Design and Development of Bidirectional DC-DC Converter using coupled inductor with a battery SOC indication

Size: px
Start display at page:

Download "Design and Development of Bidirectional DC-DC Converter using coupled inductor with a battery SOC indication"

Transcription

1 Design and Development of Bidirectional DC-DC Converter using coupled inductor with a battery SOC indication Sangamesh Herurmath #1 and Dr. Dhanalakshmi *2 # BE,MTech, EEE, Dayananda Sagar institute of Technology, Bangalore, Karnataka India. * Professor,EEE,Dayananda sagar institute of Technology, Bangalore, and Karnataka India Abstract: - Renewable energy is becoming more important now a day. High gain DC/DC converters are the key part of renewable energy systems, Thus to reduce the effect of leakage-inductance bidirectional DC-DC converters are developed where the battery can balance the energy between the power source and the load. But the voltage difference between the battery and the DC bus is large, thus, a bidirectional DC-DC converter with high step-up/down voltage conversion ratio is required. Earlier proposed bidirectional DC-DC converters use many active components, which not only increase the cost and conduction losses of the converter, but also complicate the control circuit. The converter acts as two-stage boost converters, controlling one power switch to achieve high voltage step-up conversion in discharging mode, and the converter acts as two cascaded buck converters that control two power switches simultaneously to achieve high voltage step-down conversion in charging mode. The operating principles and analysis of the steady-state characteristics are discussed in great in detail. Finally, a prototype of 12/200V circuit is implemented to verify the feasibility of the proposed converter. One of its important functions is to execute algorithms that continuously estimate battery state-of-charge (SOC) and available power. Index Terms Bidirectional converter, high conversion ratio, coupled-inductor,soc indication I. INTRODUCTION Since the usage of the non renewable fuel results in environmental pollution, the clean energies become very important in the world. In recent years, the renewable energy systems, including photo-voltaic systems, fuel-cell systems, wind-power generating systems, are developed rapidly. Because the renewable systems cannot provide a stable power for user, the renewable energy systems and battery can be utilized for the hybrid power systems. When the renewable energy systems cannot supply enough power for the load, the battery must supply that insufficient power. The whole power of the renewable energy systems cannot be used completely by the load, the surplus energy can be used to charge the battery. The bidirectional DC-DC converter is widely used in renewable energy applications because it plays an important 1012 Role in system back-up or in reserving energy for the battery. These converter are able to transfer or balance energy between two different DC sources. The renewable energy systems like solar and fuel cells are the source with low voltage. The low voltage can be boosted to high voltage by using a step-up dc-dc converter and also to combine ac utility voltage [1], [2]. A step-up dc-dc converter is expected to give high efficiency. Many topologies have been proposed to improve the efficiency and achieve high step-up voltage gain.using a Voltage-lift technique, a switched capacitor circuit, boost-fly back step-up converter; coupled inductors, switched coupled inductor cell and voltage lift technique. [5]- [6] These earlier proposed topologies of high step-up converters help to increase the efficiency, but the influence of the leakage inductor is always neglected. The topology titled A NOVEL HIGH STEP-UP DC-DC CONVERTER WITH COUPLED-INDUCTOR [7] utilizes coupled-inductor and a voltage doubler circuit to achieve high step-up voltage gain. The voltage stress of power switch is reduced by a passive clamp circuit, but the leakage inductance is not completely absorbed by using this topology. The bidirectional converter use coupled-inductor technology [8] to achieve a high voltage conversion ratio. However, the energy stored in the leakage inductor of the coupled inductor causes a high voltage spike on the power switches. The bidirectional dc-dc converter is often used to transfer the solar energy to the capacitive energy source during the sunny time, while to deliver energy to the load when the dc bus voltage is low. The bidirectional dc-dc converter is regulated by the solar array photovoltaic level, thus to maintain a stable load bus voltage and make fully usage of the solar array and the storage battery. The battery can balance the energy between the power source and the load. The voltage difference between the battery and the DC

2 bus is large, thus, a bidirectional DC-DC converter with high step-up/down voltage conversion ratio is required. The conventional boost/buck bidirectional converter can be used for such applications, but it is not practically suitable because the conversion ratio will be significantly reduced by parasitic elements. The proposed bidirectional converter includes dual boost/buck converter to achieve a high voltage conversion ratio by employing a coupled-inductor technique, the Mode1: proposed topology has the following features: 1)Boost/Buck structure achieves high voltage conversion ratio at step-up or step-down stage. 2) An effectively simplified control circuit. 3) The leakage-inductance energy of the coupled inductor is recycled, thus reducing the voltage stress on power switches. 4) A low R DS -ON switch can be selected to improve system efficiency. Fig 1 circuit operation in mode 1 In mode 1, switch S1 and diode Ds3 are switched on. Fig 1 shows the equivalent circuit. The energy stored in the leakage inductor LK2 is released to capacitor C2, and ILk2, (IS3) are reduced gradually. The battery voltage VL releases energy into the leakage inductor LK1. Thus, the leakage inductor current ILk1 rapidly increases. Moreover, the magnetizing inductance current ILm is equal to ILk1 + n*ilk2, where n = NS/NP. Mode 1 ends when the current IS3 is decreased to zero and the diode DS3 is switched off. Mode2: Fig 2 circuit operation in mode 2 Fig. 1 proposed bidirectional converter configuration II.PROPOSED CONVERTER & MODE OF OPERATIONS The proposed converter is used for the bidirectional transfer of energy between the low voltage side VL, which is connected to a 24 V battery, and the high voltage side VH, which is connected to a 180 V DC bus. Fig. 1 shows the proposed converter circuit with leakage inductances and major current paths. The following conditions were assumed in analyzing the steady-state characteristics of the proposed converter. 1. All the circuit components are ideal. 2. The capacitors CL, C2, and CH are large enough, and the voltages can be treated as constant. 3. The magnetizing inductance Lm of the coupled inductor is large enough, and the converter is operated. Helpful Hints MODES OF OPERATIONS Discharging mode: In mode 2, S1 and D4 are switched on. Fig 2 shows that the equivalent circuit. VL charges the magnetizing inductor Lm and the leakage inductor LK1. The magnetizing-inductor current ILm and the leakage-inductor current ILk1 are increased linearly. In addition, VL transfers its energy into C2 via the secondary winding NS and D4. Thus, the voltage across C2 is charged to nvl. This mode ends when S1 is switched off. Mode 3: Fig 3 circuit operation in mode

3 In mode 3, S1 and DS3 are switched off and DS2 is turned on. Fig 3 shows the equivalent circuit. The energy of the leakage inductors LK1 and LK2 are released into C2 through DS2 and D4, respectively. This mode ends when the current ILk2 and ID4, is equal to zero and D4 is switched off. Mode 4: In mode 6, S1 and DS2 are switched off and DS3 is turned on. Fig 6 shows the equivalent circuit. The energy of Lm is released to CH and RH via the secondary side of the coupled-inductor and DS3. The energy stored in C2 is also transferred to CH and RH. This mode ends when S1 is switched on. Waveform of Discharging Fig 4 circuit operation in mode 4 In mode 4, S1 is switched off and DS2 and DS3 are turned on. Fig 4 shows the equivalent circuit. The energies of VL, Lm, and LK1 are released into C2 through DS2. Moreover, part of the Lm energy is transferred to CH and load RH via the secondary side of the coupled inductor. This mode ends when the voltage across C2 is equal to nvin. Mode 5: Charging Mode: Fig 7 waveform of discharging Power switches S2 and S3 are controlled simultaneously and S1 is off. Mode 1: Fig 5 circuit operation in mode 5 In mode 5, S1 is switched off and DS2 and DS3 are turned on. Fig 5 shows the equivalent circuit. The energy of Lm is released into CH via the coupled-inductor and DS3. The ILm decreases linearly, and the energy stored in C2 is transferred to CH and RH. This mode ends when ILk1 is equal to zero. Mode 6: Fig 8 circuit operation in mode 1 In mode 1, S1 is switched on. Fig 8 shows the equivalent circuit. Lm releases its energy to capacitor CL and load RL. The magnetizing current ILm decreases linearly. The energy stored in the leakage inductor Lk2 is recycled to C2. This mode ends when the current ID4 is reduced to zero. Fig 6 circuit operation in mode

4 Mode 2: and LK2 are released into CL and C2 via DS1 and D4, respectively. This mode ends when the energy stored in LK2 is released to zero. Mode 5: Fig 9 circuit operation in mode 2 In mode 2, S2 and S3 are switched on and D4 is switched off. Fig 9 shows the equivalent circuit. The voltage source VH charges Lm. The voltage across the primary winding is equal to VP. The ILm increases linearly. The DC bus voltage VH releases its energy to C2, CL, and RL. This mode ends when the energy stored in C2 is released to RL. Mode 3: Fig 12 circuit operation in mode 5 In mode 5, S2 and S3 are switched off and DS1 is switched on. Fig 12 shows the equivalent circuit. Lm not only releases its energy into CL and RL but also transfers energy to C2 via NS and D4. The ILm decreases linearly. Waveform of Charging Fig 10 circuit operation in mode 3 In mode 3, S2 and S3 are switched on and DS1 and D4 are switched off. Fig 10 shows the equivalent circuit. VH and C2 release their energy into Lm, CL, and RL. The ILm increases linearly. This mode ends when S2 and S3 are turned off. Mode 4: Fig 13 Waveform of charging Fig 11d circuit operation in mode 4 In mode 4, S2 and S3 are switched off and DS1 is switched on. Fig 11 shows the equivalent circuit. The energies of LK1 III. PARAMETERS & DESIGN: VIN= 24V For the circuit discussed in previous section, D was taken more than 0.5 and the output waveforms are obtained by simulation. Here also we consider the same. (1) 1015

5 The coupling-coefficient of the coupled-inductor turns ratio n are assumed (3) Moreover, the magnetizing inductance current ilm is equal to ilk1 + nilk2, where n = NS/NP. (4) (5) (7) The energy of the leakage inductors LK1 and LK2 are released into C2 through DS2 and D4, respectively. This mode ends when the current ilk2 (2) (6) C0= (16) Input power &Output power of circuit calculated by using the basic equations = * (17) = * (18) Efficiency: = *100 (19) PARAMETERS Input Voltage Switching Frequency Lm, L k VALUES 24v 50khz Np:Ns 1:3 37uH,0.33uH (8) The energies of VL, Lm, and LK1 are released into C2 through DS2. Moreover, part of the Lm energy is transferred to CH and load RH via the secondary side of the coupled inductor. This mode ends when the voltage across C2 is equal to n Vin. C L C 2 C H C 0 R L 220uF 300uF 300uF 10uF 500Ω IV. SIMULATION RESULTS INPUT VOLTAGE AND INPUT CURRENT: (9) (10) The inductor ripple current is 20% to 40% of the output current IL=(0.2to0.4)*I0(max)* (12) L= (13) According to basic principles of boost converter taking the equation V0=ESR* (14) Basic equation of boost converter ripple factor taking in this circuit the equation derived as C= (15) fig 14:Waveform of input voltage and input current The above figure 14 shows the simulation results of output voltage and output current of Bidirectional dual bo/bu DC-DC converter using coupled inductor for the input voltage of 24 V and input current 15A 1016

6 Fig 17: Waveform of leakage inductance current OUTPUT VOLTAGE AND OUTPUT CURRENT: Fig 15:Waveform of output voltage and output current SIMULATION RESULTS CURRENT ACROSS MUTUAL INDUCTANCE ( The above figure 17 shows the simulation results of inductor for (leakage inductor current) current is 15 A. For the time period of t 1 the inductor current linearly increases because the inductor Lm starts charging until it reaches its peak value, And at time period t 2 inductor Lm starts discharging until it reaches zero and the current through it decreases linearly. Simulation across switches is taken in these results. The above figure a shows the simulation results of inductor converter current switch 2 and 3. In mode 2, S2 and S3 are switched on and D4 is switched off. The voltage source VH charges Lm. The voltage across the primary winding is equal to VP. The ILm increases linearly. The DC bus voltage VH releases its energy to C2, CL, and RL. This mode ends when the energy stored in C2 is released to RL. The above figure b shows the simulation results of Bidirectional dual bo/bu DC-DC converter using coupled inductor converter current switch 1. In mode 1, S1 is switched on. Lm releases its energy to capacitor CL and load RL. The magnetizing current ILm decreases linearly. The energy stored in the leakage inductor Lk2 is recycled to C2. Fig 16: Waveform of inductor current of Fig 18 Waveform of current across switch 2 The above figure 16 shows the simulation results of inductor converter (mutual inductor current) current is1.8a. For the time period of t 1 the inductor current linearly increases because the inductor Lm starts charging until it reaches its peak value, And at time period t 2 inductor Lm starts discharging until it reaches zero and the current through it decreases linearly. SIMULATION RESULTS CURRENT ACROSS LEAKAGE INDUCTANCE : Fig 19 Waveform of ) Simulation across capacitors is shown in these results. The above figure a shows the waveform of inductor converter capacitor C2 voltage, which is 23 V DC for the input voltage of 24 V DC. The voltage is built up when the switch S1 is turned on and maintained constant at 23 V throughout the process. The above figure 31 shows the 1017

7 waveform of of Bidirectional dual bo/bu DC-DC converter using coupled inductor converter capacitor C2 voltage, which is 120 V DC for the input voltage of 180 V DC. The voltage is built up when the switch S1 is turned on and maintained constant at 120 V throughout the process. V. CONCLUSION This paper has presented a novel bidirectional DC-DC converter for renewable energy systems. The proposed converter can achieve high conversion ratio using the coupled-inductor technique. The experimental waveforms agree with the theoretical analysis. The efficiency in discharging and charging mode is over 90% in full load condition. The highest efficiency levels discharging mode and charging mode are 95% and 92%, respectively. The operating principles and analysis of the steady-state characteristics are discussed in great in detail. Finally, a prototype of 12/200V circuit is implemented to verify the feasibility of the proposed converter. One of its important functions is to execute algorithms that continuously estimate battery state-of-charge (SOC) and available power. Fig 20 Waveform of voltage across capacitor Fig 21 Waveform of voltage across capacitor Simulation across diode is shown in these results. The above figure a shows the simulation results of inductor converter diode current. In mode 2, S1 and D4 are switched on. VL charges the magnetizing inductor Lm and the leakage inductor LK1. The magnetizing-inductor current ILm and the leakage-inductor current ILk1 are increased linearly. In addition, VL transfers its energy into C2 via the secondary winding NS and D4. Thus, the voltage across C2 is charged to nvl. REFERENCES [1 ] L. Palma, M. H. Todorovic, and P. Enjeti, "A high gain transfonnerlessdc-dc converter for fuel-cell applications," in Proc. IEEE PowerElectron. Spec. Conf., 2005, pp [2] V.Scarpa, S. Buso, and G. Spiazzi, "Low-complexityMPPT techniqueexploiting the PV module MPPT locus characterization," IEEE Trans.Ind. Electron., vol. 56, no. 5, pp , May [3] S. K. Changchien, T. J. Liang, J. F. Chen, and L. S. Yang, "Novel highstep-up DC-DC converter for fuel cell energy conversion system,"ieee Trans. Ind. Electron., vol. 57, no. 6, pp , [4] Step-Up DC-DC Converter with High Voltage Gain Using Switched-Inductor Technique ISSN: Mayur N. Parmar, Prof.Vishal G. Jotangiya. [5] High Step up Switched Capacitor Inductor DC-DC Converter for UPS System with Renewable Energy Source Maheshkumar. K and S. Ravivarman K.S. Rangasamy College of Technology, Tiruchengode, Namakkal [6] O. Abutbul, A. Gherlitz, Y. Berkovich, and A. Ioinovici, "Step-upswitching-mode converter with high voltage gain using aswitchedcapacitor circuit," IEEE Trans. Circuits Syst. I, vol. 50, no. 8, pp , Aug Fig 22 Waveform of current across Diode D4 Efficiency curves of discharging and charging for using the experimental results all are calculated for the efficiency graph Be love shown in figures. 1018

8 [7] Novel Isolated High-step-up DC DC Converterwith Voltage LiftTsorng-Juu Liang, Member, IEEE, Jian- Hsieng Lee, Shih-Ming Chen, Jiann-Fuh ChenMember, IEEE,and Lung-Sheng Yang. [8] A Novel High Step-Up DC-DC Converter. withcoupled-inductor. 1019

IJSRD - International Journal for Scientific Research & Development Vol. 4, Issue 02, 2016 ISSN (online):

IJSRD - International Journal for Scientific Research & Development Vol. 4, Issue 02, 2016 ISSN (online): IJSRD - International Journal for Scientific Research & Development Vol. 4, Issue 02, 2016 ISSN (online): 2321-0613 Bidirectional Double Buck Boost Dc- Dc Converter Malatesha C Chokkanagoudra 1 Sagar B

More information

BIDIRECTIONAL FULL-BRIDGE DC-DC CONVERTER WITH FLYBACK SNUBBER FOR PHOTOVOLTAIC APPLICATIONS

BIDIRECTIONAL FULL-BRIDGE DC-DC CONVERTER WITH FLYBACK SNUBBER FOR PHOTOVOLTAIC APPLICATIONS INTERNATIONAL JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY (IJEET) Proceedings of the International Conference on Emerging Trends in Engineering and Management (ICETEM14) ISSN 0976 6545(Print) ISSN 0976

More information

INTERNATIONAL JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY (IJEET)

INTERNATIONAL JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY (IJEET) INTERNATIONAL JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY (IJEET) Proceedings of the 2 nd International Conference on Current Trends in Engineering and Management ICCTEM -2014 ISSN 0976 6545(Print)

More information

Soft Switching of Two Quadrant Forward Boost and Reverse Buck DC- DC Converters Sarath Chandran P C 1

Soft Switching of Two Quadrant Forward Boost and Reverse Buck DC- DC Converters Sarath Chandran P C 1 IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 02, 2015 ISSN (online): 2321-0613 Soft Switching of Two Quadrant Forward Boost and Reverse Buck DC- DC Converters Sarath

More information

Design of Three Input Buck-Boost DC-DC Converter with Constant input voltage and Variable duty ratio using MATLAB/Simulink

Design of Three Input Buck-Boost DC-DC Converter with Constant input voltage and Variable duty ratio using MATLAB/Simulink Design of Three Input Buck-Boost DC-DC Converter with Constant input voltage and Variable duty ratio using MATLAB/Simulink A.Thiyagarajan, B.Gokulavasan Abstract Nowadays DC-DC converter is mostly used

More information

Simulation Analysis of Closed Loop Dual Inductor Current-Fed Push-Pull Converter by using Soft Switching

Simulation Analysis of Closed Loop Dual Inductor Current-Fed Push-Pull Converter by using Soft Switching Journal for Research Volume 02 Issue 04 June 2016 ISSN: 2395-7549 Simulation Analysis of Closed Loop Dual Inductor Current-Fed Push-Pull Converter by using Soft Switching Ms. Manasa M P PG Scholar Department

More information

INVESTIGATION AND PERFORMANCE ANALYSIS OF MULTI INPUT CONVERTER FOR THREE PHASE NON CONVENTIONAL ENERGY SOURCES FOR A THREE PHASE INDUCTION MOTOR

INVESTIGATION AND PERFORMANCE ANALYSIS OF MULTI INPUT CONVERTER FOR THREE PHASE NON CONVENTIONAL ENERGY SOURCES FOR A THREE PHASE INDUCTION MOTOR Man In India, 96 (12) : 5421-5430 Serials Publications INVESTIGATION AND PERFORMANCE ANALYSIS OF MULTI INPUT CONVERTER FOR THREE PHASE NON CONVENTIONAL ENERGY SOURCES FOR A THREE PHASE INDUCTION MOTOR

More information

International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering. (An ISO 3297: 2007 Certified Organization)

International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering. (An ISO 3297: 2007 Certified Organization) Modeling and Control of Quasi Z-Source Inverter for Advanced Power Conditioning Of Renewable Energy Systems C.Dinakaran 1, Abhimanyu Bhimarjun Panthee 2, Prof.K.Eswaramma 3 PG Scholar (PE&ED), Department

More information

Analysis and Design of Improved Isolated Bidirectional Fullbridge DC-DC Converter for Hybrid Electric Vehicle

Analysis and Design of Improved Isolated Bidirectional Fullbridge DC-DC Converter for Hybrid Electric Vehicle Analysis and Design of Improved Isolated Bidirectional Fullbridge DC-DC Converter for Hybrid Electric Vehicle Divya K. Nair 1 Asst. Professor, Dept. of EEE, Mar Athanasius College Of Engineering, Kothamangalam,

More information

Multi-Port DC-DC Converter for Grid Integration of Photo Voltaic Systems through Storage Systems with High Step-Up Ratio

Multi-Port DC-DC Converter for Grid Integration of Photo Voltaic Systems through Storage Systems with High Step-Up Ratio Multi-Port DC-DC Converter for Grid Integration of Photo Voltaic Systems through Storage Systems with High Step-Up Ratio CH.Rekha M.Tech (Energy Systems), Dept of EEE, M.Vinod Kumar Assistant Professor,

More information

II. ANALYSIS OF DIFFERENT TOPOLOGIES

II. ANALYSIS OF DIFFERENT TOPOLOGIES An Overview of Boost Converter Topologies With Passive Snubber Sruthi P K 1, Dhanya Rajan 2, Pranav M S 3 1,2,3 Department of EEE, Calicut University Abstract This paper does the analysis of different

More information

A Novel DC-DC Converter Based Integration of Renewable Energy Sources for Residential Micro Grid Applications

A Novel DC-DC Converter Based Integration of Renewable Energy Sources for Residential Micro Grid Applications A Novel DC-DC Converter Based Integration of Renewable Energy Sources for Residential Micro Grid Applications Madasamy P 1, Ramadas K 2 Assistant Professor, Department of Electrical and Electronics Engineering,

More information

BIDIRECTIONAL DC-DC CONVERTER FOR INTEGRATION OF BATTERY ENERGY STORAGE SYSTEM WITH DC GRID

BIDIRECTIONAL DC-DC CONVERTER FOR INTEGRATION OF BATTERY ENERGY STORAGE SYSTEM WITH DC GRID BIDIRECTIONAL DC-DC CONVERTER FOR INTEGRATION OF BATTERY ENERGY STORAGE SYSTEM WITH DC GRID 1 SUNNY KUMAR, 2 MAHESWARAPU SYDULU Department of electrical engineering National institute of technology Warangal,

More information

Implementation of Bidirectional DC-DC converter for Power Management in Hybrid Energy Sources

Implementation of Bidirectional DC-DC converter for Power Management in Hybrid Energy Sources Implementation of Bidirectional DC-DC converter for Power Management in Hybrid Energy Sources Inturi Praveen M.Tech-Energy systems, Department of EEE, JBIET-Hyderabad, Telangana, India. G Raja Sekhar Associate

More information

Implementation Soft Switching Bidirectional DC- DC Converter For Stand Alone Photovoltaic Power Generation System

Implementation Soft Switching Bidirectional DC- DC Converter For Stand Alone Photovoltaic Power Generation System IJIRST International Journal for Innovative Research in Science & Technology Volume 1 Issue 6 November 2014 ISSN (online): 2349-6010 Implementation Soft Switching Bidirectional DC- DC Converter For Stand

More information

Development and Analysis of Bidirectional Converter for Electric Vehicle Application

Development and Analysis of Bidirectional Converter for Electric Vehicle Application Development and Analysis of Bidirectional Converter for Electric Vehicle Application N.Vadivel, A.Manikandan, G.Premkumar ME (Power Electronics and Drives) Department of Electrical and Electronics Engineering

More information

Power Electronics Projects

Power Electronics Projects Power Electronics Projects I. POWER ELECTRONICS based MULTI-PORT SYSTEMS 1. Analysis, Design, Modeling, and Control of an Interleaved- Boost Full-ridge Three-Port Converter for Hybrid Renewable Energy

More information

Inverter with MPPT and Suppressed Leakage Current

Inverter with MPPT and Suppressed Leakage Current POWER ELECTRONICS IEEE Projects Titles -2018 LeMeniz Infotech 36, 100 feet Road, Natesan Nagar(Near Indira Gandhi Statue and Next to Fish-O-Fish), Pondicherry-605 005 Web : www.ieeemaster.com / www.lemenizinfotech.com

More information

Battery Charger for Wind and Solar Energy Conversion System Using Buck Converter

Battery Charger for Wind and Solar Energy Conversion System Using Buck Converter Battery Charger for Wind and Solar Energy Conversion System Using Buck Converter P.Venkatesan 1, S.Senthilkumar 2 1 Electrical and Electronics Engineering, Ganesh College of Engineering, Salem, Tamilnadu,

More information

Modeling and Simulation of Multi-input Bi-directional Boost Converter for Renewable Energy Applications using MatLab/Simulink

Modeling and Simulation of Multi-input Bi-directional Boost Converter for Renewable Energy Applications using MatLab/Simulink Modeling and Simulation of Multi-input Bi-directional Boost Converter for Renewable Energy Applications using MatLab/Simulink Ramya. S Assistant Professor, ECE P.A. College of Engineering and Technology,

More information

An Improved Efficiency of Integrated Inverter / Converter for Dual Mode EV/HEV Application

An Improved Efficiency of Integrated Inverter / Converter for Dual Mode EV/HEV Application An Improved Efficiency of Integrated Inverter / Converter for Dual Mode EV/HEV Application A. S. S. Veerendra Babu 1, P. Bala Krishna 2, R. Venkatesh 3 1 Assistant Professor, Department of EEE, ADITYA

More information

International Journal of Science Engineering and Advance Technology, IJSEAT, Vol 3, Issue 9 ISSN September-2015

International Journal of Science Engineering and Advance Technology, IJSEAT, Vol 3, Issue 9 ISSN September-2015 Modeling and Simulation of Photovoltaic Fed Drive by Using High Voltage Gain DC-DC Boost Converter Muralidhar A M. Tech. Scholar, Department of Electrical and Electronics Engineering, Nova College of Engineering

More information

Isolated Bidirectional DC DC Converter for SuperCapacitor Applications

Isolated Bidirectional DC DC Converter for SuperCapacitor Applications European Association for the Development of Renewable Energies, Environment and Power Quality (EA4EPQ) International Conference on Renewable Energies and Power Quality (ICREPQ 11) Las Palmas de Gran Canaria

More information

Design and Implementation of Non-Isolated Three- Port DC/DC Converter for Stand-Alone Renewable Power System Applications

Design and Implementation of Non-Isolated Three- Port DC/DC Converter for Stand-Alone Renewable Power System Applications Design and Implementation of Non-Isolated Three- Port DC/DC Converter for Stand-Alone Renewable Power System Applications Archana 1, Nalina Kumari 2 1 PG Student (power Electronics), Department of EEE,

More information

SPIRO SOLUTIONS PVT LTD POWER ELECTRONICS 1. RENEWABLE ENERGY PROJECT TITLES I. SOLAR ENERGY

SPIRO SOLUTIONS PVT LTD POWER ELECTRONICS 1. RENEWABLE ENERGY PROJECT TITLES I. SOLAR ENERGY POWER ELECTRONICS 1. RENEWABLE ENERGY S.NO PROJECT CODE PROJECT TITLES I. SOLAR ENERGY YEAR 1 ITPW01 Photovoltaic Module Integrated Standalone Single Stage Switched Capacitor Inverter with Maximum Power

More information

POWER ELECTRONICS & DRIVES

POWER ELECTRONICS & DRIVES POWER ELECTRONICS & DRIVES S.No Title Year Solar Energy/PV Grid-Tied 01 Nonlinear PWM-Controlled Single-Phase Boost Mode Grid-Connected Photovoltaic Inverter With Limited Storage Inductance Current 02

More information

Bidirectional Intelligent Semiconductor Transformer

Bidirectional Intelligent Semiconductor Transformer Journal of Engineering and Fundamentals Vol. 2(2), pp. 9-16, December, 2015 Available online at http://www.tjef.net ISSN: 2149-0325 http://dx.doi.org/10.17530/jef.15.08.2.2 Article history Received: 24.05.2015

More information

A Study of Suitable Bi-Directional DC-DC Converter Topology Essential For Battery Charge Regulation In Photovoltaic Applications

A Study of Suitable Bi-Directional DC-DC Converter Topology Essential For Battery Charge Regulation In Photovoltaic Applications IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 11, Issue 2 Ver. I (Mar. Apr. 2016), PP 92-96 www.iosrjournals.org A Study of Suitable Bi-Directional

More information

Hybrid Three-Port DC DC Converter for PV-FC Systems

Hybrid Three-Port DC DC Converter for PV-FC Systems Hybrid Three-Port DC DC Converter for PV-FC Systems P Srihari Babu M.Tech (Power Systems) B Ashok Kumar Assistant Professor Dr. A.Purna Chandra Rao Professor & HoD Abstract The proposed a hybrid power

More information

A.Arun 1, M.Porkodi 2 1 PG student, 2 Associate Professor. Department of Electrical Engineering, Sona College of Technology, Salem, India

A.Arun 1, M.Porkodi 2 1 PG student, 2 Associate Professor. Department of Electrical Engineering, Sona College of Technology, Salem, India A novel anti-islanding technique in a Distributed generation systems A.Arun 1, M.Porkodi 2 1 PG student, 2 Associate Professor Department of Electrical Engineering, Sona College of Technology, Salem, India

More information

Raised Step-Up Converter Using Three-Winding Coupled Inductor for Fuel Cell Potential Source Purposes

Raised Step-Up Converter Using Three-Winding Coupled Inductor for Fuel Cell Potential Source Purposes Raised Step-Up Converter Using Three-Winding Coupled Inductor for Fuel Cell Potential Source Purposes K. Jahnavi M tech in Power Electronics Prasad Engineering College Abstract Abstract: This paper presents

More information

Design of Four Input Buck-Boost DC-DC Converter for Renewable Energy Application

Design of Four Input Buck-Boost DC-DC Converter for Renewable Energy Application Design of Four Input Buck-Boost DC-DC Converter for Renewable Energy Application A.Thiyagarajan Assistant Professor, Department of Electrical and Electronics Engineering Karpagam Institute of Technology

More information

A NOVEL MULTIPHASE BIDIRECTIONAL FLY-BACK CONVERTER TOPOLOGY IS APPLIED TO INDUCTION MOTOR DRIVE

A NOVEL MULTIPHASE BIDIRECTIONAL FLY-BACK CONVERTER TOPOLOGY IS APPLIED TO INDUCTION MOTOR DRIVE A NOVEL MULTIPHASE BIDIRECTIONAL FLY-BACK CONVERTER TOPOLOGY IS APPLIED TO INDUCTION MOTOR DRIVE M.RAMA MOHANA RAO 1 & CH.RAMBABU 2 1,2 Department of Electrical and Electronics Engineering, Sri Vasavi

More information

Dual power flow Interface for EV, HEV, and PHEV Applications

Dual power flow Interface for EV, HEV, and PHEV Applications International Journal of Engineering Inventions e-issn: 2278-7461, p-issn: 2319-6491 Volume 4, Issue 4 [Sep. 2014] PP: 20-24 Dual power flow Interface for EV, HEV, and PHEV Applications J Ranga 1 Madhavilatha

More information

DC-DC BIDIRECTIONAL ISOLATED CONVERTER FOR FUEL CELLS AND SUPER-CAPACITORS HYBRID SYSTEM

DC-DC BIDIRECTIONAL ISOLATED CONVERTER FOR FUEL CELLS AND SUPER-CAPACITORS HYBRID SYSTEM DC-DC BIDIRECTIONAL ISOLATED CONVERTER FOR FUEL CELLS AND SUPER-CAPACITORS HYBRID SYSTEM P.Pugazhendiran 1, Mohammed Nisham 2 Department of EEE, IFET College of Engineering, Villupuram, Tamil Nadu, India.

More information

A Double Input Buck Boost Converter for Wind Energy System with Power.. S.Kamalakkannan et al., International Journal of Power Control and Computation(IJPCSC) Vol 7. No.2 2015 Pp.54-60 gopalax Journals,

More information

Performance Analysis of Bidirectional DC-DC Converter for Electric Vehicle Application

Performance Analysis of Bidirectional DC-DC Converter for Electric Vehicle Application IJIRST International Journal for Innovative Research in Science & Technology Volume 1 Issue 9 February 2015 ISSN (online): 2349-6010 Performance Analysis of Bidirectional DC-DC Converter for Electric Vehicle

More information

A NEW ZCS-ZVS SINGLE PHASE PFC CONVERTER WITH A LCD SNUBBER FOR OUTPUT VOLTAGE REGULATION

A NEW ZCS-ZVS SINGLE PHASE PFC CONVERTER WITH A LCD SNUBBER FOR OUTPUT VOLTAGE REGULATION A NEW ZCS-ZVS SINGLE PHASE PFC CONVERTER WITH A LCD SNUBBER FOR OUTPUT VOLTAGE REGULATION Aiswariya S. and Dhanasekaran R. Department of Electrical and Electronics Engineering, Syed Ammal Engineering College,

More information

1. RENEWABLE ENERGY I.SOLAR ENERGY PROJECT TITLES WE CAN ALSO IMPLEMENT YOUR OWN CONCEPT/IDEA

1. RENEWABLE ENERGY I.SOLAR ENERGY PROJECT TITLES WE CAN ALSO IMPLEMENT YOUR OWN CONCEPT/IDEA 1. RENEWABLE ENERGY I.SOLAR ENERGY S.NO PROJECT CODE PROJECT TITLES YEAR 1 ITPW01 Highly efficient asymmetrical pwm full-bridge renewable energy sources converter for 2 ITPW02 A Three Phase Hybrid Cascaded

More information

Power Electronics & Drives [Simulink, Hardware-Open & Closed Loop]

Power Electronics & Drives [Simulink, Hardware-Open & Closed Loop] Power Electronics & [Simulink, Hardware-Open & Closed Loop] Project code Project theme Application ISTPOW801 Estimation of Stator Resistance in Direct Torque Control Synchronous Motor ISTPOW802 Open-Loop

More information

Power Flow Management and Control of Hybrid Wind / PV/ Fuel Cell and Battery Power System using Intelligent Control

Power Flow Management and Control of Hybrid Wind / PV/ Fuel Cell and Battery Power System using Intelligent Control I J C T A, 9(2) 2016, pp. 987-995 International Science Press Power Flow Management and Control of Hybrid Wind / PV/ Fuel Cell and Battery Power System using Intelligent Control B. Yugesh Kumar 1, S.Vasanth

More information

SOLAR PHOTOVOLTAIC ARRAY FED WATER PUMP RIVEN BY BRUSHLESS DC MOTOR USING KY CONVERTER

SOLAR PHOTOVOLTAIC ARRAY FED WATER PUMP RIVEN BY BRUSHLESS DC MOTOR USING KY CONVERTER SOLAR PHOTOVOLTAIC ARRAY FED WATER PUMP RIVEN BY BRUSHLESS DC MOTOR USING KY CONVERTER B.Dinesh, Mail Id: dineshtata911@gmail.com M.k.Jaivinayagam, Mail Id: jaivimk5678@gmail.com M.Udayakumar, Mail Id:

More information

Power Management with Solar PV in Grid-connected and Stand-alone Modes

Power Management with Solar PV in Grid-connected and Stand-alone Modes Power Management with Solar PV in Grid-connected and Stand-alone Modes Sushilkumar Fefar, Ravi Prajapati, and Amit K. Singh Department of Electrical Engineering Institute of Infrastructure Technology Research

More information

A PARALLEL SNUBBER CAPACITOR BASED HIGH STEP UP ISOLATED BIDIRECTIONAL FULL BRIDGE DC TO DC CONVERTER

A PARALLEL SNUBBER CAPACITOR BASED HIGH STEP UP ISOLATED BIDIRECTIONAL FULL BRIDGE DC TO DC CONVERTER Volume 115 No. 8 2017, 1-8 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu ijpam.eu A PARALLEL SNUBBER CAPACITOR BASED HIGH STEP UP ISOLATED BIDIRECTIONAL

More information

Simulation Modeling and Control of Hybrid Ac/Dc Microgrid

Simulation Modeling and Control of Hybrid Ac/Dc Microgrid Research Inventy: International Journal of Engineering And Science Vol.6, Issue 1 (January 2016), PP -17-24 Issn (e): 2278-4721, Issn (p):2319-6483, www.researchinventy.com Simulation Modeling and Control

More information

Australian Journal of Basic and Applied Sciences

Australian Journal of Basic and Applied Sciences ISSN:1991-8178 Australian Journal of Basic and Applied Sciences Journal home page: www.ajbasweb.com Efficiency Improvement InZVS DC-DC Converter Using Snubber 1 E.Parameswari and 2 P.Karpagavalli 1 PG

More information

Energy Conversion and Management

Energy Conversion and Management Energy Conversion and Management 50 (2009) 2879 2884 Contents lists available at ScienceDirect Energy Conversion and Management journal homepage: www.elsevier.com/locate/enconman Soft switching bidirectional

More information

Design and Simulation of Grid Connected PV System

Design and Simulation of Grid Connected PV System Design and Simulation of Grid Connected PV System Vipul C.Rajyaguru Asst. Prof. I.C. Department, Govt. Engg. College Rajkot, Gujarat, India Abstract: In this paper, a MATLAB based simulation of Grid connected

More information

A Zero-Voltage-Transition Bidirectional DC/DC Converter

A Zero-Voltage-Transition Bidirectional DC/DC Converter Page number 1 A Zero-Voltage-Transition Bidirectional DC/DC Converter Abstract A three-level (TL) bidirectional dc/dc converter is a suitable choice for power electronic systems with a high-voltage dc

More information

To Increase System Efficiency for Portable Electronics Devices with DC-DC Converter

To Increase System Efficiency for Portable Electronics Devices with DC-DC Converter To Increase System Efficiency for Portable Electronics Devices with DC-DC Converter Miss. BHAGYASHREE N. PIKALMUNDE, Mr. VINOD BHONGADE 1 Student,R.C.E.R.T Chandrapur, bhaghyshree444@gmail.com, Mob.no.08421134324

More information

Input-Series-Output-Parallel Connected DC/DC Converter for a Photovoltaic PCS with High Efficiency under a Wide Load Range

Input-Series-Output-Parallel Connected DC/DC Converter for a Photovoltaic PCS with High Efficiency under a Wide Load Range Input-Series-Output-Parallel Connected DC/DC Converter for a Photovoltaic PCS with 9 JPE 10-1-2 Input-Series-Output-Parallel Connected DC/DC Converter for a Photovoltaic PCS with High Efficiency under

More information

A Reduced switch count Soft-Switching Current-Fed Full-Bridge Isolated DC/DC Converter for Fuel Cell Vehicles

A Reduced switch count Soft-Switching Current-Fed Full-Bridge Isolated DC/DC Converter for Fuel Cell Vehicles A Reduced switch count Soft-Switching Current-Fed Full-Bridge Isolated DC/DC Converter for Fuel Cell Vehicles Julakanti Mounika M.Tech Student, Department of PEED, HITAM Engineering College. Abstract:

More information

DESIGN AND ANALYSIS OF CONVERTER FED BRUSHLESS DC (BLDC) MOTOR

DESIGN AND ANALYSIS OF CONVERTER FED BRUSHLESS DC (BLDC) MOTOR DESIGN AND ANALYSIS OF CONVERTER FED BRUSHLESS DC (BLDC) MOTOR 1 VEDA M, 2 JAYAKUMAR N 1 PG Student, 2 Assistant Professor, Department of Electrical Engineering, The oxford college of engineering, Bangalore,

More information

Isolated Bidirectional DC DC Converter for SuperCapacitor Applications

Isolated Bidirectional DC DC Converter for SuperCapacitor Applications Downloaded from orbit.dtu.dk on: Oct 15, 2018 Isolated Bidirectional DC DC Converter for SuperCapacitor Applications Dehnavi, Sayed M. D.; Sen, Gokhan; Thomsen, Ole Cornelius; Andersen, Michael A. E.;

More information

Sensor less Control of BLDC Motor using Fuzzy logic controller for Solar power Generation

Sensor less Control of BLDC Motor using Fuzzy logic controller for Solar power Generation Sensor less Control of BLDC Motor using Fuzzy logic controller for Solar power Generation A. Sundaram 1 and Dr. G.P. Ramesh 2 1 Department of Electrical and Electronics Engineering, St. Peter s University,

More information

APPLICATION OF BOOST INVERTER FOR GRID CONNECTED FUEL CELL BASED POWER GENERATION

APPLICATION OF BOOST INVERTER FOR GRID CONNECTED FUEL CELL BASED POWER GENERATION APPLICATION OF BOOST INVERTER FOR GRID CONNECTED FUEL CELL BASED POWER GENERATION P.Bhagyasri 1, N. Prasanth Babu 2 1 M.Tech Scholar (PS), Nalanda Institute of Engineering and Tech. (NIET), Kantepudi,

More information

Development of Novel Connection Control Method for Small Scale Solar - Wind Hybrid Power Plant

Development of Novel Connection Control Method for Small Scale Solar - Wind Hybrid Power Plant Development of Novel Connection Control Method for Small Scale Solar - Wind Hybrid Power Plant Vu Minh Phap*, N. Yamamura, M. Ishida, J. Hirai, K. Nakatani Department of Electrical and Electronic Engineering,

More information

Fuzzy logic controlled Bi-directional DC-DC Converter for Electric Vehicle Applications

Fuzzy logic controlled Bi-directional DC-DC Converter for Electric Vehicle Applications IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 12, Issue 3 Ver. IV (May June 2017), PP 51-55 www.iosrjournals.org Fuzzy logic controlled

More information

A Novel GUI Modeled Fuzzy Logic Controller for a Solar Powered Energy Utilization Scheme

A Novel GUI Modeled Fuzzy Logic Controller for a Solar Powered Energy Utilization Scheme 1 A Novel GUI Modeled Fuzzy Logic Controller for a Solar Powered Energy Utilization Scheme I. H. Altas 1, * and A.M. Sharaf 2 ihaltas@altas.org and sharaf@unb.ca 1 : Dept. of Electrical and Electronics

More information

Design of High Performance and High Efficiency DC-DC Converter for Hybrid Electric Vehicles

Design of High Performance and High Efficiency DC-DC Converter for Hybrid Electric Vehicles Design of High Performance and High Efficiency DC-DC Converter for Hybrid Electric Vehicles R. Santhos kumar 1 and M.Murugesan 2 PG Student [PSE], Dept. of EEE, V.S.B. Engineering College, Karur, Tamilnadu,

More information

A Bidirectional Universal Dc/Dc Converter Topology for Electric Vehicle Applicationsand Photovoltaic Applications

A Bidirectional Universal Dc/Dc Converter Topology for Electric Vehicle Applicationsand Photovoltaic Applications International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 10, Issue 1 (February 2014), PP. 04-10 A Bidirectional Universal Dc/Dc Converter

More information

Page 1393

Page 1393 BESS based Multi input inverter for Grid connected hybrid pv and wind power system Seshadri Pithani 1, Mr.B,D.S.Prasad 2 1 PG Scholar, Pydah College of Engineering, Kakinada, AP, India. 2 Assistant Professor,

More information

Design of Active and Reactive Power Control of Grid Tied Photovoltaics

Design of Active and Reactive Power Control of Grid Tied Photovoltaics IJCTA, 9(39), 2016, pp. 187-195 International Science Press Closed Loop Control of Soft Switched Forward Converter Using Intelligent Controller 187 Design of Active and Reactive Power Control of Grid Tied

More information

FOUR SWITCH THREE PHASE BRUSHLESS DC MOTOR DRIVE FOR HYBRID VEHICLES

FOUR SWITCH THREE PHASE BRUSHLESS DC MOTOR DRIVE FOR HYBRID VEHICLES INTERNATIONAL JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY (IJEET) Proceedings of the International Conference on Emerging Trends in Engineering and Management (ICETEM14) ISSN 0976 6545(Print) ISSN 0976

More information

PERFORMANCE AND ENHANCEMENT OF Z-SOURCE INVERTER FED BLDC MOTOR USING SLIDING MODE OBSERVER

PERFORMANCE AND ENHANCEMENT OF Z-SOURCE INVERTER FED BLDC MOTOR USING SLIDING MODE OBSERVER PERFORMANCE AND ENHANCEMENT OF Z-SOURCE INVERTER FED BLDC MOTOR USING SLIDING MODE OBSERVER K.Kalpanadevi 1, Mrs.S.Sivaranjani 2, 1 M.E. Power Systems Engineering, V.S.B.Engineering College, Karur, Tamilnadu,

More information

Modeling and Control of Direct Drive Variable Speed Stand-Alone Wind Energy Conversion Systems

Modeling and Control of Direct Drive Variable Speed Stand-Alone Wind Energy Conversion Systems Proceedings of the 14th International Middle East Power Systems Conference (MEPCON 10), Cairo University, Egypt, December 19-21, 2010, Paper ID 276. Modeling and Control of Direct Drive Variable Speed

More information

A Novel Hybrid PV/Wind/Battery based Generation System for Grid Integration

A Novel Hybrid PV/Wind/Battery based Generation System for Grid Integration A Novel Hybrid PV/Wind/Battery based Generation System for Grid Integration B.Venkata Seshu Babu M.Tech (Power Systems), St. Ann s College of Engineering & Technology, A.P, India. Abstract: A hybrid wind/pv

More information

ISSN Vol.07,Issue.11, August-2015, Pages:

ISSN Vol.07,Issue.11, August-2015, Pages: ISSN 2348 2370 Vol.07,Issue.11, August-2015, Pages:2108-2114 www.ijatir.org A New Bidirectional Soft Switching DC-DC Converter using PID Controller P. RAMANA REDDY 1, Y. PERAIAH 2 1 PG Scholar, Dept of

More information

International Journal Of Global Innovations -Vol.2, Issue.I Paper Id: SP-V2-I1-048 ISSN Online:

International Journal Of Global Innovations -Vol.2, Issue.I Paper Id: SP-V2-I1-048 ISSN Online: Multilevel Inverter Analysis and Modeling in Distribution System with FACTS Capability #1 B. PRIYANKA - M.TECH (PE Student), #2 D. SUDHEEKAR - Asst Professor, Dept of EEE HASVITA INSTITUTE OF MANAGEMENT

More information

ENERGY MANAGEMENT FOR HYBRID PV SYSTEM

ENERGY MANAGEMENT FOR HYBRID PV SYSTEM ENERGY MANAGEMENT FOR HYBRID PV SYSTEM Ankit Modi 1, Dhaval Patel 2 1 School of Electrical Engineering, VIT University, Vellore, India. 2 School of Electrical Engineering, VIT University, Vellore, India

More information

Photovoltaic Based EV/HEV for Bi-Directional operation in AC and DC Grid with PWM Control and PV Converters

Photovoltaic Based EV/HEV for Bi-Directional operation in AC and DC Grid with PWM Control and PV Converters Photovoltaic Based EV/HEV for Bi-Directional operation in AC and DC Grid with PWM Control and PV Converters Sahu Gopi Gowri Santosh Kumar M-Tech Student Scholar, Department of Electrical & Electronics

More information

Power Quality and Power Interruption Enhancement by Universal Power Quality Conditioning System with Storage Device

Power Quality and Power Interruption Enhancement by Universal Power Quality Conditioning System with Storage Device Australian Journal of Basic and Applied Sciences, 5(9): 1180-1187, 2011 ISSN 1991-8178 Power Quality and Power Interruption Enhancement by Universal Power Quality Conditioning System with Storage Device

More information

PI Controller for Energy Management System in Hybrid Electric Ship S.Saravana, S.Naveen Prabhu, P.Lenin Pugalhanthi

PI Controller for Energy Management System in Hybrid Electric Ship S.Saravana, S.Naveen Prabhu, P.Lenin Pugalhanthi ISSN (Online) : 2319-8753 ISSN (Print) : 2347-6710 International Journal of Innovative Research in Science, Engineering and Technology Volume 3, Special Issue 3, March 2014 2014 International Conference

More information

Behaviour of battery energy storage system with PV

Behaviour of battery energy storage system with PV IJISET - International Journal of Innovative Science, Engineering & Technology, Vol. Issue 9, September 015. ISSN 348 7968 Behaviour of battery energy storage system with PV Satyendra Vishwakarma, Student

More information

Dynamic Modelling of Hybrid System for Efficient Power Transfer under Different Condition

Dynamic Modelling of Hybrid System for Efficient Power Transfer under Different Condition RESEARCH ARTICLE OPEN ACCESS Dynamic Modelling of Hybrid System for Efficient Power Transfer under Different Condition Kiran Kumar Nagda, Prof. R. R. Joshi (Electrical Engineering department, Collage of

More information

Design and Implementation of a Stand-Alone Photovoltaic Road Lighting System

Design and Implementation of a Stand-Alone Photovoltaic Road Lighting System Design and Implementation of a Stand-Alone Photovoltaic Road Lighting System Jin-Maun Ho Jia-Liang Hsu SM IEEE Department of Electrical Engineering Chung-Yuan Christian University Chung-Li, Taiwan, R.O.C

More information

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY [Sarvi, 1(9): Nov., 2012] ISSN: 2277-9655 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY A Sliding Mode Controller for DC/DC Converters. Mohammad Sarvi 2, Iman Soltani *1, NafisehNamazypour

More information

Fuzzy Logic Control Based MIMO DC-DC Boost Converter for Electric Vehicle Application Ans Jose 1 Absal Nabi 2 Jubin Eldho Paul 3

Fuzzy Logic Control Based MIMO DC-DC Boost Converter for Electric Vehicle Application Ans Jose 1 Absal Nabi 2 Jubin Eldho Paul 3 IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 10, 2015 ISSN (online): 2321-0613 Fuzzy Logic Control Based MIMO DC-DC Boost Converter for Electric Vehicle Application

More information

I.INTRODUCTION. INDEX TERMS Energy management, grid control, grid operation,hybrid microgrid, PV system, wind power generation.

I.INTRODUCTION. INDEX TERMS Energy management, grid control, grid operation,hybrid microgrid, PV system, wind power generation. International Journal of Advances in Applied Science and Engineering (IJAEAS) ISSN (P): 2348-1811; ISSN (E): 2348-182X Vol. 3, Issue 3, July 2016, 14-20 IIST Grid-Connected Photovoltaic System Based on

More information

A HIGH EFFICIENCY BUCK-BOOST CONVERTER WITH REDUCED SWITCHING LOSSES

A HIGH EFFICIENCY BUCK-BOOST CONVERTER WITH REDUCED SWITCHING LOSSES Int. J. Elec&Electr.Eng&Telecoms. 2015 Mayola Miranda and Pinto Pius A J, 2015 Research Paper ISSN 2319 2518 www.ijeetc.com Special Issue, Vol. 1, No. 1, March 2015 National Level Technical Conference

More information

Hybrid Energy Powered Water Pumping System

Hybrid Energy Powered Water Pumping System IOSR Journal of Engineering (IOSRJEN) ISSN (e): 2250-3021, ISSN (p): 2278-8719 Vol. 08, Issue 2 (February. 2018), V1 PP 50-57 www.iosrjen.org Hybrid Energy Powered Water Pumping System Naveen Chandra T

More information

Intelligent Control Algorithm for Distributed Battery Energy Storage Systems

Intelligent Control Algorithm for Distributed Battery Energy Storage Systems International Journal of Engineering Works ISSN-p: 2521-2419 ISSN-e: 2409-2770 Vol. 5, Issue 12, PP. 252-259, December 2018 https:/// Intelligent Control Algorithm for Distributed Battery Energy Storage

More information

Simulation of Fully-Directional Universal DC- DC Converter for Electric Vehicle Applications

Simulation of Fully-Directional Universal DC- DC Converter for Electric Vehicle Applications Simulation of Fully-Directional Universal DC- DC Converter for Electric Vehicle Applications Saikrupa C Iyer* R. M. Sahdhashivapurhipurun Sandhya Sriraman Tulsi S Ramanujam R. Ramaprabha Department of

More information

POWER ELECTRONICS TITLES LeMeniz Infotech

POWER ELECTRONICS TITLES LeMeniz Infotech POWER ELECTRONICS TITLES -2017 LeMeniz Infotech 36, 100 feet Road, Natesan Nagar(Near Indira Gandhi Statue and Next to Fish-O- Fish), Pondicherry-605 005 Web : www.ieeemaster.com / www.lemenizinfotech.com

More information

Analysis of Grid Connected Solar Farm in ETAP Software

Analysis of Grid Connected Solar Farm in ETAP Software ABSTRACT 2017 IJSRSET Volume 3 Issue 3 Print ISSN: 2395-1990 Online ISSN : 2394-4099 Themed Section: Engineering and Technology Analysis of Grid Connected Solar Farm in ETAP Software Komal B. Patil, Prof.

More information

[Patil, 7(2) April-June 2017] ISSN: Impact Factor: 4.015

[Patil, 7(2) April-June 2017] ISSN: Impact Factor: 4.015 INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & MANAGEMENT A REVIEW PAPER BASED ON MULTI LEVEL INVERTER INTERFACING WITH SOLAR POWER GENERATION Sumit Dhanraj Patil 1, Sunil Kumar Bhatt 2 1 M.Tech. Student,

More information

5 kw Multilevel DC-DC Converter for Hybrid Electric and Fuel Cell Automotive Applications

5 kw Multilevel DC-DC Converter for Hybrid Electric and Fuel Cell Automotive Applications 1 5 kw Multilevel DC-DC Converter for Hybrid Electric and Fuel Cell Automotive Applications Faisal H. Khan 1,2 Leon M. Tolbert 2 fkhan3@utk.edu tolbert@utk.edu 2 Electric Power Research Institute (EPRI)

More information

Battery-Ultracapacitor based Hybrid Energy System for Standalone power supply and Hybrid Electric Vehicles - Part I: Simulation and Economic Analysis

Battery-Ultracapacitor based Hybrid Energy System for Standalone power supply and Hybrid Electric Vehicles - Part I: Simulation and Economic Analysis Battery-Ultracapacitor based Hybrid Energy System for Standalone power supply and Hybrid Electric Vehicles - Part I: Simulation and Economic Analysis Netra Pd. Gyawali*, Nava Raj Karki, Dipesh Shrestha,

More information

International Journal of Advance Research in Engineering, Science & Technology

International Journal of Advance Research in Engineering, Science & Technology Impact Factor (SJIF): 5.301 International Journal of Advance Research in Engineering, Science & Technology e-issn: 2393-9877, p-issn: 2394-2444 Volume 5, Issue 4, April-2018 OPTIMIZATION OF PV-WIND-BATTERY

More information

Unified Power Quality Conditioner with Electric Double Layer Capacitor

Unified Power Quality Conditioner with Electric Double Layer Capacitor Unified Power Quality Conditioner with Electric Double Layer Capacitor B. Han, H. Lee and J. Lee Department of Electrical Engineering Myongji University Kyunggi-do 449-728, South Korea Phone/Fax number:+82

More information

Design of Control Secheme and Performance Improvement for Multilevel Dc Link Inverter Fed PMBLDC Motor Drive

Design of Control Secheme and Performance Improvement for Multilevel Dc Link Inverter Fed PMBLDC Motor Drive Design of Control Secheme and Performance Improvement for Multilevel Dc Link Inverter Fed PMBLDC Motor Drive Sagar. M. Lanjewar & K. Ramsha Department of Electrical Engineering, Priyadarshini College of

More information

Simulation of Voltage Stability Analysis in Induction Machine

Simulation of Voltage Stability Analysis in Induction Machine International Journal of Electronic and Electrical Engineering. ISSN 0974-2174 Volume 6, Number 1 (2013), pp. 1-12 International Research Publication House http://www.irphouse.com Simulation of Voltage

More information

A New Control Algorithm for Doubly Fed Induction Motor with Inverters Supplied by a PV and Battery Operating in Constant Torque Region

A New Control Algorithm for Doubly Fed Induction Motor with Inverters Supplied by a PV and Battery Operating in Constant Torque Region IJSTE - International Journal of Science Technology & Engineering Volume 3 Issue 09 March 2017 ISSN (online): 2349-784X A New Control Algorithm for Doubly Fed Induction Motor with Inverters Supplied by

More information

One-Cycle Average Torque Control of Brushless DC Machine Drive Systems

One-Cycle Average Torque Control of Brushless DC Machine Drive Systems One-Cycle Average Torque Control of Brushless DC Machine Drive Systems Najma P.I. 1, Sakkeer Hussain C.K. 2 P.G. Student, Department of Electrical and Electronics Engineering, MEA Engineering College,

More information

Renewable Energy Sources Based EV/HEV for Bi-Directional Operation in AC and DC Grid

Renewable Energy Sources Based EV/HEV for Bi-Directional Operation in AC and DC Grid Renewable Energy Sources Based EV/HEV for Bi-Directional Operation in AC and DC Grid Routhu Trimurtulu M.Tech Student Scholar, Department of Electrical & Electronics Engineering, Thandra Paparaya Institute

More information

Power Losses and Efficiency Analysis of

Power Losses and Efficiency Analysis of Power Losses and Efficiency Analysis of Multilevel DC-DC Converters Zhguo Pan, Fan Zhang and Fang Z. Peng Dept. of Electrical and Computer Engineering Michigan State University 2120 Engineering Building

More information

Implementation of Bidirectional DC/AC and DC/DC Converters for Automotive Applications

Implementation of Bidirectional DC/AC and DC/DC Converters for Automotive Applications I J C T A, 9(37) 2016, pp. 923-930 International Science Press Implementation of Bidirectional DC/AC and DC/DC Converters for Automotive Applications T.M. Thamizh Thentral *, A. Geetha *, C. Subramani

More information

Performance Analysis of 3-Ø Self-Excited Induction Generator with Rectifier Load

Performance Analysis of 3-Ø Self-Excited Induction Generator with Rectifier Load Performance Analysis of 3-Ø Self-Excited Induction Generator with Rectifier Load,,, ABSTRACT- In this paper the steady-state analysis of self excited induction generator is presented and a method to calculate

More information

Passive Lossless Snubbers for DC/DC Cainverters

Passive Lossless Snubbers for DC/DC Cainverters Passive Lossless Snubbers for DC/DC Cainverters Ching-Jung Tseng Chern-Lin Chen Power Electronics Laboratory Department of Electrical Engineering National Taiwan University Taipei, Taiwan Abstraci - Passive

More information

EFFICIENT GRID CONNECTED INVERTER TO OVERCOME THE LOAD DISTURBANCE IN HYBRID ENERGY STORAGE SYSTEM

EFFICIENT GRID CONNECTED INVERTER TO OVERCOME THE LOAD DISTURBANCE IN HYBRID ENERGY STORAGE SYSTEM ISSN: 2349-2503 EFFICIENT GRID CONNECTED INVERTER TO OVERCOME THE LOD DISTURBNCE IN HYBRID ENERGY STORGE SYSTEM T.Thiruppathi 1 S.ndal 2 M.Varatharaj 3 1 (UG Scholar of EEE, Christ the king engg college,

More information