Design and Implementation of a Stand-Alone Photovoltaic Road Lighting System

Size: px
Start display at page:

Download "Design and Implementation of a Stand-Alone Photovoltaic Road Lighting System"

Transcription

1 Design and Implementation of a Stand-Alone Photovoltaic Road Lighting System Jin-Maun Ho Jia-Liang Hsu SM IEEE Department of Electrical Engineering Chung-Yuan Christian University Chung-Li, Taiwan, R.O.C ho@dec.ee.cycu.edu.tw Abstract The solar energy is one of the most promising renewable energy and the using of high brightness Light Emitting Diode (LED) for lighting system has become a trend recently. This paper presents a stand-alone solar electrical power system which can supply power to LED for road lighting. This paper proposes an optimal design of a stand-alone photovoltaic (PV) road lighting system. It has two purposes:the first, to calculate the optimal solar cell and battery capacities under different environmental conditions, such as climate, latitude, and location for effective lighting. The second, to design of a solar power generation system for supplying two sets of LED lighting system, which can avoid the affection of shade and make the road lighting system operated effectively. Finally, in order to verify the road lighting system feasibility, this paper presents a pseudo place like remote mountainous area in Nantou, Taiwan and an actual place in Chung Yuan Christian University to design a stand-alone PV road lighting system each for comparison. The experimental results verify the feasibility of this design. eywords: Solar cell Road lighting LED I. Introduction With the advanges of no noise, no distribution wiring, less maintenance cost, no electricity bills, and etc., the usage of solar electric power has being very popular. Its application for lighting is just one of the examples. For lighting application, the system consists of solar cells, battery, lighting fixture and with a connection to utility in general. The design considerations usually are not including how to reach the best choice of capacities among solar cell, battery and load for a system which has a back up from utility. However, in remote areas, such as high mountains, deserts and islands, a stand-alone solar power system for lighting is very attractive and suitable since it is cost effective. But a stand-alone solar power system for these places need special considerations. The irradiation of sun is changing with seasons, times, locations and weather conditions, therefore, a good design of stand-alone solar system must consider these and then calculate the capacities of battery and solar cell for a presetted load. This paper presents a design method and the procedure to calculate the needed battery capacity for a stand-alone photovoltaic load lighting system. II. Independent solar road lighting system design The conceptual system and its equivalent circuit for this study is shown in figure 1. (a) conceptual PV road lighting (b) equivalent circuit Figure 1 A stand-alone solar lighting system PV can be installed in any places, but the system design depends on the installation site. This section will discuss the consideration factors and design steps for a stand-alone PV load lighting system, and use a design example in a remote area in Taiwan to illustrate the design. 2.1 The standard daily sun radiation and PV generation in Taiwan Table 1 shows the statistic data of sun radiation and generating capacity in some place in Taiwan [1-3]. The estimating PV generating capacity is as in equation 1: E = H P (1) p A AS where, E : estimated generating capacity (WH/day). p H A : solar radiation in interested place. : a factor depends on changes in insolation, panel cleanness, temperature variation, circuit efficiency, battery capacity, and etc. It s values are between 0.6 and 0.85, and 0.7 is used in here. PAS : standard generating capacity (W) per m 2 solar panel, that is 1.0 in Taiwan. ISBN:

2 Place Table 1 Estimated PV generating capacity per m 2 (1 W) panels installed in Taiwan Altitude (Meters) Average annual solar radiation (kj/m 2 day) Average annual solar radiation (kwh/m 2 day)h A Average annual solar generation (kwh/m 2 day) E p , (Banqiuo) (Danshui) , (Anbu) , , (jhuzihu) , eelung , Hualien , Ilan(Suao) , Ilan 7.2 9, inmen , Penghu , Tainan , Tainan (Yongkang) , aohsiung , Chiayi , Taichung , Chiayi (Alishan) , Taitung (Dawu) , Chiayi (Yushan) , Hsinchu , Pingtung (Hengchun) , Taitung (Chengging) , Taitung (Lanyu) , Nantou (Sun Moon , Lake) Taitung , Taichung (Wuqi) Lienchiung (Mazu) , , System design A PV system design includes two aspects, the capacity design and the electrical circuit design, namely. The capacity design is to figure out the needed solar panel arrays, battery arrays and matching loads for year round effective operation of a stand alone system. The electrical circuit design is to design a must suitable electrical circuit to meet the requirement and this will be mentioned in section III. The design flow chart is as in figure2 [4]. Figure 2 capacity calculation flow chart for battery Equation 2 depicts the relation D I L C = (Ah) (2) U where I L = I T and U is chosen as 0.8 for deep discharge type battery and 0.5 for others. However, equation 2 only show a rough approach, for more accuracy, one should consider the influence of operation temperature and discharging rate on the capacity as shown in figure 3. Therefore equation 2 is modified as equation 3 D I L C = (3) U α R where α is temperature modification factor and is less than 1.0 for temperatures lower than 25 C. R is overall circuit modification factor and has been chosen as 0.62 in this system. Capacity (%) Temperature ( C ) Discharging rate Figure 3 Needed battery capacity versus temperature and discharging rate Design of PV array module For satisfying the average daily demand, a PV module design flow chart of PV is shown in figure Battery capacity calculation The battery should able to supply the load even in a lower than average radiation of solar situation for some successive days. ISBN:

3 The required load current, I, and voltage, V Daily use time T ( hours ) Calculate the daily amount of electricity Q Daily sunshine time TS(h) correction coefficient Necessary solar battery current IS Required parallel array number, Np The needed module The minimum array voltage, VO Required series array number, Ns VD : voltage drop on diode and circuitry. V : voltage decreased by temperature increasing of module Check the design of battery capacity with the design of PV module Once the capacity of battery and PV module have been calculated by equation 3, 4, and 7. There is a checking requirement to ensure a good consideration of both designs. Firstly, check the battery discharging depth as indicated in equation 8 for preventing over discharging daily total load (Ah) Depth of discharging = (8) capacity of battery (Ah) If the results from equation 8 are not acceptable, (based on the data sheet of battery) then the capacity of battery should be modified until it meet the requirements. 2.3 Pseudo design examples A remote site had been chosen to fulfil a pseudo design, the climate data is an in figure 5. PV array Figure 4 Design flow chart of PV capacity The average output current of PV, Is, can be calculated from equation 4 I L I s = (4) T S where is a modification factor, can be expressed in equation 5 = (5) Where 1 is temperature corrective factor and can be expressed as in equation 6 o = 1 α ( T 25 ) (6) 1 C C T is operation temperature of module and, α is C temperature of coefficient (0.004~0.005 for single and multi crystal cell, 0.002~0.003 for amorphous cell ). 2 : aging factor (0.9~0.95 for single and multi crystal cell, 0.7~0.8 for amorphous cell ). : off maximum power point correction factor 3 (0.9~0.95). 4 : factor of cells in parallel or series (0.95~1.0). : circuit loss factor (0.95~0.98). 5 : charging and discharging loss factor (0.95~1.0). 6 : coulomb efficiency factor (0.9~0.95). 7 The voltage of module is as equation 7 V = V + V + V (7) V V O O F F D : minimum voltage of module. : floating voltage of battery. Figure 5 The average month sun irradiation and temperature of the remote site (Sun-Moon Lake)[3]. Form figure 5, the lowest temperature is around 13 C on January and the highest temperature is around 27 C on August, therefore set the lowest and highest environmental temperature at 10 C and 35 C, respectively. And from table 1, the shortest sunshine month is on April, having hours, the average is 3.7 hours per day, the set shortest sunshine time is 3.5 hours per day. There are the considerations for example 1. With the same conditions except the sunshine time is increasing to 4.7 hours per day as design example 2. With same conditions as in example 1, but self-supporting of battery is increasing to 4 days as design example 3. The calculated capacities of PV panels and battery and other data are shown in Table 2. ISBN:

4 Table 2 Comparisons of design examples NO Example 1 Example 2 Example 3 Result Sunshine 3.5 h 4.7 h 3.5 h hours Daily load 40Ah 40Ah 40Ah Wattage of 48W 48W 48W LED Voltage 12V 12V 12V Hours of 10 h 10 h 10 h usage Maximum discharge 80% 80% 80% depth of battery Supply times 2 days 2 days 4 days The average 0.04 C 0.04 C 0.02 C discharge rate Battery 180Ah 180Ah 360Ah capacity Total PV output A 13.14A A current Minimum voltage of 15.95V 15.95V 15.95V PV operating The number of PV in parallel The total PV 300W 225W 300W capacity Depth of discharge III. Experimental electrical circuit design 68V and maximum power current (Irate) of 4.4A. Microprocessor (PIC18F452) has programs of main subroutine, MPPT subroutine, charging and discharging control subroutine. Figure 7 shows the main control program. Step-up driving IC (AMC3202) and constant current driving IC (AMC7140) [5] of ADDtek are chosen for charging and discharging control, as in figure 8. AD to read the battery charge current control Stop Charging Does charging reading 80%? Switching to charge mode Calculate the battery residual Read solar panels AD To MPPT Whether charged 100%? (C/100) start Solar voltage is less than the set value? Continuous charging Switching to discharge mode Calculate the battery residual Stop discharge Whether the voltage lower than 11.1V Continuous discharge Return to start Figure 7. The main flow chart of load lighting system control Figure 6. Block diagram of system architecture The circuit design is according to the actual load requirement and the real site environmentals. A suitable solar panel is chosen as well as other hardwares. The system consists of eight circuit blocks, namely: (1) solar cell array, (2) feedback circuit, (3) photo coupling circuit, (4) microprocessor, (5) DC/DC converter, (6) IC driving circuit, (7) battery, and (8) LED module, as shown in figure 6. The solar cell array rated at 300W with a maximum open circuit voltage (Voc) of 86.8V, maximum short circuit current (Isc) of 4.8A, maximum power voltage (Vrate) of Figure 8 discharging control circuit ISBN:

5 Ⅳ. Experimental Results The experiments were carried out on May. Figure 9 (a) shows the output voltage and current values, and figure 9 (b) shows the charging voltage and current curves on the same day. The loads are two LED modules. Each module consists of 16LED cells (8 in series and 2 parallel, each with rating at 2.8W, 4V and 0.7A). Either step-up IC is on and constant current IC is off, or step-up IC is off and constant current IC is on, the LEDs do not light, the voltage and current on these situations are shown in figure10 (a) and (b), respectively. Only with both IC on, the output can drive LEDs on operation. Figure11 (a) and (b) show the LED modules operate satisfactory when only use one PV panel to supply two LED modules no matter there is a resistance or not between them. (b) constant current IC operating and step-up IC not operating Figure 10. voltage and current values of LED module with different IC operations (a) voltage and current curves of solar panel (b) charging voltage and current curves of battery. Figure 9.the voltage and current curves of the day (a) direct connection between two LED modules (a) step-up IC operating and constant current IC not operating (b) inserting a 0.5Ω resistor between two LED modules Figure 11. voltage, current, and power waveforms of LED module. ISBN:

6 Ⅴ. Conclusions A stand-alone photovoltaic road lighting system is often not effective due to poor design. This paper proposes a design method based on capacity theory which incorporates with local historic weather data to design a LED road lighting system. Using a remote mountain area as an example, by employing annual sunshine hours, we can calculate the needed capacity of solar photovoltaic power and then calculate the needed battery capacity to reach a optimal design among size of solar panel, battery capacity and load. By this way, applying solar power to road lighting becomes more feasible. And by simulation, we also find using a single solar module to light two separate road lightings is capable even there exists a voltage difference between two LED loads. References [1] Ming Jin Ho, Wen-Sheng Ou, and Jianfu Chen, Taiwan's solar energy design standard solar radiation and associated test specification of the research, collaborative research report Building Research Institute Ministry of the Interior, ROC, December, [2] Ming Jin, Wen-Sheng, buildings, build model solar optimal design of research, Ministry of the Interior Building Research Institute, the ROC, December, [3] Central Weather Bureau, statistics - weather statistics, [4] Shen-hui, and Zuqin Zhen, solar photovoltaic technology, Wu-Nan Books, Republic of China, February, [5] Yang Ling, solar street light of the development, a master's thesis, National Changhua rmal University, ROC, June, [6] ADDtek, AMC3202, AMC7140 Datasheet, ISBN:

Design and Development of Bidirectional DC-DC Converter using coupled inductor with a battery SOC indication

Design and Development of Bidirectional DC-DC Converter using coupled inductor with a battery SOC indication Design and Development of Bidirectional DC-DC Converter using coupled inductor with a battery SOC indication Sangamesh Herurmath #1 and Dr. Dhanalakshmi *2 # BE,MTech, EEE, Dayananda Sagar institute of

More information

Optimal Sizing, Modeling, and Design of a Supervisory Controller of a Stand-Alone Hybrid Energy System

Optimal Sizing, Modeling, and Design of a Supervisory Controller of a Stand-Alone Hybrid Energy System Optimal Sizing, Modeling, and Design of a Supervisory Controller of a Stand-Alone Hybrid Energy System Mohamed El Badawe Faculty of Engineering and Applied Science Memorial University of Newfoundland,

More information

Hybrid Solar Panel Fuel Cell Power Plant

Hybrid Solar Panel Fuel Cell Power Plant Hybrid Solar Panel Fuel Cell Power Plant Antoni Dmowski, Piotr Biczel, Bartłomiej Kras Warsaw University of Technology, Institute of Electrical Power Engineering, Poland, 00-662 Warsaw, ul. Koszykowa 75;

More information

Available online at ScienceDirect. Energy Procedia 36 (2013 )

Available online at   ScienceDirect. Energy Procedia 36 (2013 ) Available online at www.sciencedirect.com ScienceDirect Energy Procedia 36 (2013 ) 852 861 - Advancements in Renewable Energy and Clean Environment Introducing a PV Design Program Compatible with Iraq

More information

Modeling and Comparison of Dynamics of AC and DC Coupled Remote Hybrid Power Systems

Modeling and Comparison of Dynamics of AC and DC Coupled Remote Hybrid Power Systems Modeling and Comparison of Dynamics of AC and DC Coupled Remote Hybrid Power Systems Presenter: Tanjila Haque Supervisor : Dr. Tariq Iqbal Faculty of Engineering and Applied Science Memorial University

More information

MPPT Control System for PV Generation System with Mismatched Modules

MPPT Control System for PV Generation System with Mismatched Modules Journal of Energy and Power Engineering 9 (2015) 83-90 doi: 10.17265/1934-8975/2015.01.010 D DAVID PUBLISHING MPPT Control System for PV Generation System with Mismatched Modules Chengyang Huang 1, Kazutaka

More information

A Study of Suitable Bi-Directional DC-DC Converter Topology Essential For Battery Charge Regulation In Photovoltaic Applications

A Study of Suitable Bi-Directional DC-DC Converter Topology Essential For Battery Charge Regulation In Photovoltaic Applications IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 11, Issue 2 Ver. I (Mar. Apr. 2016), PP 92-96 www.iosrjournals.org A Study of Suitable Bi-Directional

More information

Off-grid Power for Wireless Networks. Training materials for wireless trainers

Off-grid Power for Wireless Networks. Training materials for wireless trainers Off-grid Power for Wireless Networks Training materials for wireless trainers Goals Provide a general view of the parts that comprise a solar photovoltaic system for telecommunication Understand the variables

More information

Renewable Hybrid / Off-grid Solutions

Renewable Hybrid / Off-grid Solutions Renewable Hybrid / Off-grid Solutions APPLICATION : BTS and micro-wave communications for remote telecommunications provider, hybrid systems are particularly well-suited for applications in remote areas,

More information

OFF GRID PV POWER SYSTEMS SYSTEM DESIGN GUIDELINES FOR THE PACIFIC ISLANDS

OFF GRID PV POWER SYSTEMS SYSTEM DESIGN GUIDELINES FOR THE PACIFIC ISLANDS OFF GRID PV POWER SYSTEMS SYSTEM DESIGN GUIDELINES FOR THE PACIFIC ISLANDS OFF GRID PV POWER SYSTEMS SYSTEM DESIGN GUIDELINES FOR THE PACIFIC ISLANDS These guidelines have been developed by the Sustainable

More information

Glossary. * Credit for glossary starter: Florida Solar Energy Center. August 2015 PV Installer's Course: Glossary 1

Glossary. * Credit for glossary starter: Florida Solar Energy Center. August 2015 PV Installer's Course: Glossary 1 ALTERNATING CURRENT (AC): Electric current (flow of electrons) in which the direction of flow is reversed at constant intervals, such as 60 cycles per second. AMORPHOUS SILICON: silicon with no crystal

More information

Modeling and Analysis of Vehicle with Wind-solar Photovoltaic Hybrid Generating System Zhi-jun Guo 1, a, Xiang-yu Kang 1, b

Modeling and Analysis of Vehicle with Wind-solar Photovoltaic Hybrid Generating System Zhi-jun Guo 1, a, Xiang-yu Kang 1, b 4th International Conference on Sustainable Energy and Environmental Engineering (ICSEEE 015) Modeling and Analysis of Vehicle with Wind-solar Photovoltaic Hybrid Generating System Zhi-jun Guo 1, a, Xiang-yu

More information

Impact of Reflectors on Solar Energy Systems

Impact of Reflectors on Solar Energy Systems Impact of Reflectors on Solar Energy Systems J. Rizk, and M. H. Nagrial Abstract The paper aims to show that implementing different types of reflectors in solar energy systems, will dramatically improve

More information

HOMER OPTIMIZATION BASED SOLAR WIND HYBRID SYSTEM 1 Supriya A. Barge, 2 Prof. D.B. Pawar,

HOMER OPTIMIZATION BASED SOLAR WIND HYBRID SYSTEM 1 Supriya A. Barge, 2 Prof. D.B. Pawar, 1 HOMER OPTIMIZATION BASED SOLAR WIND HYBRID SYSTEM 1 Supriya A. Barge, 2 Prof. D.B. Pawar, 1,2 E&TC Dept. TSSM s Bhivrabai Sawant College of Engg. & Research, Pune, Maharashtra, India. 1 priyaabarge1711@gmail.com,

More information

Analysis of Grid Connected Solar Farm in ETAP Software

Analysis of Grid Connected Solar Farm in ETAP Software ABSTRACT 2017 IJSRSET Volume 3 Issue 3 Print ISSN: 2395-1990 Online ISSN : 2394-4099 Themed Section: Engineering and Technology Analysis of Grid Connected Solar Farm in ETAP Software Komal B. Patil, Prof.

More information

Dynamic Modelling of Hybrid System for Efficient Power Transfer under Different Condition

Dynamic Modelling of Hybrid System for Efficient Power Transfer under Different Condition RESEARCH ARTICLE OPEN ACCESS Dynamic Modelling of Hybrid System for Efficient Power Transfer under Different Condition Kiran Kumar Nagda, Prof. R. R. Joshi (Electrical Engineering department, Collage of

More information

International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering. (An ISO 3297: 2007 Certified Organization)

International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering. (An ISO 3297: 2007 Certified Organization) Modeling and Control of Quasi Z-Source Inverter for Advanced Power Conditioning Of Renewable Energy Systems C.Dinakaran 1, Abhimanyu Bhimarjun Panthee 2, Prof.K.Eswaramma 3 PG Scholar (PE&ED), Department

More information

Design of Power System Control in Hybrid Electric. Vehicle

Design of Power System Control in Hybrid Electric. Vehicle Page000049 EVS-25 Shenzhen, China, Nov 5-9, 2010 Design of Power System Control in Hybrid Electric Vehicle Van Tsai Liu Department of Electrical Engineering, National Formosa University, Huwei 632, Taiwan

More information

Impact of Electricity

Impact of Electricity SOLAR ENERGY TECHNOLOGY What will be discussed: Solar Photovoltaic Systems Gerrit Jacobs 14-18 June 2010 Jakarta Indonesia Training Course on Renewable Energy Part II - MEMR CASINDO 1 s Units of measurement

More information

A Review on Grid Connected 100 kw Roof Top Solar Plant

A Review on Grid Connected 100 kw Roof Top Solar Plant International Journal of Recent Research and Review, Vol. X, Issue 3, September 2017 ISSN 2277 8322 A Review on Grid Connected 100 kw Roof Top Solar Plant Himanshu Bhardwaj, Tanuj Manglani, Neeraj Kumawat

More information

Stand Alone PV Based Single Phase Power Generating Unit for Rural Household Application

Stand Alone PV Based Single Phase Power Generating Unit for Rural Household Application Stand Alone PV Based Single Phase Power Generating Unit for Rural Household Application Krishna Degavath, M.E Osmania University. Abstract: Access to energy is essential to reduce poverty. In Tanzania

More information

Implementation of a Web-Based Real-Time Monitoring and Control System for a Hybrid Wind-PV-Battery Renewable Energy System

Implementation of a Web-Based Real-Time Monitoring and Control System for a Hybrid Wind-PV-Battery Renewable Energy System Implementation of a Web-Based Real-Time Monitoring and Control System for a Hybrid Wind-PV-Battery Renewable Energy System Li Wang, Senior Member IEEE, and Kuo-Hua Liu Abstract--This paper proposes a novel

More information

Hybrid Three-Port DC DC Converter for PV-FC Systems

Hybrid Three-Port DC DC Converter for PV-FC Systems Hybrid Three-Port DC DC Converter for PV-FC Systems P Srihari Babu M.Tech (Power Systems) B Ashok Kumar Assistant Professor Dr. A.Purna Chandra Rao Professor & HoD Abstract The proposed a hybrid power

More information

Smart Power Management System for Leisure-ship

Smart Power Management System for Leisure-ship Journal of Navigation and Port Research International Edition Vol.35, No.9 pp. 749~753, 2011 (ISSN-1598-5725) DOI : http://dx.doi.org/10.5394/kinpr.2011.35.9.749 Smart Power Management System for Leisure-ship

More information

Introduction to solar PV energy

Introduction to solar PV energy Unidad 15 Introduction to solar PV energy - Dimensioning - Alberto Escudero-Pascual, IT+46 (cc) Creative Commons Share-Alike Non Commercial Attribution 2.5 Sweden The power of the sun - G Global Irradiation

More information

Combination control for photovoltaic-battery-diesel hybrid micro grid system

Combination control for photovoltaic-battery-diesel hybrid micro grid system , pp.93-99 http://dx.doi.org/10.14257/astl.2015.82.18 Combination control for photovoltaic-battery-diesel hybrid micro grid system Yuanzhuo Du 1, Jinsong Liu 2 1 Shenyang Institute of Engineering, Shenyang,

More information

Solar Energy Harvesting using Hybrid Photovoltaic and Thermoelectric Generating System

Solar Energy Harvesting using Hybrid Photovoltaic and Thermoelectric Generating System Global Journal of Pure and Applied Mathematics. ISSN 0973-1768 Volume 13, Number 9 (2017), pp. 5935-5944 Research India Publications http://www.ripublication.com Solar Energy Harvesting using Hybrid Photovoltaic

More information

Modeling and Simulation of Multi-input Bi-directional Boost Converter for Renewable Energy Applications using MatLab/Simulink

Modeling and Simulation of Multi-input Bi-directional Boost Converter for Renewable Energy Applications using MatLab/Simulink Modeling and Simulation of Multi-input Bi-directional Boost Converter for Renewable Energy Applications using MatLab/Simulink Ramya. S Assistant Professor, ECE P.A. College of Engineering and Technology,

More information

Novel Design and Implementation of Portable Charger through Low- Power PV Energy System Yousif I. Al-Mashhadany 1, a, Hussain A.

Novel Design and Implementation of Portable Charger through Low- Power PV Energy System Yousif I. Al-Mashhadany 1, a, Hussain A. Novel Design and Implementation of Portable Charger through Low- Power PV Energy System Yousif I. Al-Mashhadany 1, a, Hussain A. Attia 2,b 1 Electrical Engineering Dept., College of Engineering, University

More information

Energy Saving by Implementation of Intelligent Systems in Lighting Abstract 2. Analysis of Outdoor Lighting Systems 1.

Energy Saving by Implementation of Intelligent Systems in Lighting Abstract 2. Analysis of Outdoor Lighting Systems 1. Energy Saving by Implementation of Intelligent Systems in Lighting Niranjana Venkatesh B.E, EEE Adhiparasakthi Engineering College, Melmaruvathur, Tamil Nadu Deepak Sekar B.E, EEE Adhiparasakthi Engineering

More information

Evaluation of photo voltaic generating system performance for fishing light application

Evaluation of photo voltaic generating system performance for fishing light application FISHERIES SCIENCE 2000; 66: 1062 1067 Original Article Evaluation of photo voltaic generating system performance for fishing light application Hisaharu SAKAI, 1 Mulyono S BASKORO 2 AND Ari KUSBUIYANTO

More information

SOLAR ENERGY ASSESSMENT REPORT. For 115 kwp. Meteorological Data Source Meteonorm. Date 18 October, Name of Place California.

SOLAR ENERGY ASSESSMENT REPORT. For 115 kwp. Meteorological Data Source Meteonorm. Date 18 October, Name of Place California. SOLAR ENERGY ASSESSMENT REPORT For 115 kwp Name of Place California Client abc Capacity 115 kw Meteorological Data Source Meteonorm Email ezysolare@gmail.com Order No. #1410180005 Date 18 October, 2014

More information

Power Flow Management and Control of Hybrid Wind / PV/ Fuel Cell and Battery Power System using Intelligent Control

Power Flow Management and Control of Hybrid Wind / PV/ Fuel Cell and Battery Power System using Intelligent Control I J C T A, 9(2) 2016, pp. 987-995 International Science Press Power Flow Management and Control of Hybrid Wind / PV/ Fuel Cell and Battery Power System using Intelligent Control B. Yugesh Kumar 1, S.Vasanth

More information

Application of one-axis sun tracking system. Colak I. and Demirtas M.

Application of one-axis sun tracking system. Colak I. and Demirtas M. Application of one-axis sun tracking system Colak I. and Demirtas M. GEMEC-Gazi Electrical Machine and Energy Control Group (Gazi Elektrik Makineleri ve Enerji Kontrol Grubu) Gazi Üniversitesi, Teknik

More information

Available online at ScienceDirect. Procedia Engineering 129 (2015 ) International Conference on Industrial Engineering

Available online at  ScienceDirect. Procedia Engineering 129 (2015 ) International Conference on Industrial Engineering Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 129 (2015 ) 201 206 International Conference on Industrial Engineering Simulation of lithium battery operation under severe

More information

Signature of the candidate. The above candidate has carried out research for the Masters Dissertation under my supervision.

Signature of the candidate. The above candidate has carried out research for the Masters Dissertation under my supervision. DECLARATION I declare that this is my own work and this dissertation does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute

More information

Design of Integrated Power Module for Electric Scooter

Design of Integrated Power Module for Electric Scooter EVS27 Barcelona, Spain, November 17-20, 2013 Design of Integrated Power Module for Electric Scooter Shin-Hung Chang 1, Jian-Feng Tsai, Bo-Tseng Sung, Chun-Chen Lin 1 Mechanical and Systems Research Laboratories,

More information

Design and Implementation of Non-Isolated Three- Port DC/DC Converter for Stand-Alone Renewable Power System Applications

Design and Implementation of Non-Isolated Three- Port DC/DC Converter for Stand-Alone Renewable Power System Applications Design and Implementation of Non-Isolated Three- Port DC/DC Converter for Stand-Alone Renewable Power System Applications Archana 1, Nalina Kumari 2 1 PG Student (power Electronics), Department of EEE,

More information

Charging Control for Battery in Photovoltaic System

Charging Control for Battery in Photovoltaic System Charging Control for Battery in Photovoltaic System Bhuvaneswari.S, Kaviya.G, Manimegalai.L, Sasikala.S PG Students [Embedded System Technologies], Dept. of EEE, Saveetha Engineering College, Chennai,

More information

Development of Novel Connection Control Method for Small Scale Solar - Wind Hybrid Power Plant

Development of Novel Connection Control Method for Small Scale Solar - Wind Hybrid Power Plant Development of Novel Connection Control Method for Small Scale Solar - Wind Hybrid Power Plant Vu Minh Phap*, N. Yamamura, M. Ishida, J. Hirai, K. Nakatani Department of Electrical and Electronic Engineering,

More information

Design of Three Input Buck-Boost DC-DC Converter with Constant input voltage and Variable duty ratio using MATLAB/Simulink

Design of Three Input Buck-Boost DC-DC Converter with Constant input voltage and Variable duty ratio using MATLAB/Simulink Design of Three Input Buck-Boost DC-DC Converter with Constant input voltage and Variable duty ratio using MATLAB/Simulink A.Thiyagarajan, B.Gokulavasan Abstract Nowadays DC-DC converter is mostly used

More information

Solar Power. Demonstration Site. Annual Performance Report 2017

Solar Power. Demonstration Site. Annual Performance Report 2017 Solar Power Demonstration Site Annual Performance Report 217 Version :1. July 12, 218 Solar Power Demonstration Site 217 Performance Report Introduction INTRODUCTION The Solar Power Demonstration Site

More information

Design and Simulation of Grid Connected PV System

Design and Simulation of Grid Connected PV System Design and Simulation of Grid Connected PV System Vipul C.Rajyaguru Asst. Prof. I.C. Department, Govt. Engg. College Rajkot, Gujarat, India Abstract: In this paper, a MATLAB based simulation of Grid connected

More information

Mobile Renewable House

Mobile Renewable House Mobile Renewable House M.F. Serincan, M. Eroglu, M.S. Yazici This document appeared in Detlef Stolten, Thomas Grube (Eds.): 18th World Hydrogen Energy Conference 2010 - WHEC 2010 Parallel Sessions Book

More information

STUDIES ON STANDALONE PHOTOVOLTAIC POWER SYSTEM FOR CHARGING THE BATTERY

STUDIES ON STANDALONE PHOTOVOLTAIC POWER SYSTEM FOR CHARGING THE BATTERY 26-216 Asian Research Publishing Network (ARPN). All rights reserved. STUDIES ON STANDALONE PHOTOVOLTAIC POWER SYSTEM FOR CHARGING THE BATTERY K. Bhaskar 1, K. Siddappa Naidu 1 and N. G. Ranganathan 2

More information

Decentralized Battery Energy Management for Stand-Alone PV- Battery Systems

Decentralized Battery Energy Management for Stand-Alone PV- Battery Systems Decentralized Battery Energy Management for Stand-Alone PV- Battery Systems Umarin Sangpanich (PhD.) Faculty of Engineering at Sriracha Kasetsart University (Sriracha campus) 19 May 2016 Outline A key

More information

Development and Power Measurement of Bicycle Power Generator

Development and Power Measurement of Bicycle Power Generator ISBN 978-93-84422-79-0 9th International Conference on Recent Trends in Science Engineering, Computers and Technology (RTSECT-2017) Singapore Aug. 10-11, 2017 Development and Power Measurement of Bicycle

More information

Hybrid Energy Powered Water Pumping System

Hybrid Energy Powered Water Pumping System IOSR Journal of Engineering (IOSRJEN) ISSN (e): 2250-3021, ISSN (p): 2278-8719 Vol. 08, Issue 2 (February. 2018), V1 PP 50-57 www.iosrjen.org Hybrid Energy Powered Water Pumping System Naveen Chandra T

More information

Research on PV and battery control system with energy management technology in stand-alone DC micro grid

Research on PV and battery control system with energy management technology in stand-alone DC micro grid International Industrial Informatics and Computer Engineering Conference (IIICEC 25) Research on PV and battery control system with energy management technology in stand-alone DC micro grid Chunxue Wen,a,

More information

Pedro Nunes. July 2016

Pedro Nunes. July 2016 Integration of PV and electric vehicles in future energy systems Pedro Nunes July 2016 1. background 2 context Sectors of energy and transport are the biggest GHG emitters in the EU (30% and 20%, respectively)

More information

4th European PV-Hybrid and Mini-Grid Conference, Glyfada, Greece, May 2008

4th European PV-Hybrid and Mini-Grid Conference, Glyfada, Greece, May 2008 Stability in Mini-Grids with Large PV Penetration under Weather Disturbances- Implementation to the power system of Kythnos Evangelos Rikos 1, Stathis Tselepis 1, Aristomenis Neris 2 1. Centre for Renewable

More information

Why Choose TSEC? A Trusted and Reputable Company

Why Choose TSEC? A Trusted and Reputable Company Company Profile Why Choose TSEC? TSEC Corporation is composed of an elite team of individuals in Taiwan who are dedicated to unlocking the potential of solar power for a greener, better world. Our mission

More information

High-Tech Solar System

High-Tech Solar System PRODUCT EVALUATION High-Tech Solar System Like its new HPV22B counterpart, Heliotrope s new HPV30 controller incorporates an on/off switch, so the solar panels can be turned off. The HVP30 is specifically

More information

HydroLynx Systems, Inc. Model 5033-XX Solar Panel. Instruction Manual

HydroLynx Systems, Inc. Model 5033-XX Solar Panel. Instruction Manual HydroLynx Systems, Inc. Model 5033-XX Solar Panel Instruction Manual Document No: A102759 Document Revision Date: December, 2004 HydroLynx Systems, Inc. Model 5033-XX Solar Panel Receiving and Unpacking

More information

The Design of the Drive Control Chip for the Solar LED Lighting System

The Design of the Drive Control Chip for the Solar LED Lighting System Modern Applied Science May, 2008 The Design of the Drive Control Chip for the Solar LED Lighting System Bonian Mao, Pingjuan Niu & Chunhong Huang School of Information and Communication Engineering, Tianjin

More information

Power Supply And Electronic Load In ONE

Power Supply And Electronic Load In ONE YOUR POWER TESTING SOLUTION IT6000B Regenerative System Regenerative load Bi-directional power supply ONE Button Switch Supply And Electronic Load In ONE APPLICATIONS IT6000B Regenerative System High power

More information

Simulation Analysis of Closed Loop Dual Inductor Current-Fed Push-Pull Converter by using Soft Switching

Simulation Analysis of Closed Loop Dual Inductor Current-Fed Push-Pull Converter by using Soft Switching Journal for Research Volume 02 Issue 04 June 2016 ISSN: 2395-7549 Simulation Analysis of Closed Loop Dual Inductor Current-Fed Push-Pull Converter by using Soft Switching Ms. Manasa M P PG Scholar Department

More information

A Battery Smart Sensor and Its SOC Estimation Function for Assembled Lithium-Ion Batteries

A Battery Smart Sensor and Its SOC Estimation Function for Assembled Lithium-Ion Batteries R1-6 SASIMI 2015 Proceedings A Battery Smart Sensor and Its SOC Estimation Function for Assembled Lithium-Ion Batteries Naoki Kawarabayashi, Lei Lin, Ryu Ishizaki and Masahiro Fukui Graduate School of

More information

Optimal Design of PV-Fuel Cell Hybrid Power System for Rural Electrification

Optimal Design of PV-Fuel Cell Hybrid Power System for Rural Electrification Optimal Design of PV-Fuel Cell Hybrid Power System for Rural Electrification 1 Zin Mar, 2 Wunna Swe, 3 Thwai Thwai Htay 1 Ph.D. Candidate, Department of Electrical Power Engineering, Mandalay Technological

More information

International Journal of Advance Research in Engineering, Science & Technology

International Journal of Advance Research in Engineering, Science & Technology Impact Factor (SJIF): 3.632 International Journal of Advance Research in Engineering, Science & Technology e-issn: 2393-9877, p-issn: 2394-2444 Volume 3, Issue 4, April-2016 Design of 5 kwp Off Grid Solar

More information

PV-Wind SOFTWARE for Windows User s Guide

PV-Wind SOFTWARE for Windows User s Guide PV-Wind SOFTWARE for Windows User s Guide Contents 1. Overview 1.1. General description of the PV-Wind Software 2. Inputting Parameters 2.1. System type 2.2. Location 2.3. Loads 2.4. PV modules 2.5. Inverters

More information

A High Efficiency Light Emitting Diode (LED) Lighting System Driver with Photovoltaic System

A High Efficiency Light Emitting Diode (LED) Lighting System Driver with Photovoltaic System A High Efficiency Light Emitting Diode (LED) Lighting System Driver with Photovoltaic System K. Prasanna 1 M. Raghavendra Reddy 2 1PG Scholar, Department of EEE, Godavari Institute of Engineering and Technology,

More information

6545(Print), ISSN (Online) Volume 4, Issue 1, January- February (2013), IAEME & TECHNOLOGY (IJEET)

6545(Print), ISSN (Online) Volume 4, Issue 1, January- February (2013), IAEME & TECHNOLOGY (IJEET) INTERNATIONAL International Journal of JOURNAL Electrical Engineering OF ELECTRICAL and Technology (IJEET), ENGINEERING ISSN 0976 & TECHNOLOGY (IJEET) ISSN 0976 6545(Print) ISSN 0976 6553(Online) Volume

More information

Achieving Energy Independence with Off-grid, Battery-based Solar Energy Systems. Vinod Tiwari Director Renewable Power Solutions (Telectron LLC)

Achieving Energy Independence with Off-grid, Battery-based Solar Energy Systems. Vinod Tiwari Director Renewable Power Solutions (Telectron LLC) Achieving Energy Independence with Off-grid, Battery-based Solar Energy Systems Vinod Tiwari Director Renewable Power Solutions (Telectron LLC) Introduction to Solar Energy We need Solar Energy, because

More information

Designing Stand Alone Systems. Overview, components and function, Elements in Design

Designing Stand Alone Systems. Overview, components and function, Elements in Design Designing Stand Alone Systems Overview, components and function, Elements in Design What Stand Alone System Does Loads that are Reasonable for a Stand Alone System to Power: Yes or No Dishwasher? Refrigerator

More information

Power Management with Solar PV in Grid-connected and Stand-alone Modes

Power Management with Solar PV in Grid-connected and Stand-alone Modes Power Management with Solar PV in Grid-connected and Stand-alone Modes Sushilkumar Fefar, Ravi Prajapati, and Amit K. Singh Department of Electrical Engineering Institute of Infrastructure Technology Research

More information

INTEGRATION OF BATTERY ENERGY STORAGE SYSTEM BASED PV POWER PLANT INTO GRID

INTEGRATION OF BATTERY ENERGY STORAGE SYSTEM BASED PV POWER PLANT INTO GRID INTEGRATION OF BATTERY ENERGY STORAGE SYSTEM BASED PV POWER PLANT INTO GRID MAHESHA G PG Student Power Electronics siddaganga institute of technology Tumakuru,India mahesha021@gmail.com Abstract With increase

More information

Development of a Stand-alone Solar

Development of a Stand-alone Solar Development of a Stand-alone Solar Powered Bus Stop Development of a Stand-alone Solar Powered Bus Stop Mohd Afzanizam Mohd Rosli 1, Mohd Zaid Akop 2, Muhd Ridzuan Mansor 3, Sivarao S. 4 1,2,3 Faculty

More information

Where. Where there s sun. there s SUNGEN.

Where. Where there s sun. there s SUNGEN. Where there s sun Where there s SUNGEN 1 2 www.sungen.com SUNGEN Module Features Amorphous Silicon Solar Module Monocrystalline Solar Module Modules engineered for greater sustained high energy yields

More information

Vunivau, Bua Province Vanua Levu, Fiji Solar Home System Design. Luis A. Vega, Ph.D.

Vunivau, Bua Province Vanua Levu, Fiji Solar Home System Design. Luis A. Vega, Ph.D. Vunivau, Bua Province Vanua Levu, Fiji Solar Home System Design Luis A. Vega, Ph.D. Design Approach Choose design Insolation Determine battery capacity and relationship between controller LVD and DOD Determine

More information

4 submersible pumps powered by renewable energy sources

4 submersible pumps powered by renewable energy sources submersible pumps powered by renewable energy sources ENGLISH TCH technology applied to renewable energy The pumps, owered by renewable energy sources, is a new range coming from the TCH pumps with built-in

More information

Module-Integrated Power Electronics for Solar Photovoltaics. Robert Pilawa-Podgurski Power Affiliates Program 33rd Annual Review Friday, May 4th 2012

Module-Integrated Power Electronics for Solar Photovoltaics. Robert Pilawa-Podgurski Power Affiliates Program 33rd Annual Review Friday, May 4th 2012 Module-Integrated Power Electronics for Solar Photovoltaics Robert Pilawa-Podgurski Power Affiliates Program 33rd Annual Review Friday, May 4th 2012 Solar Photovoltaic System Challenges Solar Photovoltaic

More information

Design and Implementation of Lithium-ion/Lithium-Polymer Battery Charger with Impedance Compensation

Design and Implementation of Lithium-ion/Lithium-Polymer Battery Charger with Impedance Compensation Design and Implementation of Lithium-ion/Lithium-Polymer Battery Charger with Impedance Compensation S.-Y. Tseng, T.-C. Shih GreenPower Evolution Applied Research Lab (G-PEARL) Department of Electrical

More information

A Novel DC-DC Converter Based Integration of Renewable Energy Sources for Residential Micro Grid Applications

A Novel DC-DC Converter Based Integration of Renewable Energy Sources for Residential Micro Grid Applications A Novel DC-DC Converter Based Integration of Renewable Energy Sources for Residential Micro Grid Applications Madasamy P 1, Ramadas K 2 Assistant Professor, Department of Electrical and Electronics Engineering,

More information

A Novel GUI Modeled Fuzzy Logic Controller for a Solar Powered Energy Utilization Scheme

A Novel GUI Modeled Fuzzy Logic Controller for a Solar Powered Energy Utilization Scheme 1 A Novel GUI Modeled Fuzzy Logic Controller for a Solar Powered Energy Utilization Scheme I. H. Altas 1, * and A.M. Sharaf 2 ihaltas@altas.org and sharaf@unb.ca 1 : Dept. of Electrical and Electronics

More information

Site Visit to Green Electric Energy Park at Curtin University, Perth, Western Australia. Institution of Engineers Sri Lanka Western Australia Chapter

Site Visit to Green Electric Energy Park at Curtin University, Perth, Western Australia. Institution of Engineers Sri Lanka Western Australia Chapter Site Visit to Green Electric Energy Park at Curtin University, Perth, Western Australia by Institution of Engineers Sri Lanka Western Australia Chapter In the chilly morning of the Saturday 18 th June

More information

Design and Control of Hybrid Power System for Stand-Alone Applications

Design and Control of Hybrid Power System for Stand-Alone Applications Design and Control of Hybrid Power System for Stand-Alone Applications 1 Chanumalla Laxmi, 2 Manidhar Thula Abstract: This work presents design and controlling of photovoltaic fuel cell and super capacitor

More information

Operation Analysis of Coordinated Droop Control for Stand-alone DC Micro-grid

Operation Analysis of Coordinated Droop Control for Stand-alone DC Micro-grid International Conference on Renewable Energies and Power Quality (ICREPQ 14) Cordoba (Spain), 8 th to 10 th April, 2014 Renewable Energy and Power Quality Journal (RE&PQJ) ISSN 2172-038 X, No.12, April

More information

The Experimental Study of the Plateau Performance of the F6L913 Diesel Engine

The Experimental Study of the Plateau Performance of the F6L913 Diesel Engine Sensors & Transducers 2013 by IFSA http://www.sensorsportal.com The Experimental Study of the Plateau Performance of the F6L913 Diesel Engine 1 Weiming Zhang, 2 Jiang Li 1, 2 Dept. of Petroleum Supply

More information

Research Article A New Sliding Mode Controller for DC/DC Converters in Photovoltaic Systems

Research Article A New Sliding Mode Controller for DC/DC Converters in Photovoltaic Systems Energy Volume, Article ID, pages http://dx.doi.org/.// Research Article A New Sliding Mode Controller for DC/DC Converters in Photovoltaic Systems M. Sarvi, I. Soltani, N. NamazyPour, and N. Rabbani Faculty

More information

100W Basic Kit (GS-100-Basic)

100W Basic Kit (GS-100-Basic) 100W Basic Kit (GS-100-Basic) Kit Sizing Guide Copyright 2015, Grape Solar, Inc. All Rights Reserved Valid from July 2015 www.grapesolar.com Valid from July 2015 1 Step By Step Setup Basic Wiring Diagram

More information

A simulation tool to design PV-diesel-battery systems with different dispatch strategies

A simulation tool to design PV-diesel-battery systems with different dispatch strategies A simulation tool to design PV-diesel-battery systems with different dispatch strategies Silvan Fassbender, Eberhard Waffenschmidt Cologne University of Applied Sciences 6th International Energy and Sustainability

More information

Implementation of Bidirectional DC-DC converter for Power Management in Hybrid Energy Sources

Implementation of Bidirectional DC-DC converter for Power Management in Hybrid Energy Sources Implementation of Bidirectional DC-DC converter for Power Management in Hybrid Energy Sources Inturi Praveen M.Tech-Energy systems, Department of EEE, JBIET-Hyderabad, Telangana, India. G Raja Sekhar Associate

More information

Solar power training packages From basic to industrial concepts

Solar power training packages From basic to industrial concepts Solar power training packages From basic to industrial concepts Solar Power Production As solar power production becomes more and more affordable for residential applications, no wonder the number of installations

More information

Solar inverter From Wikipedia, the free encyclopedia

Solar inverter From Wikipedia, the free encyclopedia Page 1 of 7 Solar inverter From Wikipedia, the free encyclopedia A solar inverter, or converter or PV inverter, converts the variable direct current (DC) output of a photovoltaic (PV) solar panel into

More information

Fort Providence Solar and Wind Monitoring Analysis

Fort Providence Solar and Wind Monitoring Analysis Fort Providence Solar and Wind Monitoring Analysis Source: NWT Bureau of Statistics Prepared for By Jean-Paul Pinard, P. Eng., PhD. 703 Wheeler St., Whitehorse, Yukon Y1A 2P6 Tel. (867) 393-2977; Email

More information

Intelligent Power Management of Electric Vehicle with Li-Ion Battery Sheng Chen 1,a, Chih-Chen Chen 2,b

Intelligent Power Management of Electric Vehicle with Li-Ion Battery Sheng Chen 1,a, Chih-Chen Chen 2,b Applied Mechanics and Materials Vols. 300-301 (2013) pp 1558-1561 Online available since 2013/Feb/13 at www.scientific.net (2013) Trans Tech Publications, Switzerland doi:10.4028/www.scientific.net/amm.300-301.1558

More information

DYNAMIC MODELING RESIDENTIAL DATA AND APPLICATION

DYNAMIC MODELING RESIDENTIAL DATA AND APPLICATION DYNAMIC MODELING RESIDENTIAL DATA AND APPLICATION The introduction of the reversible or regenerative fuel cell (RFC) provides a new component that is analogous to rechargeable batteries and may serve well

More information

EXPERIMENTAL INVESTIGATON OF SOLAR PANEL PERFORMANCE AT VARIOUS ENVIRONMENTAL CONDITIONS

EXPERIMENTAL INVESTIGATON OF SOLAR PANEL PERFORMANCE AT VARIOUS ENVIRONMENTAL CONDITIONS EXPERIMENTAL INVESTIGATON OF SOLAR PANEL PERFORMANCE AT VARIOUS ENVIRONMENTAL CONDITIONS Ashok Raja E 1, Akhash R S 2 1 Ashok Raja E, Mechanical Engineering, PSVPEC, Tamil Nadu, India 2 Akhash R S, Mechanical

More information

Maximum Power point Tracking in Hybrid Photo-voltaic and Wind Energy Conversion System

Maximum Power point Tracking in Hybrid Photo-voltaic and Wind Energy Conversion System Maximum Power point Tracking in Hybrid Photo-voltaic and Wind Energy Conversion System M. Suresh PG Student MIC College of Technology Yerra Sreenivasa Rao Associate Professor MIC College of Technology

More information

The hierarchical three layer protection of photovoltaic generators in microgrid with co-ordinated droop control for hybrid energy storage system

The hierarchical three layer protection of photovoltaic generators in microgrid with co-ordinated droop control for hybrid energy storage system The hierarchical three layer protection of photovoltaic generators in microgrid with co-ordinated droop control for hybrid energy storage system Vignesh, Student Member, IEEE, Sundaramoorthy, Student Member,

More information

Real And Reactive Power Saving In Three Phase Induction Machine Using Star-Delta Switching Schemes

Real And Reactive Power Saving In Three Phase Induction Machine Using Star-Delta Switching Schemes Real And Reactive Power Saving In Three Phase Induction Machine Using Star-Delta Switching Schemes Ramesh Daravath, Lakshmaiah Katha, Ch. Manoj Kumar, AVS Aditya ABSTRACT: Induction machines are the most

More information

6. Acoustical simulation of straight and side inlet/outlet rectangular plenums using the FEM method

6. Acoustical simulation of straight and side inlet/outlet rectangular plenums using the FEM method Research Signpost 37/661 (2), Fort P.O. Trivandrum-695 023 Kerala, India Noise Control: Theory, Application and Optimization in Engineering, 2014: 119-144 ISBN: 978-81-308-0552-8 Editors: Min-Chie Chiu

More information

Renewable Energy Analysis For Afghanistan

Renewable Energy Analysis For Afghanistan 40 Years of Excellence in Analysis Renewable Energy Analysis For Afghanistan Approved for Public Release Distribution is unlimited David Carrier APGR-AMSA-MPE@us.army.mil 2 Agenda Purpose & Background

More information

EVS25 Shenzhen, China, Nov 5-9, Battery Management Systems for Improving Battery Efficiency in Electric Vehicles

EVS25 Shenzhen, China, Nov 5-9, Battery Management Systems for Improving Battery Efficiency in Electric Vehicles World Electric ehicle Journal ol. 4 - ISSN 2032-6653 - 20 WEA Page000351 ES25 Shenzhen, China, Nov 5-9, 20 Management Systems for Improving Efficiency in Electric ehicles Yow-Chyi Liu Department of Electrical

More information

A highly-integrated and efficient commercial distributed EV battery balancing system

A highly-integrated and efficient commercial distributed EV battery balancing system LETTER IEICE Electronics Express, Vol.15, No.8, 1 10 A highly-integrated and eicient commercial distributed EV battery balancing system Feng Chen 1, Jun Yuan 1, Chaojun Zheng 1, Canbo Wang 1, and Zhan

More information

A.Arun 1, M.Porkodi 2 1 PG student, 2 Associate Professor. Department of Electrical Engineering, Sona College of Technology, Salem, India

A.Arun 1, M.Porkodi 2 1 PG student, 2 Associate Professor. Department of Electrical Engineering, Sona College of Technology, Salem, India A novel anti-islanding technique in a Distributed generation systems A.Arun 1, M.Porkodi 2 1 PG student, 2 Associate Professor Department of Electrical Engineering, Sona College of Technology, Salem, India

More information

CHAPTER 3 FINANCIAL ANALYSIS OF SOLAR PV PUMPS

CHAPTER 3 FINANCIAL ANALYSIS OF SOLAR PV PUMPS 53 CHAPTER 3 FINANCIAL ANALYSIS OF SOLAR PV PUMPS 3.1 INTRODUCTION In PV water pumping, the SPV array provides electricity to the motor pump setup and the induction motor or the BLDC motor (Sharma 2011).

More information

Why Is My PV Module Rating Larger Than My Inverter Rating?

Why Is My PV Module Rating Larger Than My Inverter Rating? TECHNICAL BRIEF Why Is My PV Rating Larger Than My Rating? PV module and inverter selection are two of the most important decisions in PV system design. Ensuring that these components will work together

More information

Small PV Systems for Developing Countries Day 1. Electricity basics

Small PV Systems for Developing Countries Day 1. Electricity basics Small PV Systems for Developing Countries Day 1 November 2010 Electricity basics The flow of electrical current through a wire is a flow of electrons through. It is comparable to the flow of water through

More information