hybrid Nanopositioning Systems with Piezo Actuators Long Travel Ranges, Heavy Loads, and Exact Positioning Physik Instrumente (PI) GmbH & Co. KG, Auf der Roemerstrasse 1, 76228 Karlsruhe, Germany Page

More information

Active Driver Assistance for Vehicle Lanekeeping

Active Driver Assistance for Vehicle Lanekeeping Active Driver Assistance for Vehicle Lanekeeping Eric J. Rossetter October 30, 2003 D D L ynamic esign aboratory Motivation In 2001, 43% of all vehicle fatalities in the U.S. were caused by a collision

More information

Unmanned Surface Vessels - Opportunities and Technology

Unmanned Surface Vessels - Opportunities and Technology Polarconference 2016 DTU 1-2 Nov 2016 Unmanned Surface Vessels - Opportunities and Technology Mogens Blanke DTU Professor of Automation and Control, DTU-Elektro Adjunct Professor at AMOS Center of Excellence,

More information

COLLISION AVOIDANCE OF INDOOR FLYING DOUBLE TETRAHEDRON HEXA-ROTORCRAFT

COLLISION AVOIDANCE OF INDOOR FLYING DOUBLE TETRAHEDRON HEXA-ROTORCRAFT 8 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES COLLISION AVOIDANCE OF INDOOR FLYING DOUBLE TETRAHEDRON HEXA-ROTORCRAFT Takehiro HIGUCHI*, Daichi TORATANI**, and Seiya UENO* *Faculty of Environment

More information

K.I.T.T. KINEMATIC INTELLIGENT TACTICAL TECHNOLOGY

K.I.T.T. KINEMATIC INTELLIGENT TACTICAL TECHNOLOGY 4/4/2011 SVSU K.I.T.T. KINEMATIC INTELLIGENT TACTICAL TECHNOLOGY Team Members Bryant Barnes Addney Biery Paul List Matthew Plachta Advisor Russell Clark Faculty Advisor Statement I certify that the engineering

More information

EB TechPaper. Staying in lane on highways with EB robinos. elektrobit.com

EB TechPaper. Staying in lane on highways with EB robinos. elektrobit.com EB TechPaper Staying in lane on highways with EB robinos elektrobit.com Highly automated driving (HAD) raises the complexity within vehicles tremendously due to many different components that need to be

More information

UTA Formula SAE Racecar Combustion and Electric

UTA Formula SAE Racecar Combustion and Electric UTA Formula SAE Racecar Combustion and Electric Dr. Bob Woods Professor of Mechanical Engineering Distinguished Teaching Professor Director, Arnold E. Petsche Center for Automotive Engineering Faculty

More information

A Presentation on. Human Computer Interaction (HMI) in autonomous vehicles for alerting driver during overtaking and lane changing

A Presentation on. Human Computer Interaction (HMI) in autonomous vehicles for alerting driver during overtaking and lane changing A Presentation on Human Computer Interaction (HMI) in autonomous vehicles for alerting driver during overtaking and lane changing Presented By: Abhishek Shriram Umachigi Department of Electrical Engineering

More information

EcoCar3-ADAS. Project Plan. Summary. Why is This Project Important?

EcoCar3-ADAS. Project Plan. Summary. Why is This Project Important? EcoCar3-ADAS Project Plan Summary Scott Smith This project is the Advanced Driver Assistance System (ADAS) of the 2015-2016 Senior Design for the EcoCar3. This will be an embedded system for the EcoCar3

More information

UNIFIED, SCALABLE AND REPLICABLE CONNECTED AND AUTOMATED DRIVING FOR A SMART CITY

UNIFIED, SCALABLE AND REPLICABLE CONNECTED AND AUTOMATED DRIVING FOR A SMART CITY UNIFIED, SCALABLE AND REPLICABLE CONNECTED AND AUTOMATED DRIVING FOR A SMART CITY SAE INTERNATIONAL FROM ADAS TO AUTOMATED DRIVING SYMPOSIUM COLUMBUS, OH OCTOBER 10-12, 2017 PROF. DR. LEVENT GUVENC Automated

More information

Black Knight. 12th Annual Intelligent Ground Vehicle Competition Oakland University, Rochester, Michigan June 12 th 14 th 2004

Black Knight. 12th Annual Intelligent Ground Vehicle Competition Oakland University, Rochester, Michigan June 12 th 14 th 2004 Black Knight 12th Annual Intelligent Ground Vehicle Competition Oakland University, Rochester, Michigan June 12 th 14 th 2004 Faculty Statement: I certify that the work done by all students on this project

More information

Cooperative Autonomous Driving and Interaction with Vulnerable Road Users

Cooperative Autonomous Driving and Interaction with Vulnerable Road Users 9th Workshop on PPNIV Keynote Cooperative Autonomous Driving and Interaction with Vulnerable Road Users Miguel Ángel Sotelo miguel.sotelo@uah.es Full Professor University of Alcalá (UAH) SPAIN 9 th Workshop

More information

Big Blue Intelligent Ground Vehicle Competition

Big Blue Intelligent Ground Vehicle Competition Big Blue 2010 Intelligent Ground Vehicle Competition Dominic Baratta, Brett Bowman, Dylan Conway, Ben Deuell, Colin Lea, Christian Nugent, Nathan Ohmit, Bich Vu I certify that the engineering design of

More information

World Academy of Science, Engineering and Technology International Journal of Mechanical and Mechatronics Engineering Vol:11, No:3, 2017

World Academy of Science, Engineering and Technology International Journal of Mechanical and Mechatronics Engineering Vol:11, No:3, 2017 Multipurpose Agricultural Robot Platform: Conceptual Design of Control System Software for Autonomous Driving and Agricultural Operations Using Programmable Logic Controller P. Abhishesh, B. S. Ryuh, Y.

More information

FMVSS 111 Rear Visibility Full Compliance Requirements: How Commercial Vehicles Are Affected

FMVSS 111 Rear Visibility Full Compliance Requirements: How Commercial Vehicles Are Affected FMVSS 111 Rear Visibility Full Compliance Requirements: How Commercial Vehicles Are Affected Presented by: Susan Dehne, Senior Director of Technical Services, NTEA; and Steve Spata, Technical Assistance

More information

MilliAmpère Norges første førerløse ferje

MilliAmpère Norges første førerløse ferje Sjøsikkerhetskonferansen 2018 Nå MilliAmpère Norges første førerløse ferje Egil Eide Førsteamanuensis, NTNU The Development of an Autonomous Shuttle Ferry in Trondheim Associate Professor Egil Eide, Department

More information

PRESS KIT TABLE OF CONTENTS

PRESS KIT TABLE OF CONTENTS PRESS KIT TABLE OF CONTENTS Ibeo Automotive from technology pioneer to the world s leading developer of automotive LiDAR systems page 1-3 Ibeo Automotive LiDAR Systems at the speed of light for autonomous

More information

Development of Rain Drop Removing Device of Rear Camera (Cleancam )

Development of Rain Drop Removing Device of Rear Camera (Cleancam ) Development of Rain Drop Removing Device of Rear Camera (Cleancam ) Tomohisa KOSEKI Masashi OTOMI Mitsuhiro TSUKAZAKI Hideaki IKUMA Abstract Although recently rear cameras have been widely used, there

More information

LEGAL STATEMENT 1 / 2018 NAVIGANT CONSULTING, INC. ALL RIGHTS RESERVED

LEGAL STATEMENT 1 / 2018 NAVIGANT CONSULTING, INC. ALL RIGHTS RESERVED LEGAL STATEMENT The purpose of the information in this presentation is to guide ICA programs and provide members with information to make independent business decisions. 1 ANTITRUST GUIDELINES Antitrust

More information

Enhancing Wheelchair Mobility Through Dynamics Mimicking

Enhancing Wheelchair Mobility Through Dynamics Mimicking Proceedings of the 3 rd International Conference Mechanical engineering and Mechatronics Prague, Czech Republic, August 14-15, 2014 Paper No. 65 Enhancing Wheelchair Mobility Through Dynamics Mimicking

More information

Jimi van der Woning. 30 November 2010

Jimi van der Woning. 30 November 2010 Jimi van der Woning 30 November 2010 The importance of robotic cars DARPA Hardware Software Path planning Google Car Where are we now? Future 30-11-2010 Jimi van der Woning 2/17 Currently over 800 million

More information

Clean Robot. Japan & Asia. Clean Robot

Clean Robot. Japan & Asia. Clean Robot Clean Robot For those persons involved with the operation / service of your system, including Kawasaki Robot, they must strictly observe all safety regulations at all times. They should carefully read

More information