Hydrogen Technology in Dual Combustion IC Engines

Size: px
Start display at page:

Download "Hydrogen Technology in Dual Combustion IC Engines"

Transcription

1 Hydrogen Technology in Dual Combustion IC Engines Kavin Raja G 1, Karthik R 2, Santosh N 3 1,2&3 Student, B.E Mechanical Engineering, Sri Krishna College of Engineering and Technology, Tamil Nadu, India. Abstract In this paper, research on advanced engine technology is discussed. This concept of engine uses two different fuels at the same time to extract maximum work from the engine. In this concept we are implementing the idea of using hydrogen as the first fuel in addition to secondary conventional fuels like gasoline and diesel. The objective of this project is to provide a means for using hydrogen in internal combustion engines. In this concept, cylinder of the engine has two thermodynamic systems which works on Otto Cycle or Diesel Cycle and are separated by the moving boundary which is the piston. The four strokes of the Otto Cycle or Diesel Cycle works alternatively in the two systems. The two chambers of the cylinder have their own intake, exhaust and fuel injection systems. The hydrogen is injected by high pressure direct injection and is ignited by compression ignition and direct injection in turn will eliminate premature ignition of hydrogen. The strokes in the lower chamber can be initiated by just supplying heat energy to the cylinder block which is sufficient to ignite the hydrogen. The high diffusivity of hydrogen further increases the safety in case of a leak. This concept of the engine can also run using one fuel in case of absence of the other since both the systems work independently. This engine can provide only reciprocating motion as output and it must be converted to rotary motion by suitable mechanisms. In today s world of depleting resources hydrogen seems to be a promising fuel and because of its low emissions, it could be the most ideal one to be used. Keywords Hydrogen Engine, Renewable Energy Sources, Eco friendly Engine Dual Combustion Engine, Hydrogen IC Engine. TABLE 1 FUEL RESERVES Fuel Reserves Years left Oil 1,386 billion barrels 46.2 Gas trillion cubic metres 58.6 Coal 860,938 million tonnes 118 Source: BP. Reserves calculated at current price using current technologies Use of hydrogen in normal IC engines would not produce sufficient amount of power as desired. On the other hand, the conventional IC engines that runs on gasoline or diesel has low efficiencies. Using the concept explained in this paper, more power can be generated by the conventional fuels and the efficiency is improved by hydrogen. Hydrogen is a cleanest form of fuel that is available today. When hydrogen undergoes combustion process with pure air, it results in the formation of water as the by-product. Hydrogen is available in nature in the form of water. Water which is available in abundance forms a surplus source for hydrogen. Since the fossil fuels are depleting at a faster rate, hydrogen which is available in abundance proves to be the fuel of tomorrow. I. INTRODUCTION Today, the energy resources that we use mostly are non-renewable and are depleting at a very faster rate. So, why not use the available energy in a wise manner giving Mother Nature enough time to regenerate fossil fuels? This idea of engine design extracts the maximum energy from the engine. But, according to the below given data, the current energy resources may not be available to us for a long time. One of the alternative fuels that are readily available for use in automobiles is hydrogen. So, the use of hydrogen which is a renewable energy resource in this concept of engine design has been proposed. There are two ways of using hydrogen in automobiles: i) In internal combustion engines, ii) In hydrogen fuel cell vehicles. The fuel cell technology is currently in research progress while the use of hydrogen in internal combustion engines could be processed quickly. II. BODY Our concept of the engine design has two combustion chambers in a single cylinder such that the cylinder is completely enclosed at the bottom and can only give a reciprocating motion as output. Hence there form two thermodynamic systems with piston as a common moving boundary between them. The rod which reciprocates takes the reciprocatory motion as the output from the engine and is converted into rotary motion by suitable mechanisms. Both the upper and the lower chamber have their own intake, exhaust and ignition systems. ISSN: Page 177

2 TABLE 2 COMPARISON OF DIFFERENT VEHICLE TYPES Engine Type Gasoline ICE Sparkignition Gasoline Hybrid Spark-ignition & electric motor H 2 ICE H 2 Fuel Cell Fuel cell & CI (with electric electric motor) motor Average engine efficiency ~30% ~30% ~40% ~55% Max engine efficiency 32.5% 32.5% ~40% ~65% Transmission Type Standard CVT/hybrid CVT/likely hybrid CVT/likely hybrid Transmission efficiency ~40% ~60% ~60% ~60% Fig 1. Cross-section view of two-chambered engine The primary fuel in this concept is hydrogen, which is used at the lower chamber of the cylinder and the secondary fuel can be any conventional fuels like petrol and diesel. Hydrogen can be ignited by both spark ignition and compression ignition. The strokes of the engine are designed in such a way that compression and expansion of the systems takes place alternatively. The piston is made of suitable alloy such that it withstands the temperatures produced on both the chambers. The engine can produce two power strokes in a single cycle and use of hydrogen improves the efficiency of the engine. Thus it overcomes the disadvantages of gasoline engine which has less efficiency and hydrogen internal combustion engines which has less power output. A. Why Use Hydrogen in IC Engines Hydrogen can burn in a lean mixture, but the power produced by the combustion process depends on the amount of hydrogen that is fed in the combustion process. The wide range of flammability of hydrogen can be used to produce different amount of powers. Hydrogen can ignite at very low temperatures, so the heat of the piston and the cylinder due to the previous combustion reactions is sufficient to ignite the hydrogen and to start the cycles [2][3]. Fuel economy (mpg equivalent) Sizeability As much power as needed, at the cost of mpg Efficiency improvements over gas ICEs are mostly lost with increased power Efficiency losses or higher emission control costs to increase power Fuel Tank Size(constant Moderate Small Large range) Cost of Fuel Currently low Criteria Pollutant Emissions Meets emission standards Currently low Lower than gasoline ICE Developed and State of technology Developed in diffusion stage Currently high: but may be slightly lower than FCVs Likely low, some NO x Could be developed quickly Increasing power may be expensive, requiring additional FCs Large: smaller than H 2 ICE Currently high Very low or none Earlier in the research process B. Piston Design The piston is made of a suitable alloy such that it can withstand the high temperatures produced in both the chambers. The piston used in this concept is a solid piston. Due to high temperatures that are generated on both the chambers, the piston must be cooled by circulating suitable coolant by means of holes inside the piston. To completely seal off both the chambers, apart from the piston rings that are generally available, a special type of ring which is designed in a suitable shape so that it collects the fuels and oils that get leaked from the upper chamber and it is drained by means of drain hole provided in the reciprocating rod. The draining is vacuum assisted for easier drain. In such a way ISSN: Page 178

3 the two systems or the chambers are completely sealed off so that they don t interfere with each other s reaction. In this case the absence of one fuel does not affect the functioning of the engine and the engine can run using only one fuel. It acts like normal petrol or a hydrogen engine in the previous case. C. Stroke Sequence We have made the corresponding changes in the strokes of the engine to get the maximum efficiency: 1. The compression ratio of hydrogen is higher than that of petrol, so the strokes are altered in such a way that the power produced in the upper chamber running on petrol aids in compressing the air in the lower chamber that must undergo combustion reaction with hydrogen. 2. Similarly, in case of diesel as the secondary fuel the inverse situation is applied since the compression ratio in a diesel engine is higher than that of hydrogen engine. 3. Let us consider the case of petrol hydrogen engine, the stroke takes place in continuous operation as given in the following sequence below: TABLE 3 WORKING STROKES 2. Compression takes place in the petrol chamber and the piston goes up. As the piston moves up, a partial vacuum is created in the lower chamber and thus intake of air takes place in the lower chamber. 3. The compressed air fuel mixture in the upper chamber gets ignited by the spark plug and power is produced in the upper chamber. The piston is forced down by combustion of petrol and the air in the lower chamber gets compressed. 4. Hydrogen at high pressure is injected into the lower chamber and due to change in pressure, the hydrogen gets ignited and power is produced due to which the piston moves up and pushes the exhaust gases through the outlet in the upper chamber. The cycle continues and thus two power strokes are produced in single cycle. E. Calculation We have considered the Honda CBR 250R engine and the values for the Petrol chamber are taken from it. TABLE 4 PERFORMANCE PARAMETERS OF TWO CHAMBERS Characteristics Hydrogen Petrol PETROL CHAMBER Intake Compression Power Exhaust HYDROGEN CHAMBER Exhaust Intake Compression Power Compression Ratio 12:1 10.7:1 rpm Nm 23 Nm 8000 rpm HP 25 HP Efficiency 40.32% 30% The above table can be made for a diesel hydrogen engine also; but the sequence will be in the opposite way. D. Working Let us consider petrol as the conventional fuel in the upper chamber and hydrogen in the lower. The working is as follows: 1. Intake takes place in the upper chamber and the air fuel mixture from the carburettor flows into the cylinder thus lowering the piston. Simultaneously in the lower chamber the exhaust gases from the previous combustion reaction of hydrogen goes out through the exhaust valve. Hydrogen has a variety of compression ratios and varying this ratio can result in improvement of efficiency. Hence the combination of both petrol and hydrogen will increase the power and efficiency of the vehicle. F. Cam The engine is equipped with variable valve timing mechanism by using electronic cam. This mechanism has different cam profiles to adopt for different conditions of the engine. In variable valve timing, the valve operation is shifted to a different cam profile according to the engine running conditions. The electronic cam table is determined such that suitable amount of air fuel mixture is fed in correct proportions to both the chambers so power produced in both sides of the piston is almost equal [5]. ISSN: Page 179

4 limited to 17:1, and this temperature was used in the experiments reported in this paper[3][4]. G. Valve Operation The valve operation sequences for both the chambers are given below. J. Auto- Ignition of Hydrogen Jet TABLE 5 VALVE OPERATION SEQUENCES PETROL Inlet Valve Open Inlet Valve Close Exhaust Valve Open Exhaust Valve Close HYDROGEN Exhaust Valve Close Inlet Valve Open Inlet Valve Close Exhaust Valve Open H. Hydrogen Injection Hydrogen is injected by means of constant volume injection which is a direct injection method. From the following figure, it could be seen that hydrogen injected by direct means at high pressure improves the thermal efficiency of the engine [1]. Fig 2. Comparison of Injection methods I. Inlet Air Heating System Due to the high self-ignition temperature of hydro- gen, heating of the inlet air may be necessary to en- sure fuel auto ignition. A 3.5kW electric inlet air heating system, capable of raising the inlet air temperature to 120 degree Celsius, was implemented in the intake system, and the air inlet temperature was controlled using a PID controller. The air heating control system ensures that the correct compression temperature for fuel auto ignition is reached, and allows investigations into the influence of this operational variable on the engine performance. The minimum air inlet temperature was found to be 80 degree Celsius, since this particular engine compression ratio was Fig 3.Ignition delay as a function of temperature The figure illustrates the strong dependence of the cylinder charge temperature on the auto ignition delay of the hydrogen jets. It can be seen that for temperatures below approximately 1100K, the auto ignition delay increases rapidly and becomes significantly longer than for higher temperatures. The auto ignition delay is strongly dependent on the ambient gas temperature, and the temperature de- pendency follows an Arrhenius function. It was found that for temperatures below 1100K, the auto ignition delay is longer than that of conventional diesel fuels, but much shorter delays can be obtained if the cylinder charge temperature is close to or above 1100K. The figure explains the need for inlet air heating in the hydrogenfuelled engine in order to achieve acceptable ignition delays. For conventional diesel fuels, the ignition delay curve would be shifted to the left due to the lower self-ignition temperatures, and acceptable ignition delay values can be achieved with lower end-of-compression charge temperatures. K. Engine Options There is wide range of engines available by classifying the engines according to the ignition systems that are used in the two chambers. The fuels in both the chambers are compression ignited or the upper chamber can be compression ignited and the lower can be spark ignited in case of using diesel as the secondary fuel. When petrol is used as the secondary fuel, both the chambers can be spark ignited or the upper chamber can be spark ignited and the lower chamber can be compression ignited. Thus we have four options of engine based on the ignition systems. ISSN: Page 180

5 L. Engine Performance There are several possibilities to improve the performance of an automobile internal combustion engine. One is to increase the capacity of the engine. The capacity of the engine can be increased in a single cylinder or the engine can be made to have several cylinders. A single large cylinder may be a more convenient choice due to fewer parts to manufacture and maintain, but the advantages are over-weighed by the disadvantages. This concept of engine introduces a new possibility to increase the performance of an engine without increasing its capacity. The range of power that can be produced in an engine with all the fixed parameters is higher than in free piston engine. The performance parameters of the two chambers add up and it provides increased power and torque. It also provides good overall efficiency theoretically. diesel-fuelled mode. Figure 4 shows the measured NOx emissions with varying engine load for the engine running in hydrogen-fuelled and conventional diesel mode. As expected, the nitrogen oxides formation is low at low loads, for which the cylinder charge is lean and in-cylinder temperatures are lower, but increases sharply with increasing load. TABLE 6 EXPERIMENTAL RESULTS FOR ENGINE ENERGY BALANCE Fig 4.Variation of NOx concentration with Indicated Mean Effective Pressure Table 6 shows the engine efficiency results in different operating modes. Engine efficiency is significantly high in hydrogen direct injection (DI) mode, with the engine achieving a brake efficiency of 42.8%, compared with 27.9% when using diesel fuel. This is mainly due to lower losses to the cooling system, which constitute engine frictional losses and heat transfer losses, mainly to the combustion chamber walls. The frictional losses are not heavily influenced by the choice of fuel, but the increased engine power makes the relative influence of the mechanical losses lower in hydrogen-fuelled mode. Reduced in-cylinder heat transfer losses are expected in the hydrogen-fuelled engine due to the properties of the gaseous fuel, leading to enhanced fuel-air mixing, thereby reducing peak gas temperatures, and the lower inertia of the fuel, reducing the problems associated with spray-wall impingement. The data in the table are for operation on 20% diesel fuel and 80% hydrogen (on an energy basis). The improved performance when using dual fuels and HCCI compared to conventional diesel engine mode can be seen [4]. M. Reduction in Emission The nitrogen oxides emissions from a direct injection hydrogen engine are expected to be lower than those of the engine in conventional, A clear NOx emissions advantage for the hydrogen-fuelled engine can be seen over the full load range, with the NOx levels being approximately 20% lower than those obtained under diesel-fuelled operation. Although the peak gas pressures are higher in hydrogen-fuelled mode due to the higher fuel burn rate, this is seen not to have an adverse effect on NOx formation. This suggests that the peak gas temperatures are lower in hydrogen-fuelled mode due to enhanced fuel-air mixing and more homogeneous conditions within the combustion chamber. Hightemperature zones, such as those occurring in the outer regions of the fuel spray in conventional diesel operation are reduced [4]. III. CONCLUSION This concept brings about a new dimension in automotive technology and with research on fuel cells still in progress; this idea seems to be a very efficient way of utilising the resources that are available. It also provides better power to weight ratio, lesser emissions and better efficiency than the conventional IC engines. Thus this concept proves to be a better solution for a greener tomorrow. ACKNOWLEDGMENT We have presented this paper "Concept of Hydrogen Technology in Dual Combustion Engines" in various reputed institutions such as IITs (Indian Institute of Technology) and NITs ISSN: Page 181

6 (National Institute of Technology). In these competitions we were evaluated by technical experts in this field of engineering. They gave us positive reviews and also provided us with some valuable inputs. We would like to thank them whole heartedly for these inputs as it played a vital role in the development of this concept. We had presented this research paper in a student convention in front of a panel of research experts. Our novel concept of engine technology received humongous applause from them. We got the 1st place in the event and the KNIMBUS YOUNG INNOVATOR AWARD for the year In addition, we were also sanctioned an prize amount of Rs in Indian money. We have now started the prototyping of this project. It is with great pleasure I acknowledge the KNIMBUS organization for their enthusiastic support and motivation. REFERENCES [1] - U.S. Department of Energy web site for information on energy efficiency and renewable energy technologies. [2] Peter Van Blarigan, Advanced Internal Combustion Engine Research, Sandia National Laboratories, Livermore, California. [3] Kenneth Gillingham, Hydrogen Internal Combustion Engine Vehicles: A Prudent Intermediate Step or a Step in the Wrong Direction? Stanford University. [4] J.M. Gomes Antunes, R. Mikalsen, A.P. Roskilly, An experimental study of a direct injection compression ignition hydrogen engine, Sir Joseph Swan Institute for Energy Research, Newcastle University, Newcastle upon Tyne, NE1 7RU, England, UK. [5] Mrdjan Jankovic and Stephen W. Magner, Variable cam timing Consequences to automotive engine control design, Ford Research Laboratory. ISSN: Page 182

Module 3: Influence of Engine Design and Operating Parameters on Emissions Lecture 14:Effect of SI Engine Design and Operating Variables on Emissions

Module 3: Influence of Engine Design and Operating Parameters on Emissions Lecture 14:Effect of SI Engine Design and Operating Variables on Emissions Module 3: Influence of Engine Design and Operating Parameters on Emissions Effect of SI Engine Design and Operating Variables on Emissions The Lecture Contains: SI Engine Variables and Emissions Compression

More information

Module7:Advanced Combustion Systems and Alternative Powerplants Lecture 32:Stratified Charge Engines

Module7:Advanced Combustion Systems and Alternative Powerplants Lecture 32:Stratified Charge Engines ADVANCED COMBUSTION SYSTEMS AND ALTERNATIVE POWERPLANTS The Lecture Contains: DIRECT INJECTION STRATIFIED CHARGE (DISC) ENGINES Historical Overview Potential Advantages of DISC Engines DISC Engine Combustion

More information

VALVE TIMING DIAGRAM FOR SI ENGINE VALVE TIMING DIAGRAM FOR CI ENGINE

VALVE TIMING DIAGRAM FOR SI ENGINE VALVE TIMING DIAGRAM FOR CI ENGINE VALVE TIMING DIAGRAM FOR SI ENGINE VALVE TIMING DIAGRAM FOR CI ENGINE Page 1 of 13 EFFECT OF VALVE TIMING DIAGRAM ON VOLUMETRIC EFFICIENCY: Qu. 1:Why Inlet valve is closed after the Bottom Dead Centre

More information

PERFORMANCE AND EMISSION ANALYSIS OF DIESEL ENGINE BY INJECTING DIETHYL ETHER WITH AND WITHOUT EGR USING DPF

PERFORMANCE AND EMISSION ANALYSIS OF DIESEL ENGINE BY INJECTING DIETHYL ETHER WITH AND WITHOUT EGR USING DPF PERFORMANCE AND EMISSION ANALYSIS OF DIESEL ENGINE BY INJECTING DIETHYL ETHER WITH AND WITHOUT EGR USING DPF PROJECT REFERENCE NO. : 37S1036 COLLEGE BRANCH GUIDES : KS INSTITUTE OF TECHNOLOGY, BANGALORE

More information

ENGINE & WORKING PRINCIPLES

ENGINE & WORKING PRINCIPLES ENGINE & WORKING PRINCIPLES A heat engine is a machine, which converts heat energy into mechanical energy. The combustion of fuel such as coal, petrol, diesel generates heat. This heat is supplied to a

More information

Homogeneous Charge Compression Ignition (HCCI) Engines

Homogeneous Charge Compression Ignition (HCCI) Engines Homogeneous Charge Compression Ignition (HCCI) Engines Aravind. I. Garagad. Shri Dharmasthala Manjunatheshwara College of Engineering and Technology, Dharwad, Karnataka, India. ABSTRACT Large reductions

More information

Comparative Study Of Four Stroke Diesel And Petrol Engine.

Comparative Study Of Four Stroke Diesel And Petrol Engine. Comparative Study Of Four Stroke Diesel And Petrol Engine. Aim: To study the construction and working of 4- stroke petrol / diesel engine. Theory: A machine or device which derives heat from the combustion

More information

GASOLINE DIRECT INJECTION IN SI ENGINES B. PAVAN VISWANADH P. ASHOK KUMAR. Mobile No : Mobile No:

GASOLINE DIRECT INJECTION IN SI ENGINES B. PAVAN VISWANADH P. ASHOK KUMAR. Mobile No : Mobile No: GASOLINE DIRECT INJECTION IN SI ENGINES SUBMIT TED BY B. PAVAN VISWANADH P. ASHOK KUMAR Y06ME011, III/IV B. Tech Y06ME003, III/IV B. Tech Pavan.visu@gmail.com ashok.me003@gmail.com Mobile No :9291323516

More information

UNIT IV INTERNAL COMBUSTION ENGINES

UNIT IV INTERNAL COMBUSTION ENGINES UNIT IV INTERNAL COMBUSTION ENGINES Objectives After the completion of this chapter, Students 1. To know the different parts of IC engines and their functions. 2. To understand the working principle of

More information

INTRODUCTION OF FOUR STROKE ENGINE

INTRODUCTION OF FOUR STROKE ENGINE INTRODUCTION OF FOUR STROKE ENGINE Engine: An engine is motor which converts chemical energy into mechanical energy Fuel/petrol engine: A petrol engine (known as a gasoline engine in North America) is

More information

4. With a neat sketch explain in detail about the different types of fuel injection system used in SI engines. (May 2016)

4. With a neat sketch explain in detail about the different types of fuel injection system used in SI engines. (May 2016) SYED AMMAL ENGINEERING COLLEGE (Approved by the AICTE, New Delhi, Govt. of Tamilnadu and Affiliated to Anna University, Chennai) Established in 1998 - An ISO 9001:2000 Certified Institution Dr. E.M.Abdullah

More information

Influence of Fuel Injector Position of Port-fuel Injection Retrofit-kit to the Performances of Small Gasoline Engine

Influence of Fuel Injector Position of Port-fuel Injection Retrofit-kit to the Performances of Small Gasoline Engine Influence of Fuel Injector Position of Port-fuel Injection Retrofit-kit to the Performances of Small Gasoline Engine M. F. Hushim a,*, A. J. Alimin a, L. A. Rashid a and M. F. Chamari a a Automotive Research

More information

CONTROLLING COMBUSTION IN HCCI DIESEL ENGINES

CONTROLLING COMBUSTION IN HCCI DIESEL ENGINES CONTROLLING COMBUSTION IN HCCI DIESEL ENGINES Nicolae Ispas *, Mircea Năstăsoiu, Mihai Dogariu Transilvania University of Brasov KEYWORDS HCCI, Diesel Engine, controlling, air-fuel mixing combustion ABSTRACT

More information

A Research Oriented Study On Waste Heat Recovery System In An Ic Engine

A Research Oriented Study On Waste Heat Recovery System In An Ic Engine International Journal of Engineering Inventions e-issn: 2278-7461, p-issn: 2319-6491 Volume 3, Issue 12 [December. 2014] PP: 72-76 A Research Oriented Study On Waste Heat Recovery System In An Ic Engine

More information

STATE OF THE ART OF PLASMATRON FUEL REFORMERS FOR HOMOGENEOUS CHARGE COMPRESSION IGNITION ENGINES

STATE OF THE ART OF PLASMATRON FUEL REFORMERS FOR HOMOGENEOUS CHARGE COMPRESSION IGNITION ENGINES Bulletin of the Transilvania University of Braşov Vol. 3 (52) - 2010 Series I: Engineering Sciences STATE OF THE ART OF PLASMATRON FUEL REFORMERS FOR HOMOGENEOUS CHARGE COMPRESSION IGNITION ENGINES R.

More information

Comparative performance and emissions study of a lean mixed DTS-i spark ignition engine operated on single spark and dual spark

Comparative performance and emissions study of a lean mixed DTS-i spark ignition engine operated on single spark and dual spark 26 IJEDR Volume 4, Issue 2 ISSN: 232-9939 Comparative performance and emissions study of a lean mixed DTS-i spark ignition engine operated on single spark and dual spark Hardik Bambhania, 2 Vijay Pithiya,

More information

SAMPLE STUDY MATERIAL

SAMPLE STUDY MATERIAL IC Engine - ME GATE, IES, PSU 1 SAMPLE STUDY MATERIAL Mechanical Engineering ME Postal Correspondence Course Internal Combustion Engine GATE, IES & PSUs IC Engine - ME GATE, IES, PSU 2 C O N T E N T 1.

More information

EFFECT OF INJECTION ORIENTATION ON EXHAUST EMISSIONS IN A DI DIESEL ENGINE: THROUGH CFD SIMULATION

EFFECT OF INJECTION ORIENTATION ON EXHAUST EMISSIONS IN A DI DIESEL ENGINE: THROUGH CFD SIMULATION EFFECT OF INJECTION ORIENTATION ON EXHAUST EMISSIONS IN A DI DIESEL ENGINE: THROUGH CFD SIMULATION *P. Manoj Kumar 1, V. Pandurangadu 2, V.V. Pratibha Bharathi 3 and V.V. Naga Deepthi 4 1 Department of

More information

CHAPTER 8 EFFECTS OF COMBUSTION CHAMBER GEOMETRIES

CHAPTER 8 EFFECTS OF COMBUSTION CHAMBER GEOMETRIES 112 CHAPTER 8 EFFECTS OF COMBUSTION CHAMBER GEOMETRIES 8.1 INTRODUCTION Energy conservation and emissions have become of increasing concern over the past few decades. More stringent emission laws along

More information

A FEASIBILITY STUDY ON WASTE HEAT RECOVERY IN AN IC ENGINE USING ELECTRO TURBO GENERATION

A FEASIBILITY STUDY ON WASTE HEAT RECOVERY IN AN IC ENGINE USING ELECTRO TURBO GENERATION A FEASIBILITY STUDY ON WASTE HEAT RECOVERY IN AN IC ENGINE USING ELECTRO TURBO GENERATION S.N.Srinivasa Dhaya Prasad 1 N.Parameshwari 2 1 Assistant Professor, Department of Automobile Engg., SACS MAVMM

More information

ENGINES ENGINE OPERATION

ENGINES ENGINE OPERATION ENGINES ENGINE OPERATION Because the most widely used piston engine is the four-stroke cycle type, it will be used as the example for this section, Engine Operation and as the basis for comparison in the

More information

Internal Combustion Engines

Internal Combustion Engines Emissions & Air Pollution Lecture 3 1 Outline In this lecture we will discuss emission control strategies: Fuel modifications Engine technology Exhaust gas aftertreatment We will become particularly familiar

More information

Chapter 4 ANALYTICAL WORK: COMBUSTION MODELING

Chapter 4 ANALYTICAL WORK: COMBUSTION MODELING a 4.3.4 Effect of various parameters on combustion in IC engines: Compression ratio: A higher compression ratio increases the pressure and temperature of the working mixture which reduce the initial preparation

More information

The Internal combustion engine (Otto Cycle)

The Internal combustion engine (Otto Cycle) The Internal combustion engine (Otto Cycle) The Otto cycle is a set of processes used by spark ignition internal combustion engines (2-stroke or 4-stroke cycles). These engines a) ingest a mixture of fuel

More information

Combustion and Emission Characteristics of Jatropha Blend as a Biodiesel for Compression Ignition Engine with Variation of Compression Ratio

Combustion and Emission Characteristics of Jatropha Blend as a Biodiesel for Compression Ignition Engine with Variation of Compression Ratio International Review of Applied Engineering Research. ISSN 2248-9967 Volume 4, Number 1 (2014), pp. 39-46 Research India Publications http://www.ripublication.com/iraer.htm Combustion and Emission Characteristics

More information

PIEZO ELECTRIC CONTROL HYDRAULIC STACKS FOR THE CAMLESS ENGINE

PIEZO ELECTRIC CONTROL HYDRAULIC STACKS FOR THE CAMLESS ENGINE PIEZO ELECTRIC CONTROL HYDRAULIC STACKS FOR THE CAMLESS ENGINE PROJECT REFERENCE NO. : 37S0751 COLLEGE : BASAVAKALYAN ENGINEERING COLLEGE, BIDAR BRANCH : MECHANICAL ENGINEERING GUIDE : SANTOSH PATIL STUDENTS

More information

Internal Combustion Engines

Internal Combustion Engines Internal Combustion Engines The internal combustion engine is an engine in which the burning of a fuel occurs in a confined space called a combustion chamber. This exothermic reaction of a fuel with an

More information

State of the Art (SOTA) Manual for Internal Combustion Engines

State of the Art (SOTA) Manual for Internal Combustion Engines State of the Art (SOTA) Manual for Internal Combustion Engines July 1997 State of New Jersey Department of Environmental Protection Air Quality Permitting Program State of the Art (SOTA) Manual for Internal

More information

Variable Intake Manifold Development trend and technology

Variable Intake Manifold Development trend and technology Variable Intake Manifold Development trend and technology Author Taehwan Kim Managed Programs LLC (tkim@managed-programs.com) Abstract The automotive air intake manifold has been playing a critical role

More information

TECHNICAL PAPER FOR STUDENTS AND YOUNG ENGINEERS - FISITA WORLD AUTOMOTIVE CONGRESS, BARCELONA

TECHNICAL PAPER FOR STUDENTS AND YOUNG ENGINEERS - FISITA WORLD AUTOMOTIVE CONGRESS, BARCELONA TECHNICAL PAPER FOR STUDENTS AND YOUNG ENGINEERS - FISITA WORLD AUTOMOTIVE CONGRESS, BARCELONA 2 - TITLE: Topic: INVESTIGATION OF THE EFFECTS OF HYDROGEN ADDITION ON PERFORMANCE AND EXHAUST EMISSIONS OF

More information

Design of Plastic a Plastic Engine working on Modified Atkinson Cycle

Design of Plastic a Plastic Engine working on Modified Atkinson Cycle Design of Plastic a Plastic Engine working on Modified Atkinson Cycle Arunav Banerjee 1, Sanjay Choudhary 2 arunavjoel@gmail.com, sccipet@gmail.com Abstract The reduction of cost has become a major goal

More information

An Experimental Analysis of IC Engine by using Hydrogen Blend

An Experimental Analysis of IC Engine by using Hydrogen Blend IJSTE - International Journal of Science Technology & Engineering Volume 2 Issue 11 May 2016 ISSN (online): 2349-784X An Experimental Analysis of IC Engine by using Hydrogen Blend Patel Chetan N. M.E Student

More information

Effect of hydrogen and oxygen addition as a lean mixture on emissions and performance characteristics of a two wheeler gasoline engine

Effect of hydrogen and oxygen addition as a lean mixture on emissions and performance characteristics of a two wheeler gasoline engine 216 IJEDR Volume 4, Issue 2 ISSN: 2321-9939 Effect of hydrogen and oxygen addition as a lean mixture on emissions and performance characteristics of a two wheeler gasoline engine 1 Hardik Bambhania, 2

More information

Emission from gasoline powered vehicles are classified as 1. Exhaust emission 2. Crank case emission 3. Evaporative emission. Table 1.

Emission from gasoline powered vehicles are classified as 1. Exhaust emission 2. Crank case emission 3. Evaporative emission. Table 1. Introduction: Main three types of automotive vehicle being used 1. Passenger cars powered by four stroke gasoline engines 2. Motor cycles, scooters and auto rickshaws powered mostly by small two stroke

More information

AN ANALYSIS OF EFFECT OF VARIABLE COMPRESSION RATIO IN C.I. ENGINE USING TURBOCHARGER

AN ANALYSIS OF EFFECT OF VARIABLE COMPRESSION RATIO IN C.I. ENGINE USING TURBOCHARGER AN ANALYSIS OF EFFECT OF VARIABLE COMPRESSION RATIO IN C.I. ENGINE USING TURBOCHARGER E.Saravanapprabhu 1, M.Mahendran 2 1E.Saravanapprabhu, PG Student, Thermal Engineering, Department of Mechanical Engineering,

More information

Homogeneous Charge Compression Ignition combustion and fuel composition

Homogeneous Charge Compression Ignition combustion and fuel composition Loughborough University Institutional Repository Homogeneous Charge Compression Ignition combustion and fuel composition This item was submitted to Loughborough University's Institutional Repository by

More information

Comparison of Swirl, Turbulence Generating Devices in Compression ignition Engine

Comparison of Swirl, Turbulence Generating Devices in Compression ignition Engine Available online atwww.scholarsresearchlibrary.com Archives of Applied Science Research, 2016, 8 (7):31-40 (http://scholarsresearchlibrary.com/archive.html) ISSN 0975-508X CODEN (USA) AASRC9 Comparison

More information

(v) Cylinder volume It is the volume of a gas inside the cylinder when the piston is at Bottom Dead Centre (B.D.C) and is denoted by V.

(v) Cylinder volume It is the volume of a gas inside the cylinder when the piston is at Bottom Dead Centre (B.D.C) and is denoted by V. UNIT II GAS POWER CYCLES AIR STANDARD CYCLES Air standard cycles are used for comparison of thermal efficiencies of I.C engines. Engines working with air standard cycles are known as air standard engines.

More information

EFFECT OF EGR AND CYCLONIC SEPARATOR ON EMISSIONS IN DI DIESEL ENGINES

EFFECT OF EGR AND CYCLONIC SEPARATOR ON EMISSIONS IN DI DIESEL ENGINES Proceedings of the International Conference on Mechanical Engineering 27 (ICME27) 29-31 December 27, Dhaka, Bangladesh ICME7-TH-9 EFFECT OF EGR AND CYCLONIC SEPARATOR ON EMISSIONS IN DI DIESEL ENGINES

More information

Study of the Effect of CR on the Performance and Emissions of Diesel Engine Using Butanol-diesel Blends

Study of the Effect of CR on the Performance and Emissions of Diesel Engine Using Butanol-diesel Blends International Journal of Current Engineering and Technology E-ISSN 77 416, P-ISSN 47 5161 16 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article Study of the

More information

Study of Performance and Emission Characteristics of a Two Stroke Si Engine Operated with Gasoline Manifold Injectionand Carburetion

Study of Performance and Emission Characteristics of a Two Stroke Si Engine Operated with Gasoline Manifold Injectionand Carburetion Indian Journal of Science and Technology, Vol 9(37), DOI: 10.17485/ijst/2016/v9i37/101984, October 2016 ISSN (Print) : 0974-6846 ISSN (Online) : 0974-5645 Study of Performance and Emission Characteristics

More information

ANALYSIS OF EXHAUST GAS RECIRCULATION (EGR) SYSTEM

ANALYSIS OF EXHAUST GAS RECIRCULATION (EGR) SYSTEM ANALYSIS OF EXHAUST GAS RECIRCULATION (EGR) SYSTEM,, ABSTRACT Exhaust gas recirculation (EGR) is a way to control in-cylinder NOx and carbon production and is used on most modern high-speed direct injection

More information

Analysis of Emission characteristics on Compression Ignition Engine using Dual Fuel Mode for Variable Speed

Analysis of Emission characteristics on Compression Ignition Engine using Dual Fuel Mode for Variable Speed International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 4, Issue 3 (October 2012), PP. 23-27 Analysis of Emission characteristics on Compression

More information

Available online Journal of Scientific and Engineering Research, 2018, 5(9): Research Article

Available online   Journal of Scientific and Engineering Research, 2018, 5(9): Research Article Available online www.jsaer.com, 2018, 5(9):62-67 Research Article ISSN: 2394-2630 CODEN(USA): JSERBR A Study on Engine Performance and Emission Characteristics of LPG Engine with Hydrogen Addition Sung

More information

The Internal Combustion Engine In Theory And Practice

The Internal Combustion Engine In Theory And Practice We have made it easy for you to find a PDF Ebooks without any digging. And by having access to our ebooks online or by storing it on your computer, you have convenient answers with the internal combustion

More information

Simulation of Performance Parameters of Spark Ignition Engine for Various Ignition Timings

Simulation of Performance Parameters of Spark Ignition Engine for Various Ignition Timings Research Article International Journal of Current Engineering and Technology ISSN 2277-4106 2013 INPRESSCO. All Rights Reserved. Available at http://inpressco.com/category/ijcet Simulation of Performance

More information

INFLUENCE OF THE NUMBER OF NOZZLE HOLES ON THE UNBURNED FUEL IN DIESEL ENGINE

INFLUENCE OF THE NUMBER OF NOZZLE HOLES ON THE UNBURNED FUEL IN DIESEL ENGINE INFLUENCE OF THE NUMBER OF NOZZLE HOLES ON THE UNBURNED FUEL IN DIESEL ENGINE 1. UNIVERSITY OF RUSE, 8, STUDENTSKA STR., 7017 RUSE, BULGARIA 1. Simeon ILIEV ABSTRACT: The objective of this paper is to

More information

PERFORMANCE EVALUATION OF A FOUR STROKE COMPRESSION IGNITION ENGINE WITH VARIOUS HELICAL THREADED INTAKE MANIFOLDS

PERFORMANCE EVALUATION OF A FOUR STROKE COMPRESSION IGNITION ENGINE WITH VARIOUS HELICAL THREADED INTAKE MANIFOLDS PERFORMANCE EVALUATION OF A FOUR STROKE COMPRESSION IGNITION ENGINE WITH VARIOUS HELICAL THREADED INTAKE MANIFOLDS V.CVS PHANEENDRA, V.PANDURANGADU & M. CHANDRAMOULI Mechanical Engineering, JNTUCEA, Anantapur,

More information

POSIBILITIES TO IMPROVED HOMOGENEOUS CHARGE IN INTERNAL COMBUSTION ENGINES, USING C.F.D. PROGRAM

POSIBILITIES TO IMPROVED HOMOGENEOUS CHARGE IN INTERNAL COMBUSTION ENGINES, USING C.F.D. PROGRAM POSIBILITIES TO IMPROVED HOMOGENEOUS CHARGE IN INTERNAL COMBUSTION ENGINES, USING C.F.D. PROGRAM Alexandru-Bogdan Muntean *, Anghel,Chiru, Ruxandra-Cristina (Dica) Stanescu, Cristian Soimaru Transilvania

More information

INTERNAL COMBUSTION ENGINE (SKMM 4413)

INTERNAL COMBUSTION ENGINE (SKMM 4413) INTERNAL COMBUSTION ENGINE (SKMM 4413) Dr. Mohd Farid bin Muhamad Said Room : Block P21, Level 1, Automotive Development Centre (ADC) Tel : 07-5535449 Email: mfarid@fkm.utm.my HISTORY OF ICE History of

More information

Prediction on Increasing the Efficiency of Single Cylinder DI Diesel Engine Using EGR System

Prediction on Increasing the Efficiency of Single Cylinder DI Diesel Engine Using EGR System International OPEN ACCESS Journal Of Modern Engineering Research (IJMER) Prediction on Increasing the Efficiency of Single Cylinder DI Diesel Engine Using EGR System P.Muni Raja Chandra 1, Ayaz Ahmed 2,

More information

THE INFLUENCE OF THE EGR RATE ON A HCCI ENGINE MODEL CALCULATED WITH THE SINGLE ZONE HCCI METHOD

THE INFLUENCE OF THE EGR RATE ON A HCCI ENGINE MODEL CALCULATED WITH THE SINGLE ZONE HCCI METHOD CONAT243 THE INFLUENCE OF THE EGR RATE ON A HCCI ENGINE MODEL CALCULATED WITH THE SINGLE ZONE HCCI METHOD KEYWORDS HCCI, EGR, heat release rate Radu Cosgarea *, Corneliu Cofaru, Mihai Aleonte Transilvania

More information

Concept of 3-Cylinder Engine

Concept of 3-Cylinder Engine Concept of 3-Cylinder Engine RAJAN SINGH THAKUR DEPARTMENT OF MECHANICAL ENGINEERING, GBPEC PAURI GARHWAL, UTTARKHAND, INDIA Abstract: The 3-cylinder engine consist of three cylinders, two cylinder of

More information

International Journal of Scientific & Engineering Research, Volume 7, Issue 8, August-2016 ISSN

International Journal of Scientific & Engineering Research, Volume 7, Issue 8, August-2016 ISSN ISSN 2229-5518 2417 Experimental Investigation of a Two Stroke SI Engine Operated with LPG Induction, Gasoline Manifold Injection and Carburetion V. Gopalakrishnan and M.Loganathan Abstract In this experimental

More information

Performance Enhancement & Emission Reduction of Single Cylinder S.I. Engine using Tri Fuels -An Experimental Investigation

Performance Enhancement & Emission Reduction of Single Cylinder S.I. Engine using Tri Fuels -An Experimental Investigation IJSTE - International Journal of Science Technology & Engineering Volume 1 Issue 11 May 2015 ISSN (online): 2349-784X Performance Enhancement & Emission Reduction of Single Cylinder S.I. Engine using Tri

More information

REDUCTION OF EMISSIONS BY ENHANCING AIR SWIRL IN A DIESEL ENGINE WITH GROOVED CYLINDER HEAD

REDUCTION OF EMISSIONS BY ENHANCING AIR SWIRL IN A DIESEL ENGINE WITH GROOVED CYLINDER HEAD REDUCTION OF EMISSIONS BY ENHANCING AIR SWIRL IN A DIESEL ENGINE WITH GROOVED CYLINDER HEAD Dr.S.L.V. Prasad 1, Prof.V.Pandurangadu 2, Dr.P.Manoj Kumar 3, Dr G. Naga Malleshwara Rao 4 Dept.of Mechanical

More information

EFFECT OF H 2 + O 2 GAS MIXTURE ADDITION ON EMISSONS AND PERFORMANCE OF AN SI ENGINE

EFFECT OF H 2 + O 2 GAS MIXTURE ADDITION ON EMISSONS AND PERFORMANCE OF AN SI ENGINE EFFECT OF H 2 + O 2 GAS MIXTURE ADDITION ON EMISSONS AND PERFORMANCE OF AN SI ENGINE M.Sc. Karagoz Y. 1, M.Sc. Orak E. 1, Assist. Prof. Dr. Sandalci T. 1, B.Sc. Uluturk M. 1 Department of Mechanical Engineering,

More information

Inside a typical car engine. Almost all cars today use a reciprocating internal combustion engine because this engine is:

Inside a typical car engine. Almost all cars today use a reciprocating internal combustion engine because this engine is: Tech Torque HOW PETROL ENGINES WORK The Basics The purpose of a gasoline car engine is to convert gasoline into motion so that your car can move. Currently the easiest way to create motion from gasoline

More information

INTERNATIONAL JOURNAL OF ADVANCED RESEARCH IN ENGINEERING AND TECHNOLOGY (IJARET)

INTERNATIONAL JOURNAL OF ADVANCED RESEARCH IN ENGINEERING AND TECHNOLOGY (IJARET) INTERNATIONAL JOURNAL OF ADVANCED RESEARCH IN ENGINEERING AND TECHNOLOGY (IJARET) International Journal of Advanced Research in Engineering and Technology (IJARET), ISSN ISSN 0976-6480 (Print) ISSN 0976-6499

More information

Potential of Large Output Power, High Thermal Efficiency, Near-zero NOx Emission, Supercharged, Lean-burn, Hydrogen-fuelled, Direct Injection Engines

Potential of Large Output Power, High Thermal Efficiency, Near-zero NOx Emission, Supercharged, Lean-burn, Hydrogen-fuelled, Direct Injection Engines Available online at www.sciencedirect.com Energy Procedia 29 (2012 ) 455 462 World Hydrogen Energy Conference 2012 Potential of Large Output Power, High Thermal Efficiency, Near-zero NOx Emission, Supercharged,

More information

Rotary Internal Combustion Engine: Inventor: Gary Allen Schwartz

Rotary Internal Combustion Engine: Inventor: Gary Allen Schwartz Rotary Internal Combustion Engine: Inventor: Gary Allen Schwartz 1 The following is a design for a circular engine that can run on multiple fuels. It is much more efficient than traditional reciprocating

More information

OBJECTIVE: GENERAL ASPECTS ABOUT ENGINES MECHANISM:

OBJECTIVE: GENERAL ASPECTS ABOUT ENGINES MECHANISM: LANDMARK UNIVERSITY, OMU-ARAN LECTURE NOTE 3 COLLEGE: COLLEGE OF SCIENCE AND ENGINEERING DEPARTMENT: MECHANICAL ENGINEERING Course code: MCE 211 Course title: Introduction to Mechanical Engineering Credit

More information

EXPERIMENTAL INVESTIGATION OF THERMAL PERFORMANCE OF PETROL ENGINE USING FUEL CATALYST

EXPERIMENTAL INVESTIGATION OF THERMAL PERFORMANCE OF PETROL ENGINE USING FUEL CATALYST EXPERIMENTAL INVESTIGATION OF THERMAL PERFORMANCE OF PETROL ENGINE USING FUEL CATALYST Sagar.A.Patil 1, Priyanka.V.Kadam 2, Mangesh.S.Yeolekar 3, Sandip.B.Sonawane 4 1 Student (Final Year), Department

More information

UNIT 2 POWER PLANTS 2.1 INTRODUCTION 2.2 CLASSIFICATION OF IC ENGINES. Objectives. Structure. 2.1 Introduction

UNIT 2 POWER PLANTS 2.1 INTRODUCTION 2.2 CLASSIFICATION OF IC ENGINES. Objectives. Structure. 2.1 Introduction UNIT 2 POWER PLANTS Power Plants Structure 2.1 Introduction Objectives 2.2 Classification of IC Engines 2.3 Four Stroke Engines versus Two Stroke Engines 2.4 Working of Four Stroke Petrol Engine 2.5 Working

More information

Technology Trends and Products for Accessory Drive Belt Systems

Technology Trends and Products for Accessory Drive Belt Systems [ New Product ] Technology Trends and Products for Accessory Drive Belt Systems Ayumi AKIYAMA* Hiroo MORIMOTO** As a superior car in the mileage, strong and mild HEVs are increasing and the accessory drive

More information

Week 10. Gas Power Cycles. ME 300 Thermodynamics II 1

Week 10. Gas Power Cycles. ME 300 Thermodynamics II 1 Week 10 Gas Power Cycles ME 300 Thermodynamics II 1 Today s Outline Gas power cycles Internal combustion engines Four-stroke cycle Thermodynamic cycles Ideal cycle ME 300 Thermodynamics II 2 Gas Power

More information

Experimental Analysis of Utilization of Heat Using Methanol - Diesel Blended Fuel in Four Stroke Single Cylinder Water Cooled Diesel Engine

Experimental Analysis of Utilization of Heat Using Methanol - Diesel Blended Fuel in Four Stroke Single Cylinder Water Cooled Diesel Engine Experimental Analysis of Utilization of Heat Using Methanol - Diesel Blended Fuel in Four Stroke Single Cylinder Water Cooled Diesel Engine T. Singha 1, S. Sakhari 1, T. Sarkar 1, P. Das 1, A. Dutta 1,

More information

Direct Injection Ethanol Boosted Gasoline Engines: Biofuel Leveraging For Cost Effective Reduction of Oil Dependence and CO 2 Emissions

Direct Injection Ethanol Boosted Gasoline Engines: Biofuel Leveraging For Cost Effective Reduction of Oil Dependence and CO 2 Emissions Direct Injection Ethanol Boosted Gasoline Engines: Biofuel Leveraging For Cost Effective Reduction of Oil Dependence and CO 2 Emissions D.R. Cohn* L. Bromberg* J.B. Heywood Massachusetts Institute of Technology

More information

IC ENGINE(4 STROKE) G.H.R.I.E&M JALGAON. Sec.(Mech) Sec.(Mech) Sec.(Mech) Sec.(Mech) Mehta chirag Shah sagar Patel jainish talele amit

IC ENGINE(4 STROKE) G.H.R.I.E&M JALGAON. Sec.(Mech) Sec.(Mech) Sec.(Mech) Sec.(Mech) Mehta chirag Shah sagar Patel jainish talele amit IC ENGINE(4 STROKE) G.H.R.I.E&M JALGAON Mehta chirag Shah sagar Patel jainish talele amit Sec.(Mech) Sec.(Mech) Sec.(Mech) Sec.(Mech) 9096297071 9028248697 9028913994 8087260063 1 Abstract The four stroke,

More information

ABSTRACT. Electronic fuel injection, Microcontroller, CNG, Manifold injection. Manifold injection with uniflow scavenging.

ABSTRACT. Electronic fuel injection, Microcontroller, CNG, Manifold injection. Manifold injection with uniflow scavenging. ABSTRACT Key Words: Electronic fuel injection, Microcontroller, CNG, Manifold injection. Manifold injection with uniflow scavenging. Manifold injection with uniflow stratified scavenging. Direct CNG injection.

More information

Crankcase scavenging.

Crankcase scavenging. Software for engine simulation and optimization www.diesel-rk.bmstu.ru The full cycle thermodynamic engine simulation software DIESEL-RK is designed for simulating and optimizing working processes of two-

More information

Internal Combustion Engines

Internal Combustion Engines Introduction Lecture 1 1 Outline In this lecture we will learn about: Definition of internal combustion Development of the internal combustion engine Different engine classifications We will also draw

More information

Principles of Engine Operation. Information

Principles of Engine Operation. Information Internal Combustion Engines MAK 4070E Principles of Engine Operation Prof.Dr. Cem Soruşbay Istanbul Technical University Information Prof.Dr. Cem Soruşbay İ.T.Ü. Makina Fakültesi Motorlar ve Taşıtlar Laboratuvarı

More information

Influence of Injection Timing on the Performance of Dual Fuel Compression Ignition Engine with Exhaust Gas Recirculation

Influence of Injection Timing on the Performance of Dual Fuel Compression Ignition Engine with Exhaust Gas Recirculation International Journal of Engineering Research and Development ISSN: 2278-067X, Volume 1, Issue 11 (July 2012), PP. 36-42 www.ijerd.com Influence of Injection Timing on the Performance of Dual Fuel Compression

More information

(a) then mean effective pressure and the indicated power for each end ; (b) the total indicated power : [16]

(a) then mean effective pressure and the indicated power for each end ; (b) the total indicated power : [16] Code No: R05220304 Set No. 1 II B.Tech II Semester Regular Examinations, Apr/May 2007 THERMAL ENGINEERING-I ( Common to Mechanical Engineering and Automobile Engineering) Time: 3 hours Max Marks: 80 Answer

More information

Page 2. (a) (i) Show that during the change AB the gas undergoes an isothermal change.

Page 2. (a) (i) Show that during the change AB the gas undergoes an isothermal change. Q1.The Carnot cycle is the most efficient theoretical cycle of changes for a fixed mass of gas in a heat engine. The graph below shows the pressure volume (p V) diagram for a gas undergoing a Carnot cycle

More information

Use of Alternative Fuel in Lower Heat Rejection Engine with Different Insulation Levels

Use of Alternative Fuel in Lower Heat Rejection Engine with Different Insulation Levels International Journal of Engineering Research and Technology. ISSN 0974-3154 Volume 6, Number 4 (2013), pp. 499-506 International Research Publication House http://www.irphouse.com Use of Alternative Fuel

More information

The influence of thermal regime on gasoline direct injection engine performance and emissions

The influence of thermal regime on gasoline direct injection engine performance and emissions IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS The influence of thermal regime on gasoline direct injection engine performance and emissions To cite this article: C I Leahu

More information

Module 2:Genesis and Mechanism of Formation of Engine Emissions Lecture 3: Introduction to Pollutant Formation POLLUTANT FORMATION

Module 2:Genesis and Mechanism of Formation of Engine Emissions Lecture 3: Introduction to Pollutant Formation POLLUTANT FORMATION Module 2:Genesis and Mechanism of Formation of Engine Emissions POLLUTANT FORMATION The Lecture Contains: Engine Emissions Typical Exhaust Emission Concentrations Emission Formation in SI Engines Emission

More information

Vivek Pandey 1, V.K. Gupta 2 1,2 Department of Mechanical Engineering, College of Technology, GBPUA&T, Pantnagar, India

Vivek Pandey 1, V.K. Gupta 2 1,2 Department of Mechanical Engineering, College of Technology, GBPUA&T, Pantnagar, India Study of Ethanol Gasoline Blends for Powering Medium Duty Transportation SI Engine Vivek Pandey 1, V.K. Gupta 2 1,2 Department of Mechanical Engineering, College of Technology, GBPUA&T, Pantnagar, India

More information

Six Stroke Engine ABSTRACT 1. INTRODUCTION

Six Stroke Engine ABSTRACT 1. INTRODUCTION Six Stroke Engine Shweta Kandari AND Ishant Gupta DEPARTMENT OF MECHANICAL ENGINEEERING DRONACHARYA COLLEGE OF ENGINEERING MAHAMAYA TECHNICAL UNIVERSITY, Noida. ABSTRACT The quest for an engine which having

More information

EXPERIMENTAL INVESTIGATION OF THE PERFORMANCE OF INTERNAL COMBUSTION ENGINE BY WATER/METHANOL INJECTION VELAVAN. R & VIGNESH. C

EXPERIMENTAL INVESTIGATION OF THE PERFORMANCE OF INTERNAL COMBUSTION ENGINE BY WATER/METHANOL INJECTION VELAVAN. R & VIGNESH. C International Journal of Mechanical and Production Engineering Research and Development (IJMPERD) ISSN (P): 2249-6890; ISSN (E): 2249-8001 Vol. 8, Issue 2, Apr 2018, 1059-1064 TJPRC Pvt. Ltd EXPERIMENTAL

More information

NEW CONCEPT OF A ROCKER ENGINE KINEMATIC ANALYSIS

NEW CONCEPT OF A ROCKER ENGINE KINEMATIC ANALYSIS Journal of KONES Powertrain and Transport, Vol. 19, No. 3 2012 NEW CONCEPT OF A ROCKER ENGINE KINEMATIC ANALYSIS Miros aw Szymkowiak Kochanowskiego Street 13, 64-100 Leszno, Poland e-mail: szymkowiak@op.pl

More information

An investigation of hydrogen-fuelled HCCI engine performance and operation

An investigation of hydrogen-fuelled HCCI engine performance and operation An investigation of hydrogen-fuelled HCCI engine performance and operation J.M. Gomes Antunes,R.Mikalsen,A.P.Roskilly Sir Joseph Swan Institute for Energy Research, Newcastle University, United Kingdom.

More information

A.S.P. Sri Vignesh 1, Prof C. Thamotharan 2 1 (Department of Automobile Engineering, Bharath Institute of Science and Technology, Bharath University

A.S.P. Sri Vignesh 1, Prof C. Thamotharan 2 1 (Department of Automobile Engineering, Bharath Institute of Science and Technology, Bharath University International Journal of Engineering Science Invention ISSN (Online): 2319 6734, ISSN (Print): 2319 6726 Volume 4 Issue 3 March 2015 PP.01-06 Engine Performance and Emission Test of Waste Plastic Pyrolysis

More information

HOMER OPTIMIZATION BASED SOLAR WIND HYBRID SYSTEM 1 Supriya A. Barge, 2 Prof. D.B. Pawar,

HOMER OPTIMIZATION BASED SOLAR WIND HYBRID SYSTEM 1 Supriya A. Barge, 2 Prof. D.B. Pawar, 1 HOMER OPTIMIZATION BASED SOLAR WIND HYBRID SYSTEM 1 Supriya A. Barge, 2 Prof. D.B. Pawar, 1,2 E&TC Dept. TSSM s Bhivrabai Sawant College of Engg. & Research, Pune, Maharashtra, India. 1 priyaabarge1711@gmail.com,

More information

Theoretical Study of the effects of Ignition Delay on the Performance of DI Diesel Engine

Theoretical Study of the effects of Ignition Delay on the Performance of DI Diesel Engine Theoretical Study of the effects of Ignition Delay on the Performance of DI Diesel Engine Vivek Shankhdhar a, Neeraj Kumar b a M.Tech Scholar, Moradabad Institute of Technology, India b Asst. Proff. Mechanical

More information

Exhaust Gas Waste Heat Recovery and Utilization System in IC Engine

Exhaust Gas Waste Heat Recovery and Utilization System in IC Engine IJIRST International Journal for Innovative Research in Science & Technology Volume 1 Issue 11 April 2015 ISSN (online): 2349-6010 Exhaust Gas Waste Heat Recovery and Utilization System in IC Engine Alvin

More information

Experimental Investigation of Emission Reduction by Blending Methanol, Ethanol and Biodiesel with diesel on C.I. Engine

Experimental Investigation of Emission Reduction by Blending Methanol, Ethanol and Biodiesel with diesel on C.I. Engine Experimental Investigation of Emission Reduction by Blending Methanol, Ethanol and Biodiesel with diesel on C.I. Engine V. Veeraragavan1, M. Sathiyamoorthy 2 1. Assistant Professor, Department of Mechanical

More information

Effect of Direct Water Injection on Performance and Emission Characteristics of Diesel Engine Fueled with Bio Diesel and Hydrogen

Effect of Direct Water Injection on Performance and Emission Characteristics of Diesel Engine Fueled with Bio Diesel and Hydrogen IJSTE - International Journal of Science Technology & Engineering Volume 3 Issue 05 November 2016 ISSN (online): 2349-784X Effect of Direct Water Injection on Performance and Emission Characteristics of

More information

Normal vs Abnormal Combustion in SI engine. SI Combustion. Turbulent Combustion

Normal vs Abnormal Combustion in SI engine. SI Combustion. Turbulent Combustion Turbulent Combustion The motion of the charge in the engine cylinder is always turbulent, when it is reached by the flame front. The charge motion is usually composed by large vortexes, whose length scales

More information

INFLUENCE OF FUEL TYPE AND INTAKE AIR PROPERTIES ON COMBUSTION CHARACTERISTICS OF HCCI ENGINE

INFLUENCE OF FUEL TYPE AND INTAKE AIR PROPERTIES ON COMBUSTION CHARACTERISTICS OF HCCI ENGINE ENGINEERING FOR RURAL DEVELOPMENT Jelgava, 23.-24.5.213. INFLUENCE OF FUEL TYPE AND INTAKE AIR PROPERTIES ON COMBUSTION CHARACTERISTICS OF HCCI ENGINE Kastytis Laurinaitis, Stasys Slavinskas Aleksandras

More information

Performance Analysis of 4-stroke SI Engine with HHO Generator by Morse Test

Performance Analysis of 4-stroke SI Engine with HHO Generator by Morse Test Performance Analysis of 4-stroke SI Engine with HHO Generator by Morse Test Prof. Mrs. Namrata V. Lotia 1, Zeeshan Jamal 2, Jafar Sadique 3, M. Mohsin Raza 4 1,2,3,4Anjuman college of Engg. and Technology,

More information

Engine Systems. Basic Engine Operation. Firing Order. Four Stroke Cycle. Overhead Valves - OHV. Engine Design. AUMT Engine Systems 4/4/11

Engine Systems. Basic Engine Operation. Firing Order. Four Stroke Cycle. Overhead Valves - OHV. Engine Design. AUMT Engine Systems 4/4/11 Advanced Introduction Brake to Automotive Systems Diagnosis Service and Service Basic Engine Operation Engine Systems Donald Jones Brookhaven College The internal combustion process consists of: admitting

More information

2B.3 - Free Piston Engine Hydraulic Pump

2B.3 - Free Piston Engine Hydraulic Pump 2B.3 - Free Piston Engine Hydraulic Pump Georgia Institute of Technology Milwaukee School of Engineering North Carolina A&T State University Purdue University University of Illinois, Urbana-Champaign University

More information

REVIEW ON GASOLINE DIRECT INJECTION

REVIEW ON GASOLINE DIRECT INJECTION International Journal of Aerospace and Mechanical Engineering REVIEW ON GASOLINE DIRECT INJECTION Jayant Kathuria B.Tech Automotive Design Engineering jkathuria97@gmail.com ABSTRACT Gasoline direct-injection

More information

Thermo-Kinetic Model to Predict Start of Combustion in Homogeneous Charge Compression Ignition Engine

Thermo-Kinetic Model to Predict Start of Combustion in Homogeneous Charge Compression Ignition Engine Thermo-Kinetic Model to Predict Start of Combustion in Homogeneous Charge Compression Ignition Engine Harshit Gupta and J. M. Malliarjuna Abstract Now-a-days homogeneous charge compression ignition combustion

More information

Chandra Prasad B S, Sunil S and Suresha V Asst. Professor, Dept of Mechanical Engineering, SVCE, Bengaluru

Chandra Prasad B S, Sunil S and Suresha V Asst. Professor, Dept of Mechanical Engineering, SVCE, Bengaluru International Journal of Mechanical Engineering and Technology (IJMET) Volume 9, Issue 7, July 2018, pp. 997 1004, Article ID: IJMET_09_07_106 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=9&itype=7

More information

A REVIEW ON EXHAUST GAS RECIRCULATION (EGR) SYSTEM IN IC ENGINES

A REVIEW ON EXHAUST GAS RECIRCULATION (EGR) SYSTEM IN IC ENGINES A REVIEW ON EXHAUST GAS RECIRCULATION (EGR) SYSTEM IN IC ENGINES Jitender Singh 1, Vikas Bansal 2 1,2 Department of Mechanical Engineering, University College of Engineering, Rajasthan Technical University,

More information

Fundamentals of Small Gas Engines

Fundamentals of Small Gas Engines Fundamentals of Small Gas Engines Objectives: Describe the four-stroke cycle engine operation and explain the purpose of each stroke Explain the concept of valve timing Describe two-stroke engine operation

More information