Development Project of Hydrogen Engine System for Heavy Duty Vehicles

Size: px
Start display at page:

Download "Development Project of Hydrogen Engine System for Heavy Duty Vehicles"

Transcription

1 Development Project of Hydrogen Engine System for Heavy Duty Vehicles Yoshio Sato Atsuhiro Kawamura* Environment Research Department National Traffic Safety and Environment Laboratory (NTSEL) 42-27, 7-chome, Jindaiji-higashi Chofu-city, Tokyo, Japan Abstract Now, movement in the world is shifting toward ecological and sustainable action with the influence of the global warming and other environmental issues. Hydrogen engine vehicles have an opportunity to support the decarbonization of the society. This project is the first step to develop a DISI (Direct-Injection Spark-Ignition) multicylinder hydrogen ICE (Internal Combustion Engine) system aimed at combining high power output and low NOx emission. The results of the first activities of the project are as follows: 1) High-pressure hydrogen gas direct injectors with a compact body size and control responsiveness that are suitable for the transient driving of the multi-cylinder hydrogen engine were developed. 2) The performance of the developed hydrogen engine system was evaluated, and the target output was obtained. 3) JE mode transient emission testing of the hydrogen engine system with NSR catalyst and oxidation catalyst was carried out; it showed emissions lower than those specified by the JAPAN 9 emission regulations. Key Words: hydrogen fuel, internal combustion engine, heavy duty vehicles. 1. Introduction In order to prevent air pollution and global warming, the introduction of environmentally-friendly vehicles in both categories (passenger cars and freight trucks) is strongly demanded. To satisfy this demand, electricity and hydrogen, which do not emit CO 2 during consumption, have attracted attention as energy sources for future vehicles. Designers are currently developing passenger cars and shuttle buses that use a battery and a hydrogen FC. For small- and medium-sized trucks, diesel *Former NTSEL researcher hybrid systems can be put into practical use. However, a battery or a hydrogen FC cannot be used in large-sized (heavy duty) trucks, which currently require a high power output. For the aforementioned reasons, the DISI (Direct - Injection Spark-Ignition) multi-cylinder hydrogen ICE (Internal Combustion Engine) system development project for heavy-duty vehicles is promoted by the Nextgeneration Environmentally Friendly Vehicle Development and Commercialization Project (EFV21) of the Ministry of Land, Infrastructure, and Transport (MLIT) of Japan as one of the technical candidates that can greatly reduce the air pollution and global warming contribution of such trucks. 2. Targets of the development project The performance target for the multi-cylinder hydrogen engine system is shown in Table 1. In this project, as for the past development concept about the hydrogen engine system, the high output power and the coexistence of the low exhaust emissions were difficult [1] [2]. Four cylinder was chosen as the minimum number of the cylinders that a stable performance will be able to provide. This table describes a high-performance hydrogen engine system with output and fuel consumption equal to that of a multi-cylinder NA (Natural Aspiration) diesel engine and with ultra-low emissions that meet the JAPAN 9 emission regulations when tested using the Japanese transient emission testing mode for heavy-duty vehicles (JE). Table 1. Performance targets of the project Item Output power Emissions (by JE drive mode) Fuel economy 1 kw by 4-cylinder naturally aspirated (NA) NOx: Less than. g/kwh PM: Near-zero level Target performance CO 2 /CO/NMHC: Near-zero levels The same level as NA base engine ISBN:

2 3. High-pressure hydrogen gas injector A high-pressure hydrogen gas direct injector will be necessary for realizing the high-performance multicylinder hydrogen engine. The injector will be compact in size and able to instantaneously inject a large quantity of hydrogen into the high-pressure combustion chamber. The high-pressure hydrogen gas direct injector developed in this project is shown in Figure 1. This injector is based on a common-rail type direct injector for the base diesel engine, thus maintaining installation compatibility. The hydrogen gas is supplied at a maximum pressure of MPa to maintain its independence from the flow of the working fluid. The opening and closing of the needle valve are performed by controlling the spill amount of a working fluid (diesel oil) supplied from a common rail by the timing of an electromagnetic valve. Thus, this injector aims at achieving the high-speed response needed for multiple-stage injection in the future [3]. In the future specification, non-fuel will be used as the working fluid. A performance evaluation of the four cylinder hydrogen engine system equipped with four pieces of experimentally-produced injectors (injection pressure 1 MPa and working fluid pressure 6 MPa) was performed in which the system was operated for approximately 1 hours. The injectors showed a linear relationship between signals from the idling equivalency injection quantity (about 3 milligrams per injection) and the maximum output equivalency injection quantity (about 27 milligrams per injection), as shown in Figure 2. In addition, leakages from the needle valve sheets were maintained at less than 1 milliliters per minute at standard temperature and pressure (STP). Electric magnet Working fluid drain port Servo valve Flow control plate H 2 inlet Working fluid inlet H 2 (Max. MPa) Working fluid drain Working fluid (Max. 1 MPa) Nozzle cap (a)photo Lift sensor Needle valve H 2 Injection (b)cross-sectional drawing Figure 1. Common-rail type high-pressure hydrogen gas direct injector Injection Rate (mg/cycle) Injection Rate (mg/cycle) Cylinder NO: 4 3 Injector ID: Cylinder NO: 1 Injector ID: 2 y=13.78x R 2 =.96 y=12.91x R 2 = Injection Rate (mg/cycle) Injection Rate (mg/cycle) Cylinder NO: 3 3 Injector ID: 2 1 Cylinder NO: 2 Injector ID: 3 y=12.43x -.1 R 2 =.9 y=13.8x - 7. R 2 = Figure 2. Injection characteristics of the injectors ISBN:

3 4. Performance of developed hydrogen engine The specifications of the multi-cylinder hydrogen engine are shown in Table 2. The combustion chamber configuration is shown in Figure 3, whereas the specifications of the NO x reduction catalyst system are shown in Table 3. The base engine is a mass-produced 4.7-liter Direct-Injection four-cylinder turbo diesel engine (HINO JD) for medium-duty trucks with a GVW of tons. The main remodeling of the base engine involves a reduction of the compression ratio (from 18 to 12.7), an addition of a spark plug to the hole for the glow plug, and a disassembly of the turbocharger. The injector is placed at the center of the combustion chamber of the engine. Base engine Engine type Cooling system No. of valves Engine displacement Bore Stroke Compression ratio Fuel Injector EGR system Ignition system Aspiration Table 2. Specifications of hydrogen engine Item Hino JD-TC 4-cycle inline 4-cylinder Water cooled 4 valves SOHC L 112 mm 1 mm 12.7 : 1 Hydrogen gas Name of injector: TCU Hole type: Dia. 1.2 mm 11 holes (Main: 1 holes, Sub: 1 hole) Injection pressure: 1 MPa Water cooled EGR Spark ignition Specification Natural aspirated (NA) Table 3. Specifications of NOx reduction catalyst system Item Type Content Diameter Cell Thickness Cell Density Composition Primary Catalyst NSR Catalyst 4 L mm.1 mm 93 cells/cm 2 Pt/Rh Secondary Catalyst Oxidation Catalyst 4 L mm.1 mm 93 cells/cm 2 Pt The nozzle hole was designed to discharge a radiating spray so that hydrogen gas is dispensed equally throughout the combustion chamber. Additionally, a side hole was added to the nozzle so that hydrogen gas passes near the spark plug to enable firing to be performed at the end of injection (EOI). The experimental system for the performance examination of the multi-cylinder hydrogen engine system is shown in Figure 4. The engine control was performed using a three-dimensional control map of engine speed and accelerator position for the injection timing, the duration of the injection, the ignition timing, the opening level of the throttle valve, and the opening level of the exhaust gas recirculation (EGR) valve. The working fluid pump for the injectors was driven by an electric motor working at a constant pressure of 6 MPa. It was followed the JAPAN 9 emission regulations using the transient emission testing mode (JE) as closely as possible. The measuring method for exhaust emissions used raw exhaust measurement, and the measuring method for PM used full flow dilution measurement. Injector Spark plug Intake valves Spark plug Top of injector (Nozzle cap) 22 deg I.D. 71 Piston Combustion chamber Injection directions Top of injector (Nozzle cap) Exhaust valves Figure. 3 Combustion chamber configuration of four cylinder hydrogen engine ISBN:

4 ECU Combustion analyzer & Data logger 1 EGR cooler Exhaust MS type Exhaust gas H gas Cam & Crank angle analyzer 2 analyzer analyzer (Direct) (CVS) Exhaust gas temp. Cylinder Laminar press. NOx sensor flow meter EGR H 2 gas injectors Air temp. valve for NSR catalyst Full Intake Catalyst (NSR flow press. + Oxidation) dilution Throttle valve Spark 1 plugs MPa Thermal mass Thermal mass Working fluid flow meters with H 2 gas direct flow meter with pump for surge tanks (for injectors surge tank (for Sampling common-rail injectors) reducing agent) FTIR filter for. PM 6 MPa MPa Engine Regulator dynamometer Common-rail (Working Coriolis mass Data logger 2 Motor fluid for injector operation) flow meter H 2 gas Figure 4. Schematic diagram of experimental apparatus of four cylinder hydrogen engine Brake power (kw) Max. torque of NA test engine (measured): Power of charged base engine: operated with diesel fuel Max. power of NA test engine (measured): operated with hydrogen Set torque of NA test engine (for JE): Set power of NA test engine (for JE): , 1,4 1,8 2, 2,6 3, 3,4 Engine speed (min -1 ) Figure. Engine performance curve Torque of charged base engine: operated with diesel fuel Target max. power by NA engine: Brake torque (Nm) ISBN:

5 The measurement results of the output performance of the four cylinder NA hydrogen engine system and the set point (bold line) of the later JE mode emission testing are shown in Figure. The output performance (dashed line) of the base engine (DI turbo diesel engine) is shown in the same figure. An output exceeding the aim of this project (1 kw) and the same torque as that of the base engine at low engine speed were confirmed. In addition, the electricity consumption of the working fluid pump was around 1.4 kw. Improvement of the engine drive of the working fluid pump and further output improvement by turbo-charging will be included in our future research efforts.. Emission test results of hydrogen engine The emission results of the JE mode transient testing mode are shown in Figure 6. Because it was the control specifications that complicated control logic cannot make, the construction of controlling it had difficulty with NOx reduction in JE mode transient emission testing mode. Therefore, the reducing of the NSR catalyst enough before starting the test was performed. As a result, the NOx emission was very low at the diesel oxidation catalyst (DOC) outlet because of the effect of the storage of NOx emission at the NSR catalyst. Moreover, NOx, CO, NMHC and particulate matter (PM) concentrations were below JAPAN 9 emission regulations. The capacity of the NSR catalyst is assumed to be suitable for engine displacement; however, the possibility of its diminution may need to be investigated in the future. The emission of CO 2 was about.9 g/kwh. A decrease in the working fluid was not confirmed for the injectors in all examinations. Because an increase in THC and CO 2 in exhaust was observed under conditions of acceleration, deceleration, or high load, the measured CO 2 and PM seem to originate from engine oil. Thus, reduction of the inflow of the engine oil to the cylinder Emission (g/kwh) Reguration.2 Engine out (without EGR) Engine out (with EGR) DOC out (With EGR)...1. will be necessary when further reduction of CO 2 and PM are required in the future. 6. Conclusions The planned development of a hydrogen engine system for heavy-duty trucks is one of the technological candidates for air pollution reduction and global warming prevention for the large-sized (heavy-duty) trucks supporting Japanese freightage. This project is the first in Japan to develop a DISI multi-cylinder hydrogen engine system aimed at combining high power output and low NOx emission. The following results were achieved during the initial work on this project: 1) High-pressure (Max. MPa) hydrogen gas direct injectors with a compact body size and control responsiveness corresponding to the transient driving of the four cylinder hydrogen engine (operated hydrogen pressure 1MPa) were developed. 2) The performance of the four cylinder hydrogen engine system was evaluated, and the target output (1 kw by NA) was obtained. 3) JE mode transient emission testing of the four cylinder hydrogen ICE system with NSR catalyst and DOC was carried out and showed the feasibility of reducing emissions to levels below those specified in the JAPAN 9 emission regulations. For further performance enhancement of the multicylinder hydrogen engine system, improved stability and durability of the high-pressure hydrogen gas direct injector and optimization of the transient control system will be necessary. By the present, the effective method for fuel consumption evaluation is not offered [4] []. Fuel consumption evaluation of the DI hydrogen engine will require the development of a method for highpressure hydrogen consumption measurement at transient operation. In addition, with respect to unregulated substances such as N 2 O in the NSR catalyst [6], it will be necessary to devise a combustion strategy such as moderate injection and/or ignition near the TDC that enables further NOx reduction at the engine outlet and expanded coverage. In these efforts, it will be necessary to perform the visualization and the CFD simulation of high-pressure hydrogen injection/mixture formation. These are in progress now partly in the next efforts of this project. And the development of an in-vehicle hydrogen tank system will also be necessary for realizing trucks using the DISI multi-cylinder hydrogen ICE system... NOx CO NMHC PM Figure 6. Emission test results (JE mode test) ISBN:

6 7. References [1] Helmut Eichlseder, Thomas Wallner, Raymond Freymann, Juergen Ringler, "The Potential of Hydrogen Internal Combustion Engines in a Future Mobility Scenario", SAE paper , Future Transportation Technology Conference, Costa Mesa, June 3. [2] Gerrit Kiesgen, Manfred Klueting, Christian Bock, Hubert Fischer, "The New 12-Cylinder Hydrogen Engine in the 7 Series: The H2 ICE Age Has Begun", SAE paper , 6 SAE World Congress, Detroit, April 6. [3] Kimitaka Yamane, Masakuni Oikawa, Tomonori Kitaura, Kouta Mawatari, Takashi Kondo, Yasuo Takagi, Yoshio Sato and Yuichi Goto, A Development of a High Pressure H2 Gas Injector with High Response by Using Common-Rail Injection System for Direct Injection H2 Fuelled Engines, WHEC (World Hydrogen Energy Conference) 16, Lyon, June 6. [4] Robert J. Natkin, Xiaoguo Tang, Kathleen M. Whipple, Daniel M. Kabat, William F. Stockhausen, "Ford Hydrogen Engine Laboratory Testing Facility", SAE paper , SAE 2 World Congress, Detroit, March 2. [] James Francfort, Don Karner, "Hydrogen ICE Vehicle Testing Activities", SAE paper , 6 SAE World Congress, Detroit, April 6. [6] Atsuhiro Kawamura, Tadanori Yanai, Yoshio Sato, Kaname Naganuma, Kimitaka Yamane and Yasuo Takagi, Summary and Progress of the Hydrogen ICE Truck Development Project, SAE paper , SAE International Journal of Commercial Vehicle, 2(1), October Acknowledgments This work was performed under the Next-generation Environmentally Friendly Vehicle Development and Commercialization Project (EFV21) of the Ministry of Land, Infrastructure, and Transport (MLIT) of Japan. The authors greatly appreciate the assistance of this organization and its personnel. ISBN:

Development status of DME vehicle in Japan

Development status of DME vehicle in Japan 7 th Asian DME Conference (Niigata, Japan) Commercial perspectives in Japan Development status of DME vehicle in Japan November 16, 2011 Naoki SHIMAZAKI 1 1. The latest technology in our clean diesel engine

More information

DEVELOPMENT OF DME (DIMETHYL ETHER) FUELED DIESEL ENGINES FOR LIGHT-DUTY TRUCKS MEETING 2009 JAPAN EMISSION REGULATION

DEVELOPMENT OF DME (DIMETHYL ETHER) FUELED DIESEL ENGINES FOR LIGHT-DUTY TRUCKS MEETING 2009 JAPAN EMISSION REGULATION Journal of KONES Powertrain and Transport, Vol. 13, No. 2 DEVELOPMENT OF DME (DIMETHYL ETHER) FUELED DIESEL ENGINES FOR LIGHT-DUTY TRUCKS MEETING 29 JAPAN EMISSION REGULATION Yoshio Sato National Traffic

More information

Potential of Large Output Power, High Thermal Efficiency, Near-zero NOx Emission, Supercharged, Lean-burn, Hydrogen-fuelled, Direct Injection Engines

Potential of Large Output Power, High Thermal Efficiency, Near-zero NOx Emission, Supercharged, Lean-burn, Hydrogen-fuelled, Direct Injection Engines Available online at www.sciencedirect.com Energy Procedia 29 (2012 ) 455 462 World Hydrogen Energy Conference 2012 Potential of Large Output Power, High Thermal Efficiency, Near-zero NOx Emission, Supercharged,

More information

The New Engine for Accord Hybrid and Study of the Turbocharging Direct Injection Gasoline Engine of Small Diameter of Cylinder

The New Engine for Accord Hybrid and Study of the Turbocharging Direct Injection Gasoline Engine of Small Diameter of Cylinder 22nd Aachen Colloquium Automobile and Engine Technology 2013 1 The New Engine for Accord Hybrid and Study of the Turbocharging Direct Injection Gasoline Engine of Small Diameter of Cylinder Akiyuki Yonekawa

More information

Effect of Biodiesel on PM Emission Characteristics of Modern Diesel Engine

Effect of Biodiesel on PM Emission Characteristics of Modern Diesel Engine 10 th ETH-Conference on Combustion Generated Nanoparticles at ETH Zentrum, Zurich, Switzerland August 21-23, 2006 Effect of Biodiesel on PM Emission Characteristics of Modern Diesel Engine Daisuke Kawano

More information

R&D on Environment-Friendly, Electronically Controlled Diesel Engine

R&D on Environment-Friendly, Electronically Controlled Diesel Engine 20000 M4.2.2 R&D on Environment-Friendly, Electronically Controlled Diesel Engine (Electronically Controlled Diesel Engine Group) Nobuyasu Matsudaira, Koji Imoto, Hiroshi Morimoto, Akira Numata, Toshimitsu

More information

Development of Two-stage Electric Turbocharging system for Automobiles

Development of Two-stage Electric Turbocharging system for Automobiles Development of Two-stage Electric Turbocharging system for Automobiles 71 BYEONGIL AN *1 NAOMICHI SHIBATA *2 HIROSHI SUZUKI *3 MOTOKI EBISU *1 Engine downsizing using supercharging is progressing to cope

More information

The Experimental Study of Fuel Economy & Emission Characteristics for the Heavy-Duty DME Bus

The Experimental Study of Fuel Economy & Emission Characteristics for the Heavy-Duty DME Bus 7 th Asian DME Conference 2011. 11. 17(THU) Toki Messe Niigata Convention Center, Niigata, Japan The Experimental Study of Fuel Economy & Emission Characteristics for the Heavy-Duty DME Bus Yongil Oh,

More information

Proposal to establish a laboratory for combustion studies

Proposal to establish a laboratory for combustion studies Proposal to establish a laboratory for combustion studies Jayr de Amorim Filho Brazilian Bioethanol Science and Technology Laboratory SCRE Single Cylinder Research Engine Laboratory OUTLINE Requirements,

More information

Discussion of Marine Stirling Engine Systems

Discussion of Marine Stirling Engine Systems Proceedings of the 7th International Symposium on Marine Engineering Tokyo, October 24th to 28th, 2005 Discussion of Marine Stirling Engine Systems Koichi HIRATA* and Masakuni KAWADA** ABSTRACT Many kinds

More information

Effect of Biodiesel Fuel on Emissions from Diesel Engine Complied with the Latest Emission Requirements in Japan Ref: JSAE Paper No.

Effect of Biodiesel Fuel on Emissions from Diesel Engine Complied with the Latest Emission Requirements in Japan Ref: JSAE Paper No. Biodiesel Technical Workshop Effect of Biodiesel Fuel on Emissions from Diesel Engine Complied with the Latest Emission Requirements in Japan Ref: JSAE Paper No.20135622 November 5-6, 2013 @ Kansas City,

More information

PM Exhaust Characteristics from Diesel Engine with Cooled EGR

PM Exhaust Characteristics from Diesel Engine with Cooled EGR Proceedings of International Symposium on EcoTopia Science 07, ISETS07 (07) PM Exhaust Characteristics from Diesel Engine with Yutaka Tsuruta 1, Tomohiko Furuhata 1 and Masataka Arai 1 1. Department of

More information

RESEARCH ON STEPS TAKEN TO MEET BSIV EMISSION NORMS WITH SINGLE CYLINDER AIR COOLED DIESEL ENGINE & CONVENTIONAL INJECTION SYSTEM

RESEARCH ON STEPS TAKEN TO MEET BSIV EMISSION NORMS WITH SINGLE CYLINDER AIR COOLED DIESEL ENGINE & CONVENTIONAL INJECTION SYSTEM RESEARCH ON STEPS TAKEN TO MEET BSIV EMISSION NORMS WITH SINGLE CYLINDER AIR COOLED DIESEL ENGINE & CONVENTIONAL INJECTION SYSTEM Rahul Katariya 1, Ashok. J. Keche 2 1 M Tech. Scholar - Mechanical, MIT,

More information

Study of Performance and Emission Characteristics of a Two Stroke Si Engine Operated with Gasoline Manifold Injectionand Carburetion

Study of Performance and Emission Characteristics of a Two Stroke Si Engine Operated with Gasoline Manifold Injectionand Carburetion Indian Journal of Science and Technology, Vol 9(37), DOI: 10.17485/ijst/2016/v9i37/101984, October 2016 ISSN (Print) : 0974-6846 ISSN (Online) : 0974-5645 Study of Performance and Emission Characteristics

More information

A Study of EGR Stratification in an Engine Cylinder

A Study of EGR Stratification in an Engine Cylinder A Study of EGR Stratification in an Engine Cylinder Bassem Ramadan Kettering University ABSTRACT One strategy to decrease the amount of oxides of nitrogen formed and emitted from certain combustion devices,

More information

Low Emissions IC Engine Development at Ford Motor Company

Low Emissions IC Engine Development at Ford Motor Company Low Emissions IC Engine Development at Ford Motor Company George Davis Powertrain Research and Advanced Engineering ERC Symposium University of Wisconsin at Madison Research and Advanced Engineering June

More information

Engine Transient Characteristics Simulation Technology using Zero-dimensional Combustion Model

Engine Transient Characteristics Simulation Technology using Zero-dimensional Combustion Model 25 Engine Transient Characteristics Simulation Technology using Zero-dimensional Combustion Model TAKAYUKI YAMAMOTO *1 KENJI HIRAOKA *2 NAOYUKI MORI *2 YUJI ODA *3 AKIHIRO YUUKI *4 KENICHI ISONO *5 The

More information

On the Road to the Future Powertrain. David Johnson President and CEO Achates Power

On the Road to the Future Powertrain. David Johnson President and CEO Achates Power On the Road to the Future Powertrain David Johnson President and CEO Achates Power Prof Daniel Sperling, University of California Davis Number of vehicles will double Need for sharply reduced fuel consumption

More information

Smoke Reduction Methods Using Shallow-Dish Combustion Chamber in an HSDI Common-Rail Diesel Engine

Smoke Reduction Methods Using Shallow-Dish Combustion Chamber in an HSDI Common-Rail Diesel Engine Special Issue Challenges in Realizing Clean High-Performance Diesel Engines 17 Research Report Smoke Reduction Methods Using Shallow-Dish Combustion Chamber in an HSDI Common-Rail Diesel Engine Yoshihiro

More information

The Impact of Oil Consumption Mechanisms on Diesel Exhaust Particle Size Distributions and Detailed Exhaust Chemical Composition

The Impact of Oil Consumption Mechanisms on Diesel Exhaust Particle Size Distributions and Detailed Exhaust Chemical Composition The Impact of Oil Consumption Mechanisms on Diesel Exhaust Particle Size Distributions and Detailed Exhaust Chemical Composition John Stetter, Nate Forster Jaal Ghandhi, David Foster University of Wisconsin-Madison

More information

Design of Piston Ring Surface Treatment for Reducing Lubricating Oil Consumption

Design of Piston Ring Surface Treatment for Reducing Lubricating Oil Consumption The 3rd International Conference on Design Engineering and Science, ICDES 2014 Pilsen, Czech Republic, August 31 September 3, 2014 Design of Piston Ring Surface Treatment for Reducing Lubricating Consumption

More information

Development of Emission Control Technology to Reduce Levels of NO x and Fuel Consumption in Marine Diesel Engines

Development of Emission Control Technology to Reduce Levels of NO x and Fuel Consumption in Marine Diesel Engines Vol. 44 No. 1 211 Development of Emission Control Technology to Reduce Levels of NO x and Fuel Consumption in Marine Diesel Engines TAGAI Tetsuya : Doctor of Engineering, Research and Development, Engineering

More information

Heavy-Duty Diesel Engine Trends to Meet Future Emissions Standards (Euro VI)

Heavy-Duty Diesel Engine Trends to Meet Future Emissions Standards (Euro VI) Heavy-Duty Diesel Engine Trends to Meet Future Emissions Standards (Euro VI) Andrew Nicol AECC Technical Seminar on Heavy-Duty Vehicle Emissions (Euro VI) Brussels 25 October 2007 Contents Emissions Legislation

More information

Technologies of Diesel HDV in JAPAN

Technologies of Diesel HDV in JAPAN Exhaust Emission Reduction Technologies of Diesel HDV in JAPAN China RT 2009 Emissions & Fuel Efficiency Subcommittee Japan Automobile Manufacturers Association Toshiaki KAKEGAWA 1 CONTENTS 1. History

More information

9 th Diesel Engine Emission Reduction Conference Newport, Rhode Island, August 2003

9 th Diesel Engine Emission Reduction Conference Newport, Rhode Island, August 2003 9 th Diesel Engine Emission Reduction Conference Newport, Rhode Island, 24. 28. August 2003 Recent Developments in BMW s Diesel Technology Fritz Steinparzer, BMW Motoren, Austria 1. Introduction The image

More information

TNV Series Common Rail. Final Tier 4 19kW to 56kW WATER-COOLED DIESEL ENGINES. EPA Tier 4 (19-56kW) EU Stage IIIB (37-56kW)

TNV Series Common Rail. Final Tier 4 19kW to 56kW WATER-COOLED DIESEL ENGINES. EPA Tier 4 (19-56kW) EU Stage IIIB (37-56kW) Final Tier 4 19kW to 56kW WATER-COOLED DIESEL ENGINES TNV Series Common Rail EPA Tier 4 (19-56kW) EU Stage IIIB (37-56kW) TNV SERIES COMMON RAIL ENGINES EPA TIER 4 (19-56kW) EU Stage IIIB (37-56kW) * DPF

More information

The influence of fuel injection pump malfunctions of a marine 4-stroke Diesel engine on composition of exhaust gases

The influence of fuel injection pump malfunctions of a marine 4-stroke Diesel engine on composition of exhaust gases Article citation info: LEWIŃSKA, J. The influence of fuel injection pump malfunctions of a marine 4-stroke Diesel engine on composition of exhaust gases. Combustion Engines. 2016, 167(4), 53-57. doi:10.19206/ce-2016-405

More information

EGR Transient Simulation of a Turbocharged Diesel Engine using GT-Power

EGR Transient Simulation of a Turbocharged Diesel Engine using GT-Power GT-SUITE USERS CONFERENCE FRANKFURT, OCTOBER 4 TH 2004 EGR Transient Simulation of a Turbocharged Diesel Engine using GT-Power TEAM OF WORK: G. GIAFFREDA, C. VENEZIA RESEARCH CENTRE ENGINE ENGINEERING

More information

Dual Fuel Combustion an Applicable Technology for Mobile Application?

Dual Fuel Combustion an Applicable Technology for Mobile Application? 1 S C I E N C E P A S S I O N T E C H N O L O G Y Dual Fuel Combustion an Applicable Technology for Mobile Application? 10 th Conference Eco Mobility 2025plus Univ.Prof. Dr. Helmut Eichlseder Institute

More information

Tier 4 overview. 1. Emission regulations 2. Product overview 3. Engine layout. Content. Vico de Bres Customer Service Department Yanmar Europe B.V.

Tier 4 overview. 1. Emission regulations 2. Product overview 3. Engine layout. Content. Vico de Bres Customer Service Department Yanmar Europe B.V. Tier 4 overview Date 2 April 2013 Vico de Bres Customer Service Department Yanmar Europe B.V. Content 1. Emission regulations 2. Product overview 3. Page1 Emission regulations Tier 4 Page2 USA EPA-Tier

More information

CONSEIL INTERNATIONAL DES MACHINES A COMBUSTION INTERNATIONAL COUNCIL ON COMBUSTION ENGINES

CONSEIL INTERNATIONAL DES MACHINES A COMBUSTION INTERNATIONAL COUNCIL ON COMBUSTION ENGINES CONSEIL INTERNATIONAL DES MACHINES A COMBUSTION INTERNATIONAL COUNCIL ON COMBUSTION ENGINES PAPER NO.: 253 Experimental Experience Gained with a Long-Stroke Medium-Speed Diesel Research engine using Two

More information

Future Challenges in Automobile and Fuel Technologies For a Better Environment. Diesel WG Report. September 25, 2000

Future Challenges in Automobile and Fuel Technologies For a Better Environment. Diesel WG Report. September 25, 2000 1 Future Challenges in Automobile and Fuel Technologies For a Better Environment Diesel WG Report September 25, 2000 JCAP Diesel WG Toshiaki Kakegawa, Akihiro Misumi 2 Objectives To research diesel engine

More information

The influence of thermal regime on gasoline direct injection engine performance and emissions

The influence of thermal regime on gasoline direct injection engine performance and emissions IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS The influence of thermal regime on gasoline direct injection engine performance and emissions To cite this article: C I Leahu

More information

-focusing on effects of sulfur on latest aftertreatment devices-

-focusing on effects of sulfur on latest aftertreatment devices- Further Challenge in Automobile and Fuel Technologies for better air quality 4th JCAP Conference Diesel WG Report -focusing on effects of sulfur on latest aftertreatment devices- June 1, 2005 Research

More information

R&D on a Medium-speed, Four-cycle Diesel Engine Using Heavy fuel oil

R&D on a Medium-speed, Four-cycle Diesel Engine Using Heavy fuel oil 1999C.4.1.11 R&D on a Medium-speed, Four-cycle Diesel Engine Using Heavy fuel oil 1. R&D contents 1.1 Background and R&D objectives In order to meet increasing demand for light oil and intermediate fraction,

More information

The evaluation of endurance running tests of the fuel cells and battery hybrid test railway train

The evaluation of endurance running tests of the fuel cells and battery hybrid test railway train The evaluation of endurance running tests of the fuel cells and battery hybrid test railway train K.Ogawa, T.Yamamoto, T.Hasegawa, T.Furuya, S.Nagaishi Railway Technical Research Institute (RTRI), TOKYO,

More information

Development of Variable Geometry Turbocharger Contributes to Improvement of Gasoline Engine Fuel Economy

Development of Variable Geometry Turbocharger Contributes to Improvement of Gasoline Engine Fuel Economy Development of Variable Geometry Turbocharger Contributes to Improvement of Gasoline Engine Fuel Economy 30 MOTOKI EBISU *1 YOSUKE DANMOTO *1 YOJI AKIYAMA *2 HIROYUKI ARIMIZU *3 KEIGO SAKAMOTO *4 Every

More information

Internal Combustion Engines

Internal Combustion Engines Emissions & Air Pollution Lecture 3 1 Outline In this lecture we will discuss emission control strategies: Fuel modifications Engine technology Exhaust gas aftertreatment We will become particularly familiar

More information

Development of High-Pressure Fuel Supply System for Formula One Engine

Development of High-Pressure Fuel Supply System for Formula One Engine Development of High-Pressure Fuel Supply System for Formula One Engine Tetsuya TANAHASHI* Kazuji ONO* Masanori HAYAFUNE* Yosuke SAWADA* Atsushi SHIMIZU* ABSTRACT Important factors in boosting the performance

More information

GT-Suite Users International Conference Frankfurt a.m., October 22 nd 2012

GT-Suite Users International Conference Frankfurt a.m., October 22 nd 2012 GT-Suite Users International Conference Frankfurt a.m., October 22 nd 2012 Computational Analysis of Internal and External EGR Strategies combined with Miller Cycle Concept for a Two Stage Turbocharged

More information

ME 74 AUTOMOTIVE POLLUTION AND CONTROL Automobile Engineering-vii sem Question Bank( )

ME 74 AUTOMOTIVE POLLUTION AND CONTROL Automobile Engineering-vii sem Question Bank( ) ME 74 AUTOMOTIVE POLLUTION AND CONTROL Automobile Engineering-vii sem Question Bank(2013-2014) UNIT I INTRODUCTION 1. How the transient operation of S.I engine will cause CO formation? (may /June 2007)

More information

EFFECT OF EGR AND CYCLONIC SEPARATOR ON EMISSIONS IN DI DIESEL ENGINES

EFFECT OF EGR AND CYCLONIC SEPARATOR ON EMISSIONS IN DI DIESEL ENGINES Proceedings of the International Conference on Mechanical Engineering 27 (ICME27) 29-31 December 27, Dhaka, Bangladesh ICME7-TH-9 EFFECT OF EGR AND CYCLONIC SEPARATOR ON EMISSIONS IN DI DIESEL ENGINES

More information

Improving Fuel Efficiency with Fuel-Reactivity-Controlled Combustion

Improving Fuel Efficiency with Fuel-Reactivity-Controlled Combustion ERC Symposium 2009 1 Improving Fuel Efficiency with Fuel-Reactivity-Controlled Combustion Rolf D. Reitz, Reed Hanson, Derek Splitter, Sage Kokjohn Engine Research Center University of Wisconsin-Madison

More information

Kazuhiro Yuki Niigata Power Systems Co., Ltd.

Kazuhiro Yuki Niigata Power Systems Co., Ltd. Advanced Development of Medium Speed Gas Engine Targeting to Marine Kazuhiro Yuki Niigata Power Systems Co., Ltd. Background Nowadays, regulation of exhaust emission from engines is becoming more strict

More information

Advanced Diesel Combustion Concept: PCCI - A Step Towards Meeting BS VI Emission Regulations

Advanced Diesel Combustion Concept: PCCI - A Step Towards Meeting BS VI Emission Regulations October - November 2015 1. Advanced Diesel Combustion Concept: PCCI - A Step Towards Meeting BS VI Emission Regulations 2. ARAI offers Indigenously Developed Downsized 3 Cylinder High Power Density CRDI

More information

Digital Shaping and Optimization of Fuel Injection Pattern for a Common Rail Automotive Diesel Engine through Numerical Simulation

Digital Shaping and Optimization of Fuel Injection Pattern for a Common Rail Automotive Diesel Engine through Numerical Simulation Digital Shaping and Optimization of Fuel Injection Pattern for a Common Rail Automotive Diesel Engine through Numerical Simulation European GT Conference 2017 - Frankfurt am Main Politecnico di Torino:

More information

A Systems Approach to Meet Tier 2 Bin 5

A Systems Approach to Meet Tier 2 Bin 5 A Systems Approach to Meet ERC - 25 Symposium Madison, June 9, 25 Dean Tomazic FEV Engine Technology, Inc. Auburn Hills, MI, USA Overview 1. Introduction 2. Current Market Situation 3. Emission Requirements

More information

IDENTIFICATION OF FUEL INJECTION CONTROL SYSTEM IN A GDI ENGINE

IDENTIFICATION OF FUEL INJECTION CONTROL SYSTEM IN A GDI ENGINE Journal of KONES Powertrain and Transport, Vol. 17, No. 4 21 IDENTIFICATION OF FUEL INJECTION CONTROL SYSTEM IN A GDI ENGINE Zbigniew Wo czy ski Technical University of Radom Chrobrego Av. 45, 26-6 Radom,

More information

TECHNICAL PAPER FOR STUDENTS AND YOUNG ENGINEERS - FISITA WORLD AUTOMOTIVE CONGRESS, BARCELONA

TECHNICAL PAPER FOR STUDENTS AND YOUNG ENGINEERS - FISITA WORLD AUTOMOTIVE CONGRESS, BARCELONA TECHNICAL PAPER FOR STUDENTS AND YOUNG ENGINEERS - FISITA WORLD AUTOMOTIVE CONGRESS, BARCELONA 2 - TITLE: Topic: INVESTIGATION OF THE EFFECTS OF HYDROGEN ADDITION ON PERFORMANCE AND EXHAUST EMISSIONS OF

More information

Towards Clean Diesel Engines The Future of the Advanced Diesel. Chester, June 8-9, Compression Ignition Engine. R.S.G.

Towards Clean Diesel Engines The Future of the Advanced Diesel. Chester, June 8-9, Compression Ignition Engine. R.S.G. The Future of the Advanced Diesel Compression Ignition Engine R.S.G. Baert Towards Clean Diesel Engines 2011 Chester, June 8-9, 2011 some 200.000 horses and around 5000 tonnes of manure had to be removed

More information

The Development of DME vehicle and DME engine. Isuzu s Outlook for Future Commercial Vehicle

The Development of DME vehicle and DME engine. Isuzu s Outlook for Future Commercial Vehicle 11/13/213 1/19 The Development of DME vehicle and DME engine 8 th Asian DME Conference Jakarta, Indonesia November 13-14, 213 Shigehisa Takase Isuzu Advanced Engineering Center, Ltd. Isuzu s Outlook for

More information

Sustainable Energy Mod.1: Fuel Cells & Distributed Generation Systems

Sustainable Energy Mod.1: Fuel Cells & Distributed Generation Systems Sustainable Energy Mod.1: Fuel Cells & Distributed Generation Systems Dr. Ing. Mario L. Ferrari Thermochemical Power Group (TPG) - DiMSET University of Genoa, Italy : Internal Combustion Engines (ICE)

More information

The Effect of Clean and Cold EGR on the Improvement of Low Temperature Combustion Performance in a Single Cylinder Research Diesel Engine

The Effect of Clean and Cold EGR on the Improvement of Low Temperature Combustion Performance in a Single Cylinder Research Diesel Engine The Effect of Clean and Cold EGR on the Improvement of Low Temperature Combustion Performance in a Single Cylinder Research Diesel Engine C. Beatrice, P. Capaldi, N. Del Giacomo, C. Guido and M. Lazzaro

More information

Mazda RX-8 Rotary Hydrogen Engine

Mazda RX-8 Rotary Hydrogen Engine 1 Mazda RX-8 Rotary Hydrogen Engine For A Cleaner Environment Mazda is committed to developing combustion technologies with a minimum of impact on the environment. At this year s Geneva Motor Show, Mazda

More information

GASOLINE DIRECT INJECTION IN SI ENGINES B. PAVAN VISWANADH P. ASHOK KUMAR. Mobile No : Mobile No:

GASOLINE DIRECT INJECTION IN SI ENGINES B. PAVAN VISWANADH P. ASHOK KUMAR. Mobile No : Mobile No: GASOLINE DIRECT INJECTION IN SI ENGINES SUBMIT TED BY B. PAVAN VISWANADH P. ASHOK KUMAR Y06ME011, III/IV B. Tech Y06ME003, III/IV B. Tech Pavan.visu@gmail.com ashok.me003@gmail.com Mobile No :9291323516

More information

Hydrogen addition in a spark ignition engine

Hydrogen addition in a spark ignition engine Hydrogen addition in a spark ignition engine F. Halter, C. Mounaïm-Rousselle Laboratoire de Mécanique et d Energétique Orléans, FRANCE GDRE «Energetics and Safety of Hydrogen» 27/12/2007 Main advantages

More information

Department of Engineering Science University of Oxford. Particulate Matter Emissions from a Highly Boosted GDI engine

Department of Engineering Science University of Oxford. Particulate Matter Emissions from a Highly Boosted GDI engine Department of Engineering Science University of Oxford Felix Leach, Richard Stone University of Oxford Dave Richardson Jaguar Land Rover Andrew Lewis, Sam Akehurst, James Turner University of Bath Roger

More information

Manufacturer: Address: ZIP Code: City: Country: VAT #: Signatory, Name: Signatory, Title: Phone: Fax: WWW: Head of Engineering:

Manufacturer: Address: ZIP Code: City: Country: VAT #: Signatory, Name: Signatory, Title: Phone: Fax:   WWW: Head of Engineering: CERTIFICATION APPLICATION Reciprocating internal combustion engines Certificate No.: EX Exhaust emission measurement - Part 1: Test-bed measurement of gaseous and particulate exhaust emissions Ref.: ISO

More information

Stringent Emission Regulation in China

Stringent Emission Regulation in China Issues of Fuel Specification for Future Stringent Emission Regulation in China JARI Fuel Meeting in Shanghai June. 26, 28 @JETRO Shanghai Fuels and Lubricants Committee Japan Automobile Manufactures Association

More information

Euro VI Programme and Emissions Results on European Cycles

Euro VI Programme and Emissions Results on European Cycles Overview of the AECC Heavy-duty Euro VI Programme and Emissions Results on European Cycles Dr. R. J. Brisley AECC Technical Steering Committee AECC Technical Seminar on Heavy-duty Engine Emissions Brussels,

More information

Objectives. WP7: On-engine aftertreatment systems. WP Leader: Jukka Leinonen. Partners:

Objectives. WP7: On-engine aftertreatment systems. WP Leader: Jukka Leinonen. Partners: WP7: On-engine aftertreatment systems Objectives Integration of SCR (Selective Catalytic Reduction) with the existing strong Miller cycle 4-stroke diesel engine and combining it with particulate emission

More information

Experimental Study on 3-Way Catalysts in Automobile

Experimental Study on 3-Way Catalysts in Automobile , pp.44-48 http://dx.doi.org/10.14257/astl.2016.130.10 Experimental Study on 3-Way Catalysts in Automobile S. W. Lee 1, Jongmin Kim 2, Doo-Sung Baik 3 1, 2 Graduate School of Automotive Engineering, Kookmin

More information

Module 3: Influence of Engine Design and Operating Parameters on Emissions Lecture 14:Effect of SI Engine Design and Operating Variables on Emissions

Module 3: Influence of Engine Design and Operating Parameters on Emissions Lecture 14:Effect of SI Engine Design and Operating Variables on Emissions Module 3: Influence of Engine Design and Operating Parameters on Emissions Effect of SI Engine Design and Operating Variables on Emissions The Lecture Contains: SI Engine Variables and Emissions Compression

More information

ENGINE TECHNOLOGY. Bobcat Engine_B _ _EN_reworked.indd 1

ENGINE TECHNOLOGY. Bobcat Engine_B _ _EN_reworked.indd 1 ENGINE TECHNOLOGY Bobcat Engine_B4459500_01-2015_EN_reworked.indd 1 1/30/2015 10:07:51 AM A COMPANY THAT S GROWING WITH SOCIETY Bobcat prides itself on innovations that shape the future. For decades, we

More information

Chapter 4 ANALYTICAL WORK: COMBUSTION MODELING

Chapter 4 ANALYTICAL WORK: COMBUSTION MODELING a 4.3.4 Effect of various parameters on combustion in IC engines: Compression ratio: A higher compression ratio increases the pressure and temperature of the working mixture which reduce the initial preparation

More information

Influence of Fuel Injector Position of Port-fuel Injection Retrofit-kit to the Performances of Small Gasoline Engine

Influence of Fuel Injector Position of Port-fuel Injection Retrofit-kit to the Performances of Small Gasoline Engine Influence of Fuel Injector Position of Port-fuel Injection Retrofit-kit to the Performances of Small Gasoline Engine M. F. Hushim a,*, A. J. Alimin a, L. A. Rashid a and M. F. Chamari a a Automotive Research

More information

Conversion of Naturally Aspirated Genset Engine to Meet III A Norms for Tractor Application by Using Turbocharger

Conversion of Naturally Aspirated Genset Engine to Meet III A Norms for Tractor Application by Using Turbocharger Conversion of Naturally Aspirated Genset Engine to Meet III A Norms for Tractor Application by Using Turbocharger M. Karthik Ganesh, B. Arun kumar Simpson co ltd., Chennai, India ABSTRACT: The small power

More information

Development of High-efficiency Gas Engine with Two-stage Turbocharging System

Development of High-efficiency Gas Engine with Two-stage Turbocharging System 64 Development of High-efficiency Gas Engine with Two-stage Turbocharging System YUTA FURUKAWA *1 MINORU ICHIHARA *2 KAZUO OGURA *2 AKIHIRO YUKI *3 KAZURO HOTTA *4 DAISUKE TAKEMOTO *4 A new G16NB gas engine

More information

Foundations of Thermodynamics and Chemistry. 1 Introduction Preface Model-Building Simulation... 5 References...

Foundations of Thermodynamics and Chemistry. 1 Introduction Preface Model-Building Simulation... 5 References... Contents Part I Foundations of Thermodynamics and Chemistry 1 Introduction... 3 1.1 Preface.... 3 1.2 Model-Building... 3 1.3 Simulation... 5 References..... 8 2 Reciprocating Engines... 9 2.1 Energy Conversion...

More information

Which are the four important control loops of an spark ignition (SI) engine?

Which are the four important control loops of an spark ignition (SI) engine? 151-0567-00 Engine Systems (HS 2017) Exercise 1 Topic: Lecture 1 Johannes Ritzmann (jritzman@ethz.ch), Raffi Hedinger (hraffael@ethz.ch); October 13, 2017 Problem 1 (Control Systems) Why do we use control

More information

Usage Issues and Fischer-Tropsch Commercialization

Usage Issues and Fischer-Tropsch Commercialization Usage Issues and Fischer-Tropsch Commercialization Presentation at the CCTR Advisory Panel Meeting Terre Haute, Indiana June 1, 2006 Diesel Engine Research John Abraham (ME), Jim Caruthers (CHE) Gas Turbine

More information

EXPERIMENTAL INVESTIGATION OF THE EFFECT OF HYDROGEN BLENDING ON THE CONCENTRATION OF POLLUTANTS EMITTED FROM A FOUR STROKE DIESEL ENGINE

EXPERIMENTAL INVESTIGATION OF THE EFFECT OF HYDROGEN BLENDING ON THE CONCENTRATION OF POLLUTANTS EMITTED FROM A FOUR STROKE DIESEL ENGINE EXPERIMENTAL INVESTIGATION OF THE EFFECT OF HYDROGEN BLENDING ON THE CONCENTRATION OF POLLUTANTS EMITTED FROM A FOUR STROKE DIESEL ENGINE Haroun A. K. Shahad hakshahad@yahoo.com Department of mechanical

More information

Cummins/DOE Light Truck Clean Diesel Engine Progress Report

Cummins/DOE Light Truck Clean Diesel Engine Progress Report Cummins/DOE Light Truck Clean Diesel Engine Progress Report August 2003 Technical Program Overview Partnership, Cummins and U.S. Department of Energy Focus Development of technologies that will result

More information

Diesel PM collection for marine emission using hole-type electrostatic precipitators

Diesel PM collection for marine emission using hole-type electrostatic precipitators Air Pollution XXII 145 Diesel PM collection for marine emission using hole-type electrostatic precipitators Y. Ehara 1, A. Osako 1, A. Zukeran 2, K. Kawakami 3 & T. Inui 3 1 Tokyo City University, Japan

More information

DEUTZ Corporation 914 Gas. Customer / Event DEUTZ Corporation Presentation DATE, 2010

DEUTZ Corporation 914 Gas. Customer / Event DEUTZ Corporation Presentation DATE, 2010 DEUTZ Corporation 914 Gas Customer / Event DEUTZ Corporation Presentation DATE, 2010 914 Gas Content Target Market General Product Features Performance Data Dimensions and Weight Emissions Gas Train and

More information

Homogeneous Charge Compression Ignition combustion and fuel composition

Homogeneous Charge Compression Ignition combustion and fuel composition Loughborough University Institutional Repository Homogeneous Charge Compression Ignition combustion and fuel composition This item was submitted to Loughborough University's Institutional Repository by

More information

Internal Combustion Optical Sensor (ICOS)

Internal Combustion Optical Sensor (ICOS) Internal Combustion Optical Sensor (ICOS) Optical Engine Indication The ICOS System In-Cylinder Optical Indication 4air/fuel ratio 4exhaust gas concentration and EGR 4gas temperature 4analysis of highly

More information

Leveraging Strategies: Japan s Story

Leveraging Strategies: Japan s Story Leveraging Strategies: Japan s Story Takashi Shimodaira Executive Vice President Japan Automobile Manufacturers Association GAIKINDO International Automotive Conference Jakarta, July 11, 2005 1 JAMA Profile

More information

Future Powertrain Technology for the North American Market: Diesel & Hydrogen

Future Powertrain Technology for the North American Market: Diesel & Hydrogen n Future Powertrain Technology for the North American Market: Diesel & Hydrogen Dr. Gerhard Schmidt Vice President - Research Future Future Automotive Automotive Powertrain Powertrain Powertrain Drivers

More information

COMPARISON OF VARIABLE VALVE ACTUATION, CYLINDER DEACTIVATION AND INJECTION STRATEGIES FOR LOW-LOAD RCCI OPERATION OF A LIGHT-DUTY ENGINE

COMPARISON OF VARIABLE VALVE ACTUATION, CYLINDER DEACTIVATION AND INJECTION STRATEGIES FOR LOW-LOAD RCCI OPERATION OF A LIGHT-DUTY ENGINE COMPARISON OF VARIABLE VALVE ACTUATION, CYLINDER DEACTIVATION AND INJECTION STRATEGIES FOR LOW-LOAD RCCI OPERATION OF A LIGHT-DUTY ENGINE Anand Nageswaran Bharath, Yangdongfang Yang, Rolf D. Reitz, Christopher

More information

Figure 1: The Turbocharger cross-section with turbine and compressor connected with shaft [2]

Figure 1: The Turbocharger cross-section with turbine and compressor connected with shaft [2] International Journal of Applied Engineering Research ISSN 973-456 Volume 13, Number 1 (18) pp. 691-696 Effects of Pressure Boost on the Performance Characteristics of the Direct Injection Spark Ignition

More information

TNV Series. 2TNV Output : 9.9 kw (13.3 hp) 3TNV Output : 15.5 kw (20.8 hp) kw (36.5 hp) 4TNV Output : 35.7 kw (47.9 hp) kw (83.

TNV Series. 2TNV Output : 9.9 kw (13.3 hp) 3TNV Output : 15.5 kw (20.8 hp) kw (36.5 hp) 4TNV Output : 35.7 kw (47.9 hp) kw (83. 2TNV Output : 9.9 kw (13.3 hp) TNV Series WATER-COOLED DIESEL ENGINES 3TNV Output : 15.5 kw (20.8 hp) - 27.1 kw (36.5 hp) 4TNV Output : 35.7 kw (47.9 hp) - 62.5 kw (83.8 hp) THE TNV ADDS A WHOLE RANGE

More information

Performance Evaluation of Electric Vehicles in Macau

Performance Evaluation of Electric Vehicles in Macau Journal of Asian Electric Vehicles, Volume 12, Number 1, June 2014 Performance Evaluation of Electric Vehicles in Macau Tze Wood Ching 1, Wenlong Li 2, Tao Xu 3, and Shaojia Huang 4 1 Department of Electromechanical

More information

Simulation of the Mixture Preparation for an SI Engine using Multi-Component Fuels

Simulation of the Mixture Preparation for an SI Engine using Multi-Component Fuels ICE Workshop, STAR Global Conference 2012 March 19-21 2012, Amsterdam Simulation of the Mixture Preparation for an SI Engine using Multi-Component Fuels Michael Heiss, Thomas Lauer Content Introduction

More information

INFLUENCE OF INTAKE AIR TEMPERATURE AND EXHAUST GAS RECIRCULATION ON HCCI COMBUSTION PROCESS USING BIOETHANOL

INFLUENCE OF INTAKE AIR TEMPERATURE AND EXHAUST GAS RECIRCULATION ON HCCI COMBUSTION PROCESS USING BIOETHANOL ENGINEERING FOR RURAL DEVELOPMENT Jelgava, 2.-27..216. INFLUENCE OF INTAKE AIR TEMPERATURE AND EXHAUST GAS RECIRCULATION ON HCCI COMBUSTION PROCESS USING BIOETHANOL Kastytis Laurinaitis, Stasys Slavinskas

More information

Objectives. WP7: On-engine aftertreatment systems. WP Leader: Jukka Leinonen. Partners:

Objectives. WP7: On-engine aftertreatment systems. WP Leader: Jukka Leinonen. Partners: Objectives WP Leader: Jukka Leinonen Integration of SCR (Selective Catalytic Reduction) with the 4-stroke diesel engine and combining it with particulate emission (PM) abatement technology would enable

More information

Comparison of Soot Measurement Instruments during Transient and Steady State Operation

Comparison of Soot Measurement Instruments during Transient and Steady State Operation Comparison of Soot Measurement Instruments during Transient and Steady State Operation Christophe Barro, Philipp Vögelin, Pascal Wilhelm, Peter Obrecht, Konstantinos Boulouchos (Aerothermochemistry and

More information

October - December JCPS Volume 9 Issue 4

October - December JCPS Volume 9 Issue 4 ISSN: 0974-2115 Developing prototype of single cylinder diesel pump to meet emission standards M Dhanasekaran*, MM Pranav School of Mechanical Engineering, SRM University, Kattankulathur, 603203, Tamil

More information

Performance Enhancement of Multi-Cylinder Common Rail Diesel Engine for Automotive Application

Performance Enhancement of Multi-Cylinder Common Rail Diesel Engine for Automotive Application Performance Enhancement of Multi-Cylinder Common Rail Diesel Engine for Automotive Application SUNDHARAM K, PG student, Department of Mechanical Engineering, Internal Combustion Engineering Divisions,

More information

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY OFFICE OF TRANSPORTATION AND AIR QUALITY ENGINE INTERNATIONAL AIR POLLUTION PREVENTION CERTIFICATE

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY OFFICE OF TRANSPORTATION AND AIR QUALITY ENGINE INTERNATIONAL AIR POLLUTION PREVENTION CERTIFICATE UNITED STATES ENVIRONMENTAL PROTECTION AGENCY OFFICE OF TRANSPORTATION AND AIR QUALITY ENGINE INTERNATIONAL AIR POLLUTION PREVENTION CERTIFICATE Manufacturer: Engine Family: Certificate Number: AB VOLVO

More information

INFLUENCE OF THE NUMBER OF NOZZLE HOLES ON THE UNBURNED FUEL IN DIESEL ENGINE

INFLUENCE OF THE NUMBER OF NOZZLE HOLES ON THE UNBURNED FUEL IN DIESEL ENGINE INFLUENCE OF THE NUMBER OF NOZZLE HOLES ON THE UNBURNED FUEL IN DIESEL ENGINE 1. UNIVERSITY OF RUSE, 8, STUDENTSKA STR., 7017 RUSE, BULGARIA 1. Simeon ILIEV ABSTRACT: The objective of this paper is to

More information

FEATURE ARTICLE Opacimeter MEXA-130S

FEATURE ARTICLE Opacimeter MEXA-130S FEATURE ARTICLE Opacimeter MEXA-13S Technical Reports Nobutaka Kihara System configuration diagram Detector Unit Fan Sample gas inlet Detector gas Light Mirror Heater source Half-mirror Lens Principle

More information

Challenges for Sustainable Mobility. Toyota Business Strategy Meeting 2007

Challenges for Sustainable Mobility. Toyota Business Strategy Meeting 2007 Challenges for Sustainable Mobility Toyota Business Strategy Meeting 2007 1 Challenges to Deliver Mobility for a Sustainable Society Development of appealing products CO2 reduction Effective utilization

More information

The Effects of Engine Technology and Fuel Property on Diesel Emission

The Effects of Engine Technology and Fuel Property on Diesel Emission 1 Further Challenge in Automobile and Fuel Technologies For Better Air Quality The Effects of Engine Technology and Fuel Property on Diesel Emission 22.2.22 Combustion Analysis WG Positioning of Combustion

More information

Improved Fuel Economy

Improved Fuel Economy ENVIRONMENTAL REPORT 2001 The Challenge of Reducing Enviromental Load Improving Fuel Economy and Reducing Exhaust Emissions Pressing Ahead to Improve the Fuel Economy of Existing Engines and Reduce Exhaust

More information

Prediction on Increasing the Efficiency of Single Cylinder DI Diesel Engine Using EGR System

Prediction on Increasing the Efficiency of Single Cylinder DI Diesel Engine Using EGR System International OPEN ACCESS Journal Of Modern Engineering Research (IJMER) Prediction on Increasing the Efficiency of Single Cylinder DI Diesel Engine Using EGR System P.Muni Raja Chandra 1, Ayaz Ahmed 2,

More information

New Direct Fuel Injection Engine Control Systems for Meeting Future Fuel Economy Requirements and Emission Standards

New Direct Fuel Injection Engine Control Systems for Meeting Future Fuel Economy Requirements and Emission Standards Hitachi Review Vol. 53 (2004), No. 4 193 New Direct Fuel Injection Engine Control Systems for Meeting Future Fuel Economy Requirements and Emission Standards Minoru Osuga Yoshiyuki Tanabe Shinya Igarashi

More information

Development of Bi-Fuel Systems for Satisfying CNG Fuel Properties

Development of Bi-Fuel Systems for Satisfying CNG Fuel Properties Keihin Technical Review Vol.6 (2017) Technical Paper Development of Bi-Fuel Systems for Satisfying Fuel Properties Takayuki SHIMATSU *1 Key Words:, NGV, Bi-fuel add-on system, Fuel properties 1. Introduction

More information

Experimental investigation on influence of EGR on combustion performance in SI Engine

Experimental investigation on influence of EGR on combustion performance in SI Engine - 1821 - Experimental investigation on influence of EGR on combustion performance in SI Engine Abstract M. Božić 1*, A. Vučetić 1, D. Kozarac 1, Z. Lulić 1 1 University of Zagreb, Faculty of Mechanical

More information

Marc ZELLAT, Driss ABOURI and Stefano DURANTI CD-adapco

Marc ZELLAT, Driss ABOURI and Stefano DURANTI CD-adapco 17 th International Multidimensional Engine User s Meeting at the SAE Congress 2007,April,15,2007 Detroit, MI RECENT ADVANCES IN DIESEL COMBUSTION MODELING: THE ECFM- CLEH COMBUSTION MODEL: A NEW CAPABILITY

More information